National Radio Astronomy Observatory
 Tucson, Arizona

March 31, 1988

MEMORANDUM

To: Operators and Observers

From: P. R. Jewell

Subject: Vane Calibration of Continuum Data

To calibrate continuum data taken with the Digital Backend using the ambient temperature vane, follow these instructions:

1. The DBE (digital backend) observing task must be loaded in the FORTH computer.
2. You may chose the number of repeats of the VANE-SKY cycle by setting the FORTH parameter CRPT. For example, 1 CRPT ! sets in one repeat.

You may chose the length of the integration time for each sample (vane or sky) by setting the FORTH parameter CSEC (number of seconds x 10). For example, for 5 second samples, enter 50 CSEC !
3. To perform the vane calibration, type CALIBRATE at the FORTH console.
4. The formalism for calibrating continuum ON-OFF data is

$$
\mathrm{T}_{\mathrm{R}}^{*}=\left[\mathrm{T}_{\mathrm{A}}(\text { on })-\mathrm{T}_{\mathrm{A}}(\text { off })\right] \div \mathrm{TC} /\left[\mathrm{T}_{\text {vane }}-\mathrm{T}_{\text {sky }}\right]
$$

TC is the scale factor which should be set to about 400. To compute the quantity [$\mathrm{T}_{\text {vane }}$ - $\mathrm{T}_{\text {sky }}$] from the vane calibration scan, install the procedure VCAL into CONDAR (the continuum analysis package) by typing

INSTALL VCAL
at the observer's terminal. Then type
scan_number VCAL
This will print out a message "SET DSF TO" xxxxx. Tell the operator that this is the new DSF value (see below). Do this for both polarization channels. To display the calibration scan, type
scan_number T
5. The observer having done Step 4, the operator should enter the following information into the control computer:

4000 TC !
4000 TC 1+ ! (set TC for both channels to 400)
0 TAUO ! (the zenith optical depth must be 0 or the atmosphere will be corrected for twice!)
0 NT (should already by set; indicates no noise tube)
If both polarization channels have the about the same calibration scales (probably not the case) enter
xxxxx DSF (where $x x x x x$ is the number generated in Step 4.
If the 2 channels have different calibration, enter
xxxxx \#CP (for the DSF value of Receiver 1), or xxxxx \#CP 1+ (for Receiver 2).
6. Any DBE data taken thereafter will be calibrated on the $T_{R}{ }^{2}$ scale. Of course, the calibration procedure should be repeated frequently to properly correct for changes in the atmospheric transmission.
7. For more information, see Chapter 6 of the "Draft Users Manual" (available at the telescope) and " 12 Meter Memo No. 242" on the Digital Backend.

PROCEDURE VCAL(XSCAN)

* THIS PROC CALCULATES CONTINUUM VANE CAL NUMBERS
* PRJ 8 MAY 1987
* Modified 31 Mar 87

GET XSCAN
NPT = NOPTS
LEN = HEADLEN
TAVANE $=0$
TASKY $=0$
$\mathrm{P}=\mathrm{PTWH}$
FOR J = 1 TO NPT/8
$\mathrm{K}=\mathrm{LEN}+2 * \mathrm{~J}-1$
TAVANE $=$ TAVANE + TWH $(K, P)+T W H(K+1, P)+T W H(K+2, P)+T W H(K+3, P)$
TASKY $=$ TASKY + TWH $(K+4, P)+T W H(K+5, P)+T W H(K+6, P)+T W H(K+7, P)$ END
TAVANE $=$ TAVANE*2./NPT
TASKY $=$ TASKY*2./NPT
TDIFF $=$ TAVANE - TASKY
PRINT ' TA_SKY $=$ ' TASKY
PRINT , TA_VANE $=$ ' TAVANE
PRINT , TA_DIFF = 'TDIFF
PRINT ' SET DSF TO ' TDIFF
RETURN
FINISH

