
300-FOOT CONTROL COMPUTER MEMO NO. 7

PROPOSED CONTROL LANGUAGE

FOR THE 300 FOOT SYSTEM

October 31, 1984

Allen Farris
N. R. A. O.

Computer Division
Green Bank



Oct 31 16:11 1984 PROPOSED CONTROL LANGUAGE FOR THE 300 FOOT SYSTEM Page 1

INTRODUCTION

The control language for the new 300 foot system will attempt to draw
on what the user already knows by using statements common to familiar
computer languages. It will be an interactive language, in the sense
that a user will have the ability to stop execution at any point and
display or change statements that have been submitted to the control
program. It is intended to support a novice user, without creating
undue trauma, as well as the user who wants extensive control over the
system. This goal will be achieved by building defaults into the
language and giving the user control over the assignment of these
default values. This technique will form the basis for constructing
an optional menu-driven system which will guide the user through the
setup and observing procedures. In this manner, the language will be
used to construct a system in which a knowledge of the language is
unnecessary.

A control language, for the purposes of this discussion, is a
coherent, consistent, and unambiguous set of instructions for
directing the control program. There are two levels at which the
control system operates. At the lower level the control program
activates, controls, and interacts with various hardware devices
related to timekeeping, telescope motion, and data acquisition. At
the higher level the control program must interact with the user and
execute instructions more from the user's perspective, e.g. "observe
this object for this length of time." These higher level instructions
divide into two groups: 1) instructions designed to establish the
proper environment in which to carry out some subsequent command, e.g.
setting an LO frequency, and 2) instructions designed to directly
initiate some major activity, e.g. start a scan. This document is
concerned with this higher level set of instructions.

The difficulties of defining such a language become apparent when one
begins to reflect on the community of users of such a language. This
community includes astronomers with little familiarity with the
telescope, astronomers with greater familiarity who want somewhat more
control over the observing situation, and experienced astronomers who
want control over everything and do nothing in a conventional manner.
The community also includes telescope operaters who are very familiar
with the instrument and have day-to-day contact with the system,
engineers who must install and check out new equipment, engineers and
programmers called out to diagnose and solve a problem during an
observing session, and programmers and engineers assisting an
astronomer to observe using an unusual technique. The needs of such a
community of users diverge in the extreme. At one end of the spectrum
a turn-key operation is desirable. At the other, information about
and control over every facet of the system is a necessity. This is
the major problem in considering a command language.

It is highly desirable to be able to submit instructions to the
control program on a dynamic basis and be able to interrupt and



Oct 31 16:11 1984 PROPOSED CONTROL LANGUAGE FOR THE 300 FOOT SYSTEM Page 2

modify them. One must also keep in mind that these instructions are
being executed in real-time, so efficiency is of paramount importance.

These considerations are summarized in the following series of
desirable goals for the command language. The command language must:

1. establish and initialize an environment for executing major
activities

2. execute major activities

3. operate with real-time efficiency

4. be interruptible, with dynamically submitted instructions

5. be easy to use for inexperienced users

6. provide complete run-time control for sophisticated users

7. provide flexibility and generality for ease of maintenance
and growth

CONTROL FLOW STATEMENTS

The control flow statements of the language are common to many high level
computer languages and require little explanation. They are presented
below.

1. WHILE (conditional_expression)

ENDWHILE

2. IF (conditional_expression)

ELSEIF (conditional_expression)

ELSEIF (conditional_expression)

ELSE

ENDIF

3. REPEAT

UNTIL (conditionalexpression)

4. DO loopindex = beginningvalue, endingvalue, increment

ENDDO

5. EXIT



Oct 31 16:11 1984 PROPOSED CONTROL LANGUAGE FOR THE 300 FOOT SYSTEM Page 3

Looping statements and 'IF' statements may be nested to some arbitrary
maximum. The 'elseif' and 'else' clauses are optional. The 'DO'
statement is entirely equivalent to:

loop_index = beginning value
WHILE (loop_index <= endingvalue)

loopindex = loop_index + increment
ENDWHILE

The 'EXIT' statement jumps to the statement following the end of the
loop in which it occurs.

STRUCTURAL STATEMENTS

The language, from a structural perspective, consists of one or more
procedures, similar to Fortran subroutines, and one or more groups of
statements called observations. It is observations that are executed
by the control program. Of course, observations may reference
procedures. The statements which form these groups are presented
below.

1. OBS user_number observername project_code

ENDOBS

2. PROC procedure_name

ENDPROC

Procedure groups and observation groups may not be nested, i. e. an
observation group cannot contain within its boundaries the definition
of a procedure and likewise a procedure group cannot contain within
its boundaries the definition of an observation or of another
procedure. Observation groups may contain references to procedures
but procedures may not contain references to observations. In other
words observation groups are similar to Fortran 'main' programs and
procedure groups are similar to Fortran subroutines. Procedure groups
may contain references to other procedures. Procedure and observation
groups may be in any order. Observation groups are executed by the
control program in the order in which they occur. There are no formal
parameters because all variables are globally defined, including
user-defined variables. These two groups of statements may contain
any of the control statements, data declaration statements, assignment
statements, or procedure references.

DATA DECLARATION, ASSIGNMENT, AND PROCEDURE REFERENCE STATEMENTS

Additional types of statements include data declarations, assignments,
and procedure references. These are presented below.



Oct 31 16:11 1984 PROPOSED CONTROL LANGUAGE FOR THE 300 FOOT SYSTEM Page 4

1. CHAR variable name

2. INT variablename [(dimensions)]

3. REAL variablename [(dimensions)]

4. DOUBLE variable_name [(dimensions)]

5. variable = expression

6. procedure_name

Types of variables are character, integer, real, and double precision.
Character data is in the form of strings of varying length. The only
context in which character string constants may occur is in character
assignment statements. Character variables may not appear in
expressions. Integer, real, and double precision variables may
optionally have dimensions and thus become arrays and are referenced
as in Fortran. Expressions are formed as in Fortran and may contain
function references. Such functions are all built-in, such as SIN,
COS, etc. Procedure references may not occur in expressions.
Procedures are referenced and executed merely by stating their names.

DEFAULTS

The ability to define and manipulate defaults is an important concept,
which, if properly executed, contributes significantly to the ease
with which the language can be used. The statements of this type will
most frequently be used to pre-define names and defaults which the
user may then manipulate.

Defaults are handled in the following manner. Elementary variables
may be grouped into logically related collections and referred to by a
single name. Likewise, collections of constants which might be
assigned to these variables may be given a name. There may be many
groups of constants which might be assigned to a single collection of
variables. The assignment of constants to variables is made in the
usual manner: name of a collection of variables = name of a collection
of defaults. This feature of the language will ordinarily be used to
pre-define meaningful collections of variables as well as commonly
used default values for these variables.

The statements used to define collections of variables, collections of
default values for these variables, and the assignment of those values
to those collections are given below.



Oct 31 16:11 1984 PROPOSED CONTROL LANGUAGE FOR THE 300 FOOT SYSTEM Page 5

1. SET set name
set membershipspecification

ENDSET

2. DEF default name OF set name
default item, default item, default item,...;
default item, default item, default item,...;
defaultitem, default item, defaultitem,...;

ENDDEF

3. set name = NULL
set-name = default name

A setmembership specification may be as simple as a list of variable
names separated by commas. A defaultitem in the default definition
may be of the form:

variable name = constant
or, system defineddefaultname
or, constant

The default definition merely serves to give a name to a collection of
assignment statements which may be invoked in assigning values to a
set of variables. The ';' in the default definition serves to delimit
groups of assignment statements. The items in the list separated by
';' form a specification of values for the named set and are referred
to in a manner similar to elements of an array, viz. default name(1),
default_name (2), etc.

The assignment statement of the form 'set name = NULL' initializes all
variables of that set to a null value, indicating that the variable
has no value. All variables retain their values until explicitly
changed by an assignment statement.

An example will make these concepts clearer. Consider a list of
sources. There will be a system defined set called SOURCE, which,
among other variables, will contain SOURCE NAME, HORIZONTAL POSITION,
VERTICAL POSITION. The system defined SOURCE LIST is merely a list of
sources. A default definition might take the following form:

DEF S OF SOURCE LIST
source name 1, horizontalposition 1, verticalposition 1;
sourcename_2, horizontalposition_2, verticalposition2;
source-name-3, horizontaljposition3, verticaljposition3;
source-name4, horizontalyposition4, verticalposition 4;

ENDDEF

The items in the source list may be assigned, as in:

SOURCE = S(2) , or

SOURCE LIST = S



Oct 31 16:11 1984 PROPOSED CONTROL LANGUAGE FOR THE 300 FOOT SYSTEM Page 6

which assigns the list of sources to the system variable SOURCELIST,
which may then be used by some defined procedure to begin data
collection. In the special case of sources, an individual
specification of values pertaining to a particular source may be
referred to by its source_name. In other words, the values

sourcenamei, horizontalpositioni, vertical_position i;

may either be referred to as S(i) or source_namei, whichever suits
best in the particular context. 'SOURCE = source name i' might be
desirable in many contexts, while 'SOURCE = S(i) 'might be desirable
within execution loops.

The complete specification of system defined sets and default values
for those sets will form an important aspect of the system for the
user community. A user will also have the option of specifying
collections of statements, indexed by project-id and stored on the
system disk, which will automatically be executed at the beginning of
an observation.

ADDITIONAL STATEMENTS, ESPECIALLY OF AN INTERACTIVE NATURE

Especially for problem diagnosis greater control is needed over the
execution of statements in real-time, and also the ability to stop
execution and display the status of variables. The statements of the
command language designed to accomplish this are displayed below.

1. PAUSE [AFTER source code line no]

2. RESUME [WHEN (conditional_expression)] [AT source code lineno]

3. SHOW STATUS
SHOW characterstring_constant or character variable
SHOW listofvariablesorsets

These statements may be submitted in a "batch" mode like the other
statements in the language or interactively. 'SHOW STATUS' will
display the statements currently submitted to the control program with
line numbers and also display where the control program is currently
executing. 'SHOW character string...' merely displays the character
string, while specifying a list of variables or sets will display the
current values of those variables. The clauses in square brackets are
optional and provide additional control capabilities.

The following statements may be entered interactively. The first two
may be used to alter statements already submitted to the control
program. These statements may be used to change user-submitted
statements only. They may not be used to alter system defined
procedures, system defined sets, or system defined defaults.



Oct 31 16:11 1984 PROPOSED CONTROL LANGUAGE FOR THE 300 FOOT SYSTEM Page 7

4. DELETE sourcecodelineno THRU sourcecodeline no

5. INSERT AFTER source code line no

ENDINSERT

6. ?
keyword???

The insert group of statements may contain statements of any type and
likewise the delete statement may delete any statement. The '?'
statement gives a brief syntax summary of commands in the language.
The 'key word?' form gives a syntax summary of the command associated
Swith that keyword, and the '??' form gives a one line identification
of system defined sets and defaults. Assignment statements may also
be submitted interactively and used to alter the values of variables
during execution.

A MENU-DRIVEN APPROACH

For many purposes it appears that a command language of some power is
required. However, for simple and straightforward tasks it appears to
be cumbersome. In addition it burdens the user with yet another
language to learn and remember, however simple and easy to use it may
appear.

One possible way to deal with this dilemma is to construct an optional
menu-driven approach. The language, as outlined here, can be used to
design such a system. By using the mechanism for handling defaults
and by carefully defining system sets in a meaningful hierarchy, the
entire user interface can be menu-driven. Each system defined
procedure would have a list of required variables. If any variable
failed to have a value, the user would be prompted for that value.
The construction and arrangement of defaults is crucial to this
approach.

In the final analysis both a powerful command language and a
simplified menu-driven approach will be needed.


