
NATIONAL RADIO ASTRONOMY OBSERVATORY

Green Bank, West Virginia

300-FOOT CONTROL COMPUTER MEMO NO. 17

DA/CP IMPLEMENTATION OF THE 10-ms SIDEREAL CLOCK COUNTER

R. Fisher

August 28, 1985

Aug 27 18:15 1985 buswnclk.doc Page 1

DA/CP Implementation of the 10-ms Sidereal Clock Counter

27 August 1985
R. Fisher

Part of the sidereal time keeping scheme in the 300-ft control
computer system is a 10-ms pulse counter which keeps track of elapsed
time since the system's master clock was last read. Servicing this rapid
stream of interrupts would impose a considerable timing burden on the main
processor, so the DA/CP's own software has been modified to include this
counter function and to pass the counter value to the cpu upon request.

External interrupts to the MASSCOMP computer must go through the DA/CP.
These can be generated by the I/O modules in the DA/CP or can come from or
go through the DA/CP clock module. All of these interrupts enter the DA/CP
on the STD bus with one interrupt line for each I/O slot. Slot 0 (the one
next to the clock module) has the highest interrupt priority, and higher
numbered slots have successively lower priorities. For this application we
will have an externally generated 100 Hz pulse train applied to the "S"
input of clkO of the clock module which in turn will generate an interrupt
every 10 ms on the slot 0 STD interrupt line. This slot has no I/O module
plugged into it which would normally use this interrupt line. For test
purposes, the clock module can be programmed to generate a 100 Hz pulse
train on the slot0 interrupt line to simulate the external generator.

Each I/O module has a block of DA/CP program code associated with it
to control the flow of data and control between the module and the memory
in the host computer. Also, associated with every DA/CP slot, including
empty ones, are small blocks of code which allow the host cpu to effectively
talk directly to and receive data and interrupts directly from each slot in
a mode called the buswindow. Before this modification of the DA/CP code the
host cpu could receive the 10-ms interrupts directly from slot 0 and keep
track of them by incrementing a counter in its own memory. The modified
DA/CP code intercepts the 10-ms pulses and increments a DA/CP register
counter, and when the host cpu asks for data from slot 0 in the buswindow
mode the new code causes the DA/CP to send the counter value as if it had
come from an I/O module in this slot. When the counter is read it is reset
to zero to keep it from overflowing.

As of this writing some consideration is being given to the possibility
of accessing the 10-ms counter from the code (handlers) for other I/O
modules in the DA/CP, and the counter word size may be increased to 24 or
32 bits, so the details of the DA/CP code accompanying this note may have
been changed by the time you read this, but the general idea should be the
same.

Figures 1 and 2 show the logic flow associated with the counter
incrementing in response to clock interrupts and the access of the counter
value by the host cpu. The first program listing labelled "buswnclk.asd"
shows the modified buswindow handler code. The changes are marked in the
left margin. One of the three new constants (slot0 rd mask=0x2e001e)
defines the I/O address which the host cpu must read to get the counter

Aug 27 18:15 1985 buswnclk.doc Page 2

value. In this case the address is (1E hex = 30 decimal). The counter is
kept in a DA/CP register "clock counter". The piece of code under ORIGIN(7)
tests the cpu read request for the assigned address and,' if a match is found,
branches to the new code which puts the counter value in the driver's data
word and resets the counter.

ORIGIN(960) is the entry point for the slot 0 interrupt. The register
SD is the STD data register to which a command word is written to clear the
clock interrupt, SA is the address register for this command word, and QR
is a general purpose register used as a dummy here. The operation BLEQUW
means "branch if less than or equal to zero" and refers to the preceding
CoMPare. The NOP is for timing delay.

The second program listing shows how the DA/CP clock may be used from
a C program. The procedure "startclock" contains the MASSCOMP supplied
DA/CP routine references to set up the internal clock or route the external
pulses to the STD bus and to open the path for buswindow access to the
counter. The routine "sidereal time" contains the read statement "mrwnrd"
for the counter value which ends up in "dacp_counter". The references
"mrwnion" and "mrclkintgat" in "reset clock" enable AST's from the driver
and interrupts to the DA/CP from the STD bus, respectively. If the counter
has not been read for some time, and it is in danger of overflowing, the
DA/CP and its driver generate an AST whose service routine has been defined
to be "inc ten ms count" by the open-window call at the end of "start clock".
(See the description of the "mrwnopn" routine in the DA/CP applications
programming manual.)

y~c" /

F- i ,,

Aug 27 20:15 1985 buswnclk.asd Page 1

; @(#)buswindow.asd 1.1 (MASSCOMP) 10/23/84

BEGIN MODULE
; **** Bus Window Mode IPC Handler ****

;Revision History
;24-Sep-82 Created
;30-Oct-82 Final Tweaks
;04-Nov-82 Disable Clock Interrupts on Start Up
;10-Dec-82 Change Clock address to FF00 in memory space
;04-Jan_83 Add Register with constant 4
;ll-Feb-83 Add Free Pool
;16-Feb-83 Fix Start Code so Fifo Enables correctly
;25-Mar-83 Modify syntax for new assembler
;28-Mar-83 declare "idle" global

; remove "PSECT" from "bwcode"
;04-apr-83 change bus window interrupt enable/disable to
; get mask from "bwadr'
;13-Apr-83 add handler table output operations
;08-sep-83 D. Cane broke out all waits into callable routine
;23-aug-85 R. Fisher added patches to implement clkO intr counter

; this is the default load image for the ipc that i will call its
;operating system. it contains bus window mode for each std interrupt,
;the idle loop, the subroutine return code and the fifin interrupt
;handler. it also has the code for handler entry points

; these are global constants for use by any ipc device handler

intr clr=0xf800
fi ov set==0x201
init_cr=0x241 ;reset fov, enable fi interrupts, disable slot intrpts
clk wr csr==0Oxleff00
intr no stat0==0x600080
intr no statl==0x600088
intr nostat2==0x600090
intr no-stat3=0x600098
intr nostat4==0x6000a0
intr nostat5=0x6000a8
intr-nostat6=--0x6000b
intr no-stat7==0x6000b8
intr no-stat ex0==0x60003c
intr-nostat-exl==0x600034
intr-stat0==0x600082
intr-statl==0x60008a
intr-stat2==0x600092
intrstat3==0x60009a
intr-stat4==0x6000a2
intr-stat5==0x6000aa
intr-stat6==0x6000b2
intrstat7==0x6000 ba
intr stat ex0--=0x60003e
intr statex0=- 0x600036

Aug 27 20:15 1985 buswnclk.asd Page 2

;Constants associated with 10-ms clock counter in slot 0

Vslot0 rd mask=0x2e00le
intr0 clr=0x008000
clk wr _csr4==Oxleff04

;slotO read address (30 decimal)
;clkO interrupt clear
;clkO-3 command address

CONFIGURATION CONFIGURATION_NUMBER, dacp_start, entry_pt, bwcmd

BEGIN MODULE
PARAMETER
DECLARE bwcmd, DS, GLOBAL, 0x000000
DECLARE bwadr, DS, GLOBAL, 0x000000
DECLARE bwdat, DS, GLOBAL, 0x000000
END PARAMETER
DECLARE entry_pt, DS, GLOBAL

;bus window command cmdpatch
;bus window address
;bus window data

;INTO entry point

ENTRY bw rd wr, bw rd wr, , 0, 0, 0, 0,
ENTRY bw-ints, bw_ nterrupts, 0, 0, 0, 0, 0
STD -1, 0, 0, 0, 0

DECLARE tagvec, DS, LOCAL
DECLARE lit 4,REG,GLOBAL
DECLARE clock_counter,REG,STATIC

;temp. loc. for jump thru fifin tag
;will be loaded with constant 4
;counter to be used with 10ms sidereal
; pulses (300' cntl comp)

HANDLER 0, 0, 0

; this is the code for the "service" interrupts that ARE(part the ipc
;hardwARE(; idle loop, subroutines, fifo in interrupt, etc.....

ORIGIN (0)
idle::
INT JMP idle
ORIGIN (1)

RESUME
ORIGIN (2)

JMP entry_pt
ORIGIN (3)

MOV FI,tag
JMP tagvec

ORIGIN(5)
JMP ex01loc

ORIGIN (6)
JMP exlloc

vec

;idle loop interrupt location

;idle loop must leave DS free
;subroutine interrupt location
;pop stack to subroutine
;mbus 0 interrupt location
;jump to handler entry point
; fifo in interrupt handler
;get tag for jump to service
;go to tag defined code
;ex 0 interrupt location
;handle external interrupt 0
;ex 1 interrupt location
;handle external interrupt 1

; bus window read, write and reset code

ORIGIN (7)
bwcode:

MOV bwdat,SD
MOV bwadr,SA
JMP bwcmd

bw rd wr:

;mbus 1 interrupt location

;loading data does no harm
;do the command
;command determines length

Aug 27 20:15 1985 buswnclk.asd Page 3

MOV #4,CR ;clear the multibus interrupt
MOV SA,QR
CMP QR,#slot0 rd mask ;is this a word read req from slot0?
BEQLG get_counter ;go to special slot0 patch to get

; 10 ms counter
jsr wait3
MOV SD,bwdat ;fast read & get data

INT CLR SA ;clear STD BUS reset

; bus window mode interrupt enable/disable code

bw_interrupts:
MOV #4,CR ;clear multibus interrupt
MOV bwadr,CR ;enable/disable STD interrupt
jmp idle

bw intr send:
MOV QR,FO ;send multibus interrupt

INT MOV QR,QR ;nop

;start up code

dacp_start:
JMP ipc_startl ;load next address into pc

ipc startl:
MOV #intr_clr,SD ;disable exO interrupt
MOV #clk wr csr,SA,QR ;on the clock module
MOV #init cr,CR ;1 enb. fifin int. & clear ovflow

; disable all interrupts
jsr wait4
ADD #4,QR ;5 prepARE(to clear exl
MOV #intrclr,SD ;set to clear exl
MOV QR,SA ;clear exl
MOV #4,lit 4 ;3 load constant register
jsr wait5

INT MOV QR,SD ;and terminate the write

**

;clkO counter fetch

get_counter:
NOV clock counter,bwdat ;get the current counter value
CLR clock-counter ;reset the counter

INT CLR SA ;clear STD bus reset and get next intr

**

;ipc interrupt handing code

ex0loc:
MOV #intr no stat ex0,QR,CR ;disable ipc interrupt
JMP bw intr_ send- ;go to common interrupt service

exlloc:
MOV #intr no stat exl,QR,CR ;disable ipc interrupt
JMP bw intr send ;go to common interrupt service

ORIGIN(512) ;slot a interrupt location

Aug 27 20:15 1985 buswnclk.asd Page 4

MOV
JMP

ORIGIN (576)
MOV
JMP

ORIGIN(640)
MOV
JMP

ORIGIN(704)
MOV
JMP

ORIGIN(768)
MOV
JMP

ORIGIN (832)
MOV
JMP

ORIGIN (896)
MOV
JMP

,gRGIN(960)
MOV
MOV
INC
CMP
NOP

#intr nostat0,QR,CR
bw intr send

#intr no statl,QR,CR
bw intr send

#intr nostat2,QR,CR
bw intr send

#intr no stat3,QR,CR
bw intr send

#intr no stat4,QR, CR
bw intr send

#intr no stat5^.QR,CR
bw iintr send

#intr nostat6,QR,CR
bw intr send

#intrO clr,SD
#clk wr csr4,SA
clock counter
clock counter,#0x004000

BLEQUW toidle
MOV QR,SD
MOV #intr no stat7,QR
JMP bw intr send

;disable ipc interrupt
;go to common interrupt service
;slot b interrupt location
;disable ipc interrupt
;go to common interrupt service
;slot c interrupt location
;disable ipc interrupt
;go to common interrupt service
;slot d interrupt location
;disable ipc interrupt
;go to common interrupt service
;slot e interrupt location
;disable ipc interrupt
;go to common interrupt service
;slot f interrupt location
;disable ipc interrupt
;go to common interrupt service
;slot g interrupt location
;disable ipc interrupt
;go to common interrupt service
;slot h interrupt location
;clear clkO interrupt

;add one to elapsed time counter
;is counter getting full?

;if not reenable intr
;complete intr clr xfer
;load interrupt I.D.
;go to common interrupt service

MOV QR,SD ;complete intr clr xfer
_-- JMP idle
;**

psect
wait5::
wait4::
wait3::
wait2::
waitl::

mov
mov
mov
mov
rts

psect
quit5:: mov
quit4:: mov
quit3:: mov
quit2:: mov
quitl:: int
END MODULE

qr,qr
gr,qr
qr,qr
gr,qr

qr,qr
qr,qr
qr,qr
qr,qr
clr sd

;The following constants are defined for use by all IPC ucode.

enable intr==0xcO
disable intr=0x80

io rd B==0x2d0000
io rd W==0x2 e0000

;enable selected interrupt in CR
;disable selected interrupt in CR

;read STDL onto low and mid byte of inbus
;read word to inbus

Aug 27 20:15 1985 buswnclk.asd Page 5

mem rd_B==0xOd0000
mem rd W==0x0e0000

io wr H==0x380000
io wr L==0x350000
io wr W==0x3 e0000
mem wr H==0x180000
mem wr L==0x150000
mem wr W==0xle0000
fast std==0x400000

rd_byte==0x800000
rd word==0x900000
rd_long==0xb00000
wr_byte==Oxc00OO00
wr word==Oxd00Q00
wrlong==0xf0000
loop back==0x2 00000
ipc_intr==0x600000

;read STDL onto low and mid byte of inbus
;read word to inbus

;write mid byte onto STDL & STDH
;write low byte onto STDL & STDH
;write word to STDL & STDH
;write mid byte onto STDL & STDH
;write low byte onto STDL & STDH
;write word to STDL & STDH
;fast write mode bit

;multibus byte read
;multibus word read
;multibus longword read
;multibus byte write
;multibus word write
;multibus longword write
;loop back
;multibus intrrupt

Aug 26 16:06 1985 clockdemo.c Page 1

/*
**
**
**
**
**
**

**
**
**
**
**
**
**
**
**
**
**
**
**
*/

#include <fcntl.h>
#include "/usr/include/mr. h"

int clockpn;
int ten ms counter;

main()

{
int ext int = 0;
int 1st;

/* dacp clockO path number */
/* variable containing elapsed time in ms */

/* assume internal clock time generator */

start_clock(ext_int); /* set up internal clock rate or route external
10 ms clock pulses to STD interrupt line */

reset_clock(); /* zero elapsed time counter (ten mscounter)
and enable clock interrupts */

while(l)
{
1st = siderealtime(); /* gets current elapsed time in 10 ms unite */

display(lst); /* demonstration routine to show elapsed time */

sleep (10);
}

Return the current elapsed sidereal time

sidereal time()

{
short dacp_counter;

This is a demonstration of the use of the 10 ms sidereal time
counter in the DA/CP. The DA/CP buswindow code has been modified to
intercept interrupts from the clock module and increment a counter
in the DA/CP on each interrupt. This counter may be read from a
program in the host computer. The DA/CP counter is only 15 bits wide
so when it is read it is reset to zero, and the host program must
keep its own elapsed time counter to which each reading is added.
If the DA/CP counter is not read after about 2min 40sec the DA/CP
will interrupt the host with an AST to a service routine which is
expected to read the DA/CP counter and update its own counter.

The program is in file /users/staff/rick/Asdfiles/clockdemo.c.
Until the DA/CP code is permanently modified you will have to load
the patched code by running the shell script

/users/staff/rick/Asdfiles/ld
This will load only the clock and buswindow code so the other DA/CP
modules will be inoperative. To compile this code use

cc clockdemo.c -imr -lm

R.Fisher 26 Aug. 1985

/*
**

*/

Aug 26 16:06 1985 clockdemo.c Page 2

/* read the dacp counter and reset it */
mrwnrd(clockpn,30,2,&dacp_counter);
return(ten_ms_counter = ten_ms counter+dacp counter);
}

/*
** This routine displays elapsed time in hh:mm:ss.ss format
*/

display (1st)

int 1st;
(
int h,m,s,fl,f2;

fl = (ist/lO) % 10;
f2 = 1st % 10;
s = lst/100;
m = (s/60) % 60;
h = (s/3600) % 24;
s = s % 60;
printf ("Sidereal time = %d:%d:%d.%d%d\n",h,m,s, fl, f2) ;

/*
** Updates the 10ms elapsed time counter if the dacp counter is getting
** full. This can happen if the time has not been read for over 2m40s.
** When the dacp counter gets half full it interrupts the host computer
** with and AST to this routine.
*/

inc ten ms_count()
{
short dacp_counter;

/* read the dacp counter and reset it */
mrwnrd(clockpn,30,2,&dacp_counter);
ten ms counter = ten ms counter+dacpcounter;

/* re-enable AST interrupt from dacp */
mrwnion(clockpn);
}

/*
** Set elapsed time counter to zero and start clock
*/

reset clock()
{
short dacp_counter;

ten ms counter = 0;
mrwnrd(clockpn, 30,2,&dacp_counter); /* zero dacp_counter */
mrwnion(clockpn); /* enable dacp interrupt to cpu */
mrclkintgat (clockpn, 1); /* enable clock interrupt */I

MI i

Aug 26 16:06 1985 clockdemo.c Page 3

1*
** This routine opens the clock path and sets up the internal clock parameters
** or routes the external pulses.
*/

start_clock (extint)

int ext int;
{
int read write = 1;
int nearest = 0;
int square = 4;
int low = 0;
int ndiv = 1;
int armsw = 1;
int nclks = 1;
int pnarray[1];
int naddrs = 1;
int adrsarray[3];
int intpri = 127;

/* 0 = internal clock */

/*

1*
1*
1*
1*
/*
/*
/*
1*

allow read only to clock */
pick closest clock frequency to one specified */
use square clock waveform */
waveform begins low */
divisor for external pulse rate */
arm the external clock */
number of clocks to be armed */
array containing clock path nos. */
number, of STD address ranges */

/* AST priority of service routine */

double trigfreq = 100.*366.25/365.25;
/* internal clock sidereal rate in Hz */

double freturn; /* internal clock rate actually set */
double wreturn; /* internal pulse width actually set */

adrsarray[0] = 0; /* dacp clock is treated as an I/O address */
adrsarray[1] = 30; /* address start */
adrsarray[2] = 30; /* address end */

mropen(&clockpn,"/dev/dacp0/clkO",read_write);/* open clock path */
mrclkintgat (clockpn, 0); /* disable clock interrupts */

if(!ext_int)
{

/* set up internal clock parameters */
mrclkl (clockpn, nearest, trigfreq, &freturn, square, 0.0, &wreturn, low);

/* start the clock generator */
pnarray[0] = clockpn;
mrclkarm(nclks, pnarray);
printf("Clock freq. requested = %f Hz\n",trigfreq);
printf(" actually set = %f Hz\n",freturn);
}

else
/* send external 10ms pulses directly to STD bus */

{
mrclkbyps(clockpn,ndiv,armsw);
}

/* open protected window to slot0 */
mrwnopn (clockpn, naddrs, adrsarray, inc_ten mscount,intpri);
printf ("Clock started\n") ;
}

