NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

300-FOOT COMPUTER CONTROL MEMO NO. 20

UNIVERSAL LOCAL OSCILLATOR

Bob Vance

UNIVERSAL LOCAL OSCILLATOR

This task is a two part sequence, SET and READ. Electronics Division Internal Report No. 144 describes the hardware for this device. I have included the first four pages of that report for reference.

The SET task is activated at the following times:
(1) 'L' card encountered in observe deck.
(2) Manually activated.
(3) End of integration period (line).

The READ task is activated after a SET ULO command is executed and continues to read at 200 ms intervals. A new commanded LO setting causes the READ accumulators to reinitialize. Between setting the U LO and reading, there is a 250 ms delay. When a new setting is updated, the average $U L O$ and $I F$ values are checked against the commanded values for the previous period. Errors are printed on $T T Y$ if the actual readings differ from the commanded by more than 300 Hz . The commanded LO's are stored on tape header. Presently, only LA and LC are checked at the 300-ft due to space available. All four need to be checked. The IF's are read at intervals of 1.2 seconds and a complete $I F$ reading cycle takes 6.0 seconds.

L1, L1F1, L1F2.are the synthesizer settings (or readings) in BCD. The settings are computed using input parameters from various sources and evaluating the LO equation for L1. L1F1 and L1F2 are computed by adding the frequency or velocity offset to L1. Conversions must be made from a 30 -bit word (D.P.) to $B C D$ for output for each setting. Three output words are used for
each synthesizer setting (nine words total).
The following parameters and source for each are used:

Name	Definition	Source
RUSYS	Radial Velocity System	H316
VRED	Reference Frame (LSR, Sun, Earth, None)	S-Card
VDEF	Velocity Definition (Radio, Optical, None)	S-Card
RESTFREQ	Source Rest Frequency	S-Card
M	Box Multiplier	S-Card
N	Synthesizer Multiplier	S-Card
LOMODE	(VFS) LO Setting Mode (Velocity, Frequency, Synth)	L-Card
FSOURCE	Source Frequency	L-Card
VELOCITY	Source Velocity	L-Card
VREF1	Reference Velocity Offset 1	L-Card
VREF2	Reference Velocity Offset 2	L-Card
FREF1	Reference Frequency Offset 1	L-Card
FREF2	Reference Frequency Offset 2	L-Card
L1	Lo 1 Synthesizer Setting	L-Card
L1F1	LO 1 Reference Synth. Setting 1	L-Card
L2		L-Card
L2F1	Same as LO 1 except	L-Card
L2F2	for LO 2	L-Card
LA	IF Receiver A	L-Card
LB	IF Receiver B	L-Card
LC	IF Receiver C	L-Card
LD	IF Receiver D	L-Card
CFF	Center Frequency Formula	S-Card
NT	Noise Tube Values	S-Card
INV	Sideband Indicator	S-Card
LOSTVL	Velocity of Light	Constant
$\Delta \mathrm{V}$	Delta Velocity/Channel	Calculated
BW	Bandwidth	L-Band
MODEAC	A/C Configuration	L-Card
TIMEMODE	Dump Time of A / C	L-Card
	$1=10$ sidereal seconds	
	2 = Solar oscillator	
	$0=$ Front panel settings	

The Lo equation is evaluated before output to give correct synthesizer frequency. The H116 did not have enough accuracy for calculations.

The Lo equation is:
(L1)
$U L O O=D *(F s k y-(C+E * L A+F * L B)) / M * N$
where
$D= \pm 1 ;$
$\mathrm{E}=1$ or 0 ;
$\mathrm{F}=1$ or 0 ; and
C = constant for upconverter frequency.
Default values are:
$C=0 ;$
D = 1;
$E=1 ;$ and
$F=0$.

LO SET ROUTINE

The data can be put on line (buffered) when calculated. The ULO will only be updated at the next transition of the signal/reference switch signal of the A / C.

LOSTBCD is the routine to convert a D.P. No. BB30 to BCD $x x x x$ xxxxx000 and output it to ULO.

	DLD	\#BB30	350123456
	STD	DUM 1	
	DD1 V	1000000	350,123456
	STA	DUM2	350
	CVIH		Convert to BCD
	LGL	4	3500
	STA	LOSTBN	3500
	MPY	$=0$	Clear A-B
	LDA	DUM2	350
	MPY	1000000	350000000
	TCD		-350000000
	ADD	DUM 1	350123456
	STD	DUM1	123456
	DIV	1000	123,45600
	STA	DUM2	00123
	CVIH		Convert to BCD 0123
	LRL	8	0001, 2300
	ERA	LOSTBN	3500
	STA	LOSTBN	3501
	IAB		2300
	STA	LOSTBN+1	2300
	MPY	0	Clear A-B
	LDA	DUM2	0123
	MPY	1000	123000
	TCD		-123000
	ADD	DUM1	123456
	IAB		456
	CVIH		0456
	IAB		xxxx 0456
	CRA		00000456
	IAB		04560000
	LRL	4	00456000
	ERA	LOSTBN+1	2300
	STA	LOSTBN +1	2345
	IAB		6000
	STA	LOSTBN+2	6000
	LDX	-3	
LOSTUP	LDA	LOSTBN+2	6000
	OTA	'31	Output Word
	JMP	* - 1	Not Ready
	IRS	0	More
	JMP	LOSTUP	Yes
	Return		No
LOSTBN	3501		
LOSTBN+1	2345		
LOSTBN + 2	6000		

IF INPUT ROUTINE

INA	11231	Input 4 BCD (low)
LGR	4	LO \# (not used)
CVHI	$=100$	
MPY	$=$ To Hz	
STD	ULOBUF	
INA	1231	Input 4 BCD (high)
MPY	100000	To Hz
ADD	ALOBUF	Add lows
RETURN		

LO INPUT ROUTINE

OCP	'131	
INA	'1131	Get High 4 BCD
STA	ULOBUF+1	Save
INA	+1131	Get Low 4 BCD
LRL	4	Extract Band Indicator
STA	ULOBUF+2	Save 3 BCD
LGR	12	Get Band Indicator
STA	ULOBUF	
INA	'1131	Input 3rd Word - Ignore
LDA	ULOBUF+2	Get High
CVHI		
STA	ULOBUF+2	
IMA	ULOBUF+1	Get Low
CVHI		
MPY	1000	
ADD	ULOBUF+2	
* GET	ULOBUF	
$=1$	Use input as	
$=2$	Add 900 MHz	to input.
$=4$	Add 1300 MHz	to input.
$=8$	Add 1700 MHz	to input.

COMPUTER CONTROL OF THE UNIVERSAL LOCAL OSCILLATOR

1. Introduction

This report describes the new computer control system for the Universal Local Oscillator. The system also provides a means for checking four frequency synthesizers in the IF Processor rack and control signals for the Cassegrain system.

2. Programming

The six least significant bits of the device address (bits $11-16$) selected by two digi-switches located in the digital drawer in the ULO rack. The following two addresses have been selected for ULO control:

31 Local Oscillator 1
32 Local Oscillator 2

The following commands are applicable to both ULO's. The only change would be in the six least significant bits of the address which will be represented by $X X$. Bit 7 of the address does not matter but it must be cautioned that when doing an INA it must be a " 1 " to clear the A register before doing the INA.

OTA OXX_{8}. This OTA can output 16 words of information; the first 9 words set the ULO, the 10 th word is for the proposed Cassegrain system, words $11-13$ are spare buffered words, and words $14-16$ are unused. The format for the ULO is listed below. The ULO will only be updated at the next transition of the signal/reference signal. If the front panel switch is in manual it will be possible to do an OTA but the data will not be taken.

Word 10 - Bits 1-14 are available as data and bits $15-16$ are used to tell the Cassegrain system if $F_{R E F} 1$ and $F_{\text {REF } 2}$ are greater or less than F_{LO}. Bit 15 is for $\mathrm{F}_{\text {REF } 1}$ and bit 16 is for $\mathrm{F}_{\text {REF 2. }}$. The bit should be set to a " 1 " if it is greater.

INA $1 X_{8}$. This INA will input the frequency read by the counter in the ULO rack. (This counter measures the output of the multiplier.) An OCP $1 X_{8}$ must be executed before doing the INA's. There are two times the INA cannot be completed. One time is while a new counter reading is being stored (about 40 usec). The other time is when the computer has read a set of readings. It will not be possible to take another reading until all three frequencies have been updated. This takes a maximum of 200 millisec, when switching at a 10 Hz rate. Listed below is the format for the input words.

$$
\text { * Bands }- \text { Bits } 13=1=\text { add } 1700 \mathrm{MHz} \text { to counter reading. } \begin{aligned}
& 14=1=\text { add } 1300 \mathrm{MHz} \text { to counter reading. } \\
& 15=1=\text { add } 900 \mathrm{MHz} \text { to counter reading. } \\
& 16=1=\text { take counter reading as it is. } \\
& \text { Only one bit should be on at a time. }
\end{aligned}
$$

INA $2 \mathrm{XX}_{8}$. This INA reads the offset LO. At the $300-\mathrm{ft}$ four LO's will be read. Only one will be read at the $140-\mathrm{ft}$. The input word will contain a count to tell the computer which LO was read. This count should be ignored at the $140-\mathrm{ft}$. Before reading a sequence of $L O$'s, an $O C P 2 X X$ should be issued. This $O C P$ will reset a counter to the first $L O$ and cause the offset $L O$ counter to count, after $\sim 1 \mathrm{sec}$ the computer should be able to do two INA's. (It takes two INA's for each offset LO reading.) The system will then switch to another offset LO and count and the computer should be able to input two more words in $\sim 1 \mathrm{sec}$. The format for the input words is listed below.

*BA contains a count to tell the computer which offset $L 0$ was read

B	A	LO\#
0	0	A
0	1	B
1	0	C
1	1	D

INA $3 X_{8}$. This INA will input the status of the front panel rotary switch. The format is listed below.

Bits	$\frac{13}{}$	$\underline{14}$	$\frac{15}{16}$	$\frac{16}{}$	
0	0	0	1	Mod.	
0	0	1	0	$F_{\text {REF 1 }}$	
0	0	1	1	$F_{\text {LO }}$	
0	1	0	0	$F_{\text {REF }} 2$	
0	1	1	1	Synth. in Local	

SKS $4 \mathrm{XX}_{8}$. This SKS will skip if the front pane switch is in computer.

3. General Description

The new computer control system for the ULO contains four basic systems (see Figure 1). The first system is control and storage for the frequency synthesizer. The second system consists of a Balentine counter and storage for the computer. The third system controls an $R F$ switch and a Systron Donner counter in the IF Processor rack for input into the computer. The fourth system is control and data for the Cassegrain system. The entire system uses wire-wrap cards and associated chassis designed by A. Shalloway.

