

REPORT 6

PROJECT: LFST
SUBJECT: Homology Method

Approximation to the Inverse of a Matrix

S. von Hoerner

In my Reprirt No. 4 (Calculating Method), I used an approximation method for the inverse of a slightly changed matrix, when the inverse of the unchanged matrix is given. Call A the matrix and A^{-1} its (known) inverse; add a matrix a to it which has elements much smaller than those of A, and call

$$
\begin{equation*}
B=A+a \tag{1}
\end{equation*}
$$

The approximation used in Report 4 , then, is

$$
\begin{equation*}
B^{-1} \approx A^{-1}-A^{-1} a A^{-1} \tag{2}
\end{equation*}
$$

R. Jennings suggested to investigate this approximation somewhat closer. Thus, in this present report I show that equation (2) is the first term of an infinite series; I give a condition for the convergence of this series, and another condition for the "usefulness" of equation (2).

Statement: (with $E=$ unit matrix)

$$
\begin{equation*}
B^{-1}=A^{-1}\left\{E+\sum_{\nu=1}^{\infty}\left(-a A^{-1}\right)^{\nu}\right\} \text { if the series converges. } \tag{3}
\end{equation*}
$$

Proof:

Multiply (3) from right side with A+a

$$
\begin{equation*}
E=E+A^{-1} a+A^{-1} \sum_{v=1}^{\infty}\left(-a A^{-1}\right)^{\nu} A+A^{-1} \sum_{v=1}^{\infty}\left(-a A^{-1}\right)^{\nu} a \tag{4}
\end{equation*}
$$

The term $A^{-1} a$ cancels the first term of the first series, which then starts with $v=2$. We then rewrite this series, using ()$^{\nu}=()^{\nu-1}()$, and $A^{-1} A=E$, and obtain

$$
\begin{equation*}
E=E-A^{-1} \sum_{\nu=1}^{\infty}\left(-a A^{-1}\right)^{\nu}+A^{-1} \sum_{\nu=1}^{\infty}\left(-a A^{-1}\right)^{\nu} \tag{5}
\end{equation*}
$$

REPORT NO. 6
CONTRACT NO. L
PAOE 2 OF 2
DATE

PROJECT:
SUBJECT:
Both series in (5) cancel each other, and we are left with an identity, $E=E$, which proves that statement (3) is correct.

Convergence:

I have not found a neccessary condition for the convergence of (3). But if we define a matrix a by

$$
\begin{equation*}
\alpha=a A^{-1} \tag{6}
\end{equation*}
$$

and call its largest element

$$
\alpha_{m}=\max \left|\alpha_{i j}\right| \quad \text { for all }\left\{\begin{array}{l}
i=1 \ldots n \tag{7}\\
j=1 \ldots n
\end{array}\right.
$$

then the following condition obviously is sufficient for convergence:

$$
\begin{equation*}
\alpha_{m}<1 / n \tag{8}
\end{equation*}
$$

The Error of (2):
Equation (2) which is used in Report 4 contains only the first term of the series of equation (3). We call this approximation

$$
\begin{equation*}
B_{0}^{-1}=A^{-1}-A^{-1} a A^{-1} \tag{9}
\end{equation*}
$$

and its error

$$
\begin{equation*}
\Delta B^{-1}=B^{-1}-B_{0}^{-1} \tag{10}
\end{equation*}
$$

As the relative error, \mathcal{E}, we will define ΔB^{-1} relative to B^{-1}, which means ΔB^{-1} multiplied with $B:$

$$
\begin{equation*}
\mathcal{E}=B \Delta B^{-1}=B\left(B^{-1}-A^{-1}+A^{-1} a A^{-1}\right) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{E}=E-B B_{0}^{-1} \tag{12}
\end{equation*}
$$

From (11) we obtain

$$
\begin{equation*}
\varepsilon=\left(a A^{-1}\right)^{2}=\alpha^{2} \tag{13}
\end{equation*}
$$

In order to make (2) a good approximation, it is sufficient to demand

$$
\begin{equation*}
\alpha_{m} \ll 1 / n \tag{14}
\end{equation*}
$$

operated by associated universities, nnc., under contract with the national science foundation

