300 FOOT TELESCOPE
 OBSERVER'S MANUAL

by

NRAO STAFF

REVISED MAY 1983

300 FOOT TELESCOPE

West longitude:
Latitude:
Height above sea level:
Diameter:
Focal length:
f/D:
Declination limits:
Pointing accuracy:
$79^{\circ} 50^{\prime} 56!36$
$38^{\circ} 25^{\prime} 46$ ". 3
894 m
91.4 m (300 feet)
38.7 m (127 feet)
0.424
$-18^{\circ} 30^{\prime}$ to $89^{\circ} 50^{\prime}$
typically $30^{\prime \prime}$ rms, $10^{\prime \prime}$ rms at 6 cm
$5 \mathrm{GHz}, 6 \mathrm{~cm}$

PREFACE

The preface to the previous edition of this manual contained an explicit disclaimer that the successful operation of an observing program is ultimately the observer's responsibility, although the NRAO will provide all possible assistance. This philosophy has not changed, but the disclaimer has been moved to an equally prominent setting: Chapter 1, page 1. The observer should feel free to direct inquiries at any time to the electronics staff, computer programmers, and especially the "friend of the telescope". The format of this manual has changed, and so this preface will serve as a guide to using this manual.

An effort has been made to separate out the reference material from the "cookbook" material. Chapter 1 contains an introductory overview of the observing system and the contents of later chapters. The material in Chapters 2 through 7 is primarily reference material, while Chapters 8 through 10 contain the actual guides to preparing an observing program, along with very brief reviews of topics explained more fully in the earlier chapters. Chapter 8 consists of a discussion of the task of getting the telescope on source, obviously relevant to all observations. Chapters 9 and 10 consist of descriptions of spectral line and continuum observing, respectively. Some repetition was unavoidable while striving to make these two chapters independent of each other.

Observers generally familiar with the 300 foot, needing reminders of the input card formats will find that material in the later chapters. New observers may also wish to begin with these later chapters (after reading Chapter 1), referring back to the material in the earlier chapters as required or desired. Those observers who read straight through this manual will find material organized (more or less) in the order of the signal path, from front end to back end.

The text for this manual has been prepared on an IBM Displaywriter. This greatly simplified the major format changes, and should help to keep things up to date in the future. On the other hand, it is not very easy to interleave text with figures and tables, and so these can be found at the end of each chapter.

TABLE OF CONTENTS
Page

1. INTRODUCTION 1-1
1.1. OBSERVING HARDWARE 1-2
1.2. DATA HANDLING 1-4
1.3. THE TELESCOPE OPERATOR 1-5
1.4. SCHEDULING 1-6
1.5. OPERATING ROUTINE 1-6
2. TELESCOPE STRUCTURE 2-1
2.1. PHYSICAL LIMITS 2-1
2.2. DRIVE SYSTEM LIMITS 2-1
2.3. PERTINENT HISTORY 2-2
3. RECEIVERS AND FEEDS 3-1
3.1. RECEIVER CONFIGURATIONS 3-1
3.2. FEED PERFORMANCE: ON AXIS 3-1
3.2.1. APERTURE EFFICIENCY 3-2
3.2.2. BEAM EFFICIENCY 3-3
3.2.3. BEAM WIDTH AND BEAM SHAPE 3-4
3.2.4. SIDELOBES AND SPILLOVER 3-5
3.2.5. FOCUS 3-5
3.2.6. POLARIZATION 3-6
3.3. FEED PERFORMANCE: OFF AXIS 3-7
3.3.1. APERTURE EFFICIENCY 3-7
3.3.2. BEAM EFFICIENCY, BEAM WIDTH, AND BEAM SHAPE 3-7
3.3.3. SIDELOBES 3-8
3.4. BASELINES 3-8
4. POINTING 4-1
4.1. COORDINATE FRAMES OF REFERENCE 4-1
4.2. POINTING CORRECTIONS 4-2
4.2.1. POINTING CORRECTION EQUATIONS 4-2
4.2.2. ELECTRONIC LEVEL CURVE CORRECTION 4-3
4.2.3. TRAVELLING FEED RECEIVER OFFSETS 4-4
4.3. REFINING THE POINTING 4-4
4.3.1. DETERMINING THE PVALS 4-4
4.3.2. MAKING POINTING MEASUREMENTS 4-5
5. IF SECTION AND DETECTORS 5-1
5.1. UNIVERSAL LOCAL OSCILLATOR 5-1
5.2. IF PROCESSOR 5-2
5.3. STANDARD CONTINUUM RECEIVER 5-3
5.4. DIGITAL CONTINUUM RECEIVER 5-3
5.5. VARIABLE BANDWIDTH RECEIVER 5-4
5.6. FABRI-TEK SIGNAL AVERAGER 5-4
5.7. IMPULSIVE NOISE BLANKER 5-4
5.8. 40 CHANNEL RECEIVER 5-5
6. AUTOCORRELATOR 6-1
6.1. SYSTEM DESCRIPTION 6-1
6.2. CONFIGURATIONS, BANDWIDTH, AND RESOLUTION 6-2
6.3. IF FILTER SYSTEM 6-3
6.4. DIGITAL UNIT 6-3
6.5. COMPUTER PROCESSING 6-4
7. INTERFERENCE 7-1
7.1. INTERFERENCE INTERNAL TO THE RADIOMETER 7-1
7.2. INTERFERENCE FROM ELECTRONIC EQUIPMENT ON GREEN BANK SITE 7-2
7.3. AUTHORIZED TRANSMITTERS 7-2
7.4. UNINTENTIONAL SOURCES, NATURAL AND MAN-MADE 7-3
8. POINTING UNDER COMPUTER CONTROL 8-1
8.1. ENTERING POINTING CORRECTIONS 8-1
8.1.1. RIGHT ASCENSION POINTING CURVE COEFFICIENTS: "A" CARD 8-2
8.1.2. DECLINATION POINTING CURVE COEFFICIENTS: "D" CARD 8-2
8.1.3. LEVEL CURVE COEFFICIENTS: "L" CARD 8-3
8.1.4. BEAM DEFLECTION DATA: "T" CARD 8-3
8.1.5. PVALS: "P" CARD 8-4
8.1.6. TRAVELLING FEED RECEIVER OFFSETS:
"B" CARD 8-4
8.2. SEQUENCING AN OBSERVING PROGRAM: SOURCE CARDS 8-5
8.2.1. TRACKING MODES 8-5
8.2.2. SCANNING MODES 8-7
8.2.3. POINTING MODES UNDER COMPUTER CONTROL 8-9
8.2.4. COMPUTER PROGRAMS FOR PRODUCING SOURCE CARDS 8-12
9. SPECTRAL LINE OBSERVING 9-1
9.1. SETUP CARDS: "S" CARD 9-2
9.2. FEED OFFSET CARD: "F" CARD 9-4
9.3. TRAVELLING FEED RECEIVER OFFSETS: "B" CARD 9-4
9.4. AUTOMATIC L.O. CARD: "L" CARD 9-4
9.5. UP-CONVERTER RECEIVER L.O. CONTROL: "E" CARD 9-5
9.6. SOURCE CARDS 9-6
9.7. ON-LINE DATA REDUCTION 9-6
9.8. OFF-LINE DATA REDUCTION 9-7
10. CONTINUUM OBSERVING 10-1
10.1. OBSERVING PROGRAMS 10-1
10.2. GAIN STABILIZATION AND CALIBRATION 10-2
10.3. SETUP CARDS: "S" CARDS 10-5
10.4. FEED OFFSET CARD: "F" CARD 10-6
10.5. TRAVELLING FEED RECEIVER OFFSETS: "B" CARD 10-6
10.6. AUTOMATIC L.O. CARD: "L" CARD 10-6
10.7. SOURCE CARDS 10-7
10.8. ON-LINE DATA REDUCTION 10-7
10.9. OFF-LINE DATA REDUCTION 10-9
REFERENCES R-1
APPENDIX A. NINE-TRACK TELESCOPE TAPE FORMATS A-1
APPENDIX B. CALIBRATION SOURCE LIST B-1
APPENDIX C. IBM PROGRAMS FOR PRODUCING SOURCE CARD DECKS C-1
APPENDIX D. EXPECTED PERFORMANCE OF THE 300-1000 MHz RECEIVER ON THE 300 FOOT TRAVELLING FEED D-1
Page
1-1 Basic spectral line system 1-7
1-2 Basic continuum system 1-8
3-1 Relative aperture efficiencies as a function of declination for three wavelengths $3-10$
3-2 Beam shapes measured with the cooled 21 cm receiver feed on axis 3-11
3-3 Example of low level sidelobe pattern 3-12
3-4 Typical behavior of half-power beamwidths as a function of declination 3-13
3-5 Relative aperture efficiency as a function of beam offset measured at several frequencies 3-14
3-6 Examples of off axis beam distortion measured with the cooled 21 cm receiver 3-15
4-1 Illustration of the change of the beam deflection factor as a function of hour angle 4-8
8-1 Sample H316 input card deck 8-15
8-2 Nominal right ascension pointing correction curve 8-16
8-3 Typical declination pointing correction curves 8-17
8-4 Typical level curve 8-20
8-5 Source card formats 8-21
9-1 Sample H116 input card deck for spectral line observing 9-9
10-1 Sample H116 setup card decks for CONDAR or CONINT continuum programs 10-10
Page
2-1 A Brief History of Structural Changes 2-3
7-1 Interference Potential of Equipment at Green Bank 7-4
7-2 Frequency Bands with Strong Interference 7-5
7-3 International Radio Astronomy Allocations in the United States (WARC-79) 7-7
8-1 Current Pointing Data 8-23
8-2 "A" Card Format, Right Ascension Pointing Curve Coefficients 8-24
8-3 "D" Card Format, Declination Pointing Curve Coefficients 8-25
8-4 "L" Card Format, Level Curve Coefficients 8-26
8-5 "T" Card Format, Beam Deflection Data 8-27
8-6 "P" Card Format, PVALS 8-28
9-1 "S" Card Format, Setup for SPOWR3, MPOWR3, TPOWR3 9-10
9-2 "F" Card Format, Offset Feed Data 9-11
9-3 "B" Card Format, Travelling Feed Box Offset 9-12
9-4 "L" Card Description, Model III Autocorrelator Automatic L.O. Control 9-13
9-5 Automatic ULO Error Messages 9-17
9-6 "E" Card Format, Up-converter Receiver L.0. Control 9-18
10-1 "S" Card Format, Setup for CONDAR, CONINT 10-11
10-2 "S" Card Format, Setup for FSAMP2 10-12
10-3 "S" Card Format, Setup for SAVG2 10-13
10-4 "F" Card Format, Offset Feed Data 10-14
10-5 "B" Card Format, Travelling Feed Box Offset 10-15
10-6 "L" Card Description, Automatic L.0. Control for CONDAR and CONINT 10-16
A-1 Format 55 - MPOWR3 A-2
A-2 Format 56 - SPOWR3 A-3
A-3 Format 57 - TPOWR3 A-4
A-4 Format 61 - CONDAR A-7
A-5 Format 26 - FSAMP2 A-9
A-6 Format 62 - CONINT A-11
A-7 Format 51 - SAVG2 A-14

TABLE OF CONTENTS
Page

1. INTRODUCTION 1-1
1.1. OBSERVING HARDWARE 1-2
1.2. DATA HANDLING 1-4
1.3. THE TELESCOPE OPERATOR 1-5
1.4. SCHEDULING 1-6
1.5. OPERATING ROUTINE 1-6
TABLE OF FIGURES
Page
1-1 Basic spectral line system 1-7
1-2 Basic continuum system 1-8

1. INTRODUCTION

This document describes the use of the 300 foot telescope for making astronomical observations. It consists of a compilation of the properties of the observing system requiring decisions, or at least an awareness, by the observer, along with a guide to preparing an observing program. This manual is intended as a guide to setting up an observing program which runs under computer control. The topic of data reduction is treated in separate documents, one each for line and continuum observations.

The reason for the existence of this manual is quite basic: the responsibility for the successful operation of an observing program rests with the observer. While the NRAO assumes many of the details of receiver set-up and telescope control, and equipment maintenance, the observer is expected to make enough on-line checks to insure that everything is working properly. It seems reasonable to expect that the observer should understand the equipment well enough to mentally trace a signal from the sky to the recording device. Many things are not obvious from looking at front panels, so some very fundamental questions to the staff may be in order. Everyone at the NRAO appreciates the fact that an observer cares enough about the experiment to understand the equipment about to be used.

The observer's basic responsibilities are to make equipment requirements known to the electronics staff in plenty of time, to provide the telescope operator with telescope control cards and receiver operation instructions, and to monitor and reduce the output data. Normally the observer on an assistant is expected to be in Green Bank during the entire run, and it is strongly suggested that the observer be in Green Bank from 1 to 7 days (depending on previous experience) before the start of the run to become familiar with current procedures. One or more of the scientific staff acts as "Friend of the telescope" and may be called upon at any time to answer questions or refer the observer to someone who can.

For the purposes of discussion, the chapters that follow describe the observing system broken down into components: (2) the telescope structure and its physical limitations, (3) some of the basic properties of receivers and feeds, (4) the problem of pointing, (5) the intermediate frequency system and continuum detectors including the digital continuum receiver, (6) the Model III autocorrelation spectrometer, and (7) the problem of interference. There are three computers in the system as well. The computers process and record the digitized detected signal at the end of the signal path, but they also control vital parts of the system so that observing can be more or less automatic. The chapters describing the system hardware take note of the points where computer input is available or required, but the step-by-step discussion of preparing the computer input for automated observing is deferred to later chapters which describe: (8) pointing the telescope, (9) spectral line observing, and (10) continuum observing. Computer input is in the form of punched card decks. One computer (the H316) is dedicated to positioning the telescope, and it needs to know about the pointing corrections. A second computer (the DDP116) runs the observing program
and handles the data, and it needs to know how to configure the receiving system and what sequence of operations the observer wants to perform. The third computer (the MODCOMP) passively receives data from the DDP116 and is for interactive data processing, primarily using the POPS/CONDAR reduction programs.

This chapter is intended to provide an overview of the operation of the 300 foot telescope and its supporting electronics. The first section deals with hardware, and describes in general terms the set-ups for line and continuum observing. The second section deals primarily with software -- the POPS/CONDAR data reduction programs, and the properties of data transfer to the MODCOMP analysis computer. These sections show how the components of the observing system fit together as a guide to the detailed discussions in later chapters, and are not meant to standardize observing procedures. The observing system is very flexible, although somewhat cumbersome, and the observer is encouraged to plan an observing program around the best technique for the purpose and not around standard set-ups and reduction programs.

Under most circumstances, observing programs are run under computer control. However, the value of the telescope operator to a successful observing program should not be overlooked. Intervention by the operator, under instructions from the observer, to retune or change gains expands the flexibility of the whole system. At the observer's request, the operator can provide additional documentation on the log sheets, if necessary. Through experience, the operators have seen most of the things that can go wrong with the equipment, and are helpful in recovering from errors. Also in the category of parts of the system that talk back is the "Friend of the telescope," a resident advisor on the system with an astronomical perspective. The Friend may be the most useful advisor on adapting the system to the goals of a particular observing program. Finally, the computer programmers are the best source of information about the observing and data reduction programs.

The final two sections deal with day-to-day operations: scheduling, and daily routine. Unlike previously discussed parts of the system, these aspects have evolved slowly to their current state for the protection of the observer's data and priority.

1.1. OBSERVING HARDWARE

The two most commonly used receiver configurations, for line and continuum observing, are shown in Figures $1-1$ and $1-2$, respectively. A third, labeled "Pulsar system", might have been included, but it would essentially be a slight variation on Figure 1-2, with a specialized post-detection processor. The feed combination and number of data channels vary from one front end to another, so the diagrams are meant only to be representative. For more detailed information on a particular system, consult the receiver installation sheet normally given to the observer at the time of observing, or the appropriate electronics division internal reports, available on request, or talk to the engineer responsible for that receiver. Those properties of the telescope itself
which are independent of the receiver/feed combination, such as rates and limits, are discussed in Chapter 2. A more detailed, but still largely receiver independent discussion of the properties of receivers and feeds is found in Chapter 3.

The intermediate frequency (IF) stages follow the front end box. In the spectral line system (Figure l-1), the primary frequency determining element is the Universal Local Oscillator (ULO), which operates in the range of $250-500 \mathrm{MHz}$. The ULO is a computer controlled variable frequency synthesizer. A frequency counter continuously monitors the output frequency to ensure that it is equal to the commanded frequency. The ULO output frequency is multiplied up once or twice, depending on the receiver, by factors of 2 to 8 to equal the sky frequency plus or minus the IF. A set of variable local oscillators (VLO's) is provided for the second conversion, so that the sky frequency of two or more channels can be offset by using different IF's with a single ULO. The amount of offset is restricted only by the bandwidths of the front end and first IF amplifiers. Frequency switching is easily implemented under computer control.

The ULO may also be part of the continum IF section, although most of its features are usually not needed. Frequency settings can be made manually.

The detector in the spectral line set-up is the Model III autocorrelation spectrometer. After appropriate filtering and conversion to baseband, the autocorrelator digitally samples the signal and forms the autocorrelation function, which is sent to the DDP116 computer. A Fourier transform is performed by the DDP116, which produces a spectrum to be written on magnetic tape, displayed on a monitor oscilloscope, and transmitted to the MODCOMP analysis system. Since absolute amplitude information is lost in one-bit sampling by the autocorrelator, the output of a total power monitor, with and without a calibration noise signal, is also recorded on tape for scaling the spectrum in the final reduction.

The autocorrelator sends signals which control frequency switching and the calibration noise source, so it is more than a digital filter. Observing bandwidths and correlator configuration are set manually on the front panel of the correlator, but the settings are compared to those specified on instructions to the DDP116 computer. The autocorrelator receives instructions to start and stop taking data from the DDP116 computer.

Multiplexed square law detectors and A / D converters sampled by the DDP 116 make up the "analog" continuum detectors. The A/D's are typically sampled every second or so, with a minimum sample time of 0.5 . The computer can automatically calibrate the data by periodically turning on the calibration noise signal ("pulsed cal"). Without pulsed cals, sample times of 0.1 to 0.4 in steps of 0.1 can be reached. A fast sampling program is available for pulsar work with sampling times as short as 1 millisecond, but it is not normally used for continuum work.

A digital radiometer system is also available for continuum observing. This is a new modular system providing modern features and improvements over the analog system. The analog system described above is computationally limited to elementary functions such as simple gain modulation balancing and analog subtraction for the Dicke switch mode, while occasionally providing for short integration features. The new digital system does all of this and more. Many complex computations are performed in real time as well as novel digital techniques for gain modulation Dicke switching, thus providing very stable and reliable operating characteristics. Combined with the very stable cooled GaAsFET front ends now available, reliable observations in the total power mode are possible. References for the digital receiver are Hallman 1978 [51] and Fisher 1978 [52].

1.2. DATA HANDLING

Digitized data from the autocorrelator, digital receiver, or multiplexed A / D 's are received by the DDP116 computer. Spectral line data are Fourier transformed and scaled to form a calibrated spectrum. Frequency switched data are properly differenced. Continuum data from the $A / D ' s$ are scaled if the pulsed cal method of calibration was used. The digital receiver passes already calibrated data to the DDP116. In each case the data are recorded onto a nine-track, 1600 BPI tape. These data tapes are normally sent to the NRAO Computer Division in Charlottesville for storage. In the event of a failure of the MODCOMP analysis computer, raw data are not lost, and may be retrieved from the telescope tape.

One of the most basic operations in sequencing a series of observations is sending timing signals to start and stop data taking. (The other basic operation is positioning the telescope on source, and obviously these two operations must be synchronized.) Start and stop times are specified by the observer, and passed on by the DDP116 computer. The uninterrupted block of data accumulated between start and stop times is a scan, which is identified by a scan number as well as other information concerning the system configuration. The identifying information is stored in a header which accompanies the data themselves on tape and in the analysis computer. A spectral line scan consists of a spectrum for which the total integration time is the difference of stop and start times. A continuum scan is a time series of samples of the radiometer output. A scan may consist of a number of subscans, called records since each corresponds to a physical record on tape. A record is the smallest amount of data which may be edited out if there is some problem with it.

Records are passed to the MODCOMP analysis computer where they are accumulated to form a single scan. It is not possible to edit bad records on the analysis computer. The accumulated scans are stored on a disk where they can be read but not changed. This disk can accommodate a total of 2560 spectral line scans plus 1600 to 2560 continuum scans, depending on their length. When the end of the available disk storage space is reached, the storage "wraps around"; i.e., the most recent scan overwrites the oldest one. Since the observer has no way of preventing
this from happening, it is useful to estimate ahead of time how fast the disk will fill (based on the time per scan and number of scans per day), and to schedule data reduction in such a way that scans are not lost before they can be processed. If the telescope schedule is being shared with another observer, the number of scans produced under the other program(s) must be taken into account since there is only one data file of each type.

The on line analysis computer is available to the observer only during the observations. There is, however a duplicate analysis system in the Jansky Lab which can be used by reading in the telescope tapes or KEEP tapes. KEEP tapes are a way to save and transport reduced data, as described in the POPS/CONDAR manuals, and generally are a better archival medium than telescope tapes. Although KEEP tapes and telescope tapes are normally written at 1600 BPI, the MODCOMP can write 800 BPI tapes.

Off site data reduction can be done on the IBM 4341 computer in Charlottesville. Standard data reduction programs are available, or the observer may do as much of the programming as is desired. An observer desiring to make use of the Charlottesville computer should call extension 250 in Charlottesville to make the necessary arrangements.

Regardless of whether the observer will do any off-line data reduction, it is important to have a personal observer number, obtained from the computer department in Charlottesville. In contrast to project numbers assigned to proposals, an observer number or user number is permanently assigned, and follows an observer through life. This number is used to identify data on tape in the library in Charlottesville, and to keep some order in the tape library for the benefit of the observers. A single user number may suffice for a group of observers, but in NRAO files a single name is associated with each user number.

1.3. THE TELESCOPE OPERATOR

As mentioned in the introduction, the telescope operator's role in a successful observing program should not be overlooked. The operators have some general familiarity with the equipment, and are quite helpful when something goes wrong with the equipment. The operators know who to call when something goes wrong.

In the course of normal observing the operator can make routine adjustments in the system configuration, such as bandwidths, IF frequencies, gains, and autocorrelator configuration, on instructions from the observer. Observers have used such schemes as color coded source cards and notes written on source cards, as well as a sheet of written instructions, to insure that these changes follow the desired sequence. No scheme is foolproof since the operator may sometimes be away from the observing console. The header information accompanying the data may be insufficient to document whether a desired change actually took place, so in general it is desirable to keep the number of manual system reconfigurations to a reasonable minimum.

By virtue of their experience, the telescope operators are aware of conditions which may reduce the quality of the data, and if requested they can make brief comments on the observing logs. One of these conditions is interference, especially at low frequencies. Another is weather. The operator has the responsibility of shutting down to protect the telescope in conditions of winds exceeding 25 mph or heavy snow or ice loads. At the operator's discretion, any procedure or activity which is felt to be unsafe for the telescope, equipment or personnel, or which threatens data collection, may be halted.

On the other hand, the telescope operators are not astronomers, and they are not mind readers. An observer should discuss any special concerns or requirements with the operator rather than assume that they will be attended to. The operator on duty will "pass the word" to the operator on the next shift. The operators are not computer programmers and are not expected to reduce data, although they do have some famillarity with pointing checks.

1.4. SCHEDULING

Telescope observing schedules are normally sent to observers one to three months in advance. Assigned times are determined on the basis of the observing requests of many scientists and a reasonably efficient use of telescope time.

Beyond normal weekly maintenance and holidays the only reasons for 300 foot telescope shutdown are equipment failure, power failure, winds exceeding 25 mph , and heavy snow or ice loads. At least one engineer is available at all times to correct equipment malfunctions. Pointing accuracy and efficiency tend to degrade as the wind and snow load limits are approached, and it is the operator's duty to maintain telescope safety and to shut down at his or her discretion.

1.5. OPERATING ROUTINE

A scan by scan observing \log is kept by the telescope operator giving time and position information of the telescope for later reference by the observer. The observer gets a copy of all observing logs taken for the program, and if a limited amount of additional information is wanted on these logs, the operator should be told at the beginning of the session.

Unless otherwise instructed, the operator will send the magnetic data tape to Charlottesville each weekday morning around 0800. Logs are sent to the Green Bank Telescope Services Division Office (room 214 in the Jansky Lab), and analog monitor charts and other plots are set aside for the observer each day at the telescope. Tapes sent to Charlottesville are put into an archive library. The tape librarian will send periodic reminders of an observer's holdings, along with requests to release tapes of no further use.

Figure 1-1. Basic spectral line system at the 300 foot telescope.

Figure 1-2. Basic continuum system with standard receivers at the 300 foot telescope.

table of contents

Page
2. TELESCOPE STRUCTURE 2-1
2.1. PHYSICAL LIMITS 2-1
2.2. DRIVE SYSTEM LIMITS 2-1
2.3. PERTINENT HISTORY 2-2
TABLE OF TABLES
Page
2-1 A Brief History of Structural Changes 2-3

2. TELESCOPE STRUCTURE

This chapter describes the limitations on observations imposed by the physical structure of the telescope itself, aside from the obvious limitations of a transit instrument.

2.1. PHYSICAL LIMITS

The primary indicated declination limits are nominally $+89^{\circ} 50^{\prime}$ and $-18^{\circ} 30^{\prime}$ but may vary by a few arcminutes depending on temperature. Indicated coordinates are those indicated by the position encoders on the telescope structure, but they are quite close to the actual position on the sky. Beyond these limits the telescope can be driven manually to back-up limits of $+91^{\circ} 04^{\prime}$ and $-19^{\circ} 30^{\prime}$ with the variable speed motor. When operating in card control mode, it should be remembered that these limits are indicated and a 1950 or true position may be beyond the limits after precession and/or pointing corrections are applied. If a primary limit will be encountered, the telescope will not move under computer control from the current position.

Tracking in right ascension is accomplished by moving the feed in the focal plane. There are two feed carriage systems. One is a 14 m , fixed focus east-west set of rails, called the travelling feed, used for frontends below 1 GHz . The other, called the Sterling mount, is a more accurate mount for radiometers above 1 GHz and is capable of focusing, rotation and east-west translation up to 45 cm on either side of the telescope axis.

Hour angle limits are ± 15 inches or about $\pm 2^{m}$ sec δ around the telescope's meridian on the Sterling mount (used above 1 GHz) and are ± 275 inches or about $\pm 28^{\mathrm{m}}$ sec δ on the travelling feed carriage. Hour angle limits using the $300-1000 \mathrm{MHz}$ carriage on the travelling feed are ± 132 inches (reference: Appendix D), allowing a total tracking time of about $33^{\mathrm{m}} \sec \delta$, but the feeds are offset from the center of the box making the tracking limits asymmetrical (see section 4.2.3). The limits in terms of time are very slightly dependent on frequency and aperture illumination as explained in the section on beam deflection factor. Here again it should be remembered that precession and pointing corrections will make these limits unsymmetric about the true or 1950 meridian.

2.2. DRIVE SYSTEM LIMITS

Two motors are used for declination drive. One provides continuously variable speeds from 0 to $2: 25 /$ minute (0 to $135^{\prime} / \mathrm{minute}$), and the slew motor has a fixed nominal speed of $10^{\circ} /$ minute.

A three second time delay is built into the declination drive system to allow for telescope deceleration before reversal of direction of travel or speed change. If the telescope position is dependent on a rate and start time with very close sequencing (e.g. in wobbles), this delay must be taken into account. A rule of thumb for slewing to a new
position is to add five seconds for deceleration and position trim to the time required to slew at $10^{\circ} / \mathrm{min}$. Additional time may also be required for receiver adjustments.

Maximum hour angle drive rates on the movable feed systems are 0.5 inches/sec (about $1^{\circ} / \mathrm{min}$) on the Sterling mount and 1.5 inches/sec (about $3^{\circ} / \mathrm{min}$) on the travelling feed carriage. Note that hour angle and right ascension rates are not the same due to the apparent motion of the sky.

The travelling feed system is fixed focus and fixed rotation angle. The Sterling mount allows rotation of the receiver box up to $\pm 200^{\circ}$ from indicated zero at a maximum rate of $13^{\circ}: 3 / \mathrm{sec}$, and a total focus travel of 1270 mm at a maximum rate of $6.76 \mathrm{~mm} / \mathrm{sec}$. Indicated zero on the focus travel is an arbitrary point and the actual in-focus position will depend on receiver box dimensions. Refer to receiver data sheets to determine the beam configuration at zero rotation angle. Positive rotation is in the direction from north through east on the sky.

2.3. PERTINENT HISTORY

The 300 foot structure and surface has undergone many changes which affect its pointing and efficiency. As a consequence, many very careful measurements of antenna parameters made in the past may no longer be appropriate. To help the observer determine the validity of a previous set of calibrations, a brief history of the telescope from the installation of the present surface is given in Table 2-1. It is safe to say that any calibrations made before 1 December 1970 should be disregarded except as a guide for performing new measurements. Some of these changes probably had little effect on the performance of the telescope, but their effects should not be discounted without at least spot checks.

TABLE 2-1

A BRIEF HISTORY OF STRUCTURAL CHANGES

Date	Change
1 July - 7 Dec. 1970	Installation of new surface.
17 Sept. 1970	Installation of cryogenic lines on feed support legs.
16 Apri1 1971	Installation of two 7/8" Heliax cables on south leg ($0.5 \mathrm{lb} / \mathrm{ft} / \mathrm{cable}$).
20 Apri1 1971	Welding of north and south feed leg joints to remove pointing hysteresis.
20-28 April 1971	Installation of Sterling mount.
24 June and 16 Sept. 1971	Line of panels from south leg to north lip reinforced for walking.
11-18 Nov. 1971	Addition of counterweights: 3000 pounds at south box and 6022 pounds at counterweight box.
26 Sept. 1972	Alignment of travelling feed rails to remove twist.
29 March 1973	Welding of gusset supports.
4 June - 29 July 1973	Painting of entire structure.
22 June 1973	Welding of two broken gussets on bottom cord, south of east bearing.
17 Jan. 1974	Removed east declination encoder for repair.
15 Feb .1974	Installed interference monitor antenna above feed cabin.
18 July 1974	Reinstalled east declination encoder.
19 Sept. 1974	Removed west declination encoder for overhaul
24 Oct. 1974	Removed travelling feed assembly for repair and recabling.
18 Dec. 1974	Reinstalled travelling feed assembly.
27 Feb. 1974	Reinstalled west declination encoder.

TABLE 2-1 (Cont.)

27 Feb. 1975
12 May 1975
1 Apr. - 1 June 1975
19 June 1975
19-30 July 1976
6-15 July 1977
21 Aug. - 1 Sept. 1978
22 Jan. 1979
5 Feb. 1979
31 July - 20 Aug. 1979
10 Aug. 1979
10 Apr. 1980
14 July - 3 Aug. 1980
15 Sept. - 6 Nov. 1980

Reinstalled west declination encoder.
Began using west encoder for observations.
North catwalk installed.
South catwalk installed.
Partial painting of structure.
Slew drive motor overhauled.
Partial painting of structure.
East inductosyn installed.
Began using inductosyn for observations.
Partial painting of structure.
Installed electronic level east tower.
Began using tower level to improve pointing.
Partial painting of structure.
Installed new travelling feed assembly.

TABLE OF CONTENTS
Page
3. RECEIVERS AND FEEDS 3-1
3.1. RECEIVER CONFIGURATIONS 3-1
3.2. FEED PERFORMANCE: ON AXIS 3-1
3.2.1. APERTURE EFFICIENCY 3-2
3.2.2. BEAM EFFICIENCY 3-3
3.2.3. BEAM WIDTH AND BEAM SHAPE 3-4
3.2.4. SIDELOBES AND SPILLOVER 3-5
3.2.5. FOCUS 3-5
3.2.6. POLARIZATION 3-6
3.3. FEED PERFORMANCE: OFF AXIS 3-7
3.3.1. APERTURE EFFICIENCY 3-7
3.3.2. BEAM EFFICIENCY, BEAM WIDTH, AND BEAM SHAPE 3-7
3.3.3. SIDELOBES 3-8
3.4. BASELINES 3-8
TABLE OF FIGURES
Page
3-1 Relative aperture efficiencies as a function of declination for three wavelengths $3-10$
3-2 Beam shapes measured with the cooled 21 cm receiver feed on axis 3-11
3-3 Example of low level sidelobe pattern 3-12
3-4 Typical behavior of half-power beamwidths as a function of declination 3-13
3-5 Relative aperture efficiency as a function of beam offset measured at several frequencies 3-14
3-6 Examples of off axis beam distortion measured with the cooled 21 cm receiver 3-15

3. RECEIVERS AND FEEDS

3.1. RECEIVER CONFIGURATIONS

There are quite a few receiver configurations avallable at the 300 foot, so it is essential that the observer specify the type of observing intended and any special needs. The observing proposal often does not contain enough detail to guide the engineer in charge, so the observer should get in touch with the engineer to make any special requirements known, preferably 2 to 3 weeks before the program is to begin. Some parameters, such as bandwidth, can be easily changed in the control room while others, such as polarization or feed and switch configurations, may require major feed or cable changes in the front end box which require several hours to accomplish.

The telescope installation data sheet, or receiver set-up sheet, is a basic source of information about an observer's own set-up. This sheet is prepared by the engineer who installed the receiver, and is available at installation time. It contains vital information about the feed polarization, i.e. which polarization goes to which data channel, and focus distance. It also describes receiver parameters such as bandwidth, system temperatures, and noise tube temperatures. The LO multipliers, needed by the computer to set the sky frequency, are also found on this sheet. Particularly useful for returning observers are comments on major changes in the system.

3.2. FEED PERFORMANCE: ON AXIS

This section is intended to outline the instrumental parameters, effects, and corrections with which an observer should be concerned when planning and executing an observing program -- except for the important subject of pointing, which is discussed in a separate chapter. Where parameters such as aperture efficiency and beamwidth have been measured with a specific radiometer system, they are given herein. These parameters are more extensively determined for some telescope-radiometer combinations than others, depending on their purpose and the extent of feedback from previous observers. In any case, it is ultimately the observer's responsibility to insure that the proper parameters are being used, although the values given herein are the best that are currently available. It is important to remember that parameters such as pointing corrections and focus, done at a particular wavelength, are not usable for a different radiometer, even at the same wavelength; a different feed on the same radiometer will also produce different aperture and beam efficiencies. Even the declination dependence of aperture efficiency will, in general, be different for different feeds at the same frequency.

At many places in this chapter, procedures are given for measuring the parameters under discussion. It would be most helpful if each observer contributed any calibrations performed during a program or call attention to incorrect information that may have been received from NRAO.

For convenience, the discussion of feed performance has been divided into two parts: "On axis behavior" and "Off axis behavior." These titles refer to the declination and hour angle dependence, respectively, of the various telescope parameters. Tracking in right ascension is accomplished by moving the feed in the focal plane. A different set of effects is associated with beam motion in each direction.
3.2.1. APERTURE EFFICIENCY

The operational definition of aperture efficiency is given in equation (3-1).

$$
\begin{equation*}
\varepsilon_{A}=\frac{2 \mathrm{kT}_{\mathrm{A}}}{\mathrm{SA}} \tag{3-1}
\end{equation*}
$$

where T_{A} is the measured antenna temperature produced by a point source of flux density S, in the peak of the beam, and A is the geometrical area of the aperture ($6567 \mathrm{~m}^{2}$ for the 300 foot). If S is in Jansky's and T_{A} in Kelvins, then

$$
\begin{equation*}
\varepsilon_{A}=0.420 \mathrm{~T}_{\mathrm{A}} / \mathrm{S} \tag{3-2}
\end{equation*}
$$

The aperture efficiency is a function of illumination, polarization, losses in the feed, and dish deformations. The first three of these can be a strong function of frequency because of changes in VSWR and feed radiation pattern. Dish deformations have their greatest effect at short wavelengths, of course, but the detailed dependence of aperture efficiency on them depends on the phase and amplitude structure of the wavefront striking the surface from the feed (using reciprocity and considering the feed as a transmitter). For this reason each radiometer-feed-surface combination behaves differently as a function of declination at the same wavelength.

In many cases only the relative variation of aperture efficiency with declination is important, the measurement of which requires only that the secondary calibration source (noise tube or diode) remain steady during the measurements. Absolute determination of the aperture efficiency is much more difficult because both T_{A} and S must be known. T_{A} is derived by comparison with an internal noise standard in the radiometer which can be measured in the lab to a few percent, at best, and at worst can be in error by over 25%. The method of caldibration of the noise standard is important because it often varies with frequency. Therefore, a wideband noise standard value is not necessarily valid for narrow band spectral line work and vice versa.

The most reliable way to determine the aperture efficiency of the 300 foot is to do drift scans of as many sources as possible of known flux over as wide a declination range as needed for one's observations. Be careful not to choose variable sources or sources larger than a tenth of a beamwidth. Good references for radio source flux densities are Bridle et al., 1972 [47], Kellermann et al., 1969 [48], and Fomalont and Moffet 1971 [49]. A compilation of flux density calibrators is included
in Appendix B to this manual. Remember that flux densities usually refer to a particular polarization angle at a particular frequency.

Properly calibrated drift scans may be obtained using the pulsed cal mode or the digital receiver. Otherwise, put a noise calibration on the record immediately before and after the source passes through the beam. A comparison of the peak source deflection to the noise calibration deflection will give the noise calibrator in flux units, which, if the noise calibrator is known in temperature units, can be used to find the aperture efficiency in equation (3-1). If the declination pointing corrections are not precisely known, drift scans at several declinations may be necessary or the peak deflection corrected assuming a beam shape once the pointing corrections are known. The on- off method of determining source deflections is difficult to use on the 300 foot because of the variation of aperture efficiency with hour angle when a source is tracked. Even if extensive calibrations have been made on a previous observing session, at least spot checks on the calibrations should be made every session.

To indicate the useful declination range of the 300 foot at several wavelengths, representative plots of aperture efficiency as a function of declination are given in Figure 3-1. Note the difference in curve shape for different feeds at 21 cm . All reports which are on file with the "Friend of the 300 foot" and which discuss any of the parameters in this chapter are referred to in the References. The various radiometers are too numerous to discuss individually and for some of them there is very little written information on their performance on the telescope. As more information becomes available for each radiometer, references will be added to the manual.

Recent investigations [53, 56] reveal lateral defocusing to be a primary cause of the shape of the curves in Figure 3-1. As the telescope deforms under the influence of gravity the new shape resembles a parabola with an axis slightly offset from the nominal axis. The focal point actually moves in the north-south direction away from the location of the feed, causing a loss of efficiency which is most severe at the higher frequencies.

3.2.2. BEAM EFFICIENCY

Beam efficiency is an often misunderstood term in observational radio astronomy. Consequently there are several definitions, each of which applies only in a very specific case.

In practice, beam efficiency, ε_{B}, is sometimes used to convert observed antenna temperature, T_{A}, into source brightness temperature, T_{B}, for an extended source. The strict relation between T_{A} and T_{B} is

$$
\begin{equation*}
T_{A}=\frac{\operatorname{enth}_{\text {source }} \mathrm{T}_{\mathrm{B}}(\theta, \phi) \mathrm{R}(\theta, \phi) \mathrm{d} \Omega}{\left\{\int_{\pi} \mathrm{R}(\theta, \phi) \mathrm{d} \Omega\right.} \tag{3-3}
\end{equation*}
$$

where $R(\theta, \phi)$ is the power response of the antenna in the direction (θ, ϕ). Only if the source is of uniform brightness can an equation defining beam efficiency be written which contains only antenna parameters:

Even then the source extent appears in the integral limits. Thus, any definition of beam efficiency in terms of antenna parameters only is arbitrary and of little practical use except as a measure of antenna quality.

Two properties of the beam efficiency as defined by equation (3-4) are worth mentioning, however. First, the beam efficiency is usually greater than the aperture efficiency if the integral is over the main beam. Second, the beam efficiency varies more slowly with declination than does the aperture efficiency because power lost in the peak of the main beam generally goes into broadening the beam and into nearby sidelobes as the dish is deformed.

The exact procedure for treating extended source observations depends on the scientific objectives. If the total source flux density is the goal, one could either correct for beam response fall-off if the source is roughly a HPBW or less in extent (assuming one knows the source brightness distribution), or one can completely map the source. If the source area is mapped, the total flux is simply the integral under the source map divided by the normalized antenna beam integral. In this case the map intensities are expressed in "Jy per beam area" which in many cases is a much more useful physical unit than brightness temperature, and allows one to use the direct secondary noise source calibration in terms of point source flux density.

3.2.3. BEAM WIDTH AND BEAM SHAPE

Nominally the half-power beam width of the 300 foot in arcminutes is 0.5 times the wavelength in centimeters. It varies by as much as 15 or 20% from this (usually larger) depending on illumination taper and shadowing, declination, and to a certain extent on wavelength because of beam broadening at higher frequencies owing to surface irregularities. To a first approximation the one dimensional main beam shape is gaussian when the illumination taper is -15 db at the dish edge, as is the case with many NRAO feeds. However, the gaussian shape is a poor approximation above 1 GHz at extreme declination limits where the beam is decidedly asymmetrical, and at all frequencies when the feed is off axis, as will be discussed later. The north-south beam width is generally larger than the east-west beam width because of the feed support shadows [56].

Typical beam contour maps are given in Figure 3-2 at declinations of $+47^{\circ}$ and -15° for the cooled 21 cm receiver [4], and much deeper contours are shown in Figure 3-3 for the 21 cm four feed system [2].

Figure 3-4 is a plot of measured half-power beam widths for the four feed system. The declination effect on beam width is more pronounced at shorter wavelengths. Figures $3-2$ to $3-4$ are meant only to be representative, and each feed must be calibrated separately.

3.2.4. SIDELOBES AND SPILLOVER

The sidelobe structure will be a strong function of the feed illumination taper and surface irregularities. One feature which is always present is the east-west diffraction spike seen in Figure 3-3, which is caused by the feed supports. If the dish is heavily illuminated, Airy's rings will become apparent. These are normally suppressed by proper illumination taper. Sidelobes far from the main beam are typically 50 to 60 db down from the main beam and are the result of diffraction by sharp irregularities on the dish. Far sidelobe structure can be strongly frequency dependent; this could produce spectral baseline distortions when a strong source such as the sun is in those sidelobes.

Spillover, which is the power from the feed not intercepted by the dish, is roughly 60 db down from the main beam but subtends a large solid angle mainly in the direction of the 300 K ground. This can contribute 5 to 50 K to the total system temperature. The peak in the ground contribution to T occurs when the antenna is near zenith position. Below 500 MHz , spillover can also pick up local power line and ignition interference.

3.2.5. FOCUS

Only the Sterling mount is capable of moving the feed parallel to the telescope axis. The travelling feed is a fixed distance from the dish and the placement of each feed with respect to the actual focal point is determined when the receiver front end is built. Only indirect checks, such as beam shape and sidelobe structure, can be made on the focus of receivers below 1 GHz . Even these checks are dependent on illumination and interactions with the feed support structure.

Two methods have been used to determine optimum focus for the 300 foot. The simplest, which has been successful at 21 cm , is to track a moderately strong source while quickly running the feed back and forth through the approximate focal plane. With appropriate position marks on the receiver output chart recording the peak efficiency point can be determined. For this method to work, one must know the pointing corrections accurately and stay within 2 or 3 beamwidths of transit, and the receiver baseline must not change due to dish reflections when the feed is moved in either focus or translation (tracking) when pointed at blank sky.

If the baseline variations are a problem in the above method, the alternative is to make drift scans of a number of sources, each at a different focal position. The relative source strengths usually are not known accurately enough to monitor the efficiency at the different focal
positions, but the HPBW is a weak function of focus. With at least 5 or 6 drift scans, the point of minimum HPBW can be determined with sufficient accuracy to set very close to optimum focus.

3.2.6. POLARIZATION

Precise polarization measurements are difficult with any radio telescope because of the myriad of instrumental effects. However, a number of successful polarization observations have been made with the 300 foot (e.g. [10], in which most of the instrumental effects have been accounted for). This manual does not claim to define the best way to measure polarization in each case, so only a brief mention of some of the instrumental problems will be given.

Point source and extended source measurements differ in that beam shape and sidelobes are more important in the latter. Hence, unpolarized sources used for calibration must be roughly the same angular size as the unknown source. If a dual polarized feed is used, there may be a pointing offset between the two beams. Or, if a single polarization feed is rotated, its beam axis may not be coincident with the axis of rotation. Spillover will be different for opposite polarizations in a dual polarization feed or for different position angles of a single feed. This will cause a differential variation in system temperature of two feeds as the antenna is moved in declination, or a baseline variation as the feed is rotated.

The phase and amplitude distribution of the illumination will also be different for the two polarizations in a dual feed and at different position angles in a single feed, owing to the intrinsic properties of the feed and to interactions with the feed support legs. The latter is especially important at low frequencies. Also, surface panel resonances may cause significant depolarization, particularly at low frequencies. Differences in illumination will produce different aperture efficiencies at different position angles and may cause the declination correction curve of aperture efficiency to be different at different position angles.

In an effort to provide a secondary polarization calibrator, three wideband antennas were installed at the apex of the 300 foot to radiate a polarized signal to the feed. Two antennas ($400-1000 \mathrm{MHz}$ and $1-8 \mathrm{GHz}$) are fixed circularly polarized and the other ($100-1000 \mathrm{MHz}$) is rotatable and linearly polarized. A great deal of caution must be exercised when using these antennas because of strong reflections from the feed support legs, particularly below 1 GHz . For example, in a couple of cases, between 250 and 500 MHz , the sense of circular polarization actually appeared to reverse when the feed was moved away from the feed supports. A comparison of the box rotation angle and calibration antenna angle, when the calibration signal is maximized, indicates that measurements of the position angle of linear polarization is probably good to 5 or 10° in most cases. However, one cannot trust any amplitude information obtained with the apex calibration antennas.

3.3. FEED PERFORMANCE: OFF AXIS

All. of the on axis properties of the 300 foot apply when it is used in the tracking mode, but additional effects arising from off axis operation of a paraboloid must be taken into account. Comments on these additional effects are given below under section headings corresponding to those used in the on axis discussion. Most of the comments apply to multibeam systems where at least one of the beams is off axis. An NRAO internal report [11] treats many of the subjects in more detail.

3.3.1. APERTURE EFFICIENCY

Figure 3-5 shows the variation of aperture efficiency as a function of beam offset for two radiometers ($250-500 \mathrm{MHz}$ and the cooled 21 cm). Note that all of the low frequency measurements agree to within about 2% at all frequencies. The 21 cm points are systematically higher, and this may be due to a difference in illumination taper. Heavily tapered illumination will produce less relative fall off in aperture efficiency with feed offset than will more uniform illumination. Measurements have been made at 21 cm at widely different declinations, and little or no dependence of the shape of the curve in Figure 3-5 on declination is found.

The best method for measuring relative aperture efficiency as a function of hour angle is to track the right ascension of a reasonably strong source while scanning back and forth across the source in declination at a speed consistent with the antenna beamwidth. A source smaller than a tenth of a beamwidth should be used, and the antenna pointing corrections in right ascension and hour angle must be known accurately. If an absolute value of the aperture efficiency is to be obtained with the same series of scans, a noise calibration should be put on the record before and after the set of source scans. Measuring the aperture efficiency variation by continuously tracking a source is not advisable because of possible variations in the receiver baseline when the feed is moved in the focal plane.

Since the shape of the aperture efficiency versus beam offset curve depends on illumination, it should be measured for each separate feed when it is important. Note that if one is using the tracking feature of the 300 foot to increase sensitivity by integration, there is often little point in going beyond 5 HPBW, because even with proper weighting of the data very little increase in signal-to-noise ratio can be obtained with the addition of observations taken when the aperture efficfency is less than half its on axis value.

3.3.2. BEAM EFFICIENCY, BEAM WIDTH, AND BEAM SHAPE

The remarks under this heading in the previous section apply here with the additional complication that the beam efficiency changes while tracking a source. In equations (3-3) and (3-4), $R(\theta, \phi)$ would also be a function of time. Most of the power lost from the beam peak as the beam moves off axis goes into widening the beam (asymmetrically) and into the
coma sidelobe. Thus, the limits on the integrals in equations (3-3) and (3-4) are especially critical. Figure 3-6 shows an example of beam distortion when the beam is off axis. The contour levels do not go quite low enough to show a separate coma sidelobe in this diagram. This figure is intended to be illustrative only because the details of the beam distortion will depend on individual feed properties.

3.3.3. SIDELOBES

One important additional sidelobe, the coma lobe, appears when the beam is moved off axis. It is located approximately 1.6 beamwidths from the main beam along a vector from the main beam to the telescope axis, and its strength is strongly dependent on beam deflection and somewhat dependent on illumination taper. The coma lobe can be as high as 10% for displacements of 4 HPBW .

The near and far sidelobes associated with on-axis operation are still present with the deflected beam, but their detailed structure will change with beam motion.

3.4. BASELINES

In continuum observations the term baseline refers to the output of a radiometer when the source is not in the main beam. If we neglect receiver instabilities and interference, the main sources of baseline variation with the feed on-axis are changes in ground radiation pick-up with changing declination, and time-variations in atmospheric radiation at frequencies above about 2.5 GHz . The first is not a problem with right ascension drift scans. The second is a strong function of the amount of water vapor in the direction of the beam. In the case of small source work, beam switching can help cancel atmospheric contributions to baseline instabilities, but at times the small-scale structure of the water vapor distribution can be so pronounced as to make 6 cm observations difficult even when beam switching.

During the day, the presence of the sun in the telescope sidelobes can be a source of serious baseline problems. The sun is moving with respect to the sidelobes regardless of whether the telescope is motionless for a drift scan or tracking at the sidereal rate.

Spectral baselines, or variation of receiver output with frequency, in the true total power sense are mainly a product of the receiver bandpass characteristics. The gross frequency dependence of the receiver system can be taken out by subtracting a reference spectrum, taken with the antenna pointed off the source or with the receiver switched to a resistive load or to a different frequency from the source spectrum. A number of secondary effects then become evident in the baseline, and in general these effects are difficult to eliminate entirely.

When the reference is taken by moving the antenna, instabilities in the receiver bandpass, and strong sources such as the sun or ground radiation in the antenna sidelobes, can cause undulations in the
difference spectrum. Load or frequency switching can be done much more rapidly to eliminate effects of receiver bandpass drifts, but because the receiver front end characteristics will be considerably different at a different center frequency or when connected to a load, the baseline will still not be flat. Generally, if the total bandpass used is less than about 1 MHz , then load or frequency switching will produce acceptable baselines. Bandwidths above 1 MHz usually require operation in what is commonly called the total power mode, in which the reference spectrum is taken in a different part of the sky from the source. In this case one must be careful to take the reference spectrum with the feed in the same position(s) with respect to the dish (e.g., if a source is tracked, the reference point in the sky should be tracked over the same hour angles and roughly the same declinations) because of frequency dependent interactions of the feed and structure.

Some work on the 140 foot indicates that excess noise from either ground radiation or the sun can be scattered onto the dish surface and interfere with direct radiation into the feed. This interference is constructive or destructive depending on frequency and can be a source of spectral baseline ripples. Normally, ground radiation effects tend to cancel out in the total power mode at the 300 foot since the reference is usually taken at the same declination as the source observation. It is known, however, that the sun can cause baseline ripple with a characteristic length of 5 to 10 MHz and an amplitude at 21 cm of up to one Kelvin. No particular correlation of baseline ripple amplitude with solar hour angle has been established and many useful spectral line observations have been made during the day with a bandwidth of 10 MHz .

All of the above comments are intended only as guidelines because other observing considerations may be more important than baseline quality.

Figure 3-2. Beam shapes measured with the cooled 21 cm receiver feed on axis. Top figures are channel A with E vector north-south and lower figures are channel B with E vector east-west. Contours are at $-1,-3,-6,-9,-12$, and -15 db levels. Reference [4].

Figure 3-3. Example of low-level sidelobe pattern obtained by mapping Cas A (a) and the sun (b) with one of the $21 \mathrm{~cm}, 4$ feed receivers. Reference [2].

Figure 3-4. Typical behavior of half-power beamwidth as a function of declination. These data were obtained with one feed of the $21 \mathrm{~cm}, 4$ feed system. Reference [2].

Figure 3-5. Relative aperture efficiency as a function of beam offset measured at several frequencies on the 300 foot.

Figure 3-6. Examples of off-axis beam distortion measured with the cooled 21 cm receiver. Top figures are channel A with E vector north-south, and the lower figures are channel B with E vector east-west. Contours are $-1,-3,-6,-9,-12$, and -15 db . Ref. [4].

TABLE OF CONTENTS
Page
4. POINTING 4-1
4.1. COORDINATE FRAMES OF REFERENCE 4-1
4.2. POINTING CORRECTIONS 4-2
4.2.1. POINTING CORRECTION EQUATIONS 4-2
4.2.2. ELECTRONIC LEVEL CURVE CORRECTION 4-3
4.2.3. TRAVELLING FEED RECEIVER OFFSETS 4-4
4.3. REFINING THE POINTING 4-4
4.3.1. DETERMINING THE PVALS 4-4
4.3.2. MAKING POINTING MEASUREMENTS 4-5
TABLE OF FIGURES
Page

4-1 Illustration of the change of the beam deflection factor as a function of hour angle 4-8

4. POINTING

Pointing the telescope to the proper position on the sky is one of the most basic aspects of observing. The subject of pointing has received a considerable amount of attention, and continues to be a major aspect of telescope maintenance. Still, observations that depend critically on accurate pointing require attention by the observers themselves. As for others, there are very few programs so short that there is not enough time for at least spot checks of the pointing.

The purpose of this section is to acquaint observers with those aspects of telescope pointing that require their attention, or at least their awareness, the terminology involved, and procedures for improving the pointing.

The first subsection describes the four coordinate frames that are computed and carried along with the data. In particular, the difference between "apparent" and "indicated" coordinates is essential to the understanding of the nature of "pointing corrections." The second subsection describes the mechanics behind the application of pointing corrections, and summarizes what is known about the pointing for various receiver/feed combinations. The moral of this subsection is that there is no single pointing correction for all receivers, and that at the very least, the observer must be certain to choose the appropriate correction. The third subsection describes methods to refine to pointing.

4.1. COORDINATE FRAMES OF REFERENCE

The telescope position may be commanded in a number of coordinate frames of reference. The H316 computer performs the computations necessary to convert from one frame to another. The four frames that are used are epoch, apparent or true, indicated, and galactic.

The epoch coordinate frame consists of positions in equatorial coordinates at a given epoch. The only epoch now available is 1950.0 .

The apparent coordinate frame consists of positions in equatorial coordinates at the epoch of the observations. The difference between epoch and apparent coordinates is precession, aberration, and nutation from 1950.0 to the epoch of the observations. Epoch and apparent coordinates are computed without any reference to the physical properties of the 300 foot telescope.

The indicated coordinate frame consists of positions as indicated by the position encoders on the telescope. Quite literally, the indicated coordinates are "what the dials read." The position encoders have been set so that indicated and apparent coordinates are nearly the same, but that is really a matter of convenience since indicated coordinates have no real astronomical meaning. But since the position encoders are part of the feedback loop for keeping the telescope at a commanded position, a position in any coordinate frame must finally be converted to a position in the indicated frame. Indicated coordinates are the "machine code" level instructions for telescope positioning.

The differences between apparent and indicated coordinates are due to slight misalignments in the telescope axes, encoder offset errors, and deformations of the telescope structure due to gravity and differential heating by the sun. Since these differences are small, the transformation from apparent to indicated coordinates is linear, as described in the next subsection. The pointing corrections are a functional fit to the differences between apparent and indicated coordinates, determined by measuring the indicated coordinates of sources with known positions.

The galactic coordinate frame consists of positions in new galactic coordinates. These coordinates are transformed to 1950.0 equatorial coordinates, and then treated as epoch coordinates. That is, they are precessed to the present epoch and pointing corrections are added.
4.2. POINTING CORRECTIONS.
4.2.1. POINTING CORRECTION EQUATIONS.

The pointing corrections are the difference between apparent and indicated positions. That is, they are the difference between the position that the astronomer wants to observe and the position indicated by the position encoders on the telescope. Since these differences are small, right ascension and declination corrections can be treated independently. The present method for implementing pointing corrections is to use standard equations in the H 316 computer for which coefficients can be entered via cards.

The right ascension pointing correction equation is

$$
\begin{equation*}
\Delta \alpha=m+n \tan (\delta)+c \sec (\delta) \tag{4-1}
\end{equation*}
$$

where δ is the indicated declination, and where $\Delta \alpha, m, n$, and c are in seconds of time. This is the offset equation for a transit circle whose axis is displaced from true east-west and from the horizontal. The current values of m, n, and c are listed in Table 8-1, and are entered into the H316 computer on an "A" card (Section 8.1.1). This is the correction for observations on axis.

There is an additional correction for observations at non-zero hour angles, called the beam deflection factor (BDF). The BDF is the ratio of the angular displacement of the beam to the angular feed displacement [11]. The value of the BDF depends on the feed in use, but is usually between 0.84 and 0.875 . However, beyond some critical hour angle the BDF increases in the sense that the feed need not be moved as far to obtain a given beam deflection. For the traveling feed, this critical angle was measured to be $3: 15$ at 400 MHz by Greenhalgh [9], and a more recent measurement by Guiffrida and Haschick [32] indicates that this critical angle scales inversely with frequency (see [53]). Values of the BDF, critical angle, and additional BDF, for the travelling feed and for the Sterling mount, are entered into the H316 on a "T" card, as described in Chaptef5. It is necessary to calculate the additional BDF as a fraction of $2^{(}$for entry into the computer. A specific example, taken from [9], is shown in Figure 4-1.

The declination pointing correction equation is more complex because the dish deformations are not easily modeled. The equation is

$$
\begin{equation*}
\Delta \delta=C_{0}+C_{1} \delta+C_{2} \delta^{2}+C_{3} \delta^{3}-\Delta L \tag{4-2}
\end{equation*}
$$

where $\Delta \delta$ is in arc seconds, C_{0}, C_{1}, C_{2}, and C_{3} are the pointing coefficients for a particular combination of receiver and feed, and ΔL is the level curve correction, described below. Particular sets of declination pointing coefficients are stored in the H316 computer and are identified by a two character identifier. The most recently determined coefficients are given in Table 8-1, and the identifiers are listed in Table 8-3. Ask the "Friend" about more recent updates to the pointing coefficients. The declination pointing coefficients are entered via a "D" card (Section 8.1.2).

4.2.2. ELECTRONIC LEVEL CURVE CORRECTION

In August 1979 an electronic level was installed on the east tower of the telescope to investigate the effect of differential heating by the sun. The level is a pendulum type electronic level, designed to be read remotely by computer. The level is mounted directly over the declination position encoder on the east tower. The level reads the tower til.t in the north-south direction only. In April 1980, the electronic level was incorporated into the feedback loop which keeps the telescope on position. It was found that the sun was causing a bending of the support structure which was directly reflected in the pointing. However, the telescope is not perfectly balanced, and so there is an unavoidable bending of the support structure as the telescope is moved. The level curve is this nominal relationship between the electronic level reading and the indicated declination, which is best measured on windless nights, preferably several hours after sunset to give the structure time to equilibrate thermally. This level curve is already incorporated into the nominal declination pointing curves described above, so the bending due to solar heating is the difference between the electronic level reading and the level curve. This difference is the level correction.

The level output is sampled every 0.2 seconds and averaged for 10 seconds. The nominal level curve is represented by a cubic polynomial in the indicated declination so that the level correction is:

$$
\begin{equation*}
\Delta L=\bar{L}-\left(L_{0}+L_{1} \delta+L_{2} \delta^{2}+L_{3} \delta^{3}\right) \tag{4-3}
\end{equation*}
$$

where $\Delta \mathrm{L}$ is in arcseconds, δ is the indicated declination, $\overline{\mathrm{L}}$ is the ten second average level reading, and L_{0}, L_{1}, L_{2}, and L_{3} are the nominal level curve coefficients. The current values of the level curve coefficients are listed in Table 8-1, and are entered into the H316 via an "L" card (Section 8.1.3). A positive level correction is in the sense of a northward tilt, and so the level correction is subtracted from the declination correction.

The console has a toggle switch which can be used to disable the level correction in case of malfunction or windy conditions. The
telescope operator has control of this function. The H316 program checks the switch and prints a message on the CRT screen if the level correction is disabled.

4.2.3. TRAVELLING FEED RECEIVER OFFSETS

The travelling feed box ($0.3-1 \mathrm{GHz}$) allows two feeds to be installed for observations at $300-500 \mathrm{MHz}$ or $500-700 \mathrm{MHz}$, and $700-1000 \mathrm{MHz}$. The two feeds are physically offset from center by ± 34 inches, so that the whole box must be moved to get either feed on axis. The $300-700 \mathrm{MHz}$ receiver is located East on the box (-34 inches), and the $700-1000 \mathrm{MHz}$ receiver is located West on the box (+34 inches). These offsets are entered on a "B" card in the observer's setup deck for the DDP116 computer, which passes the value to the H316.

The effect of the box offsets on the hour angle limits of this receiver is discussed in Appendix D. The point to remember is that for a tracking scan the source peaks up at the box offset. For example, the two low frequency feeds peak up at -34 inches of travel. This means that a source can be tracked for less time before transit and more time after transit. The 98 inches of travel before transit correspond to $12^{\mathrm{m}} 20^{\mathrm{s}} \mathrm{sec} \delta$ of right ascension, and the 166 inches of travel after transit correspond to $20^{\mathrm{m}_{55} \mathrm{~s}} \mathrm{sec} \delta$. The calculations for the high frequency side of this receiver give the reverse answers. It is advisable to calculate these maximum offsets in beamwidths, heeding the advice of section 3.3 .1 that there is little to be gained by tracking more than 5 HPBW's off axis, due to the loss of aperture efficiency.

4.3. REFINING THE POINTING

4.3.1. DETERMINING THE PVALS

If an observer is willing to devote a significant amount of time to pointing correction measurements, or if such measurements are derivable from one's observations, then new pointing coefficients can be derived. Programs which run on the IBM in Charlottesville are available for obtaining least-squares solutions for the pointing coefficients. However, if the observer is satisfied with the nominal coefficients that are available, then simple corrections can be applied quite easily to account for small feed offsets. Three correction terms, which are called PVALS at the 140 foot telescope, correct for a declination offset and for right ascension dial error and box offset. The corrections, P_{1}, P_{2}, and P_{3}, in minutes of arc enter the pointing correction equations as:

$$
\begin{align*}
& \Delta \alpha=\left(m+P_{2} / 4\right)+n \tan (\delta)+\left(c+P_{1} / 4\right) \sec (\delta) \\
& \Delta \delta=\left(C_{0}+60 P_{3}\right)+C_{1} \delta+C_{2} \delta^{2}+C_{3} \delta^{3}-\Delta L \tag{4-4}
\end{align*}
$$

In principle, P_{1} and P_{3} could be determined from the measurement of a single source if P_{2}^{1} were assumed to be zero. However, the separation of right ascension box offset and dial error requires at least one pair
of sources at widely separated declinations. If N pairs of sources are measured, the solutions for the pointing offsets are:

$$
\begin{align*}
& P_{1}=\frac{1}{N} \sum_{m-1}^{N} \frac{\left(\Delta \alpha_{1}-\Delta \alpha_{2}\right)_{m}}{\left(\sec \delta_{1}-\sec \delta_{2}\right)_{m}} \tag{4-5}\\
& P_{2}=\frac{1}{N} \sum_{m-1}^{N} \frac{\left(\Delta \alpha_{1} \sec \delta_{2}-\Delta \alpha_{2} \sec \delta_{1}\right)_{m}}{\left(\sec \delta_{2}-\sec \delta_{1}\right)_{m}} \tag{4-6}\\
& P_{3}=\frac{1}{2 N} \sum_{m-1}^{N}(\Delta \delta)_{m} \tag{4-7}
\end{align*}
$$

where subscripts 1 and 2 refer to the two measurements within a pair. There is a function in the POPS/CONDAR analysis programs for computing the PVALS. This function does not use equations (4-5) through (4-7), but instead performs a least-squares fit. The function is known as PVALS, and is literally a carry-over from the 140 foot analysis system. In particular, it asks for input as if it were possible to measure declination and right ascension offsets simultaneously, which is generally not the case on the 300 foot. Since P_{3} is simply the average of all the declination offsets measured in a set of observations, it is perhaps more easily calculated by hand than by typing the numbers into the PVALS routine. In that case, the PVALS routine can be used to simplify the calculation of P_{1} and P_{2}, inputting zero for the declination offsets.

4.3.2. MAKING POINTING MEASUREMENTS

The previous section described the calculation of corrections to the pointing derived from a set of pointing observations. This section describes in general terms the procedures for determining the pointing offsets.

If possible, a good place to start when refining the pointing is to measure the constant term in the nominal level curve. A long series of observations has shown that the shape of the level curve is stable, but that the zero point tends to change. It is not known whether the nature of this change is a slow drift or occasional jumps, but the change has been monotonic over a period of about two years. The simplest procedure for measuring the constant term is to command the telescope to declination zero and read the level. However, as described in the section on the electronic level, these measurements can only be made during the proper conditions, when the structure is in thermal equilibrium and there is no wind. If these conditions cannot be met, then the zero offset of the level reading must simply be corrected for by the declination correction P_{3}. An averaged level reading is passed to the MODCOMP analysis computer with all continuum scans, so it is not always necessary to read the meter.

Abstract

The right ascension and declination pointing offsets must be measured by drift scans and declination scans, respectively. The telescope operators know how to obtain and reduce these data to obtain the pointing offsets. The Friend has source card decks for making pointing observations, or observations can be run in a manual mode making use of the source lists in Appendix B. From experience, the most straightforward method of determing pointing corrections for a single feed are drift scans for $\Delta \alpha$ and at least two declination scans for $\Delta \delta$. The scans can be reduced in a straightforward manner on the MODCOMP. However, if the data are reduced from a chart recording, one must be very careful to allow for marker pen offsets and distortions due to receiver time constants. In either case, these effects can be canceled out in determining $\Delta \delta$ by taking an equal number of scans in either direction while tracking the sources in right ascension. Be careful not to allow the feed to get so far off axis that the curvature of the sky changes the apparent source declination as measured by the 300 foot.

If two or more offset feeds are available, such as on the 21 cm four feed or the 11 cm three feed systems, a fairly good measurement of $\Delta \delta$ can be made with a drift scan by measuring the relative responses of two or three of the beams to the source when they are spaced approximately half of a HPBW in declination. Such spacing can always be achieved by rotating the box to the appropriate position angle. This method assumes that the beam offsets and relative efficiencies are well known.

A third method which has proven successful at 21 cm is to track a pointing calibration source and move off to half power beam positions in the cardinal directions. If the response is not equal in opposite directions, the pointing offset can be computed. This method may be applicable to other frequencies as long as baselines do not vary with feed position and enough tracking time is available to complete the sequence. Because of the variation of aperture efficiency with hour angle, opposing offsets must be measured at equal distances from and not more than about three beamwidths from transit. When done from card control, this method offers the advantage of checking the entire sequence of telescope control as is used in actual observing.

Good references for accurate source positions are Bridle et al., 1972 [47], Fomalont and Moffet 1971 [49], and the VLA calibrator list. Appendix B consists of a calibrator source list and flux density list, furnished by P.C. Crane.

Observers who will be tracking their sources in right ascension may wish to measure the beam deflection factor (BDF), particularly if they wish to track sources at hour angles greater than 6 half-power beamwidths. The BDF can be measured fairly quickly by scanning the beam back and forth in right ascension across a reasonably strong source while recording the LST (and hence source hour angle, h), linear displacement of the feed, L, and receiver response on a chart recorder. From this record the angular feed displacement (L/focal length) and the beam deflection ($h \cos \delta$) for each source-crossing peak can then be determined, and the slope of the line defined by these points is the BDF. To the accuracy of measurement all determinations of the BDF have
shown a linear relationship between L and h out to about 6 beamwidths, but at a critical distance of $3: 15$ on the travelling feed at 400 MHz the slope changes abruptly from 0.854 to 0.868 [9]. A value of 0.856 has been recently determined for the cooled 21 cm receiver [4][54][55]. These values agree quite well with a value of 0.85 calculated for a -18 db illumination taper on the 300 foot [11]. The critical angle appears to scale with wavelength [32][55], so if beam displacements of more than 6 HPBW 's are to be used, the critical angle and additional BDF will have to be determined at the frequency of interest.

SOURCE $\delta=33^{\circ}$
ASSUMED BDF $=0.84$ AS FIRST APPROX!MATION

1. CENTRAL BDF $=0.84\left(1+\frac{45^{\mathrm{s}}}{45^{\mathrm{m}} \times 60}\right)=\underline{0.854}$
2. CRITICAL DISTANCE $=15^{\mathrm{m}} \operatorname{COS} 33^{\circ}=3.15^{\circ}$
3. ADDITIONAL BDF $=\frac{220^{5}}{30^{m} \times 60}=0.12222$

ENTER AS FRACTION OF 2^{15}
$0.12222 \times 2^{15}=\underline{4004,9}$

Figure 4-1. Illustration of the change of the beam deflection factor as a function of hour angle. Reference [9].

TABLE OF CONTENTS
Page
5. IF SECTION AND DETECTORS 5-1
5.1. UNIVERSAL LOCAL OSCILLATOR 5-1
5.2. IF PROCESSOR 5-2
5.3. STANDARD CONTINUUM RECEIVER 5-3
5.4. DIGITAL CONTINUUM RECEIVER 5-3
5.5. VARIABLE BANDWIDTH RECEIVER 5-4
5.6. FABRI-TEK SIGNAL AVERAGER 5-4
5.7. IMPULSIVE NOISE BLANKER 5-4
5.8. 40 CHANNEL RECEIVER 5-5

5. IF SECTION AND DETECTORS

This chapter describes some of the components of the observing system that determine the frequency band to which a receiver is tuned, and which bring the information in that band to the point where it is digitized. The Universal Local Oscillator (ULO) is a variable frequency synthesizer which can be computer controlled. The ULO is the basic frequency determining element in the system, since it generates the frequency signal which is mixed with the sky frequency signal to produce the intermediate frequency (IF) signal. The IF processor is a four channel device for mixing IF frequencies covering the wide range available from different receivers to the standard IF of 30 MHz used by the Model III autocorrelator plus a second output at 150 MHz .

The digitization of spectral line information is performed by the autocorrelator, which is the subject of Chapter 6. Continuum observations intended to calibrate line observations are also best performed using autocorrelator detectors. The process of digitizing the total power within the observed band for continuum observations is performed by square law detectors and analog to digital (A/D) converters. There are a number of parallel systems for accomplishing this. The "standard" continuum receiver consists of square law and synchronous detectors (among other things) whose output is fed into a network of A/D converters read directly by the DDP116 computer. The digital continuum receiver (DCR) is built around a powerful HP calculator which can digitize the output of internal or external square law detectors and then process those numbers to obtain a sophisticated variety of output data which is passed directly to the DDP116 computer. The variable bandwidth receiver contains a variety of bandpass filters in each of four channels, which allows the observed bandwidth to be changed easily. The square law detectors in this receiver have a very short rise time which allows fast sampling for pulsar observations. The 40 channel receiver is a filter bank of 1 MHz filters (measured at the 1 db points) separated in frequency by 1 MHz . This receiver has been used in a pulsar search.

The items discussed in this chapter are parts of the setup routinely handled by the engineer in charge of installation. Many observers have made successful observations without giving a moment's thought to the IF processor or square law detectors. This is not an advertisement to skip ahead to the next chapter -- quite the opposite, it is a warning that the documentation on a number of these items is rather thin, since most observers use them in standard modes. The documentation for the variable bandwidth receiver, in particular, seems to exist only as an oral tradition passed among pulsar observers. On the other hand, the digital continuum receiver is documented in a manual of its own, so that all of the items in this chapter consist of very brief descriptions.

5.1. UNIVERSAL LOCAL OSCILLATOR

The Universal Local Oscillator is a variable frequency synthesizer which generates the frequency used to mix from the sky frequency down to the intermediate frequency. Except for receivers for 300 MHz and below, the IF, rather than the sky frequency, is sent down from the front end
to the control room. The ULO is therefore the primary frequency determining element in the system. The ULO can be commanded by computer to set three frequencies, F_{0}, F_{1}, and F_{2}. The ULO usually stays on F_{0}, for total power or continuum observations, or, for frequency switched observations, switches in the pattern $F_{0}, F_{1}, F_{0}, F_{2}$, commanded by a signal/reference pulse from the autocorrelator. The ULO can also be used in a manual mode, where all three frequencies and the choice of which is used can be set from the front panel.

The primary frequency generated in the ULO, F_{0} in hardware or L1 in software, is in the range $250-500 \mathrm{MHz}$. A frequency quadrupler is incorporated into the ULO so that the output frequency is in the range $1.0-1.99999 \mathrm{GHz}$. The frequency multiplier M that must be specified in the setup cards for the spectral line programs (Chapter 9) is therefore usually 4 , except that there is a secondary output for which the multiplier is one.

An integral part of the ULO is a frequency counter, which monitors the primary frequency. These measured frequencies are passed back to the DDP116 computer for comparison with the commanded frequencies and the previous measurement. If the computer detects a discrepancy beyond a certain tolerance, an error message will be printed on the DDP116 teletype. The tolerance of these checks is $\pm 100 \mathrm{~Hz}$. An error does not halt the data taking. The ULO error messages and their meanings can be found in Table 9-5. If observations are made with the ULO in the manual mode, then the measured frequency passed back to the DDP116 is saved in the tape header with the data. The accuracy of this frequency measurement is also $\pm 100 \mathrm{~Hz}$.

5.2. IF PROCESSOR

The IF processor is a four channel mixer for converting an IF signal with a bandpass centered on frequencies in the range $50-500 \mathrm{MHz}$ to a center frequency of 30 MHz , which is required by the autocorrelator. The IF center frequency is entered manually on the front panel. Each of the four IF channels, identified as A-D, can be set independently to a different frequency. If only two IF signals are present, processors \mathbb{A} and \underline{C} must be set. The maximum bandwidth of the output of the IF processor is 20 MHz , more than enough for the widest bandwidth available in the autocorrelator.

As with the ULO, the IF processor has a built-in frequency counter. The output of this counter should be the IF center frequency dialed in on the front panel. The counter switches between the four IF processors, returning four frequencies to the DDP116 computer. The computer makes a comparison between the measured IF frequency and that specified by the observer. A discrepancy results in a ULO error (Table 9-5). Actually, only IF channels A and C are checked by the computer. The accuracy of these checks is $\pm 300 \mathrm{~Hz}$.

For continuum observations, secondary outputs from the IF processor are available with wider bandwidths and a center frequency of 150 MHz . These secondary outputs have been used, for example, as input to the
filter bank. In this connection it should be noted that four separate frequency synthesizers are used for the four channels, and so there is no phase coherence between the four output signals. Therefore it cannot be used with the IF polarimeter unless internal cabling is rearranged so that one frequency synthesizer drives both IF channels.

5.3. STANDARD CONTINUUM RECEIVER

The standard continuum receiver consists of amplifiers and square law detectors which operate at input frequencies of $5-300 \mathrm{MHz}$. The word "standard" should be taken simply to mean "analog", to distinguish it from the digital continuum receiver, just as those time pieces once thought of as standard must now be called "analog" watches. It is quite likely that the newer and more powerful digital continuum receiver will become the standard continuum receiver.

The analog outputs of the square law detectors, proportional to the total power , and/or analog outputs of synchronous detectors, proportional to the switched power in the observed bands, are fed into a multiplexed system of A/D converters which are sampled by the DDP116 computer. All the computer needs to know is the identifying number of the first A/D converter to sample, and the total number of data channels present. The computer assumes that the other data channels are on those A/D's which immediately follow that of the first channel. For example, if four receivers are in use with the first going to A/D number 8, then the other receivers are assumed to be on A / D^{\prime} s 9,10 , and 11. All other aspects of the setup of this receiver are quite well standardized, and are set by the installing engineer.

The gain of the receiver is set according to the full scale temperature, which is that antenna temperature which will saturate the receiver. Adjustment of the full scale temperature during the course of an observing program to allow observations of very strong continuum sources is a routine procedure for the telescope operators, if a new full scale temperature is suggested by the observer.

5.4. DIGITAL CONTINUUM RECEIVER

The digital continuum receiver (DCR) is a receiver built around a powerful Hewlett-Packard calculator. The DCR is described in a separate manual [57], and so only a general description will be given here. This system is a post-detection synchronous demodulator which can operate at switch rates of up to 500 Hz and can provide a variety of switching combinations, such as load or beam switching with or without calibration and noise adding radiometry. This receiver continuously computes the system temperature, receiver gain, and rms output noise. Any of these functions can be transmitted to the DDP116 computer along with, or instead of, the detected signal. The receiver contains amplifiers and square law detectors designed to operate at an input frequencies of $5-500 \mathrm{MHz}$, with provisions for total power inputs from external square law detectors. In either case, total power voltages are fed to voltage
controlled oscillators (VCO's) followed by counters, to perform the analog to digital conversion. The calculator reads the counters, and applies an internally determined calibration factor, so that calibrated data in digital form are transmitted to the DDP116 computer.

There are many observing parameters which need to be set in the receiver's calculator. The calculator cannot read these parameters from the setup cards read into the DDP116 computer. One of these parameters is the full scale temperature to the computer, the antenna temperature at which data sent to the computer is saturated. As with the standard continuum receiver, adjustment of the full scale temperature to accommodate strong sources is an adjustment that can be made routinely by the telescope operator, if a new full scale temperature is suggested by the observer. It takes somewhat longer to adjust the full scale temperature on the DCR than it does on the standard receiver, about one minute.

5.5. VARIABLE BANDWIDTH RECEIVER

There are two primary distinctions between the variable bandwidth receiver and the standard analog receiver. These are (1) that it is easier to change bandwidths among those that are available, and (2) that the square law detectors have a very short rise time for fast sampling. This second feature makes this receiver the standard pulsar receiver. Bandwidths can be switched at the front panel to bandwidths of 10 kHz to 10 MHz in a 1,3 , 10 progression. Sample times down to 1 millisecond have been used in pulsar observations.

5.6. FABRI-TEK SIGNAL AVERAGER

The Fabri-Tek signal averager is a digital detector for periodic signals, primarily used for pulsar observations. The signal averager can be configured to sample 1, 2 or 4 input signals. The incoming signal is digitized at a rate which can be specified to a high precision, and successive samples are routed sequentially to the accumulator channels. After the last accumulator, the next sample goes back to the first accumulator for another sweep across the channels. The number of sweeps can be specified as a power of 2 , up to 32 K , or 32768 . The current integration can be viewed on a storage oscilloscope incorporated into the averager. At the end of an integration data taking stops so that the data can be read out to the computer. Data taking resumes after the data have been read out, without regard to the phase of the previous integration. This means that each integration begins at a different phase of a pulsar pulse, for example. The analog to digital conversion has a precision of 9 bits, and the accumulated data are read out as 16 bits.

5.7. IMPULSIVE NOISE BLANKER

A special purpose device available for continuum observations is an impulsive noise blanker. This is a device designed to remove automobile ignition, aircraft, and similar impulsive interfering signals from
continuum observations, and has been found to be quite effective for this purpose [58].

5.8. 40 CHANNEL RECEIVER

The 40 channel receiver is a bank of 40 filters. Each filter has a 1 MHz bandwidth between 1 db points, and the filters are separated in frequency by 1 MHz . There is a separate square law detector for each filter. This receiver has been used for a pulsar search by combining various filter outputs to reduce the total number of outputs to eight. These outputs are then fed into the multiplexed A/D converters which are sampled by the DDP116 computer. Aside from the pulsar search group's own programs there is no software support for data obtained with this receiver. This filter bank was at one time used as a spectral line receiver, but support for that function was discontinued long ago.

TABLE OF CONTENTS

Page
6. AUTOCORRELATOR 6-1
6.1. SYSTEM DESCRIPTION 6-1
6.2. CONFIGURATIONS, BANDWIDTH, AND RESOLUTION 6-2
6.3. IF FILTER SYSTEM 6-3
6.4. DIGITAL UNIT 6-3
6.5. COMPUTER PROCESSING 6-4

6. AUTOCORRELATOR

This discussion of the Model III correlation receiver is taken primarily from Electronics Division Internal Report No. 125, Correlation Receiver Model III: Operational Description, by A.M. Shalloway, R. Mauzy, and J. Greenhalgh, with an addendum by B. Vance [31].

6.1. SYSTEM DESCRIPTION

The receiving system described here is the equivalent of a multichannel spectrum analyzer, and measures the power spectrum over a selected bandwidth and center frequency. It does this indirectly by first producing a one-bit autocorrelation function of the selected signal. The autocorrelation function is Fourier transformed by the on-line DDP116 computer to produce the power spectrum. The theory of digital autocorrelation receivers and a description of an early receiver are available in the literature [7].

The correlation receiver contains an IF-Filter System, an analog to digital (A/D) system, and a digital correlation system. The IF-filter system filters out a selected bandpass and heterodynes it to the video frequency range, i.e. so that one side of the bandpass is at zero frequency. This signal is clipped to provide a rectangular waveform of fixed amplitude. The only correspondence between the clipped and unclipped signal is their zero crossing points.

The clipped signal is then fed into the digital system where it is sampled at a frequency equal to twice the bandwidth. The output of the sampler is called a "one-bit" sample. It indicates only whether the signal is positive or negative. The digital system is a high speed special purpose computer which uses the sampled data to produce 384 point, 192 point, or 96 point one-bit autocorrelation and crosscorrelation functions.

The correlation function is the result of an integration for a selected period of time (normally 10 seconds), as chosen by the observer. The integrated function is stored in a core memory until called for by the on-line DDP116 computer, and then the correlator starts another integration process for the next period of time.

In the process of clipping, amplitude information is 10st. To recover the amplitude information, the unclipped bandpass signal is square-law detected, smoothed, and converted to a train of pulses by a voltage to frequency converter. Counters connected to the frequency converter outputs produce a count which is proportional to the total power in the received signal. These data are also sent to the on-line computer.

The on-1ine computer applies a clipping correction and performs an inverse Fourier transform to generate a power spectrum. The computer data are available as an on-line graph by means of a storage oscilloscope and as an output to magnetic tape and the on-line analysis computer (MODCOMP).

The operation of this system as a radio astronomy receiver can be similar to that of a continum Dicke switched receiver. The receiver is continually switched between the signal to be observed and a reference signal. In the case of the correlation receiver, the two sets of data obtained are handled separately until it reaches the computer, at which point the reference may be added to or subtracted from the signal.

6.2. CONFIGURATIONS, BANDWIDTH, AND RESOLUTION

The autocorrelator has a total of 384 channels. These channels may be allocated to up to four receivers in four modes: (1) one receiver of 384 channels, (2) two receivers of 192 channels each, (3) two receivers of 96 channels each and one receiver with 192 channels, and (4) four receivers of 96 channels each. There are nine bandwidths available, ranging from 39.0625 kHz to 10 MHz in octave steps. The bandwidth of each receiver may be set independently.

The output spectrum produced by the on-1ine computer consists of computed points spaced df apart over a total bandwidth B. Each point represents the power within a filter having approximately a sin x / x shape with a half-power width $W=1.21 \mathrm{df}$, and a spacing between nulls of $2 d f$. The relation between bandwidth, resolution, spacing and rms noise fluctuation, ΔT, is

$$
\begin{array}{ll}
\mathrm{df}=\mathrm{B} / \mathrm{N} & \mathrm{~W}=1.21 \mathrm{~B} / \mathrm{N} \\
\Delta \mathrm{~T}=\frac{3.06 \mathrm{~T}}{\sqrt{\tau \mathrm{df}}} & \tag{6-2}
\end{array}
$$

where N is the number of channels (i.e., 384,192 , or 96), T is the system noise temperature, and τ is the integration time. Hanning smoothing the resulting spectrum results in a half-power width of $2 d f$.

Equation 6-2 assumes that half of the observing time is spent on the signal spectrum and half is spent on the reference spectrum. This is the usual mode of observing since the $50 / 50$ duty cycle gives the best sensitivity in the final spectrum. However, the correlator can run in a mode with a $90 / 10$ duty cycle to improve the sensitivity in the signal spectrum -- the numerical constant in equation 6-2 is reduced to 1.63 -but this advantage is lost unless at least nine reference spectra can be averaged together to obtain a comparable sensitivity. This is sometimes done in mapping programs. Current GaAsFET receivers are sufficiently stable for this scheme to work. The $90 / 10$ duty cycle can only be used in switched power programs, but then the reference spectra cannot be obtained separately on the on-line analysis computer. Only the switched spectrum for each scan is available on-line, so the data must be reduced off-line. In the total power mode, signal and reference data (within the same scan) are simply added together to yield a single spectrum, so the $50 / 50$ duty cycle must be used to give the proper weight to each portion of the data.

At the edges of a measured spectrum the rms fluctuation increases due to the attenuation at the edges of the band restriction filter in the correlator IF section. At the 6 db attenuation point the rms fluctuation doubles and data points beyond the 6 db level should be ignored. Approximately 7% of the spectrum should be dropped at each end, i.e. 25 channels out of 384,12 channels out of 192 , and 6 channels out of 96 at each end.

6.3. IF FILTER SYSTEM

The IF filter system may receive from one to four IF signals from the front-end box, provide filtering to establish the desired bandwidth, convert them to a lower frequency and clip the signals in preparation for digital processing. Other functions such as level control, gain modulation, total power detection, synchronous detection and voltage-to-frequency conversion are also included.

In each receiver, the input signal is filtered at 30 MHz and then converted to a lower frequency for the output of the next filter. The reason for the successive lowering of the frequency is to permit the final bandwidth determining filter to operate at the center frequency where its design will produce maximum cut-off slope. The filters are designed to have a sharp cutoff at the high end to minimize the aliasing of strong lines just beyond the band edge into the band. Each conversion causes the observed band of frequencies to be inverted, i.e., the internal mixers use the lower sideband. Low gain amplifiers are used between mixers and filters to correct for filter insertion losses, power loss due to bandwidth reduction and to provide an accurate source and load impedance for the filters. Diode switches are used for selecting filters and other signal paths because of their small size and low power drain.

The main signal output is a spectrum located between zero and a frequency equal to the bandwidth selected. This signal is fed to a clipper and then to the digital section for sampling and correlating. A parallel signal path through a square law detector and voltage-to-frequency converter provides an output frequency proportional to total power for counting and calibration in the digital system. The digital system furnishes switching signals to the filter system to operate the gain modulators, synchronous detectors, and test signals to the clippers.

6.4. DIGITAL UNIT

The clipper output, which is a rectangular waveform containing the frequency information of the original received signal, is sampled at a rate equal to twice the filter bandwidth (the Nyquist frequency). The sampled data are continuously stored at the end of a shift register of the appropriate length for each receiver. Each shift register feeds a one bit multiplier. The other input to the multiplier is the most recent data sample. A counter for each multiplier counts the number of correlations (both inputs positive or both inputs negative). Signal and
reference counts are integrated separately. The core memory contains the following data: signal correlation function, reference correlation function, power counters, and control words. At the end of a "dump time", typically 10 seconds, an interrupt is sent to the computer and the computer can begin transferring the data.

At the beginning of a scan the correlator is synchronized to the computer by a pulse from the computer. Due to timing restrictions with interrupts from the on-line computer and data taking modes, some precautions are necessary when setting up an observing program. The two precautions that observers should be aware of are: allow at least one dump time between the end of one scan and the start of the next, and make the scan length be one second longer than a multiple of the integration period to insure that the data from the last integration are recorded on tape. A rule of thumb would be to allow at least 17 seconds between the end of one scan and the start of the next, and to keep successive start times from being on the same second modulo the integration time. This rule of thumb is repeated with emphasis in Section 8.2.3, where the procedure for preparing an observing card deck is given.

6.5. COMPUTER PROCESSING

There are two levels of computer processing to be discussed. The first is that of recovering properly scaled spectra from the normalized autocorrelation functions, and the second is that of the differencing schemes used to improve baselines.

The data received by the on-1ine DDP 116 computer is processed in four major steps: (1) the one-bit autocorrelation function is normalized so that the value of the zero delay channel is one, and long delay channels tend to zero, (2) a correction for clipping (the van Vleck correction) is applied to each channel, (3) the corrected values are Fourier transformed, and (4) the spectrum is flipped end-for-end, if necessary, to correct for band reversals in the IF section. Data for each receiver are handled separately. The Fourier transform used has the property that the center of the band is in channel $\mathrm{N} / 2+1$, where N is the number of channels for that receiver.

The spectra are converted to temperature units by multiplying by the system temperature. The appropriate system temperature is the sum of receiver noise temperature, antenna signal temperature, and $\frac{1}{2}$ the calibration noise source temperature, all averaged over the receiver bandwidth. This quantity can be computed by comparing the total power counters with the calibration noise source on and off, and knowing the calibration noise source in temperature units:

$$
\begin{equation*}
T_{\text {sys }}=\frac{P_{\text {on }}+P_{\text {off }}}{2\left(P_{\text {on }}-P_{\text {off }}\right)} T_{\text {NS }} \tag{6-3}
\end{equation*}
$$

where $T_{N S}$ is the calibration noise source excess temperature.

A differencing technique is usually used to improve spectral baselines. Each receiver generally has two sets of arbitrarily scaled numbers: a signal spectrum S_{i}, and a reference spectrum R_{i}. The basic difference between spectral line observing techniques is how R_{i} is obtained. In the total power mode, the reference spectrum is obtained in a different region of the sky as a separate scan. If possible, the telescope should track the same path in the hour angle-declination plane. In the frequency switched mode, the reference spectrum is taken in a different part of the receiver bandpass. The computer driven L.0. is used to switch back and forth between signal and reference bands at a rate of 1 Hz , typically, during a single scan. In either case, the calibrated difference spectrum is obtained from

$$
\begin{equation*}
T_{i}=\frac{S_{i}-R_{i}}{R_{i}} T_{\text {sys }} \tag{6-4}
\end{equation*}
$$

Equation 6-4 provides a first order correction for the large scale instrumental profile. The assumptions which go into this calibration procedure are that the system temperature is uniform across the signal and reference passbands and that the signal to reference gain ratio in each channel is the same for all channels. Usually these assumptions are good to first order, but if a strong line is in the signal, or particularly the reference, or if widely separated parts of the frontend bandpass are used for frequency switching, or if the on source position contains a strong continuum source in total power, these assumptions may break down. A simple baseline subtraction will not necessarily compensate for differential gain across the passband.

In the total power mode, signal and reference spectra are obtained in separate scans, and the data passed to the on-1ine analysis computer are S_{i} and R_{i} in temperature units. The calculation in equation 6-4 must then be invoked by the observer in the on-line analysis computer. In the frequency switched mode of observing, however, the calculation of $T_{\text {i }}$ is performed in the on-line DDP116 computer, and the signal and reference spectra are not available for separate processing.

TABLE OF CONTENTS

Page

7. INTERFERENCE 7-1
7.1. INTERFERENCE INTERNAL TO THE RADIOMETER 7-1
7.2. INTERFERENCE FROM ELECTRONIC EQUIPMENT ON GREEN BANK SITE 7-2
7.3. AUTHORIZED TRANSMITTERS 7-2
7.4. UNINTENTIONAL SOURCES, NATURAL AND MAN-MADE . . . 7-3

TABLE OF TABLES
Page
7-1 Interference Potential of Equipment at Green Bank 7-4
7-2 Frequency Bands with Strong Interference 7-5
7-3 International Radio Astronomy Allocations in the United
States (WARC-79) 7-7

7. INTERFERENCE

Man-made and natural wideband interference such as ignition, power line and computer noise, oscillating TV boosters, relay arcing, and local thunder storms can be a severe problem when observing below 1 GHz . Although most of this noise has a very steep spectrum, it is sometimes strong enough to affect continuum observations at 21 cm . Since new man-made noise sources occur continually, an observer intending to make measurements below 1 GHz which would be affected by wideband noise should notify the Interference Office, Electronics Division, at least 2 weeks in advance so that steps can be taken to identify and alleviate the worst problems. Because the radiometers on the telescope are much higher above ground and more sensitive than those available in the mobile interference truck and at the lab, many of the problems will not show up until the receiver is installed on the telescope. If a problem is then encountered, the observer should seriously consider contributing some observing time, if necessary, to help find the source of interference. The Observatory personnel are on hand to help in any way possible, but they need as much information as the observer can provide.

Narrow-band interference is much more of a problem at lower frequencies, but errant radar signals or mixing products of lower frequency signals can occur at higher frequencies. Between 500 and 1000 MHz , band widths of 10 MHz or so can be used as long as one is careful to choose a clear frequency. Below 500 MHz band widths of 1 or occasionally 3 MHz are the maximum usable in most cases without encountering frequent bursts of aircraft transmissions. If one is confined to operating at a specific frequency, chances are high that a significant interfering signal will be within a few MHz of this frequency.

In general, interference originates in four categories of sources:

1. Internal to the radiometer in use, e.g., birdies, instabilities, etc.
2. Other radiometers and electronic equipment on the Green Bank site.
3. Government and nongovernment authorized transmitters within and outside the National Radio Quiet Zone (NRQZ).
4. Unintentional sources, natural and man-made.

7.1. INTERFERENCE INTERNAL TO THE RADIOMETER

Occasionally internal "birdies" or receiver instabilities appear to be external interference (or vice versa). Many types of interference are obviously external. Examples are: (1) Intermittent spectral spikes visible in the IF spectrum analyzer; (2) radar pulses or power line corona or ignition pulses or lightning crashes visible on the total power vs. time oscilloscope and/or audible on the audio monitor. If in doubt, ask the receiver engineer to check.

7.2. INTERFERENCE FROM ELECTRONIC EQUIPMENT ON GREEN BANK SITE

Most of our radiometers are potential sources of narrow-band interference. The most likely sources of interference are from highlevel signals leaking from telescope coaxial cables. Examples are the Universal Local Oscillator (ULO) in the 1 to 2 GHz range and several upconverter pumps. The interferometer transmits to and from the 45 foot on several frequencies near 1300 MHz and at 14.5 GHz . Also, harmonics of the 70 MHz clock in the interferometer digital delay are observed up to nearly 2 GHz .

Table 7-1 lists, by frequency, potential interference of electronic equipment. This list is updated periodically. If in doubt, check with the Interference Office. Spectral line observers should check this list before observing. Note that only a few of these signals will exist at any one time and most have never been seen as interference.

7.3. AUTHORIZED TRANSMITTERS

Transmitters are authorized in the U.S. throughout the radio frequency spectrum except for the very few primary-exclusive and prima-ry-passive radio astronomy bands. All U.S. Government transmitters are authorized by the FCC.

Only applications for new and modified fixed permanent transmitters within the NRQZ are reviewed by NRAO and kept at or below the criteria for allowable power density at Green Bank. A NRQZ Fact Sheet which lists the criteria is available from the Interference Office. The NRQZ procedures do not apply to temporary, mobile, airborne, balloon or satellite transmitters. Therefore, most interfering transmitters are beyond control by the NRQZ. Many interfering fixed transmitters on frequencies below 400 MHz are located outside the NRQZ. Some interfering transmitters inside the NRQZ are "grandfathered" in, such as those in the $73.0-74.6 \mathrm{MHz}$ exclusive radio astronomy band. Spectral line observations will detect signals far below the NRAO/NRQZ criteria for frequencies outside the radio astronomy bands.

The primary benefit of the NRQZ is that it controls the signal levels from fixed transmitters inside the zone to prevent radiometer overload at frequencies below 470 MHz , to minimize potential interference at frequencies above 470 MHz , to further minimize interference in the radio astronomy bands, and thus reduce the interference level from what it would be without the NRQZ.

The Interference Office, room 107 in the Jansky Lab, keeps TNIA lists of all known U.S. Government and non-government fixed transmitters located inside the NRQZ. The lists are updated once a year. The old Green Bank "Quik Look" 1ist is discontinued.

Since 1971, several interference surveys have been made. Those older than 2 or 3 years are obsolete. In 1981 surveys of rather low sensitivity were made in the $70-75 \mathrm{MHz}$ and $1000-2000 \mathrm{MHz}$ ranges. Contact the Interference Office for copies of those and more recent
surveys. Table 7-2 summarizes the major interference-loaded bands in the 70 to 2000 MHz range.

Table 7-3 1ists the WARC-79 Radio Astronomy Allocations for the U.S. up to 26 GHz . The WARC-79 allocations became effective in January 1982 but will not be implemented in the U.S. until later. Extra footnotes in Table 7-3 indicate the bands which have detectable signals. Table 7-3 is adapted from V. Pankonin, "Protecting Radio Windows for Astronomy", Sky and Telescope, April 1981.
7.4. UNINTENTIONAL SOURCES, NATURAL AND MAN-MADE

A troublesome type of interference is unintended radiation from various sources, especially at frequencies below 1 GHz . Obviously, NRAO has no control over natural sources such as lightning, sun, atmosphere and ionosphere. But we do have a degree of control over local man-made sources such as ignition, welding, power-line arcing, oscillating TV boosters, arcing switches and relays, computers, various on site electronic equipment, etc. For example, the interferometer links and digital delay system can be shut down by advance telescope scheduling.

The Green Bank staff person responsible for Local Interference Control tries to locate and eliminate potential interference from power lines and oscillating TV boosters, etc. An observer or telescope operator suspecting interference from local sources should immediately contact the Local Interference Control staff person via the Interference Office, Green Bank extension 107.

						status	POTENTIAL SOURCE	LOCA	IION		
FREQ	MHZ	starus	POTENIIAL SOURCE	LOCATION	$\begin{aligned} & 1350 \\ & 1350-1650 \end{aligned}$		- 3 - 1 GHZ RX, UC PUMP COCLED FET 21 CM RX LO	140°	OR	$300{ }^{\circ}$	
43		+	VHF FM CCPMUNICATIONS TX	REBER	$1350-1650$ 1400	$\stackrel{*}{\text { p }}$	COCLED FET 21 CM RX LU $* 20$ HARMONIC DIG DELAY CLOCK	140 INT	OR	$300 \cdot$	
50		P	CASS RX, 6/25 CM RX	140°	1400		. 3 - 1 GHZ RX, UC PUMP	140			
70		p	digital-delay clock	INT	1400	P	hYtrecen maser	140			
100		P	CASSEGRAIN RX	140°	1427-1443	*	9 CM RX, LINE LO	140			
100		P	HYORCGEN MASER	140°	1435		9 CM RX, CONTINUUM LO	140		300.	
100		*	VLB MRK II, VLB LC	140° OR 300'	145c-1650	*	21 CM 4 -FEED RX VARIABLE LO	300			
100-1	160	$\mathrm{P}^{\text {\% }}$	IF PROCESSOR LO	$300{ }^{\circ}$	1470	p	\%21 HARMONIC DIG DELAY CLOCK	INT			
$100-5$	500	P\%	AUTOCORRELATOR MRK IV lo	140°	1540	p	*22 Harmonic dig delar clock	INT			
100-5	500	*	VLB MRK III	140° OR 300'	1560-1720	*	$2-4 \mathrm{CHz} \mathrm{RX} \mathrm{LC}$	140			
100 -	90000	*	ANTENNA PATIERN RANGE	LAB	1610	P	2 23 HARMONIC DIG DELAY CLOCK	INT		300	
103		P	IF PRCCESSOR	300 *	1633-1733	*	.3-1 GH2 RX LC	140°			
115		F	IF PROCESSOR	$300{ }^{\circ}$	1650-1950		2 - 4 GHz RX 10	140°		$300{ }^{\circ}$	
120		P	AUTCCORRELATOR MRK III	$300{ }^{\circ}$	1680	p	* 24 HaRMCNIC DIG delay clock	INT			
122.8		*	AIR-STRIP INTERCCN TX	JANSKY LAB	1750	P	: 25 Harmonic dig delay clock	INT			
140		p	*2 HARMONIC DIG DELAY CLOCK	INT	1802-1818	*	9 CM RX, LINE LO	140°		$300 \cdot$	
200		P	CASSEGRAIN RX LC	140°	1810		9 CM RX. CONTINUUM LO	140		300.	
200-3	3 CO	p	CCMPUUERS (EROAD BAND)	140', 300'. INT	1820		*26 HARMCAIC DIG delay clock	INT			
210		P	*3 HARMONIC DIE DELAY CLOCK	INT	1890		*27 FARMCNIC DIG delay clock	INT			
$250-$	500	P^{*}	ULO SYNTHESIZER	140\%. 300% LAB	1980		*28 HARMCNIC DIG CELAY CLOCK	INT			
280		P	* 4 HARMONIC DIG DELAY CLOCK	INT	2100-2400		2 - 4 GHZ RX LC	140°		$300{ }^{\circ}$	
350		p	\#5 HARMONIC DIG DELAY CLOCK	INT	2600-3100		$2-4 \mathrm{GHZ}$ RX 20	140		300	
420		P	\% 6 HARPONIC DIG DELAY CLOCK	INT	2695		INTERFEROMETER LO			-2, -3	
490		p	* 7 HARMONIC DIG DELAY CLOCK	INT	2695		11 CM 3-FEED RX LO	300			
550			-3-1 GHz RX LC	140° OR 300*	2854-2886		9 CM RX, LINE LO	140°	OR	$300{ }^{\circ}$	
560		p	\%8 HARMONIC DIG DELAY CLOCK	INT	2870 3300		9 CM RX, CONTINUUM LO	140°		$300 \cdot$	
630		P	*9 HARMONIC OIG DELAY CLOCK	INT	3300-3800		6/25 CM RX LO	140°	OR	$300 \cdot$	
700		P	* 10 HARMONIC DIG DELAY CLOCK	INT	3300-3900		2-4 GHX RX LO	140°		$300{ }^{\circ}$	
770		p	\% 11 HARMOAIC DIG CELAY CLOCK	INT	3604-3636		9 CM RX, LINE LO	140°	OR	$300 \cdot$	
840 910		P	* 12 HaRMONIC DIG DELAY CLOCK	INT	3620		9 CM RX, CONTINUUM LO	140°	OR	$300 \cdot$	1
980		p	* 13 HaRMONIC DIG DELAY CLOCK	INT	539 C		INTERFEROMETER PUMP	85°	-1.	-2, -3	-
$1000-$	1600	$\mathrm{P}_{\text {¢ }}$	Il4 HARMONIC DIG DELAY CLOCK	INT.	5390		11 CM 3-FEED RX PUMP	300°			
1000 -	1850	*	IF PROCESSOR LG $6 / 25$ CM RX LO	140° OR 300.	8085		INTERFERCMETER LO	85°	-1.	-2, -3	
1000 -	2150	*	1 -2 GHZ RX LO	140° OR 300,	9000	P	CASSEGRAIA RX LO	140°			
1000 -	2000	P_{*}	LLO 2 GHz RXLO	140°, 300°. LAB	10000-10340		2 - 4 GHZ RX PUMP	140°	OR	$300{ }^{\circ}$	
1030		p	If PROCESSOR	300. 300°. Lab	11320-11390		2 - 4 GHZ RX PUMP	140°	OR	$300{ }^{\circ}$	
1050		P	* 15 HARMONIC DIG delay clock	INT	14000		CASSEGRAIN RX LO	140°			
$1050-$	1200	$\hat{*}$	2-4 CHz RX 10	140° OR 300*	16170		CASSEGRAIN RX LO	140°			
1120		p	*16 Harmonic oig delay	INT	16900-17100	P	INTERFEROMETER PUMP	85°	-1.	-2, -3	
1150		p	IF PROCESSOR	$300{ }^{\circ}$	17400-17600	P	INT LINK TO/FRCM 45'*14.2M	INT,	PAS	Sive ref	
1190		p	* 17 Harmonic dig delay clock	INT	20000-22000	P	45' LINK	45',	PAS	SIVE REF	
1200 -	2000	*	COCLED FET 18 CM OH RX LO	140° OR 300 ${ }^{\circ}$	18000-26500		TOURIST RX LO	TOUR	CEN	TER	
1250		-	CAS a Calibration rx lo	CALIBRATION HORN	33000-50000		CASSEGRAIN RX LO	140°			
1250			-3-1 GHZ RX, UC PUMP	140° OR 300.			CASSEGRAIN RX MASER PUMP	140°			
1260		P	* 18 FARMCNIC DIG DELAY CLOCK	INT		$F=$	On SEMI-PERNANENTLY				
1278 -	1886	\%	CASSEGRAIA RX 20	140°							
1300		P	LINK TO 45*	INT TOWER		\% =	MCVES AROUND DURING CBSERVING				
$1300-$	1550	*	2-4 GHZ RX	140° OR 300*							
1317.5		p	INTERFEROMETER 10	85* - 1, -2, -3		- =	Intermittent usage				
1330		?	* 19 Harmonic dig delay Clock	INT							
1347.4		P	LINK FRCM ${ }^{\text {4 }}$	45°							
1347.5		?	INTERFERDMETER LO	85'-1, -2, -3							
1347.5			11 CM 3-FEED RX LO	$300{ }^{\circ}$							
1347.6		P	LINK TO 45*	INT TOWER	7-1						$\stackrel{\infty}{4}$

INTERFERENCE POTENTIAL OF EQUIPMENT AT GREEN BANK

TABLE 7-2

Frequency Bands with Strong Interference

70	- 108	MHz	Communications, TV broadcast, FM broadcast.
108	118	MHz	Aircraft navigation beacons.
118	136	MHz	FAA aircraft communications.
136	- 138	MHz	Satellite down-link.
138	174	MHz	```Communications (fixed, mobile, amateur, satellite).```
174	- 216	MHz	TV broadcast.
216	225	MHz	Communications (fixed, mobile, amateur).
225	400	MHz	Communications (fixed, mobile, aircraft).
400	- 406	MHz	Satellite down-1ink, radiosonde balloon (403.0 MHz).
410	- 420	MHz	Communications (fixed, mobile).
420	- 450	MHz	Radar, amateur, satellite.
450	- 470	MHz	Satellite, mobile communications.
470	- 512	MHz	TV broadcast, mobile communications.
512	- 960	MHz	Weak signals: TV broadcast, mobile communications.
960	- 1150	MHz	VORTAC navigation.
1245	- 1300	MHz	FAA radar; link to 45 -foot at 1300 MHz .
1255.76	\& 1292.01 ± 3.5	MHz	FAA radar, Washington Center.
1347.4	- 1347.6	MHz	Interferometer 45-foot link.
1400.0		MHz	Interferometer Digital Delay harmonic.
1427	- 1470	MHz	Satellite, communications (fixed, mobile).
1559	- 1636	MHz	Radar
1636.5	- 1660	MHz	Satellite
1660	- 1700	MHz	Balloon radiosonde, satellite.
1677	- 1683	MHz	NOAA radiosondes, twice daily.
1700	- 1710	MHz	Satellite

TABLE 7-2 (Cont.)

Frequency Bands with Intermittent Interference				
406	-	410		Radio astronomy; weak signals from communications (fixed, mobile).
902	-	928		Motion detecting intrusion alarms.
2400	-	2500	MHz	Microwave ovens, intrusion alarms.
2800.0			MHz	NOAA Weather Radar at Charleston, WV.
2890.0			MHz	NOAA Weather Radar at Bolens, VA.
2980.0			MHz	NOAA Weather Radar at Pittsburgh, PA.
4800	-	5000	MHz	Second harmonic of microwave ovens.
5785	-	5815		Motion detecting intrusion alarms (46 mW ERP).
5925	-	6425	MHz	Point-to-point microwave (telephone) and satellite uplink.
7200	-	7500		Third harmonic of microwave ovens.
10500		10550		Intrusion alarms and police radar (1.2 W ERP).
24075	-	24175		Intrusion alarms and police radar (1.2 W ERP).

TABLE 7-3
INTERNATIONAL RADIO ASTRONOMY ALLOCATIONS IN THE UNITED STATES
(WARC-79)

Frequency				Footnote	Use
13360	- 13		kHz	Primary shared with active [2]	Cont.
25550	- 25		kHz	Primary exclusive (special)	Cont.
37.5	-	38.25	MHz	Secondary [2]	Cont.
73	-	74.6	MHz	Primary exclusive *	Cont.
322	-	328.6	MHz	Primary shared with active [2] \dagger	Cont. and D
406.1	-	410	MHz	Primary shared with active [2]	Cont.
608	-	614	MHz	Primary (active secondary)	Cont.
1330	-	1400	MHz	Notification of Use [2]	
1400	-	1427	MHz	Primary -- passive band [1]	H
1610.6	-	1613.8	MHz	Secondary [2] +	OH
1660	-	1660.5	MHz	Primary shared with active [2]+	OH
1660.5	-	1668.4	MHz	Primary (active secondary) [2]+	OH
1668.4	-	1670	MHz	Primary shared with active [2]+	OH
1718.8	-	1722.2	MHz	Secondary [2]	OH
2655	-	2690	MHz	Secondary [2]	Cont.
2690	-	2700	MHz	Primary -- passive band [1]	Cont.
3260	-	3267	MHz)		
3332	-	3339	MHz	Notification of Use [2]	CH
3345.8	-	3352.5	MHz		
4800	-	4990	MHz	Secondary [2]	Cont. and $\mathrm{H}_{2} \mathrm{CO}$
4990	-	5000	MHz	Primary shared with active [2]	Cont.
10.6	-	10.68	GHz	Primary shared with active [2]	Cont.
10.68	-	10.7	GHz	Primary -- passive band [1]	Cont.
14.47	-	14.5	GHz	Secondary [2]	$\mathrm{H}_{2} \mathrm{CO}$
15.35	-	15.4	GHz	Primary -- passive band [1]	Cont.
22.01	-	22.21	GHz	Notification of Use [2]	$\mathrm{H}_{2} \mathrm{O}$
22.21	-	22.5	GHz	Primary shared with active [2]	$\mathrm{H}_{2} \mathrm{O}$
22.81	-	22.86	$\mathrm{GHz}^{\text {a }}$;	Notification of Use [2]	
23.07 23.6	-	23.12	GHz GHz	Primary -- passive band [1]	Cont. and NH_{3}

Footnote Types: [1] All emissions in the band between the frequencies listed are prohibited.
[2] In making assignments to stations, administrations are urged to take all practicable steps to protect radio astronomy from interference. Emissions from space of airborne stations can be particularly serious sources of interference.
These are the common names of atomic and molecular species in the table:
Cont. = continuum; $\mathrm{D}=$ deuterium, $\mathrm{H}=$ hydrogen, $\mathrm{OH}=$ hydroxyl, $\mathrm{CH}=$ methylidyne, $\mathrm{H}_{2} \mathrm{CO}=$ formaldehyde, $\mathrm{H}_{2} \mathrm{O}=$ water, $\mathrm{NH}_{3}=$ ammonia, $\mathrm{H}^{+}=$ionized atmoic hydrogen, $\mathrm{SiO}=$ silicon monoxide, $\mathrm{CS}=$ carbon monosulfide, $\mathrm{HN}_{3}{ }^{+}=$unnamed, $\mathrm{CO}=$ carbon monoxide, $\mathrm{DCN}=$ deuterium cyanide, $\mathrm{NO}=$ nitric oxide, $\mathrm{C}_{2} \mathrm{H}=$ ethynyl radical, $\mathrm{HCN}=$ hydrogen cyanide, $\mathrm{HCO}^{+}=$"X-ogen."

All radio astronomy bands below 10 GHz have had occasional interference at Green Bank.

```
* "Grandfathered" signals at Green Bank.
+ Radar, satellite, and/or balloon radiosonde signals at Green Bank.
\dagger U.S. will not implement footnote \21.
```

TABLE OF CONTENTS
Page
8. POINTING UNDER COMPUTER CONTROL 8-1
8.1. ENTERING POINTING CORRECTIONS 8-1
8.1.1. RIGHT ASCENSION POINTING CURVE COEFFICIENTS: "A" CARD 8-2
8.1.2. DECLINATION POINTING CURVE COEFFICIENTS:
"D" CARD 8-2
8.1.3. LEVEL CURVE COEFFICIENTS: "L" CARD 8-3
8.1.4. BEAM DEFLECTION DATA: "T" CARD 8-3
8.1.5. PVALS: "P" CARD 8-4
8.1.6. TRAVELLING FEED RECEIVER OFFSETS:
"B" CARD 8-4
8.2. SEQUENCING AN OBSERVING PROGRAM: SOURCE CARDS 8-5
8.2.1. TRACKING MODES 8-5
8.2.2. SCANNING MODES 8-7
8.2.3. POINTING MODES UNDER COMPUTER CONTROL 8-9
8.2.4. COMPUTER PROGRAMS FOR PRODUCING SOURCE CARDS 8-12
TABLE OF FIGURES
Page
8-1 Sample H316 input card deck 8-15
8-2 Nominal right ascension pointing correction curve 8-16
8-3 Typical declination pointing correction curves 8-17
8-4 Typical level curve 8-20
8-5 Source card formats 8-21
TABLE OF TABLES
Page
8-1 Current Pointing Data 8-23
8-2 "A" Card Format, Right Ascension Pointing Curve Coefficients 8-24
8-3 "D" Card Format, Declination Pointing Curve Coefficients 8-25
8-4 "L" Card Format, Level Curve Coefficients 8-26
8-5 "T" Card Format, Beam Deflection Data 8-27
8-6 "P" Card Format, PVALS 8-28

8. POINTING UNDER COMPUTER CONTROL

There are two computers involved in pointing the telescope, and both need certain input information if they are to work properly. This chapter is therefore divided into two major sections, each devoted to the input of a single computer.

At the more basic level is the H 316 computer which performs the coordinate transformations. It needs to know the right ascension and declination pointing correction curves, the nominal level curve, the focal length of the telescope, and beam deflection factors for the Sterling mount and travelling feed (see Chapter 4). Cards containing nominal values for all of these items are already present at the telescope, except for those receiver/feed combinations that have never been pointed. Optional pointing corrections can be read into the H316 if the observer has made some pointing checks (see Chapter 4 for recommended procedures). The card formats for H316 instructions are described in section 8.1 .

The DDP116 computer operates more at a supervisory level, and the particular concern of section 8.2 is that of scheduling an observing program to take data while the telescope is on source; that is, preparing a deck of source cards. Without this there is no observing program. There are two basic ways to point the telescope during an observation: (1) to track a source, or (2) to scan across the source. Tracking is more closely associated with line observing while scanning is more closely associated with continuum observing, but this association is not absolute. Both pointing modes are available in a number of different coordinate frames. The various pointing modes that are available, and their associated source card formats are discussed in section 8.2, along with comments on scheduling, and computer programs available to assist in scheduling.

8.1. ENTERING POINTING CORRECTIONS

Chapter 4 consisted of a discussion of the origin of pointing errors and the methods of correcting these errors. Basically, position encoders mounted on the telescope are part of a feedback loop for keeping the telescope on position. The position encoder readings give the indicated coordinates of the telescope position. These are close to the true or apparent coordinates on the sky, but differ due to encoder offsets, axis misalignments, and deformations of the telescope structure due to gravity and differential heating by the sun. The apparent coordinates of a celestial source can be found in a straightforward way, but the pointing errors must be known to determine what indicated coordinates should be commanded. The difference between apparent and indicated coordinates is the pointing correction. Since the pointing corrections are small, right ascension and declination pointing corrections are treated separately. The pointing corrections are implemented as functional forms with coefficients that can be varied. The H316 computer, which performs the coordinate transformations, must read the coordinates of these functional forms from cards. This section
describes the content and format of those cards. A sample H316 input card deck is shown in Figure 8-1.

A typical H316 input card sequence consists of right ascension pointing curve coefficients (read from an " A " card), declination pointing curve coefficients (" D " card or cards), nominal level curve coefficients ("L" card), and focal length, beam deflection factors, critical angles, and additional beam deflection factors for the travelling feed and Sterling mount (" T " card). There are different sets of declination pointing curve coefficients for different receiver/feed combinations, so there can be a number of " D " cards, each carrying a two character identifying code. Instructions given to the DDP116 computer (on " S " cards, see Chapters 9 and 10), tell which set of declination coefficients the H316 is to use.

Chapter 4 also described pointing corrections called PVALS, and how to determine them. They are used to correct for small feed offsets, which may change when a receiver is re-installed. They may be read into the H316 on a "P" card. IF PVALS ARE NOT USED MAKE SURE THAT A "P" CARD WITH ZEROES IS IN THE H316 INPUT CARD DECK.

8.1.1. RIGHT ASCENSION POINTING CURVE COEFFICIENTS: "A" CARD

The right ascension pointing correction equation is

$$
\begin{equation*}
\Delta \alpha=m+n \tan (\delta)+c \sec (\delta) \tag{8-1}
\end{equation*}
$$

where δ is the indicated declination, and where $\Delta \alpha, m, n$, and c are in seconds of time. This is the offset equation for a transit circle whose axis is displaced from true east-west and from the horizontal. The current values of m, n, and c are listed in Table $8-1$, and are entered into the H 316 computer on an " A " card. The " A " card format is given in Table 8-2. A nominal right ascension pointing correction curve is plotted in Figure 8-2.

8.1.2. DECLINATION POINTING CURVE COEFFICIENTS: "D" CARD

The declination pointing correction equation is more complex than the right ascension pointing correction because the dish deformations are not easily modeled. The equation is

$$
\begin{equation*}
\Delta \delta=C_{0}+C_{1} \delta+C_{2} \delta^{2}+C_{3} \delta^{3}-\Delta L \tag{8-2}
\end{equation*}
$$

where $\Delta \delta$ is in arc seconds, C_{0}, C_{1}, C_{2}, and C_{3} are the pointing coefficients for a particular combination of receiver and feed, and ΔL is the level curve correction, described below. Particular sets of declination pointing coefficients are identified by a two character identifier. The most recently determined coefficients are given in Table 8-1. Ask the "Friend" about more recent updates to the pointing coefficients. The declination pointing coefficients are entered via a "D" card. The "D" card format is given in Table 8-3, along with a list of the identifiers recognized by the program. Identifiers listed in Table 8-3 but not in

Table 8-1 correspond to receivers that have not been pointed. Typical declination pointing correction curves are plotted in Figure 8-3.

8.1.3. LEVEL CURVE COEFFICIENTS: "L" CARD

An electronic level mounted on one of the telescope support towers measures the structural tilt in the north-south direction. Part of the tilt as a function of declination is due to the fact that the telescope is not perfectly balanced, and so there is an unavoidable bending of the structure. The level curve is this nominal relationship between the electronic level reading and the indicated declination. The declination pointing correction equation takes this effect into account. However, the telescope also tilts due to the uneven heating by sunlight and due to wind, and these effects are not accounted for in the nominal declination corrections. This extra tilt is the measured level reading minus the nominal level curve:

$$
\begin{equation*}
\Delta L=\bar{L}-\left(L_{0}+L_{1} \delta+L_{2} \delta^{2}+L_{3} \delta^{3}\right) \tag{8-3}
\end{equation*}
$$

where $\Delta \mathrm{L}$ is in arcseconds, δ is the indicated declination, \bar{L} is the ten second average level reading, and L_{0}, L_{1}, L_{2}, and L_{3} are the nominal level curve coefficients. The current vafues of the level curve coefficients are listed in Table 8-1, and are entered into the H316 via an "L" card. The "L" card format is given in Table 8-4. A positive level correction is in the sense of a northward tilt, and so the level correction is subtracted from the declination correction. A typical level curve is plotted in Figure 8-4. Experience has shown that the shape of this curve is quite stable but that the zero point changes with time. It is not known whether these changes consist of a continuous drift or discrete jumps.

8.1.4. BEAM DEFLECTION DATA: "T" CARD

Besides the information on the " A " card, an additional right ascension pointing correction is necessary for observing off axis. The beam deflection factor (BDF) is the ratio of the angular displacement of the beam to the angular displacement of the feed in the east-west direction. At large feed displacements, obtainable only on the travelling feed, the BDF changes abruptly. The critical angle is the angular distance of the feed where the BDF changes. A third parameter tells the copputer the change in slope at this critical distance as a fraction of $2^{15}:$

$$
\begin{equation*}
\Delta B D F=\frac{\Delta T}{T} \times 2^{15} \tag{8-4}
\end{equation*}
$$

where ΔT is the pointing error in seconds of time incurred by using the central $B D F$ and T is the time in seconds from the critical angle to the time of observation. The computer uses the focal length of the telescope, 1525.0 inches, to compute the angular displacement of the feed. All of these data are entered on a " T " card, short for travelling feed. The format for the " T " card is given in Table 8-5. Nominal values are given in Table 8-1.

8.1.5. PVALS: "P" CARD

Corrections for small feed offsets may be entered as PVALS, i.e.,

$$
\begin{align*}
& \Delta \alpha=\left(m+P_{2} / 4\right)+n \tan (\delta)+\left(c+P_{1} / 4\right) \sec (\delta) \\
& \Delta \delta=\left(C_{0}+60 P_{3}\right)+C_{1} \delta+C_{2} \delta^{2}+C_{3} \delta^{3}-\Delta L \tag{8-5}
\end{align*}
$$

The procedure for determining the PVALS was given in Chapter 4. The PVALS are entered on a " P " card, the format of which is given in Table 8-6.

8.1.6. TRAVELLING FEED RECEIVER OFFSETS: "B" CARD

Although the box offset card, or " B " card, is input into DDP116 rather than the H 316 , it is worth mentioning at this time because of its effect on pointing and its effect on scheduling. The travelling feed box ($0.3-1 \mathrm{GHz}$) allows two feeds to be installed for observations at $300-500 \mathrm{MHz}$ or $500-700 \mathrm{MHz}$, and $700-1000 \mathrm{MHz}$. The two feeds are physically offset from center by ± 34 inches, so that the whole box must be moved to get either feed on axis. The $300-700 \mathrm{MHz}$ receiver is located East on the box (-34 inches), and the $700-1000 \mathrm{MHz}$ receiver is located West on the box (+34 inches). These offsets are entered on a " B " card in the observer's setup deck for the DDP116 computer, which passes the value to the H316. The "B" card format is given in Tables 9-3 and 10-5.

The effect of the box offsets on the hour angle limits of this receiver is discussed in Appendix D. The point to remember is that for a tracking scan the source peaks up at the box offset. For example, the two low frequency feeds peak up at -34 inches of travel. This means that a source can be tracked for less time before transit and more time after transit. The 98 inches of travel before transit correspond to $12^{\mathrm{m}} 20^{\mathrm{s}} \mathrm{sec} \delta$ of right ascension, and the 166 inches of travel after transit correspond to $20^{\mathrm{m}} 55^{\mathrm{s}} \mathrm{sec} \delta$. The calculations for the high frequency side of this receiver give the reverse answers. It is advisable to calculate these maximum offsets in beamwidths, heeding the advice of section 3.3 .1 that there is little to be gained by tracking more than 5 HPBW's off axis, due to the loss of aperture efficiency.

8.2. SEQUENCING AN OBSERVING PROGRAM: SOURCE CARDS

The DDP116 computer performs the task of implementing an observing program. To do this it reads instructions from cards, and acts on them sequentially. Each source card contains pointing instructions and equally important timing instructions. The computer will record data between the specified start and stop times. There is a variety of source card formats, as shown in Figure 8-5. The format for interpreting source cards is coded onto the card as the position code or pointing mode. Part of the variety in pointing modes is due to the number of different coordinate frames in which pointing and timing instructions can be specified, and part is due to variations on the themes of tracking a position on the sky and scanning across the sky. The different coordinate frames were discussed in Chapter 4, and are reviewed here before going on to sections which discuss in general terms the limitations on tracking and scanning imposed by the telescope hardware itself. The restrictions on tracking are only a subset of those on scanning, and so an observer planning to observe in a scanning mode should first read the section on tracking. A third section describes the available pointing modes, and a fourth section describes computer programs available to assist in preparing decks of source cards.

The telescope position may be commanded in a number of coordinate frames of reference. The H316 computer performs the computations necessary to convert from one frame to another. The four frames that are used are epoch, apparent or true, indicated, and galactic. The epoch coordinate frame consists of positions in equatorial coordinates at a given epoch. The only epoch now available is 1950.0. The apparent coordinate frame consists of positions in equatorial coordinates at the epoch of the observations. The difference between epoch and apparent coordinates is precession, aberration, and nutation from 1950.0 to the epoch of the observations. The indicated coordinate frame consists of positions as indicated by the position encoders on the telescope. Quite literally, the indicated coordinates are "what the dials read." The differences between apparent and indicated coordinates are due to slight misalignments in the telescope axes, encoder offset errors, and deformations of the telescope structure due to gravity and differential heating by the sun. The galactic coordinate frame consists of positions in new galactic coordinates. These coordinates are transformed to 1950.0 equatorial coordinates, and then treated as epoch coordinates. That is, they are precessed to the present epoch and pointing corrections are added.

8.2.1. TRACKING MODES

The most fundamental limitation on tracking, of course, is that the 300 foot was designed as a transit instrument. Tracking in right ascension is accomplished by moving the feed in the focal plane. There are two feed carriage systems. One is a 14 m , fixed focus east-west set of rails, called the travelling feed, used for frontends below 1 GHz . The other, called the Sterling mount, is a more accurate mount for radiometers above 1 GHz and is capable of focusing, rotation and eastwest translation up to 45 cm on either side of the telescope axis.

Hour angle limits are ± 15 inches or about $\pm 2^{m}$ sec δ around the telescope's meridian on the Sterling mount (used above 1 GHz) and are ± 275 inches or about $\pm 28^{m} \sec \delta$ on the travelling feed carriage. Hour angle limits using the $300-1000 \mathrm{MHz}$ carriage on the travelling feed are ± 132 inches (reference: Appendix D), allowing a total tracking time of about $33^{\mathrm{m}} \mathrm{sec} \delta$, but the feeds are offset from the center of the box making the tracking limits asymmetrical (see section 4.2.3). The limits in terms of time are very slightly dependent on frequency and aperture illumination as explained in the section on beam deflection factor. Here again it should be remembered that precession and pointing corrections will make these limits asymmetric about the true or 1950 meridian.

The primary indicated declination limits are nominally $+89^{\circ} 50^{\prime}$ and $-18^{\circ} 30^{\prime}$ but may vary by a few arcminutes depending on temperature. Indicated coordinates are those indicated by the position encoders on the telescope structure, but they are quite close to the actual position on the sky. Beyond these limits the telescope can be driven manually to back-up limits of $+91^{\circ} 04^{\prime}$ and $-19^{\circ} 30^{\prime}$ with the variable speed motor. When operating in card control mode, it should be remembered that these limits are indicated and a 1950 or true position may be beyond the limits after precession and/or pointing corrections are applied. If a primary limit will be encountered, the telescope will not move under computer control from the current position.

Another important limitation on the scheduling of an observing program is the time it takes to move from one source to the next. When a series of cards is read into the computer, the first card is acted upon immediately and the second takes control at the stop time of the first and so forth. Sufficient time must be allowed for movement of the telescope in declination at $10^{\circ} /$ minute plus about 5 seconds for position trim_{2} and in hour angle at the rate of 30 inches per minute ($240^{\mathrm{s}} \mathrm{H} . \mathrm{A} . / \mathrm{min}$ at the equator) on the Sterling mount and 90 inches per minute ($720^{\mathrm{S}} \mathrm{H} . \mathrm{A} . / \mathrm{min}$ at declination $=0^{\circ}$) on the travelling feed [32], plus 4 or 5 seconds for trim. The trim time may be reduced if a position error of a few arc minutes can be tolerated at the start of a scan. Two motors are used for declination drive. One provides continuously variable speeds from 0 to $2: 25 /$ minute (0 to 1351 minute), and the slew motor has a fixed nominal speed of $10^{\circ} /$ minute. A three second time delay is built into the declination drive system to allow for telescope deceleration before reversal of direction of travel or speed change. A rule of thumb for slewing to a new position is to add five seconds to the time required to slew at $10^{\circ} / \mathrm{min}$ for deceleration and position trim. Additional time may also be required for receiver adjustments.

There are two pointing modes available for tracking. Both require source positions in epoch 1950.0. The difference between them is that in one mode (mode 8), start and stop times are specified as local sidereal times (LST) at the epoch of the observations. In the other mode (mode 18), start and stop times are specified as 1950.0 LST times. This choice of start and stop time frames of reference is available for declination scans as well.

The advantage of scheduling start and stop times in 1950.0 LST times is that it is very simple to set up the maximum length observation. The declination gives the maximum length of time that a particular source can be tracked. Subtracting half of this time from the 1950.0 right ascension gives the earliest possible start time, and adding half of the scan length to the right ascension gives the latest possible stop time. There may be other restrictions on the scan length, for example those imposed by the autocorrelator, but it is still easier to schedule a single scan in mode 18 , with 1950.0 start and stop times.

The advantage of scheduling start and stop times in current LST times becomes apparent in a schedule with many sources closely spaced in right ascension. The scheduling of such as observing program will very much depend on the time it takes to get from one source to the next. These computations are easy if start and stop times are in current LST times, but not if they are in 1950.0 LST times because of the need to precess and nutate the commanded positions to recover current start and stop times.

There are some computer programs available for preparing an observing program which make the choice of timing mode less momentous. A program called LINE300 prepares source cards with current LST start and stop times, for ease of scheduling, but also with start and stop times computed to allow for the maximum scan length. Another program, PLAN300, scans a deck of source cards, computing the time required to move to the next source, skipping down through the deck until it finds the next source that it can get to in time. These programs are described in a separate section in this chapter.

8.2.2. SCANNING MODES

All of the available pointing modes make provisions for scanning across the sky. Right ascension scanning rates may be specified for the two tracking modes described in the previous section. In the other modes, right ascension scanning is at the sidereal rate as the sky drifts by with the telescope at zero hour angle. Declination scanning rates can be specified in most of the other pointing modes.

The simplest scanning mode is the drift scan, where the telescope remains motionless while the source drifts through the beam (or beams). Ground pick-up in the sidelobes is unchanged during a drift scan, which results in good baselines for continuum observing, necessary for accurate flux determinations. The declination for a drift scan may be commanded in epoch (mode 3), apparent (mode 2), or indicated (mode 1) coordinate frames, with start and stop times specified as current LST. If an epoch declination is specified, start and stop times may also be specified as 1950.0 LST times. As was the case with the tracking modes, there is a program, PREP300, which calculates current LST start and stop times centered on the right ascension of the source, where the right ascension is given in the 1950.0 coordinate frame.

Scanning rates may be specified in most of the observing modes. The DDP116 computer sequences operations so that the computer is at the
position specified on the card, moving at the specified rate, at the specified start time. The position at later times can then be determined from the initial position, time from the start of the scan, and scanning rate. This is not true if the telescope is still moving to get on source when data taking begins. In continuum observations it is possible to avoid this problem by setting a flag to delay data taking until the telescope is within 20 arcseconds of being on source by placing a " 1 " in column 56 on the source cards.

Source cards are acted upon sequentially, as they are read. If the time between scans is long, the computer may try to back the telescope into a limit so that the specified scanning rate will put the telescope on source at the specified start time. To avoid this problem, there is a dummy pointing mode (mode 0). When a dummy card is encountered, the telescope moves to the commanded declination and waits. The time specified in the start time field is actually a release time: at that time the computer looks at the next source card and acts upon it.

A right ascension scanning rate may be specified on cards in the two tracking modes. This allows scanning at rates other than the sidereal rate. This mode of observing is limited by the hour angle coverage of the receiver mount in use and by the drive rates of the motors. Maximum hour angle drive rates on the movable feed systems are 0.5 inches $/ \mathrm{sec}$ (about $1 \% / \mathrm{min}$) on the Sterling mount and 1.5 inches $/ \mathrm{sec}$ (about $3^{\circ} / \mathrm{min}$) on the travelling feed carriage. Note that hour angle and right ascension rates are not the same due to the apparent motion of the sky.

A declination scanning rate can be specified in most observing modes. Observations to determine declination pointing are usually made while simultaneously tracking in right ascension (modes 8 and 18). Declination scans without hour angle motion can be made in pointing modes $1,2,3$, and 13. A dummy card may be necessary to avoid commanding a position outside the telescope limits if there is a long time between scans. Any declination rate up to 130 '/min may be specified in steps of $1^{\prime} / \mathrm{min}$. A fast slew rate of $600^{\prime} / \mathrm{min}$ can be used, but the motion is less predictable because the single speed slew motor is used with no provision for vernier rate trim. If this high rate is to be used, it is best to specify a rate of about $620^{\prime} / \mathrm{min}$ to prevent the computed position from getting ahead of the actual position and momentarily shutting down the slew motor. One other consequence of not having rate trim at high speed is that the acceleration time of the telescope causes a lag of about 50^{\prime} behind the 600 'min computed position which cannot be made up.

Wobbles (mode 6) provide a capability for alternately scanning north and south at a specified rate between two specified declination limits. One use for wobbles is to measure efficiency vs. hour angle by scanning across a continuum source a number of times, giving both the source deflection and baseline. There is a delay of 6 seconds between passing out of the declination range and re-entering it travelling in the opposite direction to allow time for reversal. Data is taken continuously, even during reversal, however.

Dummy card (0). The dummy card is used to hold the telescope at a particular declination in anticipation of further commands. Parameter l (Figure 8-5) is read as an indicated declination, and the time in the start time block is interpreted as a release time to execute the commands of the next card. The dummy card is useful for setting up near the start position of a variable declination scan, thus preventing the telescope from encountering a declination limit by picking up a computed track long before the start of data taking. It may also be used to set the telescope for a drift scan through a calibration source to be recorded on a chart record. No data is put on tape with this card, and the feed is automatically driven to center track.

Indicated declination card (1). This card drives the telescope to the indicated declination specified by parameter 1 , and data is put on tape between the current LST start and stop times. A declination rate entered as parameter 3 in arcminutes per minute may be used to drive the telescope at a constant rate with the feed at center track. This motion is closed-loop, meaning that the commanded declination is computed at frequent intervals so that the position of the telescope at any given time is completely predictable. Any declination rate up to $130^{\prime} / \mathrm{min}$ may be specified in steps of $l^{\prime} / \mathrm{min}$. A fast slew rate of $600^{\prime} / \mathrm{min}$ can be used, but the motion is less predictable because the single speed slew motor is used with no provision for vernier rate trim. If this high rate is to be used, it is best to specify a rate of about $620^{\prime} / \mathrm{min}$ to prevent the computed position from getting ahead of the actual position and momentarily shutting down the slew motor. One other consequence of not having rate trim at high speed is that the acceleration time of the telescope causes a lag of about 50^{\prime} behind the $600^{\prime} / \mathrm{min}$ computed position which cannot be made up.

A feed rotation angle may also be specified on the indicated declination card as parameter 4. This angle is measured eastward from north on the sky. Slew rate for rotation angle on the Sterling mount is 13.3 degrees/second and limits are $\pm 200^{\circ}$. No rotation is provided on the travelling feed mount. The position and polarization angle of the beam(s) at zero rotation angle may be found in the electronics division reports on the individual feeds, or front end boxes, or on receiver installation sheets.

True declination (2). This card has exactly the same function and controls as the indicated declination card except that parameter \#1 is interpreted as true declination. The difference between true and indicated position is the declination pointing correction.

1950 declination (3). This card is identical to the indicated declination card except that parameter 1 is interpreted as 1950.0 declination. The difference between indicated and 1950.0 declination at the 300 foot is the declination pointing correction plus precession, aberration and nutation.

Constant galactic latitude (4). Position code 4 provides for scanning at a constant galactic latitude (new galactic coordinates) by moving the declination of the telescope at a slowly varying rate with the feed box at center track. The feed box is continuously rotated
during the observation so as to maintain a constant galactic rotation angle. The latitude is specified by parameter 1 in decimal degrees and the angle by parameter 4. Galactic rotation angle is defined for this purpose as the angle measured counterclockwise on the sky from the direction of the north galactic pole. By pointing the center of a receiver box at a constant latitude and maintaining a constant galactic rotation angle, each beam of a multibeam frontend system follows a constant latitude. The chosen value of rotation angle should allow for variation during the observation without impinging on the rotation limits of $\pm 200^{\circ}$ with respect to the direction of the north celestial pole. Note that in pointing modes 4 and 5 there are problem areas in the sky where lines of constant latitude or longitude, respectively, are almost parallel to lines of constant right ascension.

Constant galactic longitude (5). With this card a constant galactic longitude (new galactic coordinates) is maintained by continuously varying the telescope declination with the feed at center track. No provision is made for automatically maintaining a constant galactic rotation angle. The coordinate 1^{11} is entered as parameter 1 in decimal degrees.

Wobbles (6). The wobble card initiates a zig-zag track in the sky by driving the telescope at a rate specified by parameter 3 alternately north and south with the feed at center track. The motion is closed loop, and all of the rates and limitations outlined in this and the previous section apply here. The sign on the declination rate is ignored, and the first track is always northward. A dummy card (0) is useful in setting up just south of the south limit to allow a smooth start.

Parameters 1 and 2 are the south and north indicated declination limits, respectively, between which the wobbles are performed. There is a delay of 6 seconds between passing out of the declination range and reentering it travelling in the opposite direction to allow time for reversal. Data is taken continuously, even during reversal, however. No provision is made for card control of rotation angle.

Celestial coordinates (8). This is one of two card types which allow computer control of hour angle. Within the hour angle limits of the travelling feed or Sterling mount, a position in the sky can be tracked or scanned in right ascension and/or declination. Positions in parameters 1 and 2 are in 1950.0 coordinates, which means that the on-line computer will apply pointing corrections, precession, aberration and nutation.

Parameter 4 specifies a declination rate, and all of the limitations outlined in the indicated declination card section apply here. The right ascension rate is entered as parameter 3 in arcminutes per minute on the equator in $1 / / \mathrm{min}$ increments. The maximum east-west tracking rate of either the travelling feed or Sterling mount is 0.25 inches/s or about +3 and -1 minute of time per minute in right ascension depending on the BDF. For the travelling feed, the travel limits are ± 275 inches (about 9°), the maximum slew rate is 2.0 inches/s, and the maximum position error in the east-west direction is
± 0.5 inches or about ± 1 arcminute. For the Sterling mount, the travel limits are ± 15 inches (about $0: 5$), the maximum slew rate is 0.5 inches / s, and the maximum system position error is ± 0.086 inches or ± 10 arcseconds.

In specifying start and stop times on the position code 8 card, one must keep in mind that these times must be centered on the indicated source position if the source is to be tracked for an equal time on either side to the feed track center, while the source position itself is in 1950.0 coordinates.

1950 Declination (13). This card is identical to the 1950 declination (3) card except that start and stop times are referenced to 1950 coordinates. These times are converted to LST by adding precession, aberration, nutation, and pointing corrections. Caution must be used to avoid start and stop time conflicts when source scheduling due to the fact that precession and pointing corrections are different at different declinations.

Celestial coordinates (18). This card is identical to position code (8) except that start and stop times are referenced to 1950 coordinates. These times are converted to LST's by adding precession, aberration, nutation, and pointing corrections. This card is more convenient for producing scans symmetric about the telescope meridian from 1950 coordinates, but because precession is different at different declinations, one must be careful to avoid stop and start time conflicts when scheduling sources in close succession.

8.2.4. COMPUTER PROGRAMS FOR PRODUCING SOURCE CARDS

There are a number of computer programs available which facilitate the production of source card decks. There is also a program which reads in observing decks and simulates the observing sequence to help optimize the timing of the observations. This program is useful for any observing deck, not just those produced with the aid of the computer programs that are described here. If many sources are observed in an identical manner, or nearly so, these programs may help reduce the drudgery of punching up observing decks. The programs run on the Charlottesville IBM computer and can do the actual card punching on a remote punch in Green Bank. The programs can do the transformations from 1950.0 coordinates to the present so that start and stop times can be specified in current LST for ease of scheduling. One need supply only the 1950.0 coordinates of the sources to be observed and parameters of the observing procedure such as positioning mode, scan length, integration time, etc., and the programs will precess the positions, add in pointing corrections, compute start and stop times, and punch the cards. There is a feature whereby well-known calibration sources (such as VLA calibrators) can be specified by name only, and the program will look up the positions. The purpose of this section is simply to make the observer aware of these programs. Here we describe in general terms what these programs do and where to find them. Complete instructions for running these programs are found within the program listings, which are given in Appendix C.

The programs described here were originally written to assist the staff with the kinds of observations necessary to maintain telescope performance, such as pointing and gain calibration, and therefore they are not completely general in their application. For example, pointing in galactic coordinates (pointing modes 4 and 5) is not currently supported by a card producing program. The programs reside on the Pandora data set with logon GBOPER (for Green Bank Operations). If you are unfamiliar with the Pandora system on the Charlottesville computers, the "friend" or a computer programmer can help you get started. The details of running the programs can be found in a descriptive comment at the beginning of each program listing. The program comments can be found in Appendix C to this manual, or in Pandora members with names corresponding to the program names. Most of the JCL has been hidden away in catalogued procedures, simplifying the job of running these programs. Listings of the calibrator files can also be found in this manual, in Appendix B. These files contain the sources that the programs recognize by name, and are excellent sources of suitable calibrators.

There are three programs which produce punched cards. Programs POINT300 and PREP300 punch cards for continuum declination scans and drift scans or wobbles, respectively. Program POINT300 prepares cards for positioning codes $3,8,13$, and 18 , observing with a pulsed cal. The scan length and scanning rate may be specified provided that they do not violate constraints imposed by the Sterling mount. The program needs to be supplied with the coefficients of the right ascension pointing correction curve, which can be found in Table 8-1 of this manual. Program POINT300 is primarily intended for preparing observations to check the declination pointing of the telescope. Program PREP300 prepares cards for positioning codes 13 and 18. Cards for wobbles may also be produced, but they are somewhat different from positioning code 6, including provisions for offset feeds and multiple feeds. Drift scans of any length can be set up. High declination drift scans are automatically lengthened. Declination scanning rates can be applied. A series of declination offsets can be applied to cards for use on successive days for mapping or for measuring beam shapes. This program also requires certain input numbers found in Table 8-1 of this manual. A version of PREP300 with a slightly different input format, in use before July 1982, is still available under the name OLDPREP.

The third card producing program is LINE300. Program LINE300 is for preparing observing cards for spectral line observations in pointing modes 8 and 18. The program is essentially the same as POINT300 in these two pointing modes except that the timing of scan lengths and intervals between scans is adjusted to conform with peculiarities of the autocorrelator, and that a serfes of scans is produced for each source, with off source scans symmetrically arranged about an on source scan for total power observing. The number of off source scans on each side of the on source scan can be specified, and can be set to zero for switched power observing. The default value for the scan length is the maximum amount of time that the Sterling mount can track, rounded down to a multiple of 20 seconds. The program could be used to prepare source cards for any observing program that involved tracking.

The scheduling program is PLAN300. The straightforward way of using it is to take cards produced by the programs just described, or by hand at the keypunch, add a few cards that invoke program PLAN300 and submit the deck via the remote card reader next to the line printer in the Jansky lab (rm. 234). The required card images can be found in the program listing in the GBOPER Pandora member named PLAN300. The source cards should be arranged in order of start time. The current version of PLAN300 assumes that start and stop times on source cards are current LST time, i.e. this program cannot do precession. The program goes through the input source cards calculating the time necessary to move and set up for the next source. If that time comes after the specified start time, then that source is set aside temporarily. All of the sources that are kept make up the observing schedule for the first day. Then the process is repeated with all of the sources that were skipped, yielding schedules for successive days until all of the input sources are scheduled.

There are other, more highly specialized programs that run offline. These include programs for measuring the level curve, pointing curves, and gain curves. Observers who intend to make extensive pointing and calibration observations should ask the "Friend" about these programs.

 . $1 / 11.1111111 .11111111111 / 111111111111111111111111111111111111$

 -2:

Figure 8-1. Sample H316 input card deck. This is a copy of the deck in use at the telescope in January 1983.

Figure 8-2. Nominal right ascension pointing curve. The curve above 80° is plotted on a scale reduced by a factor of 10 .

Figure 8-3. Typical declination pointing correction curves: (a) 6 cm receiver with the two feeds along a north-south line, and (b) 6 cm receiver with the two feeds along an east-west line.

Figure 8-3 (Cont.) Typical declination pointing correction curves: (c) 9 cm receiver, and (d) 11 cm receiver.

Figure 8-3 (Cont.) Typical declination pointing correction curves:
(e) cooled 21 cm receiver, and (f) travelling feed box.

Figure 8-4. Typical level curve, not the level correction as drawn. A positive level correction corresponds to a northward tilt. This is the intrinsic tilt built into the pointing correction. Experience shows the shape of this curve to be stable but the intercept is not.

Source Card Format

Source Card Format

TABLE 8-1
NOMINAL DECLINATION CORRECTION COEFFICIENTS
December 1982 - Inductosyn

Receiver	C_{0}	C_{1}	C_{2}	C_{3}
6 cm	(N-S Polar.)	-201.93	3.56	0.0530
6 cm	(E-W Polar.)	-171.60	6.35	-0.0374
9 cm	-179.36	4.88	-0.0064	0.000500
11 cm	-153.54	5.08	-0.0204	0.000010
21 cm	-214.05	3.91	0.0282	-0.000010
T.F. (31 cm)	-113.98	2.83	-0.0018	0.000010

NOMINAL LEVEL CURVE COEFFICIENTS
December 1982 - East Tower

East Tower Leve1	L_{0}	$\mathrm{~L}_{1}$	$\mathrm{~L}_{2}$	$\mathrm{~L}_{3}$
Coefficients	47.50	0.35	0.0093	-0.000087

NOMINAL R.A. CORRECTION COEFFICIENTS

Equation	M	N	C
Coefficients	7.83	-14.30	4.99

NOMINAL BEAM DEFLECTION DATA

	BDF	Critical Angle	Δ BDF $\times 2^{15}$
Travelling Feed	0.865	3.150	4004.90
Sterling Mount	0.865	0.000	0.00

TABLE 8-2
"A" CARD FORMAT (H316 Computer)

COLUMN	CONTENTS	FORMAT
1	"A"	A
2-8	Comments	AAAAAAA
9-14	m (seconds of time)	SNN.FF
15	Blank	b
16-21	n (seconds of time)	SNN. FF
22	Blank	b
23-28	c (seconds of time)	SNN. FF
29-80	Blank	bbb...

Read formats as follows:
A - Alphanumeric character
N - Integer
S - Sign
b - Blank
F - Integers after decimal place

H316 display option $\# 6$ displays the current "A" card in use

TABLE 8-3
"D" CARD FORMAT (H316 Computer)

COLUMN	CONTENTS	FORMAT
1	"D"	A
2-3	Blank	bb
4-5 ${ }^{1}$	Pointing Coefficient Identifier	AA
6-20	Comments	15 A 's
21	Blank	b
22-28	C_{0} (arc seconds)	SNNN. FF
29	Blank	b
30-35	C_{1} ("/degree)	SNN. FF
36	Blank	b
37-43	C_{2} ("/degree ${ }^{2}$)	SN.FFFF
44	Blank	b
45-53	C_{3} ("/degree ${ }^{3}$)	SN.FFFFFF
54-80	Blank	bbb...

NOTES:

1. Pointing coefficient identifiers are:
```
6N - 6 cm Receiver (North-South Polarization)
6E - 6 cm Receiver (East-West Polarization)
    9 - 9 cm Receiver
    11 - 11 cm Receiver
    18-18 cm Receiver
    21 - 21 cm Receiver
25 - 25 cm Receiver
TF - Travelling Feed Receivers
UP - Up-converter Receivers
```

TABLE 8-4
"L" CARD FORMAT (H316 Computer)

COLUMN	CONTENTS	FORMAT
1	"L"	A
2	Level in use indicator	N
	O-use level correction	
	1 - do not use level correction	
3-15	Blank	bbb...
16-22	L_{0} (arc seconds)	SNNN. FF
23	Blank	b
24-29	L_{1} ("/degree)	SNN. FF
30	Blank	b
31-37	L_{2} (${ }^{\text {(/degree }}{ }^{2}$)	SN.FFFF
38	Blank	b
39-47	L_{3} ($/$ /degree ${ }^{3}$)	SN. FFFFFF
48-80	Blank	bbb...

TABLE 8-5
"T" CARD FORMAT (H316 Computer)

COLUMN	CONTENTS	FORMAT
1	"T"	A
$2-8$	Comments	AAAAAAA
$9-14$	Focal Length (inches)	NNNN.N
$15-20$	Trav. Feed Beam Deflection Factor (BDF)	SN.FFF
$21-28$	Trav. Feed Critical Distance (Degrees)	SNNN.FFF
$29-35$	Trav. Feed Additional BDF	NNNN.FF
$36-41$	Sterling Mount BDF	SN.FFF
$42-49$	Sterling Mount Critical Distance (Deg.)	SNNN.FFF
$50-56$	Sterling Mount Additional BDF	SNNN.FF
$57-80$	Blank	bbb...

The focal length of the 300 foot is nominally 1525.0 inches and need not be changed for different feeds.

```
TABLE 8-6
"P" CARD FORMAT (H316 Computer)
```

COLUMN	CONTENTS	FORMAT
1	"P"	A
$2-8$	Comments	AAAAAAA
$9-14$	P_{1} (RA Box Offset) Arc Minutes	SNN.FF
$15-20$	P_{2} (RA Dial Error) Arc Minutes	SNN.FF
$21-26$	P_{3} (Dec Dial Error) Arc Minutes	SNN.FF
$27-80$	Blank	bbb...

table of contents
Page
9. SPECTRAL LINE OBSERVING 9-1
9.1. SETUP CARDS: "S" CARD 9-2
9.2. FEED OFFSET CARD: "F" CARD 9-4
9.3. TRAVELLING FEED RECEIVER OFFSETS: "B" CARD 9-4
9.4. AUTOMATIC L.0. CARD: "L" CARD 9-4
9.5. UP-CONVERTER RECEIVER L.O. CONTROL: "E" CARD 9-5
9.6. SOURCE CARDS 9-6
9.7. ON-LINE DATA REDUCTION 9-6
9.8. OFF-LINE DATA REDUCTION 9-7

TABLE OF FIGURES
Page
9-1 Sample H116 input card deck for spectral line observing 9-9
TABLE OF TABLES
Page
9-1 "S" Card Format, Setup for SPOWR3, MPOWR3, TPOWR3 9-10
9-2 "F" Card Format, Offset Feed Data 9-11
9-3 "B" Card Format, Travelling Feed Box Offset 9-12
9-4 "L" Card Description, Model III Autocorrelator
Automatic L.O. Control 9-13
9-5 Automatic ULO Error Messages 9-17
9-6 "E" Card Format, Up-converter Receiver L.0. Control 9-18

9. SPECTRAL LINE OBSERVING

The purpose of this chapter is to describe the on-line computer programs for spectral line observing that run on the DDP116 computer, and the setup cards necessary for each. These setup cards contain information that the computer uses to check the configuration of the autocorrelator, to command the L.O. system, and to point the telescope, among other things. Setup cards followed by source cards constitute an observing deck. Source cards were discussed in Chapter 8, except for certain options pertaining particularly to spectral line observing.

The basic component of the spectral 1 ine system is the Model III autocorrelator, discussed in detail in Chapter 6. The autocorrelator is the digital equivalent of a filter bank with detectors and analog-to-digital converters. The autocorrelator also sends signals which control various schemes to stabilize against gain fluctuations and to allow automatic determination of the system temperature.

The autocorrelator contains 384 spectrometer channels, but this total can be broken up to accommodate from one to four receivers. The breakdown is into quadrants of 96 channels each. In the three receiver mode, the channels are allocated to spectra of 96,96 , and 192 channels. The on-line computer reads setup parameters for the autocorrelator from cards.

Stability against gain fluctuations is achieved by comparing two spectra which are presumed to be affected equally by any gain drifts. The two spectra will be referred to as the signal and reference spectra. The two modes of observing that are currently supported are referred to as "switched power" and "total power", and the difference between them is the way the reference spectrum is obtained. In the switched power mode, the observing time is equally (usually) divided between the signal band and a reference band of frequencies, with the reference band centered on a different frequency ("frequency switching"). In the total power mode, the signal and reference spectra are summed in separate scans taken at different positions on the sky, flagged as "on" source or "off" source, with no frequency switching.

There are three on-line spectral line programs. SPOWR3 and MPOWR3 are switched power programs. The major difference between them is how often data accumulated in the DDP116 computer are written to tape. SPOWR3 is normally used where long integrations are taken at a single point in the sky. The integration time is set at the control console and is usually a compromise between keeping the off-1ine data averaging to a manageable amount and having the ability to eliminate interference in one or more records (integration periods) without losing too much data. The integration time must be set to an even multiple of the correlator dump time, which is typically 10 seconds. MPOWR3 is normally used for spectral line mapping, and spectra are recorded on tape every correlator dump cycle. Both signal and reference spectra are recorded on tape in both of these programs, although only the final switched difference spectrum is available in the on-line analysis computer. TPOWR3 is the total power program. Jt records a single spectrum on tape at the chosen integration period, which must be an even multiple of the
correlator dump time. A code on the source cards can be used to indicate whether a scan is a signal or "on source" spectrum or whether it is a reference or "off source" spectrum. For reasons associated with the on-line analysis program POPS, this feature simplifies the processing of total power data, provided that the "off" is obtained before the "on" spectrum.

A11 three programs require the same types of setup cards, and so sections of this chapter describe the types of input cards rather than the three programs. A sample setup card deck for spectral line observing is shown in Figure 9-1. The " S " card contains information pertaining to a single receiver channel, such as noise tube value and information required to set the L.0. frequencies correctly. There must always be four " S " cards, as if four receivers were in use. Besides the " S " cards, pointing cards, and source cards, the input deck may contain "L" cards, which set and check the automatic L.O. system output as desired, and an " E " card, which changes the equation relating L. O. frequencies and sky frequency to accommodate receivers with up-converters.

The spectral line system has some limitations which should be kept in mind when making up source cards:

NOTE:

Because of computer-autocorrelator timing requirements, the difference between start and stop times on the observing cards should be at least 1^{s} more than an integral multiple of integration periods, otherwise the last integration may not get on tape. Successive start times should not differ by multiples of 10^{S} (e.g., $223956,2246 \mathrm{l}$) . This can occasionally cause autoorrelator sequence errors. Also, the time between the end of one scan and the beginning of the next scan must be at least 11^{s}.
9.1. SETUP CARDS: "S" CARD

Each setup "S" card contains information for a particular receiver. The information required on each "S" card, and the card format are shown in Table 9-1. Four " S " cards are required (one each with A, B, \underline{C}, and D in column 31) no matter which receiver configuration is used. The comment in columns $11-30$ must agree exactly on all setup cards. The pointing coefficient identifier (columns 6 and 7) is transmitted to the H316 computer in order to select the proper declination pointing curve for the observations, as described in section 8.1.2. Table 8-3 1ists the available identifiers. The pointing code (columns 34 and 35) specifies which of the feed offsets on the " F " card (described below) applies to the channel specified by the " S " card.

The inversion indicator (column 37) controls whether the velocity or sky frequency increases with increasing channel number, both on the on-line display scope and as the data are written on tape. To make the velocity increase from left to right on the display scope, the inversion indicator should be 0 if the first local oscillator is lower than the
sky frequency (upper sideband) and 1 if it is higher than the sky frequency (lower sideband).

The noise tube temperature (columns 38-43) is used to assign a vertical scale and system temperature to the off-line spectrum. Normal$1 y$, nominal values from the receiver installation data sheets are entered here in Kelvins, with corrections for aperture efficiency and so forth to be done in a later stage of data reduction. The decimal point must be in column 41.

The spectral line rest frequency, f_{o}, (columns 47-55) is used both on and off line in the radial velocity calculations and is expressed in Hz with no decimal. The center frequency formula (columns 56-73) is a FORTRAN expression for off-line computing of the center sky frequency from the IF and local oscillator frequencies. The symbol convention is as follows: L1 is the ULO primary frequency, $\mathrm{F}_{0} ; \mathrm{L} 2$ is the corresponding frequency if a second LO is used; and LA, LB, LC, and LD are the IF's dialed into the IF processor in channels A, B, C and D, respectively. Typical equations would be $4 * \mathrm{Ll}+150.0$ or $4 * \mathrm{Ll}+\mathrm{LA}$. If the L.O. is under computer control, the sign before the IF frequency should be a plus. To indicate that the lower sideband of the L.O. frequency is to be observed, a negative IF frequency should be specified on the "L" card (described below). If the L.O. is in manual control, which means that there cannot be an "L" card, then the sign in front of the IF in the sky frequency equation can be used to select the proper sideband. In the manual mode, the IF frequency assumed by the computer is the output of the counter in the IF processor, which is always positive. Proper sideband selection can also be affected by the "E" card used with up-converter receivers.

The multipliers M and N (columns 74-77) from the first " S " card are used in the automatic computation of L.O. frequencies, as explained below. M is the factor by which the synthesizer frequency is multiplied before the L.O. signal is sent up to the frontend box, and N is the multiplication factor in the front end. The ULO has a built in multiplier, so for almost all setups using the ULO, M is 4 . The value of N depends on the front end box in use, and both M and N can be obtained from the receiver installation information sheet, or from the receiver engineer.

The velocity reference indicator (column 78) specifies the rest frame in which radial velocities are computed off-line. The same rest frame is used in interpreting velocities in the automatic L.O. computations. Zero (0) causes no radial velocity corrections to be made, 1 refers radial velocities to the local standard of rest (LSR), 2 refers them to the sun, and 3 to the center of the earth. The velocity definition (column 79) indicates whether the velocities are to be interpreted by the radio ($v=c \Delta f / f_{0}$) (1) or optical ($v=c \Delta \lambda / \lambda_{0}$) (2) definition.

Each " S " card could have its own velocity and inversion indicators, noise tube temperature, rest frequency, and/or center frequency formula depending on how the receiver is divided to observe different lines or velocity ranges with one or more receiver frontend channels.

9.2. FEED OFFSET CARD: "F" CARD

The feed offset card, or "F" card, specifies positions of beams in multi-feed systems with respect to the axis of receiver box rotation in polar coordinates, ρ and θ. These are in decimal degrees with θ measured eastward from north when the box is at zero rotation angle as indicated at the control console. The sole purpose of the " F " card is to provide beam position information to the off-line programs via the telescope tape header. It has no effect on the actual position of the receiver on the telescope. Table 9-2 shows the " F " card format along with nominal feed offsets for multi-feed receivers currently in use on the 300 foot. Trailing zeroes must be punched on the "F" card.

9.3. TRAVELLING FEED RECEIVER OFFSETS: "B" CARD

The travelling feed box ($0.3-1 \mathrm{GHz}$) allows two feeds to be installed for observations at $300-500 \mathrm{MHz}$ or $500-700 \mathrm{MHz}$, and $700-$ 1000 MHz . The two feeds are physically offset from center by ± 34 inches, so that the whole box must be moved to get either feed on axis. The 300-700 MHz receiver is located East on the box (-34 inches), and the $700-1000 \mathrm{MHz}$ receiver is located West on the box (+34 inches). These offsets are entered on a " B " card in the observer's setup deck for the DDP116 computer, which passes the value to the H316. The "B" card format is shown in Table 9-3.

9.4. AUTOMATIC L.0. CARD: "L" CARD

The automatic local oscillator "L" card is used to specify Model III autocorrelator and synthesizer settings. Autocorrelator settings must be done manually by the operator and are only checked against the contents of the " L " card. Data taking cannot start until all autocorrelator checks are satisfied. If the observer chooses, the L.O. synthesizer can be under computer control. If there is an "L" card in the DDP116 deck, then the program demands that the L.O. be in computer control. In automatic control the synthesizer settings on the "L" card are recorded on tape. The " L " cards go in the source card sequence, and each card controls receiver settings for all subsequent source cards until another "L" card is encountered.

There are 3 modes of L.O. control. In Mode l, L.O. settings are made by commanding the ULO frequency F_{0} directly. In Mode 2 , the center frequency in the source frame of reference is specified. The choice of reference frame is taken from the " S " card, and there is no provision for velocity offsets. In Mode 3, the center of the band is set to a commanded velocity in the source frame of reference. The rest frequency and choice of reference frame are taken from the "S" card. In Modes 2 and 3, Doppler corrections are made in the transformation between the chosen frame of reference and the telescope frame; L.0. settings are updated every 10 seconds to track the changing Doppler corrections. In all three modes, the $L .0$. settings for the two reference frequency bands are computed from commanded offsets from the center of the observed band. That is, if the observer wishes the center of the reference band
to be 1 MHz higher than the signal band, then the offset should be set to 1 MHz , without worrying about multipliers or Doppler corrections.

The three card formats for " L " cards are shown in Table 9-4. Many of the parameters are codes, elaborated upon in the notes to Table 9-4. In mode 3, columns 4-17 are often used for a descriptive comment. These columns are not read by the program. Nearly all operations use only one L.O., so column 2 usually contains a 1 . A separate card would be used for each of multiple L.O.'s. F_{0} is the primary L.O. frequency (first receiver L.0. frequency divided by the multipliers, i.e. the frequency synthesizer output), and $F_{\text {ref }}$ and $F_{\text {ref }}$ are the frequency offsets used in frequency switching. ref In modes 2 and 3 the reference frequencies are derived by applying specified offsets to the calculated $F_{0} . F_{0}$ is normally in the 250 to 500 MHz range. LA through LD are the FF values set into the IF processor rack. The IF frequencies should be entered with a sign to indicate the desired sideband of the L.0. frequency to be observed. A positive IF is specified if the L.O. is below the sky frequency (upper sideband). The front end switch indicator (column 77) only has effect if a switch (such as a Dicke switch) in the front end is being controlled by the autocorrelator. Otherwise this number may be any of those allowed in note 4. The standard time mode is one of three preset autocorrelator duty cycles available if front panel control is not assumed. The switch rate and duty cycle refer to a switched receiver system (SPOWR3 or MPOWR3). The duty cycle is the signal time to reference time proportion. Time mode 3 , with a $90 / 10$ duty cycle, is usually used only when an average of many reference spectra is going to be taken off-line. In note 5 to Table $9-4$, DT is the dump time, BT is the blanking time to suppress switching transients, for which 10 milliseconds is often sufficient, $S T$ and $R T$ are signal and reference times, and C/D is the number of switching cycles per correlator dump. With an unswitched system (TPOWR3), time mode 1 is always used.

The automatic L.O. system provides continuous frequency counter checking of the synthesizer output and IF frequencies to be sure that they agree with the specified frequencies on the "L" card. During scans, the synthesizer output frequencies are averaged over each integration period and then checked. Between scans they are averaged for 10 seconds, and then checked. If a discrepancy between frequencies or excessive jitter between successive measurements is detected, the result is a ULO error. ULO error messages are printed on the teletype when encountered. Data taking continues in spite of a ULO error. A twodigit code is used and can be cross-referenced to the codes found in Table 9-5.

9.5. UP-CONVERTER RECEIVER L.O. CONTROL: "E" CARD

Most receivers at the 300 foot can be treated as single conversion (one L.O. and one IF) systems where the simple frequency equation

$$
\begin{equation*}
F_{\text {sky }}=F_{0} * M * N+I F \tag{9-1}
\end{equation*}
$$

is assumed by the computer in the L.O. computations. However, this is
not the case with receivers incorporating up-converters, so provision has been made through an "E" card to specify constants in the following equation to be used by the computer:

$$
\begin{equation*}
F_{0}=D *\left(F_{\text {sky }}-(C+E * L A+F * L B)\right) /(M * N) \tag{9-2}
\end{equation*}
$$

where M and N are specified on the " S " card. The " E " card enters values for C, D, E, and F through the format shown in Table 9-6.

The "E" card could be entered at any time, but would normally go into the DDP116 with the " S " and " F " cards. If no " E " card is read after the on-line program is loaded, default values of $C=0, D=+1, E$ $=+1$, and $F=0$ are assumed. This reduces the L.0. equation to the simpler single conversion receiver equation, equation (9-1). Once an "E" card is entered, the default values are lost until the on-line program is reinitialized. As an example, if the following values were entered: $C=812500, D=+1, E=-1$ and $F=0, M=4$ and $N=1$, the equation would read:

$$
\begin{equation*}
\mathrm{F}_{0}=\left(\mathrm{F}_{\text {sky }}-3250 \mathrm{MHz}-\mathrm{LA}\right) / 4 \tag{9-3}
\end{equation*}
$$

The "E" card would have no effect on the operation of a mode 1 " L " card.
If the observer chooses the L.O. frequency can still be set manually by switching the synthesizer out of computer control. In this case and "L" card is not used, and the frequency recorded on tape is the checking counter value, which has an accuracy of $\pm 100 \mathrm{~Hz}$.

9.6. SOURCE CARDS

Besides the telescope positioning and scheduling information on the source cards, described in Chapter 8, there is only one additional parameter connected with spectral line programs. When making total power observations (TPOWR3), a scan will automatically be flagged as an "off" or reference scan if a " 1 " is punched in source card column 57. A command in the POPS data analysis program (FETCH) will look back through the data to find the most recent scan flagged as an "off" before the "on" that it simultaneously loads into the work areas. For this reason, analysis is somewhat simplified if the "off" for a particular object is obtained before the "on" scan.

Observers are hereby reminded for the last time about the timing requirements imposed by computer-autocorrelator timing idiosyncrasies, as described on page 9-2.

9.7. ON-LINE DATA REDUCTION

The on-line MODCOMP analysis computer is available to the observer during the course of scheduled observations. Although data from all programs is recorded on 9 -track telescope tapes for off-line reduction, the data are simultaneously transmitted from the DDP116 to the MODCOMP for inspection and reduction. The On-site Spectral Line Data Reduction
manual contains the information necessary to use the POPS analysis program, and that information is not repeated here.

Data records received from the DDP116 are accumulated to form a single spectrum for each receiver in each scan. This accumulated scan is stored on a disk associated with the analysis system. The total number of scans that can be held on disk is 2560 . When the disk storage area is full, storage "wraps around" so that the most recent scan overwrites the data at the front of the area. It is useful to estimate how often the disk will fill up in those cases where the observer is trying to reduce all of the data on-line so that no data is overwritten before it is reduced. It is not a disaster if some data is overwritten, but the procedure for recovering from this situation is somewhat cumbersome. The recovery procedure involves reading the telescope tape onto the MODCOMP in the Jansky Lab, which is a clone of the one at the telescope, and completing reduction on that computer.

The KEEP area on disk and KEEP tapes are a way to store and transport reduced or partially reduced scans, in contrast to telescope tapes, which record raw data record by record. The KEEP command in POPS is fully described in the POPS manual. Basically, the POPS analysis program can read data from a disk area for processing. An auxiliary disk area, the KEEP area, can be written sequentially from POPS. The KEEP area can be used to store completely reduced data, intermediate steps, partial averages, or simply to keep only scans instead of individual records. The KEEP area can be dumped onto a tape and subsequently read into the data file for further processing. The KEEP area can hold 143 scans, and must be dumped to tape when it is full. The KEEP tape format can be found in the POPS manual.

9.8. OFF-LINE DATA REDUCTION

The standard NRAO spectral line data reduction programs are completely described in the TPOWER-SPOWER manual so they will not be discussed here. It may be useful, however, to briefly describe the information on tape and the steps taken in doing the basic spectral scaling. For one reason or another, the observer may want to do some or all of the data handling, but in any case the procedures involved should be understood.

Tables A-1, A-2, A-3 of Appendix A give the 9-track telescope tape formats for MPOWR3, SPOWR3, and TPOWR3, respectively. The various word formats are also described. The observer can read the 9-track telescope tape with his or her own program, read the 9-track user tape generated by the IBM TPOWER/SPOWER programs as described in their manual, or read the 9 -track telescope tape back into the analysis system in the Jansky Lab. The instructions for starting up the Jansky Lab analysis computer are taped to the front of the unit. The telescope tape may be loaded by typing the following commands:

Then the POPS program can be invoked just as at the telescope. For observers writing their own programs, once the word formats are understood, the interpretation of the time and position information in the tape record is fairly straightforward. The calculations required to interpret the spectral numbers were described in Chapter 6. Telescope tapes and KEEP tapes are usually written at 1600 BPI , but the MODCOMP can produce 800 BPI tapes if desired.

 11111, 1111111111111111111111111/11111111111/1/11111/111.111111111111/111

Figure 9-1. Sample DDP116 input card deck for spectral line observing. This deck is for observing HI in galaxies in total power, using " L " cards to set up the receiver for the velocity of each galaxy. The setup changes from two receivers for galaxies with known redshifts to four receivers with different IF frequencies to search for galaxies with unknown redshifts. The receiver changes are actually made manually by the telescope operator and checked by the computer.

TABLE 9-1

TABLE 9-2

"F" CARD FORMAT (DDP116 Computer)

TABLE 9-3
"B" CARD FORMAT (DDP116 COMPUTER)

COLUMN	CONTENTS	FORMAT
L	"B"	A
$2-7$	Blanks	bbbbbbbb
$10-16^{1}$	Feed offset (inches)	SNN.FFF

NOTES:

1. A plus-offset defines the feed physically offset West on the traveling feed carriage.

A minus-offset defines the feed physically East on the feed carriage.

TABLE 9-4

MODEL III CORRELATOR
"L" CARD DESCRIPTION (DDP116 Computer)
I. Mode 1 "L" Card

COLUMN	CONTENTS	FORMAT	NOTES
1	"L"	A	
2	ULO Number	N	
3	Mode $=1$	N	
4-6	Blank	bbb	
7-15	F_{0} in Hz	NNNNNNNNN	
16-18	Blank	bbb	
19-27	$F_{\text {ref. } 1}$ in Hz	NNNNNNNNN	
28-30	Blank	bbb	
31-19	$\mathrm{F}_{\text {ref. } 2}$ in Hz	NNNNNNNNN	
40-43	Blank	bbbb	
44-50	+LA in kilohertz	SNNNNNN	1
51-57	+LB in kilohertz	SNNNNNN	1
58-64	+LC in kilohertz	SNNNNNN	1
65-71	+LD in kilohertz	SNNNNNN	1
72	Bandwidth Rx. A Indicator	A	2
73	Bandwidth Rx. B Indicator	A	2
74	Bandwidth Rx. C Indicator	A	2
75	Bandwidth Rx. D Indicator	A	2
76	Mode of Operation Indicator	A	3
77	Front End Switch Indicator	A	4
78	Standard Time Mode Indicator	A	5
79-80	Blank	bb	

$A=$ Alphanumeric character, $N=$ number, $S=s i g n, b=b l a n k$, $F=$ numbers after decimal.

TABLE 9-4 (Cont.)
II. Mode 2 "L" Card

COLUMN	CONTENTS	FORMAT	NOTES
1	"L"	A	
2	ULO Number	N	
3	Mode=2	N	
4-6	Blank	bbb	
7-15	Fsource $/(\mathrm{M} * \mathrm{~N})$ in Hz	NNNNNNNNN	
16-17	Blank	bb	
18-24	\pm Ref. Freq. 1 Offset in MHz	SNN.FFF	6,7
25-31	\pm Ref. Freq. 2 Offset in MHz	SNN.FFF	6,7
32-43	Blank, or comment	12 b 's	
44-80	Same as Mode 1 "L" Card		

III. Mode 3 "L" Card

COLUMN	CONTENTS	FORMAT	NOTES
1	"L"	A	
2	ULO Number	N	
3	Mode=3	N	
4-17	Comment	14 b 's	
18-24	\pm Ref. Freq. 1 Offset in MHz	SNN. FFF	6,7
25-31	\pm Ref. Freq. 2 Offset in MHz	SNN. FFF	6,7
32-40	+Velocity Offset km/sec	SNNNNN.FF	7
41-43	Blank	bb	
44-80	Same as Mode 1 "L" Card		

TABLE 9-4 (Cont.)

NOTES:

1. The sign of the IF's should indicate the desired direction of the offset. ONLY LA and LC are checked on-line.
2. Bandwidth Indicators Are:

3. Mode of Indicators Are:

> 1 ---- 1 ea. 384 ch. A/C
> 2 ---- 2 ea. 192 ch. A/C
> 3 ---- 2 ea. 96 ch . and 1 ea. $192 \mathrm{ch} . \mathrm{A} / \mathrm{C}$
> 4 ---- 4 ea. 96 ch. A/C
> 5 --.- Not allowed
> 6 ---- Not allowed
> 7 ---- Not allowed
> 8 ---- 1 ea. $192 \mathrm{ch} . \mathrm{A} / \mathrm{C}$ double frequency
4. Front-end Switch Setting Indicators:

0 ---- Signal
1 ---- Reference
2 ---- Modulate
5. Standard Time Mode Indicators Are:

0 ---Use the digi-system settings on the A/C panel

$\frac{\text { BT }}{}$	$\underline{S T}$	$\frac{\text { RT }}{}$	$\frac{\text { C/D }}{}$
$1-2-10000$	04900	04900	010
$2---30000$	04700	04700	010
$3--10000$	08900	00900	010

TABLE 9-4 (Cont.)

These modes produce the following conditions:

	$\frac{\text { DT }}{}$	$\frac{\text { BT }}{}$	$\frac{\text { SW RATE }}{}$	DUTY
$1-\ldots \mathrm{sec}$.	10 ms.	1 Hz	$50 / 50$	
$2-\ldots$	10 sec.	30 ms.	1 Hz	$50 / 50$
$3-\ldots$	10 sec.	10 ms.	1 Hz	$90 / 10$

6. The sign of the reference frequency offsets should indicate the desired direction of the offset.
7. Decimal point must be punched in the proper column in the field followed by numeric characters.

NOTE: In all sign fields, a blank may be used to indicate positive values.

All error messages related to the ULO are of the following format:

ULO ERROR XX
where $X X$ is a one or two digit code whose meaning may be found in the following table:

```
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
98 Bands indicator in read-out of \(F_{0}, F_{1}, F_{2}\) was not
    equal to \(1,2,4\) or 8 .
99 Jitter error in read-out of \(\mathrm{F}_{0}, \mathrm{~F}_{1}\), or \(\mathrm{F}_{2}\) (Jitter
    means a variation of greater than 100 Hz was
    detected between 2 consecutive read-outs of
    \(\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}\) ).
```

TABLE 9-6
"E" FORMAT (DDP116 Computer)

COLUMN	CONTENTS	FORMAT
1	"E"	
$2-8$	C value $(\mathrm{kHz} /(\mathrm{M} * \mathrm{~N}))$	SNNNNNN
$9-10$	D value $(+1$ or -1$)$	SN
$11-12$	E value $(+1,0$, or -1$)$	SN
$13-14$	F value $(+1,0$, or -1$)$	SN

TABLE OF CONTENTS
Page
10. CONTINUUM OBSERVING 10-1
10.1. OBSERVING PROGRAMS 10-1
10.2. GAIN STABILIZATION AND CALIBRATION 10-2
10.3. SETUP CARDS: "S" CARDS 10-5
10.4. FEED OFFSET CARD: "F" CARD 10-6
10.5. TRAVELLING FEED RECEIVER OFFSETS: "B" CARD 10-6
10.6. AUTOMATIC L.O. CARD: "L" CARD 10-6
10.7. SOURCE CARDS 10-7
10.8. ON-LINE DATA REDUCTION 10-7
10.9. OFF-LINE DATA REDUCTION 10-9
TABLE OF FIGURES
Page
10-1 Sample H116 setup card decks for CONDAR or CONINT continuum programs 10-10

TABLE OF TABLES

Page

10-1 "S" Card Format, Setup for CONDAR, CONINT 10-11
10-2 "S" Card Format, Setup for FSAMP2 10-12
10-3 "S" Card Format, Setup for SAVG2 10-13
10-4 "F" Card Format, Offset Feed Data 10-14
10-5 "B" Card Format, Travelling Feed Box Offset 10-15
10-6 "L" Card Description, Automatic L.O. Control for CONDAR and CONINT10-16

10. CONTINUUM OBSERVING

10.1. OBSERVING PROGRAMS

The purpose of this chapter is to describe the on-line computer programs for continuum observing that run on the DDP116 computer, and the setup cards necessary to use them. The setup cards contain information that the computer uses to sample the correct analog-to-digital converters, to calibrate the data, and to command the L.0. system. The card input to the DDP116 computer consists of setup cards followed by source cards. Besides the telescope pointing and scheduling information on the source cards discussed in Chapter 8, there are a few additional parameters on source cards for continuum observing. This section gives a general description of the on-line observing programs.

For moderate sampling rates, the choice of observing program is governed by a decision to use the "standard" continuum receiver or the digital continuum receiver (DCR). The square law detectors in the autocorrelator are also used for continuum observations intended to calibrate line observations. The continuum receivers are described in Chapter 5, where it is pointed out that the "standard" designation should simply be read as "analog", to contrast it with the digital receiver. The digital receiver is equally "standard" in the sense of being used routinely. The program for the standard continuum receiver is called CONDAR. The program for the digital receiver is CONINT. The setup cards for the two programs are identical, but since many parameters are entered manually into the digital receiver, a number of fields in the setup cards are ignored in CONINT. The calibration modes are somewhat different between the two receivers. Data from the digital receiver are received by the DDP116 computer as already calibrated numbers. Data from the standard receiver are received as arbitrary units which must be calibrated in a later stage of analysis, which requires somewhat more care to make sure that there are enough measurements of the internal noise source to stabilize against gain fluctuations.

A fast-sampling program, FSAMP2, is intended for high data rates, such as in pulsar observations. 1, 2, or 4 receiver channels can be sampled at a 1 sidereal millisecond rate. 1, 2, 4, or 8 receiver channels can be sampled at multiples of 5 sidereal milliseconds. A large amount of computer tape is used by this program. At the 1 ms sampling rate a 2400^{\prime} tape lasts about 15 minutes, so arrangements should be made well in advance if more than 3 or 4 tapes are to be consumed. In the past, program FS6 was available for sampling 50 channels at a 30 millisecond rate, but it has fallen into disuse and is no longer maintained. A special effort on the part of the Green Bank programmers would be required to resurrect it, so the computer division should be contacted before considering its use. Also, there are no standard off-1ine programs for handling data from FSAMP2 or FS6, so observers should generally expect to provide their own data reduction programs. To assist this effort, 9-track telescope tape formats are given in Appendix A.

A 4096 channel Fabri-Tek signal averager is available for use at the 300 foot for synchronously integrating repetitive signals such as
those from pulsars. The complexity and variety of timing and synchronization schemes employable with this system are beyond the scope of this manual, however. There is an on-line program, SAVG2, which will record data sent from the signal averager onto a 9-track tape. Once a scan is initiated by an observing card, the signal averager controls the integration times and data transfers. The details of the electronics setup at the telescope for this type of program have been the result of close cooperation between pulsar observers and the Green Bank electronics staff. New observers should plan on considerable preparation before the observing begins. No standard off-line programs are supported for the signal averager tapes.

In spite of the differences between observing programs, the setup cards required are basically similar, and so this chapter is organized by type of card rather than by program, except for the first section, which discusses the difference between calibration modes of CONDAR and CONINT. The emphasis of this chapter is on the basic programs CONDAR and CONINT.

10.2. GAIN STABILIZATION AND CALIBRATION

The Digital Continuum Receiver Manual [57] contains a discussion of sources of unwanted signals in continuum observations, and various schemes for minimizing them. Parts of that discussion will be summarized in this section. The digital continuum receiver is quite flexible in terms of calibration and switching modes, but the standard continuum receiver is less flexible, and the available calibration modes for the standard receiver are also discussed. Although gain stabilization and gain calibration are separate problems, as discussed in the DCR manual, both topics are jumbled together in this section.

If receiver/detector systems were stable enough, continuum observations would be made in the total power mode, where the output of the detector is simply sampled during an observation, and calibration is done before or after the observation. No calibration noise source degrades the system temperature or decreases the integration time during an observation in the total power mode, making this the most sensitive observing technique, in principle. This technique has been seldom used 4 however, because it relies on a total system stability of a part in 10^{4} or better over time scales of an observation, typically a minute or more. On the other hand, receivers are more stable now that GaAsFET amplifiers are replacing parametric amplifiers, so total power observing should at least be considered, particularly for fast scanning of small sources. Programs to measure the fluxes of moderately strong (1 Jy) point sources with total power drift scans have been performed successfully at the 300 foot with certain receivers.

Both digital and standard continum receivers can operate in the total power mode. The digital receiver automatically computes the gain and system temperature between scans, and applies the last measured values to the data during a scan, sending calibrated data to the computer. With the standard receiver, the CONDAR program makes provision for specifying a timed cal scan, which is a separate calibration scan. The
parameters of a timed cal scan are set at the control panel. In the on-line analysis program, the calibration factors derived from a timed cal scan are applied to all subsequent total power scans until another timed cal scan is run.

Assuming that receivers and properties of the telescope/feed combination are not sufficiently stable to measure weak radio sources in the total power mode, a number of switching and gain stabilization schemes have been devised. As discussed more extensively in the DCR manual [57], different observing conditions call for different stabilization methods. For example, beam switching is commonly used for continuum observations above 3 GHz to compensate for atmospheric fluctuations. The other basic stabilization schemes are load switching and noise adding radiometry (NAR).

In noise adding radiometry, a strong noise signal is periodically injected into the receiver input, and the receiver output is integrated in signal and reference integrators, which are connected to the detector in synchronism with the noise source being off and on, respectively. The radiometer output is proportional to the signal integrator divided by the reference minus signal difference. The advantage of NAR over load or beam switching is that a lossy switch does not have to be put in the signal path ahead of the low noise amplifier. A disadvantage is that NAR only compensates for receiver gain fluctuations and does not cancel changes in receiver or sky noise temperature. If possible, the noise switching frequency should be faster than any gain instabilities in the receiver. If this is not possible, the switching frequency should at least avoid any narrowband features in the receiver's postdetection spectrum, such at the 1.2 Hz feature associated with the refrigeration systems used on NRAO receivers and the 60 Hz power line feature.

The maximum sensitivity NAR has a very strong noise source and spends about equal times on signal and reference. The DCR is programmed to provide equal signal and reference integration times for sensitive observations. Program CONDAR for the standard continuum receiver has a somewhat limited form of NAR conveniently provided for in a mode referred to as pulsed cal. In the pulsed cal mode, the calibration noise soyrce is turned on every $15^{\text {th }}$ integration period, beginning with the $3^{\text {rd }}$. The on-line analysis computer uses two integrations on each side of this noise spike as a baseline for the reference minus signal difference, and simply averages all of these differences, computing a single calibration factor for an entire scan, so the gain is no more stable than in total power. However, the calibration may be more accurate, as well as more convenient, since it is made during the actual observations rather than before or after. An observer could provide a more sophisticated analysis program but it would have to involve reading the 9-track telescope tape. In the pulsed cal mode, program CONDAR imposes 0.2 of blanking time at the beginning and end of the calibration period, and so the pulsed cal mode cannot be used with integration times shorter than 0.6 .

Load switching is one of the oldest methods of receiver stabilization in radio astronomy, and is often called Dicke switching after one
of its first users, R.H. Dicke. As the name implies, the receiver input is switched between the antenna feed and a stable resistive load. The radiometer output is the difference between signal and reference integrators. Immunity from gain fluctuations depends on a balance between signal and reference levels in their respective integrators. In the DCR this can be accomplished by a multiplicative factor applied to the reference integrator count. In the analog system, an attenuator would have to be switched into the reference path ahead of the synchronous detector. One penalty of using gain modulation to compensate for unequal reference and antenna temperatures is that the system will respond to variations in the noise temperature of the receiver behind the load switch in proportion to the compensating gain imbalance. In the worst case of a very hot reference load, any receiver temperature variation would show up as an equivalent synchronous detector output signal. Normally the gain imbalance is not required to be so severe, and receiver temperature is usually more stable than receiver gain. For some radiometers incorporating the DCR, balancing is accomplished manually by setting a fixed signal-to-reference ratio in the calculator. Radiometers which are automatically balanced by the DCR retain the signal-to-reference ratio measured just before a scan begins for the duration of that scan. The synchronous detector in the standard analog receiver is balanced manually.

In beam switching the receiver gain variation immunity advantages of load switching plus substantial cancellation of atmospheric noise fluctuations can be achieved by replacing the reference load with an offset antenna beam. Since the noise received by the front end will be very nearly equal in the signal and reference halves of the switch cycle the system is intrinsically nearly balanced. However, there are two sometimes conflicting balance conditions in a beam switched radiometer. To cancel atmospheric fluctuations, the amount of power received from the atmosphere in the general direction of the main beam should be the same in the signal and reference beams. If there were higher resistive or reflective losses in the reference beam path than in the signal beam path, the gain would want to be increased in the reference half-cycle to compensate for the loss in atmospheric noise power. On the other hand, higher resistive losses in the reference path would produce a higher noise input to the front end which would call for a gain reduction in the reference half-cycle to maintain receiver gain fluctuation immunity. One way around this conflict is to balance the gain for equal power from the atmosphere and balance the noise input level by adding noise or resistive attenuation to the signal beam path. However, it is often difficult to decide when the atmospheric noise contribution is equal in the two halves of the switch cycle.

To summarize the gain stabilization discussion, total power observing should be considered as a possibility with the newer receivers. If total power observing is not feasible, then beam switching is desirable at the higher frequencies, if multiple feed receivers are available, to reduce the effect of atmospheric fluctuations. NAR and load switching are available for single feed receivers. In the standard analog receiver setup, these switching schemes require a synchronous detector to be balanced manually and sampled by the DDP116 computer. Using the DCR as a digital synchronous detector, automatic balancing is available in some
setups. The $D C R$ is rather more flexible in setting up a gain stabilization scheme, and has the advantage that its integrators are ideal integrators rather than RC integrators with a finite time constant.

To summarize the gain calibration discussion, gain calibration with the DCR is necessarily but automatically taken care of as data is acquired and before data is passed to the DDP116 computer. Further processing is possible in some switched modes by passing continuously computed gain data to the DDP116 for recording on tape. On the other hand, observations with the standard analog receiver are calibrated in the on-line analysis computer or off-line. In this case one must keep in mind that the only monitor of system performance may be the calibrations specifically invoked and recorded on tape. The calibrations must therefore be frequent enough to correct for receiver instabilities and readjustments. For this reason, and the fact that the data reduction is somewhat simplified, the pulsed cal mode is most frequently used, where possible. The alternative is to run a separate timed cal scan, preferably before an observation rather than after, for convenience in analysis, and before and after for accuracy.

10.3. SETUP CARDS: "S" CARDS

For the continuum programs, the setup cards are used to specify the channels in the analog-to-digital converter to be sampled and to pass along some information to the automatic L.0. and the off-line programs by way of the tape header. There must be one " S " card for each receiver channel.

The "S" card format for CONDAR and CONINT is shown in Table 10-1. Column 31 contains an "X" on the first card only and is blank on all others. The first channel to be read from the analog-to-digital converter is identified in columns 32-33, with these columns blank on subsequent " S " cards. All of the channels to be read must be in a continuous sequence, and the number to be read is controlled by the number of " S " cards (up to 8). The observer should consult the receiver engineer in charge or the receiver installation sheet to be certain which channels the receiver is connected to. "S" card data is associated with the A / D channels in the order of the cards in the setup deck, i.e. the data on the second "S" card are associated with the A/D channel immediately following that specified on the first "S" card. Since there is no numbering on the cards, it is important not to shuffie the "S" cards in the input deck. Sample setup decks for CONDAR or CONINT are shown in Figure 10-1.

The declination pointing coefficient identifier (see Section 8.1.2 and Table 8-3) is punched in columns 6 and 7 . This code enables the H316 computer to select the proper coefficients in the decination pointing equations for the receiver in use. The pointing code (columns 34-35) specifies which of the beam offsets on the feed offset card ("F" card) apply to the channel represented by the "S" card. The observing wavelength in centimeters (columns $36-39$) is used by the off-line programs to scale the beam offsets in beamwidths. The noise source value (columns 40-45) is used to apply a calibration to the data off-
line or in the on-line analysis computer. A decimal point must be punched in column 43.

If the digital continuum receiver is being used, then the A / D channel information and noise source values on the " S " cards are ignored, and must be entered manually at the calculator keyboard.

The information on the setup cards for FSAMP2 is basically the same as on those for CONDAR and CONINT, except that the observing wavelength is omitted. The " S " card format for FSAMP2 is given in Table 10-2. A decimal point must be punched in column 39.

Only one setup card is needed for program SAVG2, and the only things it contains are an " S " in column 1, the observer name(s) in columns 11-30, and the synthesizer and front end multipliers as shown in Table 10-3.

> 10.4. FEED OFFSET CARD: "F" CARD

The feed offset card, or " F " card, specifies positions of beams in multi-feed systems with respect to the axis of receiver box rotation in polar coordinates, ρ and θ. These are in decimal degrees with θ measured eastward from north when the box is at zero rotation angle as indicated at the control console. The sole purpose of the " F " card is to provide beam position information to the off-line programs via the telescope tape header. It has no effect on the actual position of the receiver on the telescope. Table 10-4 shows the " F " card format along with nominal feed offsets for multi-feed receivers currently in use on the 300 foot. Trailing zeroes must be punched on the "F" card.

10.5. TRAVELLING FEED RECEIVER OFFSETS: "B" CARD

The travelling feed box ($0.3-1 \mathrm{GHz}$) allows two feeds to be installed for observations at $300-500 \mathrm{MHz}$ or $500-700 \mathrm{MHz}$, and $700-$ 1000 MHz . The two feeds are physically offset from center by ± 34 inches, so that the whole box must be moved to get either feed on axis. The $300-700 \mathrm{MHz}$ receiver is located East on the box (-34 inches), and the $700-1000 \mathrm{MHz}$ receiver is located West on the box (+34 inches). These offsets are entered on a " B " card in the observer's setup deck for the DDP116 computer, which passes the value to the H316. The "B" card format is shown in Table 10-5.

10.6. AUTOMATIC L.0. CARD: "L" CARD

With most continuum observations, only one L.O. frequency is used during an entire run, with the L.0. settings made in the manual mode. However, automatic L.O. control is available through an "L" card similar to the mode 1 card described in Section 9.4. In this mode, frequency synthesizer settings are specified directly. The use of an "L" card may be desirable, even in the manual setting mode, to minimize the chance of a discrepancy between desired and actual synthesizer settings. The
format for the continuum "L" card is shown in Table 10-6. FREF 1 and FREF 2 (columns 19-39) usually have no use in a continuum program. F is the frequency synthesizer setting and is calculated from the desired sky frequency and the L.O. multipliers M and N, taken from the " S " cards. In CONDAR and CONINT, $F_{\text {. }}$ is continuously checked with a frequency counter to see that the synthesizer output agrees with the specified value. A discrepancy results in a ULO error message at the DDP116 teletype, but data taking is not affected. ULO error codes and their meanings are listed in Table 9-5. In the fast sampling program FSAMP2 and the signal averager program SAVG2 there is no frequency checking. In the fast sampling program FSAMP2 there cannot be an "L" card. The presence of an " L " card in the input deck will result in an error. Programs CONDAR and CONINT will support the presence of an "E" card, to allow automatic setting of the L.0. for up-converter receivers. The "E" card is very rarely used in continuum programs, and so the discussion of the "E" card in Section 9.5 and Table $9-6$ is not repeated in this chapter.

10.7. SOURCE CARDS

Besides the telescope pointing and scheduling information on the source cards described in Chapter 8, there are a few additional parameters pertinent to continuum observations.

In CONDAR, the pulsed cal calibration mode is invoked by a blank or " 0 " in source card column 54. This causes the calibration noise source to be turned on every $15^{\text {th }}$ integration period beginning with the third. Since there is 0.2 of blanking time at the beginning and the end of the calibration period, the timed cal mode cannot be used with integration times less that 0.6 . The timed cal mode is invoked by a " 1 " in column 54. This is a single shot calibration sequence, the total duration of which is set on the telescope control console. If, for example, a 30^{s} timed cal duration is set with a 1.0 integration time, the computer will start taking data with the noise source off at the start time on the observing card. After 15^{s} the noise source will be turned on for 30^{s}, then off again for 15^{s}, at which time the scan will end even if the stop time has not been encountered. A separate source card must be used for the timed calibration. It is convenient to run a timed cal scan before a total power scan. The total power mode, with no calibration superposed on the data, is invoked by a 2 in source card column 54. The console switch for calibration has no effect in card control except that it cannot be left in the MANUAL position.

Data taking by the continuum programs can be delayed until the position error in declination is less than 20 arcseconds by placing a " 1 " in column 56.

10.8. ON-LINE DATA REDUCTION

The on-line MODCOMP analysis computer is available to the observer during the course of scheduled observations. Although data from all programs is recorded on 9 -track telescope tapes for off-line reduction,
the data are simultaneously transmitted from the DDP116 computer to the MODCOMP for inspection and reduction. The program for analyzing data is CONDAR, which is completely described in a separate manual. The data retrieval and data manipulation is very much the same as it is in POPS, the spectral line analysis program.

The number of data points in a continuum scan depends on the sample rate and the scan length, and is arbitrary. However, there is a maximum number of data points transferred from the DDP116 computer to the MODCOMP in a single scan. The maximum number of data points is 1190 . This amounts to $19^{\mathrm{m}} 50^{\mathrm{s}}$ at a 1 Hz sample rate. All of the data is recorded on tape, but only this number of points can be examined online. The analysis disk can hold 1560 continuum scans of this maximum length, and more if the scans have fewer points. When the disk storage area is full, storage "wraps around" so that the most recent scan overwrites the data at the front of the area. It is useful to estimate how often the disk will fill up in those cases where the observer is trying to reduce all of the data on-line so that no data is overwritten before it is reduced. It is not a disaster if some data is overwritten, but the procedure for recovering from this situation is somewhat cumbersome. The recovery procedure involves reading the telescope tape onto the MODCOMP in the Jansky Lab, which is a clone of the one at the telescope. This may involve recalling tapes from the library in Charlottesville, resulting in further delay.

Data reduced on-line can be saved in a number of ways. Some observers take away only hard copies of scans reduced with their own custom-made procedures, which print all of the desired information on the screen. The parameters of Gaussian fits to the data can be stored at the end of a disk area set aside for that purpose by invoking the GPUNCH verb in CONDAR. This area can be copied onto a tape. A program in Charlottesville will take such a tape and produce punched cards for the observers' own reduction programs. Processed scans themselves can be saved on a KEEP tape for transport to the off-line analysis system in the Jansky Lab or elsewhere. The KEEP area on disk and KEEP tapes are a way to store and transport reduced or partially reduced scans, in contrast to telescope tapes, which record raw data record by record. The KEEP command in CONDAR is fully described in the CONDAR manual. Basically, the CONDAR analysis program can read data from a disk area for processing. An auxiliary disk area, the KEEP area, can be written sequentially from CONDAR. The KEEP area can be used to store completely reduced data, intermediate steps, partial averages, or simply to keep only scans instead of individual records. The KEEP area can be dumped onto a tape and subsequently read into the data file for further processing. The KEEP area can hold 143 scans, and must be dumped to tape when it is full. The KEEP tape format can be found in the CONDAR manual.

Only CONDAR/CONINT data can be examined by the CONDAR analysis program. There are no supported programs -- on-line or off-line -- for the analysis of FSAMP2 or SAVG2 data.

10.9. OFF-LINE DATA REDUCTION

A continuum data reduction system called CONDARE is available for use on the IBM 4341 computer in Charlottesville. This system is described in its own manual. For observers who would like to work directly with the telescope tapes, the formats for tapes written by CONDAR, CONINT, FSAMP2, and SAVG2 are given in Appendix A. No matter how the data are reduced, consider the fact that the receiver outputs written on tape by CONDAR, FSAMP2, and SAVG2 are in arbitrary units, and some reference calibrations must also be put on the same tape. Since the output of the A / D converters contains fewer bits than a computer word, the data words are padded out so that the least significant bit is zero when the calibration noise source is off, and one when the calibration noise source is on. Of course the data written on tape by CONINT is already calibrated. Telescope tapes are normally written at 1600 BPI but the MODCOMP can also write 800 BPI tapes, if desired.

TABLE 10-1
SETUP CARD FORMAT - CONDAR, CONINT

COLUMN	CONTENTS	FORMAT
1	"S"	A
2-5	Blanks	bbbb
6-7	Pointing Coefficient Identifier	AA (Table 8-3)
8-10	B1anks	bbb
11-30	Comment	20A's
31	"X" (First card only - must be blank on subsequent cards)	A
32-33	Starting Multiplexer Channel (First Card only, blank on all others)	NN
34-35	Pointing Code	NN
36-39	Lambda (in centimeters)	nNNN
40-45	Noise Tube Value	NNN. FF
64-65	Multiplier M (Synthesizer)	NN
66-67	Multiplier N (Front End)	NN
68-80	Blank	bbb...

TABLE 10-2
SETUP CARD FORMAT-FSAMP2 (DDP116 Computer)

COLUMN	CONTENTS	FORMAT
1	"S"	A
2-5	B1ank	bbbb
6-7	Pointing coefficient identifier	AA (Table 8-3)
8-10	Blank	bbb
11-30	Comment	20A
31	"X" on first card Blank on all others	A
32-33	First channel of A / D converter to be sampled. Blank on all others.	NN
34-35	Pointing code for channel	NN
36-41	Noise source value for channel	NNN. FF
42-80	Blank	bbb...

TABLE 10-3
SETUP CARD-SAVG2 (DDP116 Computer)

COLUMN		CONTENTS
1	" $S^{\prime \prime}$	FORMAT
$2-5$	Blanks	A
$6-7$	Pointing coefficient identifier	AA (Table 8-3)
$8-10$	Blanks	bbb
$11-30$	Comment	Synthesizer Multiplier (M)
$31-32$	Front-End Multiplier	NN
$33-34$	Blank	NN
$35-80$		bbb...

NOTE" One "S" card only is required to make this program operate. No "F" card is required since only one input channel is allowed.

TABLE 10-4
"F" CARD FORMAT (DDP116 Computer)

TABLE 10-5
"B" CARD FORMAT (DDP116 COMPUTER)

COLUMN	CONTENTS	FORMAT
L	"B"	A
$2-7$	Blanks	bbbbbbbb
$10-16^{1}$	Feed offset (inches)	SNN.FFF

NOTES:

1. A plus-offset defines the feed physically offset West on the traveling feed carriage.

A minus-offset defines the feed physically East on the feed carriage.

COLUMN	CONTENTS	FORMAT
1	"L"	A
2	ULO Number	N
3	Mode $=1$	A
4-6	Blank	bbb
7-15	F_{o} in Hz	NNNNNNNN
16-18	Blank	bbb
19-27	FREF1 in Hz	NNNNNNNNN
28-30	Blank	bbb
31-39	FREF2 in Hz	NNNNNNNN
40-80	Blank	bbb...
NOTE: Modes 2 and 3 are not usable due to the lack of rest frequency input.		

REFERENCES

[1] Sramek, R., 14 Sept. 1972, "Calibration of 300 ' telescope at 6 cm."
[2] Westerhout, G., Mader, G., and Harten, R., August 1973, "Beam characteristics of the resurfaced 300 -foot telescope at 21-cm."
[3] Willis, A. G., 24 Nov. 1971, "Observations of galactic supernovae remnants."
[4] Ahlquist, J. E., and Fisher, J. R., August 1972, "Pointing and aperture efficiency studies of cooled $21-\mathrm{cm}$ receiver."
[5] Davis, M. M., 25 Oct. 1971, "300-foot pointing in right ascension," and 14 Sept. 1971, "Improved 300-foot pointing in declination." (Error in first paper.)
[6] Fisher, J. R., 16 January 1974, "Calibration of three low frequency receivers on the 300 -foot (110-240, 250-500 and $740-1000 \mathrm{MHz}$)."
[7] Weinreb, S., 1963, "A Digital Spectral Analysis Technique and Its Application to Radjo Astronomy," Technical Report 412, M.I.T. Research Laboratory of Electronics, Cambridge, Mass.
[8] Manchester, R. N., 31 Aug. 1972, "Pointing corrections for 300-foot travelling feed."
[9] Greenhalgh, J. P., 14 Aug. 1972, "300-ft pointing."
[10] Velusamy, T., 1973, Ph.D. Thesis, Univ. of Md., "Polarization of supernova remnants at centimeter wavelengths."
[11] Baars, J. W. M., August 1966, EDIR No. 57, "Characteristics of the paraboloid reflector antenna."
[12] Wilkinson, D. T., June 1972, Letter on $250-500 \mathrm{MHz}$ feed.
[13] Manchester, R. N., March 1971, "Polarization of pulsars."
[14] Dolan, J. L., January 1973, "National radio quiet zone printout."
[15] Westerhout, G. and Wendlandt, H. U., June 1970 and August 1973, "The receiver baseline of the $21-\mathrm{cm}$ line receiver as a function of frequency for the 300 -foot telescope."
[16] Westerhout, G., Wendlandt, H. U., and Harten, R. H., May 1973, "A method for accurately compensating for the effects of the error beam of the NRAO 300 -ft radio telescope at 21-cm wavelength."
[17] Westerhout, G., July 1972, "RA and δ pointing curve for feed 4 of four-feed $21-\mathrm{cm}$ system."
[18] Davis, M. M., April 1972, "300-foot system performance at 6, 11 , and $21 \mathrm{~cm} . "$
[19] Willis, A. G., December 1971, "Preliminary 300-foot instrumental polarization at $11 \mathrm{~cm} . "$
[20] Felli, M. and Churchwell, E., February 1969, "Pointing and calibration with the 300 -foot four-feed system."
[21] Velusamy, T., June 1971, "Extended sources in the direction of pulsars."
[22] Ball, D. and Westerhout, G., June 1971, "Pointing corrections for the scalar feed in the 300 -foot telescope."
[23] Willis, A. G., Jan. 1971, "W22 and D21."
[24] Velusamy, T. and Kundu, M., Feb. 1971, "Distribution of brightness and polarization in SNR's."
[25] Sutton, J., July 1969, "First observations with the travelling feed."
[26] Sutton, J., July 1969, "100-200 MHz cavity feed."
[27] Sutton, J., June 1969, "Pointing of the travelling feed."
[28] Heiles, C. and Hoffman, W., August 1968, "The beam shape of the NRAO $300-\mathrm{ft}$ telescope and its influence on $21-\mathrm{cm}$ line measurements."
[29] Kesteven and Bridle, 1 February 1974, " 11 cm performance data -- 300' telescope."
[30] Fisher, J. R., 4 February 1974, "Pointing corrections."
[31] Shalloway, A. M., Mauzy, R. and Greenhalgh, J., 1972, "Correlation Receiver Model III: Operational Description," NRAO EDIR No. 125.
Vance, B. Addendum to EDIR 125 "Sync Input and Observing Techniques."
[32] Giuffrida, T and Haschick, A., March 1974, " 870 MHz traveling feed measurements."
[33] Brundage, W. D., November 1971, "300-foot telescope traveling feed and Sterling Mount control system", EDIR \#111.
[34] Kapitzky, J. E., June 1974, "Calibration curves for 11 cm system."
[35] Fisher, J. R., April 1975, "Declination pointing corrections."
[36] Bridle, A. H., June 1974, "Summary of apparent ATS effects on observations at 300-foot on evening of 17 June 1974."
[37] Lockman, F. J., 1974, "HPBW and efficiency at $613 \mathrm{MHz} . "$
[38] Smith, S. C., May 1975, "Feed Leg Guy Cables and Alignment of the traveling feed - 300-foot radio telescope."
[39] July 1975, "Added weight at focal point - 300-foot."
[40] Roberts, M. S. and Whitehurst, R., 1975, Ap. J. (Beam pattern of cooled 2l-cm feed).
[41] Findlay, J. W., Sept. 1962, "The 300-foot transit radio telescope."
[42] Stocke, J., June 1975, "11 cm pointing errors."
[43] Moore, C., Feb. 1974, "Interference between telescopes."
[44] Fisher, J. R., Dec. 1973, Progress report on the 300-foot interference search."
[45] Dolan, J. L., Jan. 1975, "300-foot surveillance receiver description."
[46] Moore, C. R. and Dolan, J. L., May 1975, "Interference potential for radio astronomy observations at Green Bank, West Virginia", EDIR \#159.
[47] Bridle, A. H., Davis, M. M., Fomalont, E. B., and Lequeux, J. 1972, A. J., 77, 405.
[48] Kellermann, K. I., Pauliny-Toth, I. I. K., and Williams, P. J. S. 1969, Ap. J., 157, 1.
[49] Fomalont, E. B. and Moffet, A. T. 1971, A. J. 76, 5.
[50] Porcas, R., July 1975, "AIL 6 cm pointing and gain measurements."
[51] Hallman, J. R., July 1978, "A digital radiometer", EDIR 非188.
[52] Fisher, J. R., Sept. 1978, "Supplement to EDIR \#188."
[53] Crane, P. C., Oct. 1981, "The performance of the 300 -foot telescope at 1400 and 4760 MHz ", Eng. Memo No. 139.
[54] Crane, P. C., Oct. 1981, "Calibration of the Sterling Mount on the 300 -foot telescope at 1400 MHz , Eng. Memo No. 145.
[55] Crane, P. C., Oct. 1981, "Pointing calibration of the new traveling feed on the 300 -foot telescope", Eng. Memo No. 144.
[56] Fisher, J. R., and Payne, H. E., July 1982, "Measurements of North-South Focal Point Motion and Astigmatism of the 300-foot Telescope", Eng. Memo No. 148.
[57] Fisher, J. R., Sept. 1982, "Digital Continuum Receiver Manual: Partial Rough Draft."

References to reports of 300 -foot radiometer parameters on file with the "Friend of the 300 -foot." Numbers refer to bibliography.									
Parameter Radiometer	${ }^{\text {E }}$ A	$\varepsilon_{\text {B }}$	Beam width and shape	Sidelobes	Pointing	Baselines	Coma lobe	BDF	Polarization
$50-80 \mathrm{MHz}$									
110-240 MHz	6,25,26								
250-500 MHz	6,12,13				6,8,9				
500-750 MHz	37		37						
740-1000 MHz	6				6,32				
Cooled 21 cm	4		4,40,53	40	4,54			4	
21 cm Zeeman									
21 cm scalar					22				
21 cm four feed	2,23	2	2	2	17,21	15			
11 cm three feed	3,24,29,34				3,29,30,42				3,19
6 cm AIL Dual beam	1,50				1,50				
6 cm AIL Orthog									
6 cm TRG									
General	16	16		16					

Focus: $\quad 21 \mathrm{~cm} 4$ feed [21,23] 21 cm scalar [22]

TABLE OF TABLES

Page

A-1 Format 55 - MPOWR3 A-2
A-2 Format 56 - SPOWR3 A-3
A-3 Format 57 - TPOWR3 A-4
A-4 Format 61 - CONDAR A-7
A-5 Format 26 - FSAMP2 A-9
A-6 Format 62 - CONINT A-11
A-7 Format 51 - SAVG2 A-14

APPENDIX A

NINE-TRACK TELESCOPE TAPE FORMATS

For the benefit of observers who choose to or must write their own data reduction programs, the 9 -track telescope tape formats are given in this appendix. The individual word formats are described after the last tape format table, and notes unique to particular data groups are included with each tape format. As new features are added to the on-1ine programs, It may be necessary to change tape formats, so the programmer should be sure he has the latest one. Hopefully, they will not have to be changed more than once every year or two.

TABLE A-1
FORMAT 55, MPOWR3

WORD	FORMAT	CONTENTS
1	2	*Scan Number
2	2	Zero
3-12	1	Observer Name
13-18	1	Source Name
19	2	Zero
20-21	$5 \mathrm{BB17}$	Julian Date (-2400000 Days)
22	6B1	Orientation Angle (Turns)
23	6B1	Orientation Angle (Turns)
24-25	4	*L.S.T.
26-27	4	*E.S.T.
28	2	*Month
29	2	*Day
30	2	*Year
31	2	Type of Observing (55)
32	2	*Observer Number
33	2	Integration Period (.1 Sec)
34	2	Telescope
35	2	Position Code
36	2	Zero
37-38	5BB15	R.A. Rate (Epoch)
39-40	5BB15	Dec. Rate (Epoch)
41-42	5BB15	Epoch Observed In
43	6B10	Focus (Millimeters)
44	6B10	Focus (Millimeters)
45-46	4	Leve1 Reading
47-48	4	*R.A. Indicated
49-50	4	*Dec. Indicated
51-83	Note 1	Rx. A Descriptor Block
84-116	Note 1	Rx. B Descriptor Block
117-149	Note 1	Rx. C Descriptor Block
150-182	Note 1	Rx. D Descriptor Block
183-214	Note 2	L.O. Data Block
215-598	Note 3 (6B3)	Signal Spectrum
599-982	Note 3 (6B3)	Reference Spectrum
983-998	Note 4	Signal Power Counters
999-1014	Note 4	Reference Power Counters
1015-1030	4	Chan. Zero Words
1031-1034	4	Chan. 385 Words
1035-1066	Note 5	A/C Control Words (1572-1603)
1067-1068	4	Spectral Scaling Factor
1069-1095	----	Reserved Words

* At dump from autocorrelator

See notes at the end of the TPOWR3 format.

TABLE A-2
FORMAT 56, SPOWR3

WORD	FORMAT	CONTENTS
1	2	*Scan Number
2	2	Zero
3-12	1	Observer Name
13-18	1	Source Name
19	2	Zero
20-21	5BB17	Julian Date (-2400000 Days)
22	6B1	Orientation Angle (Turns)
23	6B1	Orientation Angle (Turns)
24-25	4	*L.S.T.
26-27	4	*E.S.T.
28	2	*Month
29	2	*Day
30	2	*Year
31	2	Type of Observing (56)
32	2	*Observer Number
33	2	Integration Period (.1 Sec)
34	2	Telescope
35	2	Position Code
36	2	Zero
37-38	5BB15	R.A. Rate (Epoch)
39-40	5BB15	Dec. Rate (Epoch)
41-42	5BB15	Epoch Observed In
43	6B10	Focus (Millimeters)
44	6B10	Focus (Millimeters)
45-46	4	Level Reading
47-48	4	*R.A. Indicated
49-50	4	*Dec. Indicated
51-83	Note 1	Rx. A Descriptor Block
84-116	Note 1	Rx. B Descriptor Block
117-149	Note 1	Rx. C Descriptor Block
150-182	Note 1	Rx. D Descriptor Block
183-214	Note 2	L.O. Data Block
215-1750	4 Note 3	Signal and Reference Spectra
1751-1782	4 (B30) Note 4	Power Counters
1783-1798	4	Chan. Zero Words
1799-1802	4	Chan. 385 Words
1803-1834	Note 5	A/C Words 1572-1603
1835-1836	4	Spectral Scaling Factor
1837-1850	----	Reserved Words

* At midpoint in time of the integration

See notes at the end of TPOWR3 format.

TABLE A-3

FORMAT 57, TPOWR3

WORD	FORMAT	CONTENTS
1	2	*Scan Number
2	2	Off Scan Number
3-12	1	Observer Name
13-18	1	Source Name
19	2	Zero
20-21	$5 \mathrm{BB17}$	Julian Date (-2400000 Days)
22	$6 \mathrm{B1}$	True Orientation Angle (Turns)
23	6B1	True Orientation Angle (Turns)
24-25	4	*L.S.T.
26-27	4	*E.S.T.
28	2	*Month
29	2	*Day
30	2	*Year
31	2	Type of Observing (57)
32	2	*Observer Number
33	2	Integration Period (.1 Sec.)
34	2	Telescope
35	2	Position Code
36	2	Zero
37-38	5BB15	R.A. Rate (Epoch)
39-40	5BB15	Dec. Rate (Epoch)
41-42	5BB15	Epoch Observed In
43	6B10	True Focus (Millimeters)
44	6B10	Ind. Focus (Millimeters)
45-46	4	Level Reading
47-48	4	*R.A. Indicated
49-50	4	*Dec. Indicated
51-83	Note 1	Rx. A Descriptor Block
84-116	Note 1	Rx. B Descriptor Block
117-149	Note 1	Rx. C Descriptor Block
150-182	Note 1	Rx. D Descriptor Block
183-214	Note 2	L.0. Data Block
215-982	4 Note 3	Spectrum
983-998	4 (BB30) Note 4	Signal Power Counters
999-1014	4 (BB30) Note 4	Reference Power Counters
1015-1030	4	Chan. Zero Words
1031-1032	4	Chan. 385S Words
1033-1034	4	Chan. 385R Words
1035-1066	Note 5	A/C Words 1572-1603
1067-1068	4	Spectral Scaling Factor
1069-1095	----	Reserved Words

* At midpoint in time of the integration

NOTES: For Formats (55, 56, 57)

1. Format of Rx. Descriptor Block

WORD	FORMAT	CONTENTS
1	2	Pointing Code
2	2	Calibration Code
3	2	Inversion Indicator
4-5	5BB15	Noise Tube
6-7	5BB30	Rest Freq. (Hz)
8-16	1	Center Freq. Formula
17-18	5BB30	Center Freq./M*N (FSKY)
19-20	5BB19	Radial Velocity of System
21	$2^{(\text {(BYTE1 }}$ (BYTE2 $=$ REF) ${ }^{\text {DEF }}$)	
22-23	4	*Apparent R.A.
24-25	4	*Apparent Dec
26-27	4	*1950 R.A.
28-29	4	*1950 Dec
30-31	4	RHO for Feed
32-33	4	Theta for Feed

2. L.O. Data Block - For Formats (55, 56, 57)

WORD	FORMAT	CONTENTS	
1-2	5BB30	L1	Signal L.0. (Hz)
3-4	5BB30	L1F1	First Ref. L.0. (Hz)
5-6	5BB30	L1F2	Second Ref. L.O. (Hz)
7	2B15	M	Front End Multiplier
8	2 B 15	N	Syn. Multiplier
9-10	5BB30	LA	I.F. Offsets
11-12	5BB30	LB	I.F. Offsets
13-14	5BB30	LC	I.F. Offsets
15-16	5BB30	LD	I.F. Offisets
17-18	5BB30	L2	Second L.0. Data
19-20	5BB30	L2F1	Second L.0. Data
21-22	5BB30	L2F2	Second L.0. Data
23	2B15	M2	Second L.0. Data
24	2B15	N2	Second L.0. Data
25-26	5BB30	L3	Third L.O. Data
27-28	5BB30	L3F1	Third L.0. Data
29-30	5BB30	L3F2	Third L.0. Data
31	2B15	M3	Third L.O. Data
32	2B15	N3	Third L.0. Data

3. 384 channels of relative spectral intensities are contained here. In MPOWR3 and SPOWR3 the set of signal channels appear first followed by 384 reference channels. The spectral intensities in MPOWR 3 are contained in single 16 bit interger words. In SPOWR3 and TPOWR3, however, 2-16 bit words are used in series and must be combined off-line to produce a $32-b i t$ integer. (See the sample program.)
4. The power counters are integrated for the period of time indicated in word 33. They are recorded in the same order as A/C words 770-785 and 1556-1571 as described in Appendix I of ref. [31].
5. See Appendix I of ref. [31] for the order and format of these words.

TABLE A-4
FORMAT 61, CONDAR

WORD	FORMAT	CONTENTS
1	2	Scan Number
2	2	Zero
3-12	1	Observer Name in ASCII
13-18	1	Source Name in ASCII
19	2	Number of Channels
20-21	5BB17	Julian Date (-2400000 Days)
22	6B1	Orientation Angle (Turns)
23	6B1	Orientation Angle (Turns)
24-25	4	**L.S.T.
26-27	4	**E.S.T.
28	2	Month
29	2	Day
30	2	Year
31	2	Type of Observing (61)
32	2	Observer Number
33	2	Integration Period (.1 Sec)
34	2	Telescope Number
35	2	Position Code
36	2	Calibration Mode
37-38	5BB15	RA Rate (Epoch Observed)
39-40	5BB15	Dec Rate (Epoch Observed)
41-42	5BB15	Epoch Observed In
43	6B10	Focus (Millimeters)
44	6B10	Focus
45	2	Zero
46	2	Subblock Counter
47-48	4	**Indicated R.A.
49-50	4	**Indicated Dec
51-66	Note 1	Rec. Descriptor Block 1
67-82	Note 1	Rec. Descriptor Block 2
83-98	Note 1	Rec. Descriptor Block 3
99-114	Note 1	Rec. Descriptor Block 4
115-130	Note 1	Rec. Descriptor Block 5
131-146	Note 1	Rec. Descriptor Block 6
147-162	Note 1	Rec. Descriptor Block 7
163-178	Note 1	Rec. Descriptor Block 8
179-184	5BB30	L.O. Data (Hertz)
185	2	Multiplier M
186	2	Multiplier N
187-188	4	Level Reading
189-192	2	Reserved
193-204	Note 2	Data Subblock 1
205-216	Note 2	Data Subblock 2
589-600	Note 2	Data Subblock 34

** Center of integration

Note 1: (Format 61) Receiver Descriptor Block (At center of integration of lst data point of record)

WORD	FORMAT	CONTENTS
		2
2	2	Pointing Code
$2-4$	$5 B B 15$	Lamda (centimeters)
$5-6$	4	Noise Tube Value
$7-8$	4	*Apparent RA
$9-10$	4	*Apparent Dec
$11-12$	4	*1950 RA
$13-14$	4	*1950 Dec
$15-16$		RHO

* Stored in first descriptor block only at the time of moving header for record. This corresponds to words 47-48 and 49-50 of header less pointing corrections.

Note 2: Data Subblock

WORD	FORMAT		CONTENTS
	$4-2$	4	$* *$ Observed H Coordinate
$2-4$	2	$* *$ Observed V Coordinate	
5	2	Radiometer 1 Output	
6	2	Radiometer 2 Output	
7	2	Radiometer 3 Output	
8	2	Radiometer 4 Output	
9	2	Radiometer 5 Output	
10	2	Radiometer 6 Output	
11		Radiometer 7 Output	
12		Radiometer 8 Output	

TABLE A-5
FORMAT 26, FSAMP2

WORD	FORMAT	CONTENTS
1		
2	2	Scan
$3-12$	1	Zero
$13-18$	1	Observer Name in ASCII
$19-32$	1	Source Name
33	3	Blanks
34	3	\# of Channels
35	4	Orientation Angle
$36-37$	4	L.S.T. first sample in block
$38-39$	2	E.S.T. first sample in block
40	2	Month
41	2	Day
42	2	Year
43	2	Type of Observing
44	2	Observer Number
45	2	Tample Rate in Milliseconds
46	2	Telescope
$47-49$	4	Subscan Counter
50		R.A. Indicated
$51-52$		Dec. Indicated
$53-54$		
$55-1078$	2	See next page

Layout of Words 55-1078

This layout varies according to the number of channels being recorded. The table below illustrates the variation. The entries give the channel number and the sample number.

WORD	1 Channel Recording	2 Channe 1 Recording	4 Channel Recording	8 Channel Recording
55	1/1	1/1	1/1	1/1
56	1/2	2/1	2/1	2/1
57	1/3	1/2	3/1	3/1
58	1/4	2/2	4/1	4/1
59	1/5	1/3	1/2	5/1
60	1/6	2/3	2/2	6/1
61	1/7	1/4	3/2	7/1
62	1/8	2/4	4/2	8/1
63	1/9	1/5	1/3	1/2
65	1/11	1/6	3/3	3/2
66	1/12	2/6	4/3	4/2
	-	-	-	-
	-	-		
1075	1/1021	1/511	1/256	5/128
1076	1/1022	2/511	2/256	6/128
1077	1/1023	1/512	3/256	7/128
1078	1/1024	2/512	4/256	8/128

For example, for 2 channel recording, word 65 contains the sixth sample of the first channel.

The program requires that the number of channels be $1,2,4$ or 8 .

TABLE A-6
FORMAT 62, CONINT

WORD	FORMAT	CONTENTS
1	2	Scan Number
2	2	Zero
3-12	1	Observer Name (ASCII)
13-18	1	Source Name (ASCII)
19	2	Number of Channels
20-21	5BB17	Julian Date (-2400000 days)
22	6B1	Orientation Angle (Turns)
23	6B1	Orientation Angle (Turns
24-25	4	L.S.T.
26-27	4	E.S.T.
28	2	Month
29	2	Day
30	2	Year
31		Type of Observing (62)
32	2	Observer Number
33	2	Integration Period (Milliseconds)
34	2	Telescope Number
35	2	Position Code
36	2	Calmode (No-Cal)
37-38	5BB15	RA Rate
39-40	5BB15	Dec Rate
41-42	5BB15	Epoch of Observation
43	6B10	Focus
44	6B10	Focus
45	2	Posparm 8
46	2	Subblock Counter
47-48	4	Indicated R.A.
49-50	4	Indicated Dec.
51-66	Note 1	Rec. Descriptor Block 1
67-82	Note 1	Rec. Descriptor Block 2
83-98	Note 1	Rec. Descriptor Block 3
99-114	Note 1	Rec. Descriptor Block 4
115-178	Note 2	Digital Receiver Header Info.
179-184	5BB30	L.O. Data (Hertz)
185	2	Multiplier M
186	2	Multiplier N
187-188	4	Level Reading
189-192	2	Reserved
193-204	Note 3	Data Subblock 1
205-216	Note 3	Data Subblock 2
589-600	Note 3	Data Subblock 34

FORMAT 62 (Cont.)

Note 1: (Format 62) Receiver Descriptor Block

WORD	FORMAT	
		CONTENTS
1	2	
2	2	Pointing Code
$3-4$	$5 B B 15$	Lambda (centimeters)
$5-6$	4	Noise Tube Value
$7-8$	4	*Apparent RA
$9-10$	4	*Apparent Dec
$11-12$	4	*1950 RA
$13-14$	4	*1950 Dec
$15-16$		RHO
		Theta

* Stored in first descriptor block only at the time of moving header for record. This corresponds to words 47-48 and 49-50 of header less pointing corrections.

Note 2: (Format 62) Digital Receiver Header Info.

WORD	CONTENTS
1	Host data scale factor (counts/K)
2	Receiver balance time factor (\# switch cycles)
3	Receiver balance time (centiseconds)
4	Integration period (milliseconds)
5	Interrupt delay time
6	Blanking time parts (4096 x Blanking time/phase per.
7	Phase period (milliseconds)
8	Blanking time (milliseconds)
9	Number of receiver channels in use
10	Input status word
11	Summation time for statistics data (sec)
12	Gain Modulation factor for chan. 1 x 10
13	System Temperature for chan. 1 (decikelvins)
14	Relative gain for chan 1 x 10^{3}
15	Measured output RMS for chan. 1
16	Theoretical output RMS for chan. 1
17	U/F counter scale factor for chan. 1
18	Calibration noise source for chan. 1
19	System temperature for chan. 1
20	Channel 2 bandwidth
21	Gain modulation for chan. 2 x 10^{3}

Gain modulation for chan. 2×10^{3}
etc. for as many channels used
repeating 12 through 20

FORMAT 62 (Cont.)

WORD	FORMAT	CONTENTS
1-2	4	**Observed H Coordinate
3-4	4	**Observed U Coordinate
5	2	Radiometer 1 output
6	2	Radiometer 2 output
7	2	Radiometer 3 output
8	2	Radiometer 4 output
9		Reserved
10		Reserved
11		Reserved
12		Reserved

TABLE A-7
FORMAT 51, SAVG2

WORD	FORMAT	CONTENTS
1	2	Scan Number
2	2	Zero
3-12	1	Observer Name
13-18	1	Source Name
19	1	Zero
20-21	5BB17	Julian Date (-2400000)
22	3	Orient. Angle
23	3	Orient. Angle
24-25	4	*L.S.T.
26-27	4	*E.S.T.
28	2	Month
29	2	Day
30	2	Year
31	2	Type of Observing (51)
32	2	Observer Number
33	2	Zero
34	2	Telescope
35	2	Position Code
36	2	Zero
37-38	5BB15	G.C. Rate
39-40	5BB15	L.C. Rate
41-42	5BB15	Epoch
43	6B10	Focus
44	6B10	Focus
45-46	2	Zero
47-48	4	*R.A. Indicated
49-50	4	*Dec. Indicated
51-52	2	Zero
53	2	Multiplier (Synthesizer)
54	2	Multiplier (Front-End)
55	2	\# of Signal Ave. Words
56-57	5BB30	L1 (Hertz)
58-59	5BB30	L1F1 (Hertz)
60-61	5BB30	L1F2 (Hertz)
62-104	2	Spare Words
105-4200	2	Signal Averager Words

[^0]
Word Formats for all Programs

1 - This is an alphanumeric format in ASCII code with two characters per word.

2 - This is a standard 16 -bit integer which ranges from $-32768\left(-2^{15}\right)$ to 32767.

4 - This format is used where double precision is required. It uses 2 16 -bit words in series, the first containing the sign and 15 highest order bits, and the second contains a zero in the sign bit and the 15 low order bits. To handle this in FORTRAN, use the equation

$$
\text { IFOUR }=I D(24) * 32768+\operatorname{ID}(25)
$$

where IFOUR is an INTERGER* 4 word and ID(24) and ID(25) are examples from the MPOWR3 format.

Unless otherwise noted, all of the time and angle measures (e.g. R.A., Dec, E.S.T., L.S.T., and Polarization angle) are in turns time 2^{30}. To convert the above example into decimal hours, the following statements would be needed:

$$
\begin{aligned}
& \text { REAL*8 C,HLST } \\
& \mathrm{C}=2 . * * 30 \\
& \mathrm{HLST}=\mathrm{DFLOAT}(\text { IFOUR }) / \mathrm{C}
\end{aligned}
$$

Double word spectral values and power counters could best be handled by converting them to REAL*4 since they are only relative numbers and must be used in ratios.

5 - These are also sets of double 16-bit words like word format 4, but the decimal may be specified to be anywhere in the bit sequence as specified in the BB--notation. For example, BB17 would indicate that the decimal is 17 places from the left in a 30 -bit word.

For example, to convert the Julian date in the CONDAR format to a decimal number, the following numbers would be required:

$$
\begin{aligned}
& \text { REAL*8 JD, } \mathrm{C} \\
& \mathrm{C}=2 . * * 13 \\
& \mathrm{JD}=\operatorname{DFLOAT}(\operatorname{ID}(20) * 32768+\operatorname{ID}(21)) / \mathrm{C}
\end{aligned}
$$

This could also be done in single precision if all of the accuracy were not required.

By definition, the time and angle measure in word format 4 are BBO.
6 - Same as 5 except that it applies to a single 16 -bit word, i.e. 6BB10 would indicate the decimal is 10 bits from the right of a 16-bit word.

APPENDIX B

SOURCE LIST (Calibrators)

$\begin{aligned} & \text { SOURCE } \\ & \text { NAME } \end{aligned}$	$\begin{gathered} \text { RIGHT } \\ \text { ASCENSION } \end{gathered}$			19501	DECLINATION		REFERENCE			
0003-066	00	03	40.293	-06	40	17.30	VLA			
0003-003	00	03	48.84	-00	21	06.0	ADGIE ET	AL。	1972	
0007+171	00	07	59.383	17	07	37.50	VLA			
0008-421	00	08	21.318	-42	09	49.70	VLA			
0008-264	00	08	28.882	-26	29	14.80	VLA			
0012+610	00	12	07.930	61	01	04.00	VLA			
0013+790	00	13	35.09	79	00	12.9	HOGBOM AN	AND CAR	ARLSSON	1974
0013-005	00	13	37.347	-0C	31	52.50	VLA			
0016+731	00	16	54.198	73	10	51.46	VLA			
0019-000	00	19	51.650	-00	01	41.77	VLA			
0019+058	00	19	58.020	05	51	26.40	VLA			
0022-423	00	22	15.417	-42	18	40.70	VLA			
0022+390	00	22	46.668	39	02	59.00	VLA			
0023-263	00	23	18.914	-26	18	49.25	VLA			
0024+348	00	24	02.786	34	52	06.40	VLA			
0026+346	00	26	34.834	34	39	57.70	VLA			
$0030+196$	00	30	01.24	19	37	19.4	FOMALONT	AND	MOFFET	1971
0034-014	00	34	30.49	-01	25	36.7	MCEWAN ET	T AL.	- 1975	
$0035+413$	00	35	41.572	41	20	$37 \cdot 10$	VLA			
0035-024	00	35	47.13	-02	24	07.7	BRANOIE	AND	BRIDLE	1974
0036-216	00	36	00.439	-21	36	33.10	VLA			
0038+328	00	38	13.830	32	53	41.20	VLA			
$0038+097$	00	38	14.57	09	46	56.1	FOMALONT	AND	MOFFET	1971
0038-020	00	38	24.233	-02	02	59.25	VLA			
$0039+230$	00	39	25.713	23	03	34.70	VLA			
0039-445	00	39	47.280	-44	30	42.00	VLA			
0040+517	00	40	18.00	51	47	12.8	KUHR 1979			
0042-357	00	42	16.500	-35	47	06.00	VLA			
0048+509	00	48	04.88	5 C	55	45.0	FOMALONT	AND	MOFFET	1971
0048-097	00	48	09.983	-09	45	24.25	VLA			
0048-071	00	48	36.200	-07	06	20.50	VLA			
0051-038	00	51	35.67	-03	50	13.5	FOMALONT	AND	MOFFET	1971
0052+681	00	52	44.9	68	06	06.2	FOMALONT	AND	MOFFET	1971
0055+300	00	55	05.634	30	04	57.05	VLA			
0056-001	00	56	31.755	-00	09	18.75	VLA			
0102+480	01	02	55.460	48	03	00.50	VLA			
0104-408	01	04	27.575	-40	50	21.20	VLA			
0106+013	01	06	04.523	01	19	01.06	VLA			
0107+562	01	07	53.796	56	16	20.70	VLA			
0108-079	01	08	19.000	-07	57	37.60	VLA			
0108+388	01	08	47.254	38	50	32.80	VLA			
0109+224	01	09	23.611	22	28	44.10	VLA			
$0111+021$	01	11	08.570	02	06	24.75	VLA			
0112-017	01	12	43.920	-01	42	54.95	VLA			
0113-118	01	13	43.217	-11	52	04.50	VLA			
0114-211	01	14	25.954	-21	07	55.00	VLA			
$0116+082$	01	16	25.04	08	14	30.4	CONDON ET	T AL.	- 1975	
0116-219	01	16	32.404	-21	57	15.20	VLA			
0116+319	01	16	47.249	31	55	05.83	VLA			
0117-155	01	17	59.700	-15	35	59.60	VLA			
0118-272	01	18	09.531	-27	17	07.35	VLA			
$0119+115$	01	19	03.083	11	34	09.30	VLA			
$0119+041$	01	19	21.393	04	06	44.00	VLA			
$0119+247$	01	19	54.284	24	46	52.10	VLA			

SOURCE NAME	21 CM fLUX	ERR MEAS	11 CM	ERR MEAS	6 CM	ERR MEAS	OTHER NAME
NAME $0003-066$			FLUX	MEAS	flUX	MEAS	NAME
0003-003	3.54	0.12	2.33	0.02	1.41	0.04 E	$3 C 2$
0007+171							
0008-421							
0008-264							
0012+610							
$0013+790$	3.39	0.090	1.86	0.04A	1.04	$0.04 E$	$3 C 6.1$
0013-005							
0016+731							
0019-000	2.73	0.07	1.84	0.02	1.05	0.04E	
0019+058							
0022-423							
0022+390							
0023-263							
0024*348							
0026*346							
$0030+196$	1.72	0.06 L	1.25	0.05	0.82	0.03 H	$3 C 12$
$0034-014$ $0035+413$							3C15
$\begin{aligned} & 0035-024 \\ & 0036-216 \end{aligned}$	6.25	0.17	3.94	0.04	2.72	0.07E	3 Cl 7
0038+328	3.12	0.08	1.86	0.02	1.26	0.09 E	$3 C 19$
0038-097	4.26	0.14	2.68	0.05	1.73	0.06E	3 Cl 8
0038-020							
0039+230							
0039-445							
0040+517	10.79	0.31	6.53	0.18	4.18	$0.16 E$	3 C 20
0042-357							
0048+509	2.27	0.15	1.23	0.03	0.76	0.03E	$3 C 22$
0048-097							
0048-071							
0051-038	2.11	0.09	1.17	0.01	0.61	0.04E	3 C 26
0052-681	7.10	0.27	4.36	0.12	2.48	0.06E	3 C 27
0055*300							
0056-001	2.16	0.07	1.93	0.03	1.46	0.05E	P0056-00
01024480							
0104-403							
0106+013							PO106+01
0107+562	1.88	0.07	1.29	0.02	0.90	0.09N	
0108-079							
0108+388							
0109+224							
0111+021							
0112-017	1.20	0.11 C	1.11	0.04	1.16	0.04F	
0113-118							
0114-211							
0116 -082	2.38	0.06	1.66	0.03	1.18	0.04H	
0116-219							
0116+319	2.54	0.07	1.98	0.03	1.46	0.04H	
0117-155	4.95	0.130	2.74	0.23	1.42	0.07 F	$3 C 38$
0118-272							
$0119+115$							
0119+041							
$0119+247$							

SOURCE NAME	$\begin{gathered} \text { RIGHT } \\ \text { ASCENSION } \end{gathered}$			19501	DECLINATION		REFERENCE			
0122-003	01	22	55.177	-00	21	31.25	VLA			
0123+329	01	23	54.82	32	57	35.6	FOMALONT	AND	MOFFET	1971
0125+287	01	25	42.89	28	47	29.3	FOMALONT	AND	MOFFET	1971
0127+233	01	27	15.080	23	22	52.70	VLA			
0130-171	01	30	17.689	-17	10	12.10	VLA			
0132-097	01	32	06.405	-09	46	23.30	VLA			
0132+079	01	32	37.51	07	55	46.4	FOMALONT	AND	MOFFET	1971
0133-203	01	33	13.631	-20	24	04.30	VLA			
$0133+206$	01	33	39.96	20	41	55	FOMALONT	1968	- BDFL	
$0133+476$	01	33	55.105	47	36	12.80	VLA			
0134+329	01	34	49.832	32	54	20.52	VLA			
0135-247	01	35	17.110	-24	46	08.65	VLA			
0138+136	01	38	28.530	13	38	20.10	VLA			
0138-097	01	38	56.860	-09	43	51.65	VLA			
0142-278	01	42	44.991	-27	48	35.40	VLA			
0145+532	01	45	15.33	53	17	45	FOMALONT	AND	MOFFET	1971
0146+056	01	46	45.523	05	41	00.70	VLA			
0147+187	01	47	05.584	18	42	28.60	VLA			
$0149+218$	01	49	31.736	21	52	20.70	VLA			
0150-334	01	50	56.987	-33	25	10.65	VLA			
0153+744	01	53	04.350	74	28	05.65	VLA			
0154+286	01	54	19.3	28	37	03	BDFL			
0159-117	01	59	30.400	-11	47	00.00	VLA			
0201+113	02	01	05.997	11	20	22.85	VLA			
0201-440	02	01	39.850	-44	04	13.00	VLA			
0202+149	02	02	07.403	14	59	50.95	VLA			
0202+319	02	02	09.656	31	58	10.35	VLA			
0202-172	02	02	34.515	-17	15	39.43	VLA			
0206*355	02	06	39.11	35	33	43.0	S4			
0212+735	02	12	49.925	73	35	40.10	VLA			
0213-026	02	13	09.870	-02	36	51.50	VLA			
0216+011	02	16	32.457	01	07	13.35	VLA			
$0218+357$	02	18	04.131	35	42	32.00	VLA			
0218-021	02	18	21.900	-02	10	35.50	VLA			
0220+397	02	20	36.78	39	47	16	FOMALONT	AND	MOFFET	1971
0220-349	02	20	49.580	-34	55	04.60	VLA			
0221+276	02	21	18.060	27	36	38.20	VLA			
0221+067	02	21	49.960	06	45	50.40	VLA			
0223+341	02	23	09.75	34	08	01.6	ADGIE ET	AL.	1972	
0224+671	02	24	$41 \cdot 175$	67	07	39.70	$V!-A$			
0229+132	02	29	02.527	13	09	40.60	VLA			
0229+341	02	29	27.06	34	10	55.4	ADGIE ET	AL.	1972	
0229-398	02	29	51.975	-39	48	58.70	VLA			
0234+285	02	34	55.593	28	35	11.35	VLA			
0235+164	02	35	52.630	16	24	03.98	VLA			
0237-027	02	37	13.717	-02	47	32.93	VLA			
0237+040	02	37	14.407	04	03	29.65	VLA			
0237-233	02	37	52.789	-23	22	06.42	VLA			
0238-084	02	38	37.356	-08	28	08.95	VLA			
0239+108	02	39	47.093	10	48	16.15	VLA			
0240-217	02	40	19.329	-21	45	09.80	VLA			
0248*430	02	48	18.490	43	02	56.95	VLA			
0250+178	02	50	46.319	17	53	30.10	VLA			
0256+075	02	56	46.990	07	35	45.20	VLA			

SOURCE NAME	$\begin{aligned} & 21 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	11 CM fLUX	ERR MEAS	$\begin{aligned} & 6 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	OTHER NAME
0122-003							
0123+329	3.49	0.10	2.24	0.03	1.46	0.05 E	$3 C 41$
0125+287	2.64	0.08	1.59	0.02	0.84	0.04 E	$3 \mathrm{C42}$
0127-233	2.78	0.08	1.76	0.02	1.09	0.04 E	$3 \mathrm{C4} 3$
0130-171							
0132-097							
0132+079	2.33	0.07	1.29	0.02	0.78	0.03H	3645
0133-203							
0133-206	3.68	0.09	2.02	0.04	1.10	0.05E	$3 C 47$
$0133+476$							
0134+329	15.29	0.35	9.15	0.14	5.37	0.07E	3 C 48
0135-247							
0138+136							$3 C 49$
0138-097							
0142-278							
0145+532	3.72	0.10	$2 \cdot 31$	0.03	1.48	0.06E	$3 C 52$
0146+056							
0147+187							
0149+218							
0150-334							
0153+744							
0154-286	2.50	0.12	1.21	0.01	0.88	0.10E	3 C 55
0159-117	3.24	0.148	2.00	0.10	1.25	0.04 E	$3 C 57$
0201+113							
0201-440							
0202+149							NRAO91
0202-319							
0202-172							
0206+355	2.15	0.06	1.38	0.02	0.87	0.031	
0212-735							
0213-026							
0216+011							
0218-357							
0218-021	3.32	0.08	1.65	0.04	1.09	$0.06 E$	3 C 63
0220-397	3.13	0.21	1.59	0.03	0.77	0.05 E	3 C 65
0220-349							
0221+276	2.94	0.23	1.70	0.03	0.91	0.05E	$3 C 67$
0221+067							
0223+341	2.17	0.06	1.71	0.03	1.20	0.04H	
0224+671							D0224+67
0229+132							
0229+341	2.42	0.16	1.42	0.01	0.83	0.03 E	$3 \mathrm{C68.1}$
0229-398							
0234+285							
0235+164							
0237-027							
0237+040							
0237-233							P02 37-23
0238-084							
0239+108							
0240-217							
0248+430							
0250+178							
$0256+075$							

SOURCE NAME		RIGH	$\begin{aligned} & \text { HT } \\ & \text { SICN } 119 \end{aligned}$	01 CE	ECLI	INATION	REFERENCE		
0258+350	02	58	35.3	35	00	30	S4		
$0300+472$	03	CO	10.110	47	04	33.70	VLA		
0300+162	03	CO	27.10	16	14	31.0	KUHR 1979		
0306+102	03	06	20.920	10	17	51.90	VLA		
0307+169	03	07	11.4	16	54	34	BDFL		
0309*390	03	09	12.20	39	05	17.7	KUHR 1979		
$0316+161$	03	16	09.138	16	17	40.45	VLA		
$0316+413$	03	16	29.569	41	19	51.94	VLA		
0317+188	03	17	00.043	18	50	41.90	VLA		
$0319+121$	03	19	08.206	12	1 C	31.60	VLA		
0320+053	03	20	41.49	C5	23	34.5	FOMALONT	AND MOFFET	1971
0327-241	03	27	43.868	-24	07	22.90	VLA		
0331-013	03	31	41.8	-01	21	21	MCEWAN ET	AL. 1975	
$0332+078$	03	32	$12 \cdot 103$	07	50	16.65	VLA		
0332-403	03	32	25.238	-40	18	23.85	VLA		
$0333+321$	03	33	22.400	32	08	36.67	VLA		
$0333+128$	03	33	40.57	12	52	$40 \cdot 1$	FOMALONT	AND MOFFET	1971
0336-019	03	36	58.954	-01	56	16.92	VLA		
0338-214	03	38	23.281	-21	29	07.85	VLA		
0340+048	03	40	51.60	04	48	24.4	FOMALONT	AND MOFFET	1971
0345-337	03	45	35.720	33	44	06.30	VLA		
0346-279	03	46	34.032	-27	58	20.70	VLA		
0347+057	03	47	07.32	05	42	34	FOMALONT	1968. BOFL	
$\begin{aligned} & 0355+508 \\ & 0400+258 \end{aligned}$	$\begin{aligned} & 03 \\ & 04 \end{aligned}$	55 00	$\begin{aligned} & 45 \cdot 256 \\ & 03.589 \end{aligned}$	50 25	$\begin{aligned} & 49 \\ & 51 \end{aligned}$	$\begin{aligned} & 20.29 \\ & 46.50 \end{aligned}$	$\begin{aligned} & \text { VLA } \\ & \text { VLA } \end{aligned}$		
0400-319	04	00	23.609	-31	55	41.90	VLA		
0402-362	04	02	02.598	-3t	13	11.75	VLA		
0403-132	04	03	13.962	-13	16	18.80	VLA		
0404+428	04	04	35.1	42	52	27	BDFL		
0405-123	04	05	27.461	-12	19	32.50	VLA		
0405-331	04	05	38.548	-33	11	42.00	VLA		
0405-385	04	C5	12.070	-38	34	24.70	VLA		
0406-387	04	06	01.360	38	40	41.70	VLA		
0406-121	04	06	35.476	12	09	49.25	VLA		
0406-127	04	06	45.328	-12	46	39.00	VLA		
0409+229	04	09	44.670	22	57	27.60	VLA		
$0411+141$	04	11	41.19	14	08	42	FOMALONT	1968. BDFL	
$0411+054$	04	11	58.29	05	27	13.4	ADGIE ET	AL. 1972	
0413-210	04	13	53.621	-21	03	51.10	VLA		
0414-189	04	14	23.354	-18	58	29.65	VLA		
0420+417	04	20	28.7	41	43	12	BDFL		
0420+347	04	20	41.090	34	44	52.00	VLA		
0420-014	04	20	43.540	-01	27	28.66	VLA		
0421+019	04	21	32.673	01	57	32.70	VLA		
0422+004	04	22	12.520	00	29	16.65	VLA		
0422+178	04	22	31.044	17	48	37.40	VLA		
0422-380	04	22	56.168	-38	03	09.10	VLA		
0423+051	04	23	57.232	05	11	37.30	VLA		
0426-380	04	26	54.710	-38	02	52.05	VLA		
0427-366	04	27	52.600	-36	37	17.00	VLA		
0428-205	04	28	06.861	20	31	09.13	VLA		
0429+415	04	29	07.899	41	32	08.55	VLA		
0430+052	04	30	31.600	05	14	59.50	VLA		
$0433+295$	04	33	55.24	29	34	14.0	FOMALONT	AND MOFFET	1971

SOURCE NAME	$\begin{aligned} & 21 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	$\begin{aligned} & 11 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	$\begin{aligned} & 6 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	OTMER NAME
0258-350	1.88	0.06	1.29	0.02	0.93	0.04H	
0300+471							
$0300+162$	2.60	0.07	1.82	0.03	1.31	0.04 E	$3 C 76.1$
0306+102							
0307+169	4.59	0.40	2.41	0.04	1.31	0.04 E	$3 C 79$
0309+390	1.73	0.05	1.13	0.02	0.73	0.01 J	
$0316+161$	7.60	0.16	4.96	0.04	2.86	0.05E	CTALI
$0316+413$							$3 C 84$
0317+188							
0319+121	1.82	0.06	1.27	0.02	1.10	0.04H	
0320-053	2.86	0.07	1.51	0.03	0.88	0.03 E	
0327-241							
0331-013	2.72	0.07	1.30	0.02	0.81	0.06E	$3 C 89$
$0332+078$							
0332-403							
$0333+321$							NRAC140
$0333+128$							$3 C 90$
0336-019							CTA26
0338-214							
0340+048	2.84	0.07	1.56	0.03	0.89	0.04E	$3 C 93$
0345+337	2.25	0.14	1.27	0.02	0.75	0.04 E	3 C 93.1
0346-279							
0347+057	3.25	0.08	1.94	0.01	1.23	0.04H	
0355.508							NRAO150
0400+258	1.82	0.06	1.61	0.03	1.79	0.05H	
0400-319							
0402-362							
0403-132							
0404+428	5.22	0.37	2.43	0.04	1.41	0.04 E	$3 C 103$
0405-123	3.03	0.318	2.42	0.11	1.85	0.05E	
0405-331							
0405-385							
0406-387							
0406+121							
0406-127							
0409-229							
0411+141	2.15	0.06	1.37	0.03	0.89	0.031	
0411+054	1.71	0.05	1.08	0.02	0.70	0.031	
0413-210							
0414-189							
$0420+417$							
0420-347							
0420-014							
0421+019							
0422+004							
0422-178							
0422-380							
0423-051							
0426-380							
0427-366							
0428-205	3.81	0.09	3.04	0.04	2.31	0.06H	
0429*415							$3 C 119$
$0430 \cdot 052$							3 Cl 20
$0433+295$							3C123

SOURCE NAME	$\begin{gathered} \text { RIGHT } \\ \text { ASCENSION } \end{gathered}$			195010	DECLINATION		REFERENCE			
0434-188	04	34	48.967	-18	50	48.15	VLA			
0435-487	04	35	14.085	48	42	52.10	VLA			
0438-436	04	38	43.184	-43	38	53.10	VLA			
0439-337	04	39	41.968	-33	45	44.00	VLA			
0440-003	04	40	05.293	-00	23	20.60	VLA			
0444+634	04	44	42.375	63	26	56.00	VLA			
0448-392	04	48	00.456	-39	16	15.30	VLA			
0450+314	04	50	10.55	31	24	31.7	FOMALONT	AND	MOFFET	1971
0451-282	04	51	15.133	-28	12	29.30	VLA			
0453-206	04	53	14.160	-20	39	00.90	VLA			
0453+227	04	53	42.42	22	44	42.2	FOMALONT	AND	MOFFET	1971
0454-463	04	54	24.520	-46	20	44.00	VLA			
0454+066	04	54	26.407	06	40	30.05	VLA			
0454+844	04	54	57.190	84	27	52.99	VLA			
0454-234	04	54	57.300	-23	29	28.30	VLA			
04574024	04	57	15.543	C2	25	05.60	VLA			
0458+476	04	58	41.100	47	41	47.70	VLA			
0458-020	04	58	41.347	-02	03	34.00	VLA			
0459+135	04	59	43.843	13	33	56.30	VLA			
0459+252	04	59	54.23	25	12	11.5	FOMALONT	AND	MOFFET	1971
0500+019	05	00	45.176	01	58	53.82	VLA			
0502+049	05	02	43.814	04	55	40.50	VLA			
0506-101	05	06	42.048	10	07	59.40	VLA			
0507+290	05	07	30.4	29	05	11	BDFL			
0509+152	05	09	47.457	15	13	51.90	VLA			
0511+008	05	11	32.3	00	53	13	MCEWAN	AL	1975	
0511-220	05	11	41.815	-22	02	41.20	VLA			
0514-161	05	14	01.076	-16	06	22.60	VLA			
0515+508	05	15	37.97	50	51	30.0	FOMALONT	AND	MOFFET	1971
0516+276	C5	16	27.0	27	40	55	BDFL			
0517+454	05	17	07.000	45	25	36.50	VLA			
0518-165	05	18	16.532	16	35	26.90	VLA			
0519-208	05	19	30.140	-20	50	29.00	VLA			
0519+011	05	19	42.346	C 1	10	41.40	VLA			
0528-250	05	28	05.205	-25	05	44.55	VLA			
0528+134	05	28	06.760	13	29	42.20	VLA			
0528+064	05	28	48.00	06	28	16.4	FOMALONT	AND	MDFFET	1971
0529+075	05	29	56.494	07	30	38.10	VLA			
$0530+040$	05	30	25.41	04	03	50.9	FOMALONT	AND	MOFFET	1971
0531+194	05	31	47.357	19	25	24.75	VLA			
05.34-340	05	34	39.565	-34	02	58.10	VLA			
0537-531	05	37	13.520	53	10	54.25	VLA			
0537-158	05	37	17.155	-15	52	04.60	VLA			
0537-441	05	37	20.921	-44	06	38.40	VLA			
0537-286	05	37	56.931	-28	41	27.95	VLA			
0538-498	05	38	43.507	49	49	42.78	VLA			
0539-057	05	39	10.993	-05	43	15.10	VLA			
0540+187	05	40	30.9	18	44	23	BDFL			
0548+165	05	48	25.1	16	35	51	BDFL			
0550+032	05	50	12.607	C 3	12	50.00	VLA			
0552+398	05	52	01.418	39	48	21.84	VLA			
0600+412	06	00	56.850	41	14	10.80	VLA			
0601+204	06	Cl	30.010	20	21	34.99	VLA			
0602-319	06	02	22.450	-31	55	40.00	VLA			

	B-9						0434-0602
SOURCE NAME	21 CM fluX	$\begin{aligned} & \text { ERR } \\ & \text { MEAS } \end{aligned}$	$\begin{aligned} & 11 \text { CM } \\ & \text { FLUX } \end{aligned}$	$\begin{aligned} & \text { ERR } \\ & \text { MEAS } \end{aligned}$	$\begin{aligned} & 6 \text { CM } \\ & \text { FLUX } \end{aligned}$	$\begin{aligned} & \text { ERR } \\ & \text { MEAS } \end{aligned}$	OTRER NAME
$\begin{aligned} & 0434-188 \\ & 0435+487 \end{aligned}$							
0438-436							
0440-003							NRAO190
0444+634							
0450+314	2.90	0.15	1.49	0.03	0.86	0.04E	$3 C 131$
0453-206							
$0453+227$ $0454-463$	3.25	0.09	1.91	0.03	1.05	0.04 E	3C132
$0454-463$ $0454+066$	0454-463						
0454*844							
0454-234							
0457+024							
0458-476							
0458-020							
0459-135							
0459+252	5.55	0.14	3.34	0.04	2.16	$0.06 E$	$3 C 133$
0500+019	2.21	0.06	2.31	0.04	1.83	0.05H	
0502+049 2. $0.0610 .0{ }^{\text {2 }}$							
0506+101							
0507+290	1.90	0.06	1.09	0.02	0.65	0.06 N	
0509*152							
0511+008							3C135
0511-220 3C135							
0514-161							
0515+508	2.22	0.14	1.05	0.02	0.57	0.04 E	$3 C 137$
$0516+276$	1.84	0.06	1.16	0.03	0.75	0.08N	
0517+454							
0518+165							$3 C 138$
0519-208							
0519+011							
0528-250							
0528+134							
0528+064	3.61	0.33	1.65	0.01	1.02	0.04 E	$3 \mathrm{Cl42.1}$
$0530 \cdot 040$	1.93	0.06	1.19	0.04	0.71	0.02 E	
0531*194	6.73	0.14	3.98	0.03	2.53	0.05B	
0534-340							
0537-531							
0537-158							
0537-441							
0537-286							
0538-498							$3 C 147$
0539-057							
$0540+187$	2.24	0.06	1.27	0.05	0.63	0.058	
0548+165	2.13	0.06	1.42	0.01	0.97	0.10 N	
0550-032							
0552+398							
$0600+412$							
0601+204							$3 C 152$
0602-319							

SOURCE NAME	21 CM flux	$\begin{aligned} & \text { ERR } \\ & \text { MEAS } \end{aligned}$	$11 \mathrm{CM}$ FLUX	$\begin{aligned} & \text { ERR } \\ & \text { MEAS } \end{aligned}$	$\begin{aligned} & 6 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	OTHER NAME
$\begin{aligned} & 0602+673 \\ & 0602-424 \end{aligned}$							
0605-085							
0605+480	4.01	0.09	2.30	0.04	1.35	0.06E	36153
0606-223							
0607-157							
0609-607							
0614-349							
0615+820							
0618+145							$3 C 158$
0620-389							
0621-400	1.96	0.06	1.23	0.03	0.70	0.01 J	$3 C 159$
0621+321							
0622+147							
0624-058	19.03	0.138	11.19	0.07	6.73	0.09E	30161
0627-199							
0629+104							
0636+680							
0637-337							
0640+233	2.40	0.20	1.28	0.03	0.77	0.03 E	$3 C 165$
0642+214							$3 C 166$
0642-349							
$0642+449$							
0646-306							
0646+692							
0648-165							
0650-371							
0651+542	3.66	0.14	2.00	0.03	1.22	0.04E	3 Cl 71
0653-694							
0655+699	1.70	0.11	1.07	0.05	0.69	0.01 J	
0658+380							3C173
0659+445	2.47	0.07	1.15	0.01	0.54	0.013	
0702+749	2.60	0.13 A	1.36	0.09	0.77	0.06 E	$3 C 173.1$
0704-231							
0707+476							
0710+439							
0711+356							
0711+146	2.04	0.06	1.07	0.02	0.56	0.05 E	3C175.1
0715-250							
0716+714							
0722+145							
0723+679	2.38	0.06	1.72	0.07	1.31	0.07 E	3C179
0723-008							
0724-019	2.65	0.07	1.65	0.06	0.94	0.03 E	3 Cl 80
0725+147	2.29	0.06	1.24	0.02	0.66	0.05E	3 Cl 81
0727-115							
0731+479							
0732+332	2.32	0.06	1.40	0.05	0.91	0.016	
0733-174							
0733+705	2.49	0.100	1.17	0.04A	0.60	0.04E	$3 C 184$
$\begin{aligned} & 0735+178 \\ & 0736-303 \end{aligned}$							
0736+017							

$\begin{aligned} & \text { SOURCE } \\ & \text { NAME } \end{aligned}$	$\begin{gathered} \text { RIGHT } \\ \text { ASCENSION } \end{gathered}$			19501	DECLINATION		REFERENCE			
0738+313	07	38	00.178	31	19	02.07	VLA			
0738+272	07	38	20.906	27	13	48.45	VLA			
0740+380	07	40	56.75	38	00	31.3	ADGIE ET	T AL.	- 1972	
0741-063	07	41	54.700	-06	22	20.00	VLA			
0742+103	07	42	48.465	10	18	32.64	VLA			
0742+318	07	42	30.738	31	50	16.25	VLA			
0743-006	07	43	21.050	-CO	36	55.75	VLA			
0745-191	07	45	18.100	-19	10	17.40	VLA			
0745-330	07	45	24.934	-33	03	17.30	VLA			
0745+241	07	45	35.726	24	07	55.50	VLA			
0746+483	07	46	39.930	48	22	30.50	VLA			
0748+126	07	48	05.060	12	38	45.35	VLA			
0748-440	07	48	06.180	-44	04	51.00	VLA			
0748+333	07	48	41.052	33	21	03.55	VLA			
0754+100	07	54	22.568	10	04	39.70	VLA			
0758+143	07	58	45.010	14	23	03.90	VLA			
0759+183	07	59	55.286	18	18	15.45	VLA			
0802+103	08	02	03.780	10	23	56.50	VLA			
0802-276	08	02	47.877	-27	40	34.60	VLA			
0804-267	08	04	07.861	-26	43	51.30	VLA			
0804+499	08	04	58.396	49	59	23.10	VLA			
0805+410	08	05	33.635	41	01	33.10	VLA			
0806+426	08	06	37.98	42	36	55.8	FOMALONT	T AND	D MOFFET	1971
0808+019	08	08	51.127	01	55	51.20	VLA			
0809+483	08	09	59.410	48	22	07.20	VLA			
$0812+367$	08	12	10.712	36	44	27.45	VLA			
0812-355	08	12	20.820	-35	29	15.00	VLA			
$0812+020$	08	12	47.13	02	04	20.6	MCEWAN E	ET AL	- 1975	
$0814+425$	08	14	51.672	42	32	07.73	VLA			
$0818+472$	08	18	01.110	47	12	11.00	VLA			
0818-128	08	18	36.249	-12	49	24.70	VLA			
0818+179	08	18	52.64	17	57	56.0	ADGIE 19	974		
0820+225	08	20	28.57	22	32	44.7	ADGIE ET	T AL.	- 1972	
0820+560	08	20	53.206	56	02	27.45	VLA			
$0823+033$	08	23	13.537	03	19	15.33	VLA			
0823-223	08	23	50.074	-22	20	34.80	VLA			
0824+294	08	24	21.64	29	28	41.1	ELSMORE	AND	MACKAY	1969
0825-202	08	25	03.380	-20	16	31.00	VLA			
0826-373	08	26	12.005	-37	21	06.13	VLA			
0827+243	08	27	54.400	24	21	07.65	VLA			
0827+378	08	27	55.09	37	52	16.9	FOMALONT	T AND	D MOFFET	1971
0828+493	08	28	47.970	49	23	33.00	VLA			
0829+046	08	29	10.893	04	39	50.80	VLA			
0829+187	08	29	24.508	18	42	25.40	VLA			
$0831+557$	08	31	04.379	55	44	41.32	VLA			
$0833+585$	08	33	23.757	58	35	30.30	VLA			
0834-201	08	34	24.603	-20	06	30.35	VLA			
$0834+250$	08	34	42.316	25	04	54.30	VLA			
$0835+580$	08	35	09.94	58	04	47.2	HOGBOM A	AND C	CARLSSOA	1974
$0836+710$	08	36	21.560	71	04	22.45	VLA			
$0837+035$	08	37	12.372	C3	30	32.80	VLA			
$0838+133$	08	38	01.980	13	23	08.10	VLA			
0839+187	08	39	14.086	18	46	27.25	VLA			
0843-259	08	43	51.580	-25	59	53.40	VLA			

SOURCE NAME $0738+313$ $0738+272$ $0740+380$ 0741-063 $0742+103$ 0742+318 0743-006 0745-191 0745-330 $0745+241$ $0746+483$ $0748+126$ 0748-440 $0748+333$ $0754+100$ $0758+143$ $0759+183$ $0802 \cdot 103$ 0802-276 0804-267 $0804+499$ $0805+410$ $0806+426$ $0808+019$ $0809+483$ $0812+367$ 0812-355 $0812+020$ $0814+425$ $0818+472$ 0818-128 $0818+179$ $0820+225$ $0820+560$ $0823+033$ 0823-223 $0824+294$ 0825-202 0826-373 $0827+243$ 0827+378 $0828+493$ $0829+046$ $0829+187$ $0831+557$ $0833+585$ 0834-201 $0834+250$ $0835+580$ $0836+710$ $0837+035$ $0838+133$ $0839+187$ 0843-259

$21 C M$	ERR	11 CM	ERR	6 CM	ERR	OTHER
FLUX	MEAS	FLUX	MEAS	FLUX	MEAS	NAME

3C186

3.17	0.08	3.87	0.11	3.84	$0.07 E$
0.80	$0.08 C$	1.37	0.04	1.93	$0.07 F$
2.34	0.110	1.12	0.11	0.46	$0.04 E$

| 2.47 | 0.07 | 1.37 | 0.02 | 0.82 | $0.06 E \quad 3 C 190$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 3C191

2.05	0.06	1.12	0.02	0.61	$0.03 E$	$3 C 194$
13.85	0.28	7.64	0.08	4.36	$0.06 E$	$3 C 196$

1.87	0.07	1.01	0.03	0.86	$0.06 E$	$3 C 197.1$
2.05	0.198	1.06	0.02	0.61	$0.03 E$	
2.31	0.06	1.89	0.02	1.61	0.041	

$3 C 200$

$$
\begin{array}{llllll}
2.22 & 0.06 & 1.40 & 0.04 & 0.93 & 0.01 J
\end{array}
$$

$$
8.04 \quad 0.17 \quad 7.49 \quad 0.08 \quad 5.60 \quad 0.06 \mathrm{~J} \text { DA251 }
$$

$$
2.34 \quad 0.07 \quad 1.11 \quad 0.03 \quad 0.67 \quad 0.04 E \quad 3 C 205
$$

$$
\begin{array}{lllllll}
2.46 & 0.08 & 1.63 & 0.02 & 1.44 & 0.05 E & 3 C 207
\end{array}
$$

$\begin{aligned} & \text { SOURCE } \\ & \text { NAME } \end{aligned}$		RIGH	HT SION	19501 D	DECL	INATION	REFERENCE			
0850-206	08	50	44.990	$0-20$	36	05.00	VLA			
0850+140	08	50	22.980	014	404	18.90	VLA			
0850+581	08	50	50.153	358	08	55.70	VLA			
0851+142	08	51	53.30	14	47	20.0	ADGIE ET	AL	1972	
0851+202	08	51	57.253	320	17	58.44	VLA			
0855+143	08	55	55.740	014	421	25.80	VLA			
0858+292	08	58	05.16	29	13	33.2	FOMALONT AN	ANO	MOFFET	1971
0859+681	08	59	23.031	168	09	16. 20	VLA			
0859+470	08	59	39.990	$0 \quad 47$	02	56.90	VLA			
0859-140	08	59	54.950	$0-14$	03	38.85	VLA			
0900+428	09	00	58.736	642	20	01.20	VLA			
0905+380	09	05	41.140	$0 \quad 38$	00	29.60	VLA			
0906*430	09	06	17.34	43	05	59.2	FOMALONT AN	AND	MOFFET	1971
0906+015	09	06	35.193	301	33	$48 \cdot 10$	VLA			
0913+391	09	13	39.513	339	07	$02 \cdot 10$	VLA			
0917+624	09	17	40.314	462	28	38.60	VLA			
0917 -449	09	17	41.919	944	54	39.60	VLA			
0919-260	09	19	16.706	$6-26$	05	54.55	VLA			
0920-397	09	20	48.289	$9-39$	46	42.80	VLA			
0922+005	09	22	33.760	000	32	12.20	VLA			
0923+392	09	23	55.316	639	15	23.51	VLA			
4C39.25	09	23	55.316	639	15	23.51	VLA			
0925-203	09	25	33.545	$5-20$	21	44.95	VLA			
$\begin{aligned} & 0926+793 \\ & 0927+362 \end{aligned}$	$\begin{aligned} & 09 \\ & 09 \end{aligned}$	26	$\begin{aligned} & 30.64 \\ & 29.98 \end{aligned}$	79 36	19 14	$\begin{aligned} & 42.4 \\ & 36.2 \end{aligned}$	HOGBOM AND ADGIE ET	$A C$	$\begin{aligned} & \text { ARLSSON } \\ & 1972 \end{aligned}$	1974
0929+533	09	29	13.316	653	19	51.10	VLA			
0931+834	09	31	11.260	083	28	55.90	VLA			
0938-399	09	38	18.0	39	58	20	S4			
0941-080	09	41	08.646	$6-08$	05	44.03	VLA			
0941+522	09	41	30.081	152	16	22.70	VLA			
0941+100	09	41	36.20	10	00	08.0	FOMALONT AN	AND	MOFFET	1971
0945+664	09	45	14.900	066	28	57.70	VLA			
0945-408	09	45	50.075	540	53	43.35	VLA			
0947+145	09	47	27.65	14	34	00.0	FOMALONT A	AND	MOFFET	1971
0949*246	09	49	10.2	24	36	35	ADGIE 1974			
0949*002	09	49	24.94	00	12	40.5	MCEWAN ET	AL	1975	
0951+699	09	51	44.30	69	54	58.9	FOMALONT A	AND	MOFFET	1971
0952+179	09	52	11.807	717	57	44.60	VLA			
0953+254	09	53	59.742	225	29	33.55	VLA			
0954*556	09	54	14.38	55	37	17.3	ADGIE ET AL	AL。	1972	
0954*658	09	54	57.853	365	48	15.55	VLA			
0955+476	09	55	08.530	047	39	28.25	VLA			
0955+326	09	55	25.406	632	38	23.00	VLA			
0959-443	09	59	58.764	$4-44$	23	29.75	VLA			
1003+351	10	03	05.39	35	08	$48 \cdot 1$	BROSCHE ET	T A	. 1973	
1003-830	10	03	25.843	383	04	56.70	VLA			
1004-018	10	04	31.710	$0-01$	52	30.85	VLA			
1004+141	10	04	59.789	914	11	10.90	VLA			
1005*077	10	05	22.020	$0 \quad 07$	44	58.60	VLA			
1008+066	10	08	23.08	06	39	28.5	ADGIE ET AL	AL.	1972	
1010+350	10	10	54.783	335	00	44.10	VLA			
1011+250	10	11	05.636	625	04	10.10	VLA			
1012+232	10	12	00.505	523	16	$12 \cdot 10$	VLA			
$1013+208$	10	13	59.413	320	52	$46 \cdot 30$	VLA			

SOURCE NAME	$21 \mathrm{CM}$ FLUX	ERR MEAS	11 CM flux	ERR MEAS		ERR MEAS	OTHER NAME
0850-206							
0850-140	2.29	0.06	1.12	0.02	0.54	0.05E	$3 C 208$
0850+581							$3 C 208$
0851+142	2.06	C. 06	1.25	0.03	0.71	0.04E	3C208.1
0851+202							01287°
$0855+143$	2.47	0.07	1.42	0.03	0.89	0.04E	$3 C 212$
0858-292	1.89	0.07	1.27	0.03	0.84	0.03E	$3 C 213.1$
0859+681							
0859+470							
0859-140	3.43	0.098	2.71	0.13	2.44	0.07 F	
0900+428							
0905+380	2.12	0.06	1.00	0.01	0.48	0.06 E	$3 C 217$
0906+430	3.76	0.09	2.38	0.03	1.81	0.04 E	$3 C 216$
0906-015							
0913+391							
0917+624							
$0917+449$							
0919-260							
0920-397							
0922+005							
0923+392	2.52	0.07	4.78	0.05	7.57	0.13 E	DA267
$4 C 39.25$							
0925-203							
0926+793	2.20	0.114	1.04	0.07	0.54	0.03 E	3 C 220.1
0927-362							3 C 220.2
0929+533							
0931-834							3 C 220.3
0938+399							3 C 23.1
0941-080							
0941-522							
0941*100	2.25	0.06	1.07	0.03	0.64	0.05E	$3 C 226$
0945+664							
0945*408	1.96	0.06	1.31	0.03	1.39	0.02 J	
0947+145	3.47	0.08	1.97	0.03	1.14	0.06 E	$3 C 228$
0949+246							$3 C 229$
0949+002							3 C 230
c951+699	7.94	0.17	5.43	0.14			3C231
0952+179							
0953+254							
0954*556	3.52	0.08	2.60	0.05	2.27	0.03 J	
0954+658							
0955+476							
0955+326							$3 C 232$
0959-443							
1003+351	3.24	0.08	2.09	0.03	1.34	0.08 E	$3 C 236$
1003-830							
1004-018							
1004-141							
1005+077	6.25	0.15	3.57	0.05	2.01	0.06 E	
1008-066							$3 C 238$
1010-350							
1011+250							
1012+232							
1013+208							

SOURCE NAME	21 CM flux	$\begin{aligned} & \text { ERR } \\ & \text { MEAS } \end{aligned}$	11 CM flUX	$\begin{aligned} & \text { ERR } \\ & \text { MEAS } \end{aligned}$	$\begin{aligned} & 6 \mathrm{CM} \\ & \text { FLUX } \end{aligned}$	ERR MEAS	OTHER NAME
1015+359							
1015-314							
1018-426							
1019+309							
1021-006							
1030+415							
1030+398							
1030+611							
10314567							
1032-199							
1034-293							
1036-154							
1039+029	2.84	0.07	1.59	0.02	0.99	0.06B	
1039+811							
1040+123	3.06	0.08	2.11	0.02	1.39	0.04E	$3 C 245$
1044*719							
1045-188							
1048-313							
1049+215							
1053+704							
1053+815							
1055-242							
1055+201	2.19	0.06	1.49	0.05	1.09	0.068	
1055+018							
1056*432	2.82	0.12	1.59	0.03	0.95	0.06E	$3 C 247$
1059-010	2.56	0.07	1.32	0.04	0.61	0.09E	$3 C 249$
1059+282							
1100+772	$2 \cdot 36$	0.090	1.40	0.04A	0.78	0.03E	$3 C 249.1$
1100-223							
1101.384							
1103-208							
1104-445							
1108*201							
1110-217							
$1111+408$	3.05	0.13	1.46	0.05	0.79	0.05 E	$3 C 254$
$1113+295$	1.97	0.06	1.22	0.02	0.87	0.03H	
1116+128	2.25	0.06	1.70	0.03	1.64	0.07 E	
1117-248							
$1117+14 t$	2.35	0.06	1.58	0.04	1.03	0.041	
1119+183							
$1123+264$							
1124-186							
1127-145	6.63	0.218	6.43	0.35	7.31	0.15 E	
1128+385							
$1128+455$	2.00	0.06	1.13	0.01	0.65	0.01 J	
1128-047							
1137-660	2.98	0.11	1.75	0.05	1.04	0.04 E	3C263
1138+015	2.47	0.07	1.54	0.05	0.93	0.03 E	
1140*223	2.96	0.07	1.50	0.02	0.78	0.03 E	3C263.1
1142-225							
1143+500							3C266
1143-245							
1143-287							
$1144+542$							

SOURCE NAME	ASCENSION 1			1195010	DECLINATION		REFERENCE			
1144*402	11	44	21.024	40	15	14.15	VLA			
1144-379	11	44	30.870	-37	55	30.60	VLA			
1145-071	11	45	18.300	-07	08	00.75	VLA			
$1147+130$	11	47	22.1	13	04	00	BDFL			
$1147 \cdot 245$	11	47	44.000	24	34	34.60	VLA			
1148-001	11	48	10.130	-00	C7	13.30	VLA			
$1150+812$	11	50	23.502	81	15	10.25	VLA			
1150.497	11	50	48.005	49	47	50.00	VLA			
1151-348	11	51	49.443	-34	48	47.15	VLA			
$1153+317$	11	53	44.13	31	44	46.4	ADGIE ET	AL.	1972	
1155-251	11	55	51.645	25	06	59.81	VLA			
1156-221	11	56	37.789	-22	11	54.90	VLA			
1156+295	11	56	57.791	29	31	25.65	VLA			
1157-215	11	57	18.330	-21	32	11.60	VLA			
1157+732	11	57	45.5	73	17	27.5	FOMALONT	AND	MOFFET	1971
1201-041	12	01	28.52	-04	06	00.2	FOMALONT	AND	MCFFET	1971
$1203+645$	12	03	54.090	64	30	18.70	VLA			
1203-262	12	02	58.861	-26	17	22.60	VLA			
1204+281	12	04	55.102	28	11	40.20	VLA			
1206-238	12	06	27.670	-23	49	38.80	VLA			
1206+439	12	06	41.980	43	55	59.90	VLA			
1213-172	12	13	11.674	-17	15	05.25	VLA			
1213+350	12	13	24.826	35	04	54.95	VLA			
1214+588	12	14	44.925	58	52	05.70	VLA			
1215-457	12	15	28.830	-45	43	29.00	VLA			
$1216+487$	12	16	38.570	48	46	34.90	VLA			
$1218+339$	12	18	03.84	33	59	46.6	CONOON ET	AL.	1975	
$1219+285$	12	19	01.120	28	30	36.45	VLA			
1222+037	12	22	19.100	03	47	27.05	VLA			
1225*368	12	25	30.773	36	51	47.00	VLA			
1226-023	12	26	33.248	02	19	43.29	VLA			
1229-021	12	29	25.91	-02	07	31.9	MCEWAN ET	AL.	1975	
1232-416	12	32	59.330	-41	36	42.00	VLA			
1236+077	12	36	52.310	07	46	45.35	VLA			
1237-101	12	37	07.287	-10	07	00.65	VLA			
1239-044	12	39	44.800	-04	29	52.80	VLA			
$1241+166$	12	41	27.56	16	39	18.0	ADGIE ET	AL.	1972	
$1242+410$	12	42	26.396	41	04	30.00	VLA			
1243-412	12	43	12.533	-41	12	22.20	VLA			
1243-072	12	43	28.793	-07	14	23.55	VLA			
1244-255	12	44	06.729	-25	31	27.00	VLA			
1245-197	12	45	45.218	-19	42	57.51	VLA			
1250-568	12	50	15.224	56	50	36.20	VLA			
1251+278	12	51	46.02	27	53	47.5	FOMALONT	AND	MOFFET	1971
1252+119	12	52	07.717	11	57	20.82	VLA			
1253-055	12	53	35.838	-05	31	08.04	VLA			
$1254+476$	12	54	41.030	47	36	32.10	VLA			
1255-316	12	55	15.182	-31	39	05.03	VLA			
1256-220	12	56	13.937	-22	03	20.40	VLA			
1302-102	13	02	55.854	-10	17	16.45	VLA			
1306-095	13	06	02.03	-09	34	31.5	FOMALONT	AND	MOfFET	1971
$1306+660$	13	06	31.910	66	00	10.50	VLA			
$1308+326$	13	08	07.567	32	36	40.30	VLA			
1308-220	13	08	57.356	-22	00	46.30	VLA			

SOURCE NAME
$1144+402$
1144-379
1145-071
$1147+130$
$1147+245$
1148-001
$1150+812$
$1150+497$
1151-348
$1153+317$
$1155+251$
1156-221
$11.56+295$
1157-215
$1157+732$
1201-041
$1203+645$
1203-262
$1204+281$
1206-238
$1206+439$
1213-172
$1213+350$
$1214+588$
1215-457
$1216+487$
$1218+339$
$1219+285$
$1222+037$
$1225+368$
$1226+023$
1229-021
1232-416
$1236+077$
1237-101
1239-044
$1241+166$
$1242+410$
1243-412
1243-072
1244-255
1245-197
$1250+568$
$1251+278$
$1252+119$
1253-055
$1254+476$
1255-316
1256-220
1302-102 1306-095 $1306+660$ $1308+326$ 1308-220

21 CM ERR
11 CM ERR fluX meas

OTHER NAME

3C267

2.16	0.07	1.23	0.02	0.59	$0.07 E$	$3 C 267$

$3.06 \quad 0.08$
2.510 .05
$1.97 \quad 0.04 \mathrm{E}$
$\begin{array}{llllllllll}2.77 & 0.07 & 1.73 & 0.01 & 0.95 & 0.04 H\end{array}$

6.60	$0.33 A$	3.91	0.26	2.62	$0.06 E$	$3 C 268.1$
2.10	0.06	1.44	0.02	1.00	$0.03 E$	
						$3 C 268.3$

$\begin{array}{lllllll}2.04 & 0.09 & 1.05 & 0.01 & 0.60 & 0.03 E & 3 C 268.4\end{array}$
$2.50 .07 \quad 1.53 \quad 0.04 \quad 0.87 \quad 0.04 \mathrm{E} \quad 3 \mathrm{C} 270.1$
$2.06 \quad 0.06 \quad 1.46 \quad 0.01 \quad 0.77 \quad 0.01 J$
$1.76 \quad 0.05 \quad 1.29 \quad 0.06 \quad 1.32 \quad 0.07 E$
$1.93 \quad 0.118 \quad 1.51 \quad 0.06 \quad 1.53 \quad 0.05 E$

2.42	0.12	1.32	0.07	1.05	$0.04 E$	$3 C 277.1$
2.89	0.08	1.88	0.03	1.24	$0.04 E$	$3 C 277.3$

$\begin{array}{lllllll}5.08 & 0.11 & 2.86 & 0.02 & 1.53 & 0.06 E \quad 3 C 279 \\ 3 C 280\end{array}$

4.49	$0.16 B$	2.95	0.05	2.00	$0.05 E$	
2.24	0.08	1.11	0.04	0.57	0.06 N	$3 C 282$

SOURCE NAME	RIGHTASCENSION (1950) OECLINATION						REFERENCE			
$1311+678$	13	11	45.036	67	51	42.31	VLA			
1313-333	13	13	20.054	-33	23	09.65	VLA			
$1318+113$	13	18	49.67	11	22	29.0	FOMALONT	ANO	MOFFET	1971
1320-446	13	20	07.395	-44	36	53.40	V LA			
1322-835	13	22	34.451	83	31	51.70	VLA			
1323+799	13	23	30.986	79	58	27.60	VLA			
$1323+321$	13	23	57.916	32	09	43.00	VLA			
$1328+254$	13	28	15.924	25	24	37.58	VLA			
$1328+307$	13	28	49.657	30	45	58.64	VLA			
$1330+022$	13	30	21.3	02	16	04	MCEWAN ET	AL.	1975	
1334-127	13	34	59.815	-12	42	09.90	VLA			
1335-061	13	35	31.390	-06	11	54.80	VLA			
1336-260	13	36	32.480	-26	05	17.30	VLA			
$1336+391$	13	36	38.36	39	06	22.3	FOMALONT	AND	MOFFET	1971
$1340+053$	13	40	12.42	05	19	38.8	FOMALONT	AND	MOFFET	1971
1340+606	13	40	29.760	60	36	47.90	VLA			
1341+144	13	41	57.370	14	24	17.03	VLA			
$1343+500$	13	43	27.520	50	01	32.50	VLA			
1344-078	13	44	23.470	-07	48	26.40	VLA			
1345+125	13	45	06.170	12	32	20.30	VLA			
1346-391	13	46	52.520	-39	07	57.00	VLA			
1347+539	13	47	42.570	53	56	08.35	VLA			
1349-145	13	49	10.751	-14	34	27.00	VLA			
1349-439	13	49	52.539	-43	57	55.30	VLA			
$1350+316$	13	50	03.23	31	41	32.6	ADGIE ET A	AL.	1972	
1351-018	13	51	32.033	-01	51	20.05	VLA			
1353-341	13	53	09.800	-34	06	29.30	VLA			
1354-174	13	54	22.038	-17	29	25.20	VLA			
$1354+013$	13	54	28.45	01	19	16.9	MCEWAN ET	AL.	1975	
1354-152	13	54	28.600	-15	12	51.85	VLA			
1354+196	13	54	42.086	19	33	43.95	VLA			
$1357+769$	13	57	42.129	76	57	53.30	VLA			
$1358+624$	13	58	58.360	62	25	06.70	VLA			
1402-012	14	02	11.293	-01	16	01.80	VLA			
$1402+044$	14	02	29.973	04	29	55.10	VLA			
1402+660	14	02	48.393	66	05	57.45	VLA			
$1404+344$	14	04	34.48	34	25	40.1	FOMALONT A	AND	MOFFET	1971
1404+286	14	04	45.613	28	41	29.22	VLA			
1406-076	14	06	17.920	-07	38	16.10	VLA			
1406-267	14	06	58.430	-26	43	26.50	VLA			
1409+524	14	09	33.490	52	26	13.00	VLA			
$1413+135$	14	13	33.910	13	34	17.40	VLA			
$1413+349$	14	13	56.270	34	58	29.35	VLA			
$1415+463$	14	15	13.429	46	20	55.55	VLA			
$1416+067$	14	16	38.860	06	42	19.40	VLA			
$1418+546$	14	18	06.188	54	36	58.00	VLA			
$1419+419$	14	19	06.460	41	58	29.90	VLA			
$1420+198$	14	20	40.77	19	49	28	FOMALONT 1	1968	- BDFL	
1422-297	14	22	32.900	-29	46	23.50	VLA			
1422+202	14	22	37.48	20	13	52.9	ADGIE 1974			
1424-418	14	24	46.706	-41	52	$56 \cdot 10$	VLA			
1425-011	14	25	56.56	-01	10	45.8	MCEWAN ET	AL.	1975	
1427+109	14	27	43.703	10	56	44.60	VLA			
$1427+543$	14	27	44.055	54	19	29.70	VLA			

SOURCE
NAME
$1311+678$ 1313-333 $1318+113$ 1320-446 $1322+835$ $1323+799$
$1323+321$
$1328+254$
$1328+307$
$1330+022$
1334-127
1335-061
1336-260
$1336+391$
$1340+053$
$1340+606$
$1341+144$
$1343+500$
1344-078
$1345+125$
1346-391
$1347+539$
1349-145
1349-439
$1350+316$
1351-018
1353-341
1354-174
$1354+013$
1354-152
$1354+196$
$1357+769$
$1358+624$
1402-012
$1402+044$
$1402+660$
$1404+344$
$1404+286$
1406-076
1406-267
$1409+524$
$1413+135$
$1413+349$
$1415+463$
$1416+067$
$1418+546$
$1419+419$
$1420+198$
1422-297
$1422+202$
1424-418
1425-011
$1427+109$
$1427+543$

21 CM ERR 11 CM ERR FLUX MEAS MEAS 6 CM
FLUX

ERR
OTHER MEAS NAME
$2.18 \quad 0.06 \quad 1.33 \quad 0.02 \quad 0.77 \quad 0.038$

4.56	0.10	3.29	0.04	2.31	$0.06 H$	
6.72	0.14	4.61	0.02	3.26	$0.06 E$	$3 C 287$
14.78	0.30	10.22	0.11	7.48	$0.09 E$	$3 C 286$
						$3 C 287.1$

$3.39 \quad 0.14 \mathrm{E} \quad 1.86 \quad 0.04 \quad 1.06 \quad 0.04 E$
$3.32 \quad 0.09 \quad 1.77 \quad 0.03 \quad 0.99 \quad 0.06 E$ $0.79 \quad 0.058$
$3 C 288$

3C288.1
$3 C 289$
$4.420 .11 \quad 2.89 \quad 0.04 \quad 1.87 \quad 0.04 E \quad 3 C 293$
$2.470 .15 \quad 1.29 \quad 0.01 \quad 0.72 \quad 0.028$
$4.32 \quad 0.13 \quad 2.73 \quad 0.07 \quad 1.77 \quad 0.02 J$

0.71	$0.07 M$	1.88	0.02	2.90	$0.07 H$	$3 C 294$
22.18	0.39	12.08	0.14	6.53	$0.08 E$	$3 C 295$
2.09	0.09	1.67	0.04	1.35	$0.14 N$	
5.66	0.15	2.78	0.03	1.46	$0.05 E$	$3 C 298$
2.95	0.10	1.67	0.06	0.90	$0.05 E$	$3 C 299$
3.44	0.08	1.94	0.02	1.10	$0.04 E$	$3 C 300$
1.72	0.05	1.03	0.02	0.60	0.031	
3.30	0.17	1.61	0.02	0.94	$0.06 E$	$3 C 300.1$

SOURCE	RIGHTASCENSION (1950) DECIINATION						REFERENCE		
NAME									
1430-178	14	30	10.650	-17	748	24.30	VLA		
1430-155	14	30	36.135	-15	535	35.50	VLA		
$1434+235$	14	34	25.407	23	334	03.15	VLA		
$1434+036$	14	34	25.87	03	337	11.3	MCEWAN ET	AL. 1975	
1435-218	14	35	18.686	-21	51	58.30	VLA		
1437-153	14	37	11.349	-15	518	59.50	VLA		
1437-624	14	37	32.021	62	224	47.00	VLA		
$1441+522$	14	41	23.60	52	214	19.2	FOMALONT A	AND MOFFET	1971
1442+101	14	42	50.484	10	11	12.10	VLA		
1443-162	14	43	06.702	-16	16	27.40	VLA		
$1444+175$	14	44	15.451	17	33	39.65	VLA		
1447+771	14	47	49.500	77	08	46.10	VLA		
1448+634	14	48	17.450	63	28	33.50	VLA		
1451-375	14	51	18.284	-37	35	22.25	VLA		
1451-400	14	51	20.643	-40	00	24.20	VLA		
1452-041	14	52	24.7	-04	09	20	BDFL		
1453-109	14	53	12.25	-10	56	51.5	FOMALONT A	AND MOFFET	1971
1458+718	14	58	56.650	71	52	11.15	VLA		
1502+106	15	02	00.159	10	41	17.71	VLA		
1502+036	15	02	35.700	03	38	07.50	VLA		
1504+377	15	C4	12.958	37	142	23.30	VLA		
1504-167	15	04	16.419	-16	40	59.25	VLA		
1508-055	15	08	14.94	-05	31	49.0	KUHR 1979		
1509+015	15	09	52.92	01	32	21.7	MCEWAN ET	AL. 1975	
1510-089	15	10	08.903	-c8	54	47.55	VLA		
1511-100	15	11	02.265	-10	00	50.90	VLA		
1511-210	15	11	03.949	-21	03	48.40	VLA		
1511+238	15	11	28.286	23	49	43.75	VLA		
1511+263	15	11	31.0	26	18	37	BDFL		
1514+072	15	14	16.97	07	12	16.6	FOMALONT A	AND MOFFET	1971
1514-241	15	14	45.275	-24	11	22.55	VLA		
1517+204	15	17	50.628	20	26	53.10	VLA		
1518+046	15	18	44.73	04	41	05.5	ADGIE ET A	AL. 1972	
1519-273	15	19	37.249	-27	19	30.25	VLA		
1523-033	15	23	18.12	03	18	54.9	MCEWAN ET	AL. 1975	
1524-136	15	24	12.875	-13	40	34.90	VLA		
1529+242	15	29	40.83	24	12	47.9	MaCKAY 196		
1532+016	15	32	20.173	01	41	01.65	VLA		
$1533+557$	15	33	46.3	55	46	50	S4		
1535-004	15	35	42.560	00	28	50.80	VLA		
1538+149	15	38	30.231	14	57	21.80	VLA		
1540-077	15	40	20.313	-07	47	37.90	VLA		
1543+005	15	43	36.252	00	35	41.80	VLA		
1545+210	15	45	31.30	21	01	38.5	FOMALONT A	AND MOFFET	1971
1546+027	15	46	58.293	02	46	06.05	VLA		
1547+215	15	47	37.360	21	34	41.90	VLA		
1547+507	15	47	52.272	50	47	09.23	VLA		
1548+056	15	48	06.933	05	36	11.25	VLA		
1549+628	15	49	14.33	62	50	20.1	HOGBOM AND	D CARLSSON	1975
1551+130	15	51	12.032	13	05	41.25	VLA		
1553+202	15	53	57.30	20	13	00.5	ADGIE ET A	AL. 1972	
1555*001	15	55	17.694	00	06	43.54	VLA		
1555-140	15	55	33.766	-14	01	26.50	VLA		
$1600+335$	16	00	11.910	33	35	09.60	VLA		

SOURCE NAME	21 CM FLUX	ERR MEAS	11 CM flux	ERR MEAS	$6 \mathrm{CM}$ FLUX	ERR MEAS	OTHER NAME
1430-178							
1430-155							
$1434+235$							
$1434+036$	2.86	0.07	1.83	0.01	1.28	0.028	
1435-218							
1437-153							
1437+624							
1441+522	2.46	0.07	1.53	0.03	0.94	0.06E	$3 C 303$
1442+101							00172
1443-162							
$1444+175$							
1447+771							$3 C 305.1$
1448+634	2.94	0.09	1.62	0.04	0.92	0.04E	3 C 305
1451-375							
1451-400							
1452-041	1.86	0.11	1.09	0.04	0.75	$0.06 E$	3C306.1
1453-109	3.90	0.080	2.48	0.03	1.57	0.05E	
1458+718	7.90	0.34 A	5.47	0.30	3.76	0.06E	3C309.1
1502+106							OR103
1502+036							
1504*377							
1504-167							
1508-055							
1509+015	$2 \cdot 12$	0.06	1.21	0.03	0.68	0.05B	
1510-089							
1511-100							
1511-210							
1511+238							
1511+263	3.87	0.10	2.26	0.05	1.27	0.04 E	3C315
1514+072	5.35	0.14	2.08	0.03	0.87	0.04 E	$3 C 317$
1514-241							
$1517+204$	2.50	0.07	1.35	0.01	0.75	0.03 E	3C318
1518+046	4.01	0.09	2.32	0.03	0.99	0.038	
1519-273							
1523-033	1.86	0.06	1.12	0.02	0.68	0.04E	
1524-136							
1529+242							$3 C 321$
1532+016							
1533+557							$3 C 322$
$1535+004$							
1538+149							
1540-077							
1543+005	1.71	0.05	1.15	0.10	0.88	0.05 B	
1545+210	2.49	0.07	1.33	0.03	0.92	0.07E	$3 C 323.1$
1546-027							
$1547+215$	2.28	0.06	1.27	0.03	0.61	0.03 E	$3 C 324$
1547+507							
1548-056							
1549 -628	3.62	0.12	1.88	0.06	0.83	0.04E	$3 C 325$
1551+130							
1553-202	2.35	0.06	1.25	0.01	0.86	0.06E	$3 C 326.1$
1555+001							
1555-140							
1600+335							

SOURCE
NAME
1602+014
$1603+001$
$1604+315$
1604-333
$1606+106$ $1607+268$ $1608+331$ $1609+660$ $1611+343$ $1614+051$ $1615+029$ $1615+324$
$1616+063$
$1618+177$
$1622+238$
1622-253
1622-297
$1624+416$
1626.396
$1627+444$
$1627+234$
$1629+120$
$1629+680$
$1633+382$
$1634+628$
$1636+473$
$1637+575$
$1637+626$
$1637+826$
1638-025
$1638+124$
$1638+398$
$1641+399$
$1641+173$
$1642+690$
1643-223
1643+022
$1645+174$
$1648+015$
1652+398
$1654+866$
$1655+077$
$1656+053$
$1656+347$
$1656+477$
1657-261
$1658+471$
$1704+608$
$1705+456$
$1709+460$
$1714+219$
$1716+686$
$1716+006$
$1717+178$

RIGHT
ASCENSION (1950) DECLINATION
160212.93
160339.18
$1604 \quad 10.612$
160422.201
$1606 \quad 23.397$
160709.289
160809.8
$1609 \quad 16.2$
161147.917
161409.086
$\begin{array}{lll}16 & 15 & 19.113\end{array}$
161547.19
$16 \quad 16 \quad 36.537$
161806.81
162232.47
162244.110
162257.246
$16 \quad 2418.253$
162655.3
162719.73
162729.80
162924.56
$16 \quad 2950.817$
$\begin{array}{ll}16 & 33 \\ 30.628\end{array}$
$\begin{array}{lll}16 & 34 & 01.063\end{array}$
$1636 \quad 19.150$
163717.432
163755.305
163756.970
$1638 \quad 03.25$
163827.923
163848.172
$1641 \quad 17.608$ 16413
16421
164304
16431
164527
1652
1654
1655
165605.620
165612.270
165639.600
165747.720
165805.06
170404.48
170550.410
170917.930
$\begin{array}{lll}17 & 14 & 03.743\end{array}$
$\begin{array}{lll}17 & 16 & 27.838\end{array}$
171649.86
171700.322

$C 1$	25	58.9
00	08	31.5
31	32	47.70
-33	23	09.80
10	36	59.75
26	49	18.60
33	06	26
66	04	31
34	20	19.82
05	06	54.40
02	54	00.10
32	29	54
06	20	14.25

REFERENCE
MCEWAN ET AL. 1975
MCEWAN ET AL. 1975
VLA
VLA
VLA
VLA
BDFL
S4
VLA
VLA
VLA
FOMALONT 1968. BDFL
VLA
FOMALONT AND MOFFET 1971
FOMALONT AND MOFFET 1971
VLA
VLA
VLA
54
FOMALONT AND MOFFET 1971
FOMALONT AND MOFFET 1971
ADGIE 1974
VLA
VLA
VLA
VLA
VLA
VLA
VLA
MCEWAN ET AL. 1975
VLA
VLA
VLA
ADGIE ET AL. 1972
VLA
VLA
MCEWAN ET AL. 1975
ADGIE ET AL. 1972
VLA
VLA
VLA
VLA
VLA
VLA
VLA
VLA
54
FOMALONT AND MOFFET 1971
VLA
VLA
VLA
VLA
MCEWAN ET AL. 1975
VLA

SOURCE NAME	21 CM fluX	$\begin{aligned} & \text { ERR } \\ & \text { MEAS } \end{aligned}$	11 CM flux	ERR MEAS	$\begin{aligned} & 6 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	OTHER NAME
1602-014							3C327.1
$1603+001$	$2 \cdot 26$	0.06	1.48	0.04	0.93	0.038	
$1604+315$							
1604-333							
1606+106							
$1607+268$	4.43	0.10	2.94	0.04	1.58	0.06H	CTD93
1608 +331							$3 C 329$
$1609+660$	6.98	0.16	3.82	0.21	2.35	0.08E	3C330
1611+343	2.92	0.07	2.44	0.03	2.67	0.06H	DA406
$1614+051$							
1615+029							
$1615+324$	2.40	0.06	1.48	0.02	0.83	0.03 E	$3 C 332$
1616-063							
1618+177	2.12	0.13	1.07	0.03	0.57	0.03E	3C334
1622+238	2.71	0.07	1.38	0.02	0.69	0.06E	3C336
1622-253							
1622-297							
$1624+416$	2.08	0.06	1.65	0.02	1.31	0.02 J	
$1626+396$	3.53	0.09	1.26	0.02	0.49	0.03 E	3C338
1627+444	2.97	0.07	1.66	0.03	0.91	0.03E	3C337
1627-234	2.38	0.06	1.37	0.02	0.69	0.03E	3C340
1629+120	1.76	0.08	1.05	0.03	0.68	0.031	
1629*680							
$1633+382$							
$1634+628$	5.17	0.14	2.72	0.07	1.49	0.04E	$3 C 343$
$1636+473$							
$1637+575$							
$1637+626$	4.66	0.10	2.28	0.07	1.20	0.04E	3C343.1
1637-826							
1638-025	1.76	0.05	1.05	0.04	0.57	0.058	
$1638+124$	2.08	0.06	1.51	0.03	1.04	0.041	
$1638+398$							NRAC5 12
1641+399							3C345
1641-173	3.64	0.14	2.27	0.04	1.63	$0.10 E$	3C346
1642*690							
1643-223							
$1643+022$	1.94	0.10	1.10	0.01	0.71	0.02C	
$1645+174$	2.08	0.08	1.36	0.01	1.20	0.05E	
1648+015							
1652.398							
1654*866							
1655+077							
$1656+053$							
$1656+347$							
1656+477							
1657-261							
1658+471	3.18	0.08	1.90	0.03	1.14	0.04 E	3C349
1704+608	3.52	0.10	1.92	0.05	1.21	0.05E	$3 C 351$
$1705+456$							
$1709+460$							$3 C 352$
1714+219							
1716+686							
1716+006	2.18	0.06	1.26	0.01	0.77	0.05B	
1717+178							

SOURCE	RIGHT									
NAME		CEN	SION 1	19501 D) DECLINATION		REFERENCE			
1719+356	17	19	23.035	3535	45	08.80	VLA			
1725-123	17	25	47.656	66 12	18	03.40	VLA			
1725+044	17	25	56.336	3604	29	27.90	VLA			
$1726+455$	17	26	01.199	9945	33	04.55	VLA			
1726-318	17	26	27.0	31	48	25	BDFL			
1730-130	17	30	13.534	$4-13$	02	45.78	VLA			
1732-389	17	32	40.48	738	59	46.90	VLA			
1732-094	17	32	35.630	09	28	53.50	VLA			
$1734+063$	17	34	47.355	5506	22	48.20	VLA			
$1738+499$	17	38	12.678	849	56	35.70	VLA			
$1738+476$	17	38	36.314	447	39	28.60	VLA			
1739-522	17	39	29.005	552	13	10.45	VLA			
1741-312	17	41	09.340	$0-31$	15	20.70	VLA			
1741-038	17	41	20.619	$9-03$	48	48.88	VLA			
1743+173	17	43	22.236	3617	21	09.15	VLA			
1748-253	17	48	45.789	9--25	23	17.43	VLA			
1749+701	17	49	03.400	070	06	39.60	VLA			
1749+096	17	49	10.386	609	39	42.80	VLA			
1751+288	17	51	45.404	428	48	36.60	VLA			
1751+441	17	51	53.715	544	10	17.80	VLA			
1756+134	17	56	13.35	13	28	43.9	ADGIE 197			
1756*237	17	56	55.932	223	43	55.80	VLA			
1758*388	17	58	44.695	538	48	32.50	VLA			
$1800 \cdot 440$	18	00	03.191	144	04	18.30	VLA			
1801+010	18	01	43.386	601	01	18.80	VLA			
1802+110	18	02	45.670	011	01	14.40	VLA			
1803+784	18	03	39.179	978	27	54.30	VLA			
$1807+698$	18	07	18.544	469	48	56.98	VLA			
1808-209	18	08	07.400	$0-20$	55	44.60	VLA			
1817-098	18	17	52.820	$0-09$	48	41.20	VLA			
1819+396	18	19	42.39	39	41	13.8	ADGIE ET	AL.	1972	
1820*179	18	20	09.0	17	58	34	BDFL			
1820+397	18	20	21.239	939	44	27.00	VLA			
1821*017	18	21	32.4	01	46	44	BDFL			
1821+107	18	21	41.655	510	42	43.90	VLA			
1823-568	18	23	14.949	956	49	18.05	VLA			
1826-796	18	26	43.190	079	37	00.00	VLA			
1827-360	18	27	36.841	$1-3 t$	04	37.90	VLA			
1828+487	18	28	13.460	$0 \quad 48$	42	41.00	VLA			
1829+290	18	29	17.94	29	04	57.2	FOMALONT	AND	MOFFET	1971
1829-106	18	29	34.700	$0-10$	37	27.00	VLA			
$1830+285$	18	30	52.378	$8 \quad 28$	31	17.05	VLA			
1831-126	18	31	30.590	$0-12$	40	04.80	VLA			
$1832+474$	18	32	24.51	47	25	13	FOMALONT	1968	- BDFL	
$1832+315$	18	32	25.2	31	34	00	BDFL			
$1833+653$	18	33	33.50	65	19	12.0	HOGBOM AND	N CAR	RLSSON	1974
$1835+134$	18	35	12.7	13	28	04	BDFL			
$1842+455$	18	42	35.49	45	30	22.4	FOMALONT	AND	MOFFET	1971
1842+681	18	42	43.385	568	06	19.70	VLA			
$1843+098$	18	43	15.35	09	50	29.3	FOMALONT	ANO	MOFFET	1971
$1843+400$	18	43	32.544	440	04	38.70	VLA			
$1843+356$	18	43	48.341	135	38	02.40	VLA			
$1848+283$	18	48	29.070	028	21	38.45	VLA			
$1849+670$	18	49	16.504	467	02	07.90	VLA			

SOURCE NAME	$\begin{aligned} & 21 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	$\begin{aligned} & 11 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	$\begin{aligned} & 6 \mathrm{CM} \\ & \text { FLUX } \end{aligned}$	ERR MEAS	OTHER NAME
1719+356							
$1725+123$							
1725+044							
1726+455							
1726+318							$3 C 357$
1730-130							NRA0530
1732+389							
$1732+094$							
$1734+063$							
$1738+499$							
$1738+476$							
$1739+522$							
1741-312							
1741-038							
1743+173							
1748-253							
1749+701							
1749+096							
1751+288							
1751-441							
1756+134							
$1756+237$							
$1758+388$							
$1800+440$							
1801+010							
1802+110							$3 C 368$
1803+784							
1807+698							3 C 371
1808-209							
1817-098							
1819+396	3.39	0.08	1.77	0.03	0.97	0.01 J	
1820+179	1.76	0.05	1.08	0.02	0.67	0.058	
1820-397							
1821+017	2.53	0.09	1.46	0.02	0.87	0.09N	
1821+107							
1823+568							
1826-796							
1827-360							
1828-487	14.11	0.29	9.44	0.07	7.50	$0.09 E$	3C380
1829-290	2.84	0.07	1.87	0.02	1.15	0.04H	
1829-106							
$1830+285$	1.74	0.05	1.28	0.02	1.07	0.04H	
1831-126							
$1832+474$	3.79	0.18	2.26	0.03	1.29	0.05 E	$3 C 381$
1832+315	2.06	0.06	1.42	0.03	1.16	0.04 K	
$1833+653$	2.38	0.23	1.36	0.04	0.80	0.01 J	3C383
$1835+134$	2.00	0.06	1.18	0.02	0.72	0.07 N	
$1842+455$	5.57	0.23	3.18	0.02	1.77	0.04E	$3 C 388$
1842+681							
1843+098							$3 C 390$
$1843+400$							
$1843+356$							
$1848+283$							
$1849+670$							

SOURCE
NAME
$1855+529$ $1856+737$
$1901+319$
$1905+190$
1908-202
$1914+302$
1921-293
$1923+210$
$1926+611$
$1928+738$
1933-400
1936-155
1937-101
1938-155
$1939+605$
$1940+504$ $1947+079$
$1949+023$
1953-325
1953-425
$1954+513$
1954-388
1955-357
1958-179
2000-330
2003-025
2004-447
$2005+403$
$2007+249$
2007+776
2008-159
2008-068
$2010+723$
$2012+234$
$2018+295$
2018+231
2019-098
2021-614
2021+317
2022+542 $2022+031$ $2023+336$ $2023+760$ $2029+121$ $2030+547$ $2030+257$ 2032-350 2032+107 $2033+181$ $2037+511$ 2037-253

2044-168
$2045+068$ $2047+098$

RIGHT
ASCENSION (1950) DECLINATION
$1855 \quad 35.90$
185606.999
190102.309
190511.120
$1908 \quad 12.465$
191400.00
192142.238
192349.788
192649.646
192849.348
193351.118
193636.024
193712.646
$1938 \quad 24.480$
193938.83
194021.4
194740.160
$194944 \cdot 13$
195349.000
195422.469
195439.056
195548.270
195804.605
$20 \quad 0013.021$
$20 \quad 03 \quad 32.22$
$20 \quad 04 \quad 25.143$
$20 \quad 05 \quad 59.560$
$20 \quad 07 \quad 17.740$
$20 \quad 07 \quad 20.435$
$20 \quad 08 \quad 25.914$
$20 \quad 08 \quad 33.699$
$20 \quad 10 \quad 16.207$
$20 \quad 12 \quad 18.16$
$20 \quad 18 \quad 04.17$
$20 \quad 18 \quad 53.180$
$20 \quad 1944.36$
$20 \quad 21 \quad 13.297$
$2021 \quad 18.950$
202237.630
202238.861
202312.960
202340.854
202932.679
$\begin{array}{lll}20 & 30 & 29.150\end{array}$
203042.90
$20 \quad 32 \quad 37.450$
203258.558
$20 \quad 3318.032$
$20 \quad 3707.460$
$20 \quad 3710.759$
204430.816
204544.36
204720.779
525404.0
734719.40
$\begin{array}{lll}31 & 55 & 13.91\end{array}$
195136.00
-201155.10
301423
-29 $20 \quad 26.42$
210023.20
611120.70 VLA
735144.90 VLA
$\begin{array}{llll}-40 & 04 & 46.80 & \text { VLA }\end{array}$
$\begin{array}{llll}-15 & 32 & 38.75 & \text { VLA }\end{array}$
$-10 \quad 09 \quad 39.50$ VLA
$-1531 \quad 34.20$ VLA
$50 \quad 2847$
075935.53
022241.5
-323349.50
$\begin{array}{llll}-42 & 30 & 21.00 & \text { VLA }\end{array}$
512346.40 VLA
$\begin{array}{lll}-38 & 53 & 13.25\end{array}$ VLA
-354244.00 VLA
-175716.90 VLA
$\begin{array}{llll}-33 & 00 & 12.50 & \text { VLA }\end{array}$
-444327.45 VLA
402101.80 VLA
$2456 \quad 55.20$ VLA
$\begin{array}{llll}77 & 43 & 58.10 & \text { VLA }\end{array}$
$\begin{array}{llll}-15 & 55 & 38.25 & \text { VLA }\end{array}$
$-06 \quad 5301.75$ VLA
$\begin{array}{llll}72 & 20 & 20.75 & \text { VLA }\end{array}$
232541.5
293240.6
230901.00
095132.9
612718.12
314319.00
541749.00
030655.70

33
760140.60 VLA
120928.70 VLA
544449.00 VLA
254206.0 BDFL
$\begin{array}{llll}-35 & 04 & 33.60 & \text { VLA }\end{array}$
104542.20 VLA
$\begin{array}{llll}18 & 46 & 40.05 & \text { VLA }\end{array}$
5108 35.71 VLA
$\begin{array}{llll}-25 & 18 & 26.35 & \text { VLA }\end{array}$

- $165009.70 \quad$ VLA
$06 \quad 50 \quad 09.8$
095202.00
-023215.2 MCEWAN ET AL. 1975
603431.2 HOGBOM AND CARLSSON 1974

REFERENCE
KUHR 1979
VLA
VLA
VLA
VLA
BDFL
VLA
VLA

S4
VLA
MCEWAN ET AL• 1975
VLA

LA

WAN ET AL• 1975

FOMALONT AND MOFFET 1971
ADGIE ET AL• 1972
VLA
FOMALONT AND MOFFET 1971
VLA
VLA
VLA
VLA
VLA

VLA
VLA
FOMALONT AND MOFFET 1971
VLA

SOURCE NAME	21 CM fluX	$\begin{aligned} & \text { ERR } \\ & \text { MEAS } \end{aligned}$	11 CM flUX	ERR MEAS	$\begin{aligned} & 6 \mathrm{CM} \\ & \text { FLUX } \end{aligned}$	ERR MEAS	OTHER NAME
1855+529							3C393
$1856+737$							
1901+319							3C395
$1905+190$							
1908-202							
1914+302							3C399.1
1921-293							
1923+210							
1926-611							
1928+738							
1933-400							
1936-155							
1937-101							
1938-155	7.17	0.158	3.93	0.32	2.31	0.06E	
1939-605	4.75	0.14	2.72	0.03	1.37	0.05E	$3 \mathrm{C4O1}$
$1940+504$							3 C 402
1947+079							
1949+023							3 C 403
1953-325							
1953-425							
$1954+513$							
1954-388							
1955-357							
1958-179							
2000-330							
2003-025	2.01	0.06	1.51	0.04	0.93	0.058	
2004-447							
2005+403							
2007+249							
2007-776							
2008-159							
2008-068							
2010+723							
2012+234	13.04	0.27	6.46	0.08	3.12	0.05E	$3 C 409$
2018+295							3 C 410
2018-231	1.75	0.05	1.33	0.03	1.20	0.06B	
2019+098	3.18	0.08	1.70	0.01	0.87	0.06E	$3 C 411$
2021+614							
2021+317							
2022-542							
2022-031							
2023-336							
2023+760							
2029+121							
$2030+547$							
$2030+257$	1.81	0.06	1.01	0.04	0.60	0.05B	$3 C 414$
2032-350							
$2032+107$							
2033+181							
2037+511							3 C 418
2037-253							
2044-168							
2045+068	2.04	0.12	1.22	0.02	0.65	0.03E	3 C 424
2047+098							

SOURCE NAME	ASCENSION 1		SION 119		DECLINATION		REFERENCE			
2044-027	20	44	34.207	-02	47	25.80	VLA			
2047*039	20	47	35.946	03	56	35.50	VLA			
2050+364	20	50	54.460	36	24	11.69	VLA			
2051+745	20	51	57.449	74	30	18.20	VLA			
2055+508	20	55	45.150	50	46	38.50	VLA			
2058-297	20	58	00.914	-29	45	15.00	VLA			
2058-425	20	58	42.073	-42	31	03.60	VLA			
2059+034	20	59	08.010	03	29	41.45	VLA			
2104*763	21	04	$46 \cdot 11$	76	21	03.2	HOGBOM AN	D CA	RLSSON	1974
$2105+420$	21	05	09.390	42	02	03.10	VLA			
2106-413	21	06	19.391	-41	22	33.35	VLA			
2111+620	21	11	39.47	62	02	35.0	HOGBOM AN	D CA	RLSSON	1974
2111-259	21	11	44.770	-25	54	17.20	VLA			
2113+293	21	13	20.576	29	21	06.70	VLA			
2117+605	21	17	01.88	60	35	34	FOMALONT	AND	MOFFET	1971
$2121+053$	21	21	14.799	05	22	27.45	VLA			
2121+248	21	21	30.57	24	51	17.9	FOMALONT	AND	MOFFET	1971
2126-158	21	26	26.775	-15	51	50.40	VLA			
2126-185	21	26	33.899	-18	34	32.60	VLA			
$2126+073$	21	26	37.55	07	19	51.4	FOMALONT	AND	MOFFET	1971
2128+048	21	28	02.614	04	49	04.35	VLA			
2128-208	21	28	12.280	-20	50	10.00	VLA			
2128-123	21	28	52.673	-12	20	20.52	VLA			
2131-021	21	31	35.126	-02	06	39.95	VLA			
$2134+004$	21	34	05.205	CO	28	25.08	VLA			
2135-209	21	35	01.323	-20	56	03.70	VLA			
2135-248	21	35	45.400	-24	53	28.50	VLA			
2136-141	21	36	37.411	14	10	00.63	VLA			
2140-048	21	39	59.964	-04	51	27.80	VLA			
2141+279	21	41	58.0	27	56	33	BDFL			
2143-156	21	43	38.872	-15	39	37.30	VLA			
2144+092	21	44	42.473	09	15	51.15	VLA			
2145+151	21	45	01.29	15	06	45.5	FOMALONT	AND	MOFFET	1971
2145-067	21	45	36.076	06	43	40.90	VLA			
2146-133	21	46	46.350	-13	18	28.00	VLA			
2146+608	21	46	48.090	60	53	07.00	VLA			
2147+145	21	47	59.298	14	35	44.66	VLA			
$2148+143$	21	48	20.80	14	19	30.6	ADGIE ET	AL.	1972	
2149-306	21	49	00.592	-30	42	00.15	VLA			
2149+069	21	49	02.703	06	55	20.90	VLA			
2149+056	21	49	07.696	05	38	06.85	VLA			
2149-287	21	49	10.530	-28	42	35.10	VLA			
$2150+173$	21	50	02.229	17	20	29.80	VLA			
$2153+377$	21	53	45.55	37	46	13.4	FOMALONT	AND	MOFFET	1971
$2154+482$	21	54	43.100	48	16	09.00	VLA			
2155-152	21	55	23.238	-15	15	30.15	VLA			
2200+420	22	00	39.363	42	02	08.57	VLA			
2201+315	22	01	01.440	31	31	05.85	VLA			
2201+624	22	01	50.110	62	26	01.00	VLA			
2203-188	22	03	25.730	-18	50	17.05	VLA			
2203+292	22	03	49.17	29	14	45.8	FOMALONT	AND	MOFFET	1971
2209+081	22	09	32.10	08	04	25.8	FOMALONT	AND	MOFFET	1971
2209+236	22	09	45.690	23	40	50.00	VLA			
2210+016	22	10	05.133	01	37	59.50	VLA			

SOURCE NAME	$\begin{aligned} & 21 \mathrm{CM} \\ & \text { FLUX } \end{aligned}$	ERR MEAS	$\begin{aligned} & 11 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	$\begin{aligned} & 6 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	OTHER
2044-027							$\begin{aligned} & \text { NAME } \\ & 3 C 422 \end{aligned}$
2047-039							
2050+364							
2051+745							
2055+508							
2058-297							
2058-425							
2059+034							
2104+763	3.70	0.18A	1.99	0.12	0.96	0.06E	$3 \mathrm{C427.1}$
2105+420							NGC 7027
2106-413							
2111+620	2.53	0.08	1.39	0.04	0.79	0.08N	$3 C 429$
2111-259							
2113+293							
2117-605							$3 C 430$
$2121+053$							
2121+248	11.68	0.27	6.51	0.04	3.74	0.07E	3 C 433
2126-158							
2126-185							
2126+073	2.01	0.06	1.07	0.02	0.56	0.03 E	$3 C 435$
$2128+048$	3.98	0.09	2.94	0.02	1.97	0.051	
2128-208							
2128-123	1.85	0.098	1.78	0.11	2.15	0.05E	
2131-021							
$2134+004$							P2134.00
2135-209							
2135-248							
2136+141							
2140-048							
2141+279	3.26	0.09	1.80	0.09	0.99	0.03 E	$3 C 436$
2143-156							
2144+092							
2145+151	2.84	0.07	1.54	0.01	0.88	0.06E	$3 C 437$
2145+067							
2146-133							
2146+608							
$2147+145$	2.42	0.11	1.37	0.02	0.72	0.031	
$2148+143$	2.13	0.08	1.30	0.06	0.78	0.031	
2149-306							
2149+069							
2149+056							
2149-287							
2150+173							
2153+377	6.70	0.14	3.25	0.03	1.54	0.06E	$3 C 438$
$2154+482$							
2155-152							
$2200+420$							BLLAC
2201+315							
2201+624	2.96	0.09	1.68	0.07	1.07	0.07 E	$3 C 440$
2203-188	6.32	0.20B	5.11	0.42	4.62	0.12E	
2203+292	2.51	0.08	1.38	0.02	0.92	0.03E	$3 C 441$
2209+081	1.80	0.06	1.27	0.03	1.09	0.04H	
2209+236							
2210-016	2.60	0.07	1.67	0.01	1.02	0.04H	

SOURCE NAME	$\begin{aligned} & 21 \text { CM } \\ & \text { FLUX } \end{aligned}$	$\begin{aligned} & \text { ERR } \\ & \text { MEAS } \end{aligned}$	$\begin{aligned} & 11 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	$\begin{aligned} & 6 \text { CM } \\ & \text { FLUX } \end{aligned}$	ERR MEAS	OTHER NAME
2210-257							
2214+350							
2215+020							
2216-038							
2218+395							
2223-052							$3 C 446$
2223+210							
2226-411							
2227-088							
2227-399							
2229+695							
2230+114							CTA102
2233-148							
2234+282							
2239+096							
2240-260							
2243-123							
2244+366	2.03	0.06	1.19	0.02	0.70	0.01 J	
2245-328							
2247+140	2.10	0.06	1.46	0.03	1.03	0.06E	
2248+712							$3 C 454.1$
2249+185	2.06	0.07	1.21	0.01	0.79	$0.03 E$	3 C 454
$2250+644$	2.21	0.080	1.29	0.04 A	0.76	0.03 E	$3 C 454.2$
2251+158							3C454.3
2251+244	1.88	0.06	1.22	0.02	0.87	0.03 H	
2252-089							
2252+129	2.93	0.12	1.41	0.01	0.93	O.LOE	$3 C 455$
$2253+417$							
2255+416	2.21	0.06	1.44	0.03	0.99	0.01 J	
2255-282							
2259-375							
2305-418							
2309+090	2.51	0.08	$1 \cdot 36$	0.02	0.67	0.03E	3C456
$2314+038$	4.17	0.10	2.30	0.04	1.36	0.04 E	3C459
$2318+049$							
$2318+235$							$3 C 460$
2319+272							
2320-035							
2323-407							
2324-023							
2324+405	2.38	0.12	1.54	0.03	1.12	0.10E	$3 C 462$
2325-150							
2328+107							
2329-162							
2331-240							
2335-027							
2337-334							
$\begin{aligned} & 2337+220 \\ & 2337+264 \end{aligned}$	2.13	0.07	$1 \cdot 31$	0.03	0.75	0.058	$3 C 466$
$2341+535$							
$2343+657$							
2344*092							
2345-167							
2347-026	1.75	0.05	1.02	0.08	0.48	$0.02 C$	

2348-2356	B-34									
SOURCE	RIGHT									
NAME	A S	REN	SION 119	1 DECLINATION			REFERENCE			
$2348+643$	23	48	27.450	64	23	37.00	VLA			
2349-014	23	49	22.50	-01	25	58.6	MCEWAN ET	AL.	1975	
2351+456	23	51	49.976	45	36	22.80	VLA			
2351-154	23	51	55.883	-15	29	53.00	VLA			
$2352+495$	23	52	37.790	49	33	26.76	VLA			
2354-117	23	54	57.211	-11	42	21.40	VLA			
2356*437	23	56	02.42	43	47	01.3	FOMALONT	AND	MOFFET	1971

SOURCE	21 CM	ERR	11 CM	ERR	6 CM	ERR	OTHER
NAME	FLUX	MEAS	FLUX	MEAS	FLUX	MEAS	NAME
$2348+043$	4.80	0.200	1.94	$0.04 A$	0.87	$0.03 E$	$3 C 468.1$
$2349-014$	1.63	$0.12 C$	1.00	0.02	0.70	$0.03 I$	
2351.456	2.12	0.06	1.51	0.05	1.41	0.02 J	
$2351-154$							
2352.495							
$2354-117$							
$2356+437$	1.88	0.06	1.03	0.02	0.55	$0.03 E$	$3 C 470$

REFERENCES

Adgie, R.L. 1974, A.J., 79, 846.
Adgie, R.L., Crowther, J.H., and Gent, H. 1972, M.N.R.A.S., 159, 233.
Brandie, G.W., and Bridle, A.H. 1974, A.J., 79, 903.
Bridle, A.H., Davis, M.M., Fomalont, E.B., and Lequeux, J. 1972, A.J., 77, 405 (BDFL).

Brosche, P., Wade, C.M., and Hjellming, R.M. 1973, Ap.J., 183, 805.
Condon, J.J., Balonek, T.J., and Jauncey, D.L. 1975, A.J., 80, 887.
Edwards, T., Kronberg, P.P., and Menard, G. 1975, A.J., 80, 1005.
Elsmore, B., and Mackay, C.D. 1969, M.N.R.A.S., 146, 361.
Fomalont, E.B. 1968, Ap.J.Suppl., 18, 85.
Fomalont, E.B., and Moffet, A.T. 1971, A.J., 76, 5.
Hogbom, J.A., and Carlsson, I. 1974, Astron.Astrophys., 34, 341.
Kuhr, H. 1979, unpublished.
Mackay, C.D. 1969, M.N.R.A.S., 145, 31.
McEwan, N.J., Browne, I.W.A., and Crowther, J.H., Memoirs R.A.S., 80, 1.
Pauliny-Toth, I.I.K., Witzel, A., Preuss, E., Kuhr, H., Kellerman, K.I., Fomalont, E.B., and Davis, M.M. 1978, A.J., 83, 451 (S4).

VLA Calibrator Manual, 1982 (VLA).

TABLE OF CONTENTS

Page
PREP300 . $\mathrm{C}-1$
POINT300 C-4
LINE300 -••••••••••••••••••••••
PLAN300
-•••••••••••
C-9

APPENDIX C

IBM PROGRAMS FOR PRODUCING SOURCE CARD DECKS

//PREP300 JOB (532.3001.GBOPER,MSGLEVEL=(2.0).CLASS=C
/: ROUTE PRINT REMOTEL
// EXEC FORTGCL,ERRCR=E,PARM•FORT='ID*
//FCRT.SYSIN CD :
C

PROGRAM PREP300

VERSION $2.0 \quad 1$ JULY 82
PREVIOUS VERSION SAVED AS 'OLDPREP'

PROGRAM PREP 300 IS USED TO PREPARE OBSERVING CARDS FOR DRIFT SCANS AT THE 3OO-FOOT TELESCOPE. CARDS FOR WOBBLES CAN ALSO BE PRODUCEC. THE PROGRAM CAN PRGDUCE CARDS FOR OBSERVATIONS IN POSITIONING COCES 1-3 ANO 13. CARDS FOR DECLINATION SCANS WITH POSITIONING COCES 3, 8, 13, OR 18 ARE PRODUCED BY A COMPANION program callec point 300. parameters that allow the program to take ACCOUNT OF PRECESSICN, POINTING CORRECTIONS, AND FEED OFFSETS, AS WELL AS THE CHOSEN MODE OF ORSERVING --SCAN LENGTH, INTEGRATION TIME, ETC.-- ARE REAC fRCM THE FIRST EIGHT CARDS ON THE CARD INPUT FILE OR STREAM ISYSINI. THE REST OF THE INPUT CARDS ARE SOURCE CARDS, CONTAINING THE SCURCE NAME ANO 1950.0 RIGHT ASCENSION AND DECLINATICN. THE PROGRAM WILL PUNCH AN CBSERVING CARD IOR PERHAPS MORE THAN CNE CARD) FCR EACH SOURCE.
the cifference eetween this version and the previous version, SAVED AS OLOPREP, IS THE WAY THE DECLINATION POINTING CORRECTION IS IMPLEMENTEC. IN the previous VERSICN a table of CFFSETS TAKING UP TWO INPUT CARDS WAS READ N, AND THE PROGRAM INTERPOLATED BETWEEN values in the table. in this versicn, the coefficients of a polyNONIAL FIT ARE REAC FROM A SINGLE CARD. THE OIFFERENCE IN THE NUMBER OF SETUP CAROS BETWEEN THE TWO VERSIONS SHCULD CAUSE A FATAL RUN-TIME ERROR. PREVENTING THE USE CF THE WRONG VERSION.

PROGRAM PREP300 ASSUMES THAT YCU WILL BE DOING ORIFT SCANS. TO SWITCH FROM DRIFT SCANS TO WOBBLES, INSERT A CARD CONTAINING 'WOBBLE IN COLUMNS 1-6 INTO THE INPUT STREAM. TC REVERT BACK TO CRIFT SCANS, INSERT A CARD CONTAINING •ORIFT' IN COLUMNS L-5 INTO THE JJB STREAM. THIS SWITCHING CAN BE PERFORMED ANY NUMBER OF TIMES. DRIFT SCANS ARE OBSERVED WITH A PULSED CAL, AND WOBBLES ARE OBSERVED WITH NC CAL.

PRCGRAM PREP3OO HAS TWO IMPORTANT CONVENIENCE FEATURES: COORDINATE LOOKUP AND DECLINATION OFFSETS. IF THE CONTENTS OF COLUMNS 39-40 ON A SCURCE CARD ARE NOT ZERO II.E. BLANKI THEN THE PROGRAM WILL SCAN THE CONTENTS OF A LOOKUP FILE FOR AN EXACT MATCH to the source name on the card. if a match is found then the PROGRAM USES THE COCRCINATES READ FROM THE DISK FILE. IF NOT. THEN IT USES THE COORCINATES ON THE CARD. THIS PROVIDES A CONVENIENT WAY to use updated ccordinates from the staff maintained lookup file. If the ra and oec fielcs on a source card are blank then the program WILL ALSO LCOK FCR COORDINATES ON THE LOOKUP FILE, BUT IF IT DOES NOT FIND ANY IT PRINTS A MESSAGE AND GOES ON TO THE NEXT SOURCE CARD. A LISTING OF THE CONTENTS OF THE SUPPLIED LOOKUP FILE CAN BE FOUNC IN APPENDIX B OF THE 3OO-FOOT MANUAL.
tre declination offset feature provides a convenient way to OBSERVE THE SAME SCURCE WITH DIFFERENT DECLINATION OFFSETS ON SUCCESSIVE DAYS, UP TC A LIMIT OF 20 DAYS II.E. 20 OFFSETSI. THE NUMBER OF OFFSETS 1141 IS PUNCHED ON INPUT CARD 6 , FOLLOWED BY A LIST OF OFFSETS IN ARCMINUTES (F7.3), WHICH MAY CONTINUE

```
ONTO A SECOND CARD.
    TO RUN PROGRAN PREP3OO YOU SHOULD CREATE A PANDORA MEMBER
CONTAINING IMAGES CF THE INPUT CARDS TO BE READ EY THE PROGRAM, IN
THE FORMATS GIVEN BELOW. AND SAVE IT. THEN CREATE A MEMBER WITH
THE NECESSARY JCL STATEMENTS. IF ALL OF YOUR SCURCES ARE SUPPLIEC
WITH COCRDINATES ON THE SOLRCE CAROS OR CAN BE FOUND IN THE STAFF
MAINTAINED LOOKUP FILES. THEN THE FCLLOWING WILL SUFFICE:
//PREP300 JOB (<USER.t>, 300),\langleYOURNAME>,CLASS=B,MSGLEVEL=(2,0)
/:ROUTE PRINT REMOTEL
/:ROUTE PUNCH REMOTEL
// EXEC PREP300
//SYSIN DD %
TAKE NOTE OF THE TWO SPACES AFTER •ROUTE' DN THE SECOND AND THIRD
CAROS. TO SURMIT THIS JOB, TYPE
SUB <NAME CF JCL MEMBER> <NAME SYSIN MEMBER>
    IF YOU ARE SUPPLYING YOUR OWA LOOKUP FILE, THEN YOU NEED YET
ANOTHER PANDORA MEMBER, OF WHICH THE FIRST LINE IS:
//SOURCES DD :
FOLLOWED BY LINES OF SOURCE NAMES AND POSITIONS IN THE SAME FORMAT
AS FCR SOURCE CARDS. TC SUBMIT THIS JOB, TYPE
SUB <NAME JCL MEMBER> <NAME SYSIN MEMBER> <NAME SOURCES MEMBER>
YOUR LOOKUP FILE WILL BE THE FIRST CNE SEARCHED, RUT IF A SCURCE
IS NOT FOUND THERE, THE SEARCH WILL CONTINUE ON TE THE SUPPLIED
LOOKUP FILE. SCANNING STOPS WHEN A YATCH IS FOUND. SO IF A SOURCE
COULD BE FOUND CN BCTH YOUR LCOKUP FILE AND THE SUPPLIED LOOKUP
fILE, THE PRCGRAM WILL ALWAYS TAKE THE INFORMATICN FROM YOUR FILE.
INPUT CAROS
COLUMN ITEM(S) FORMAT
1 MEDIAN OESERVING DATE, OBSERVER NUMBER
                                    DAY
                                    I5
                                    MONTH I5
        11 YEAR I5
        16 OBSERVER NUMBER I5
2
            UP TO & FEED OFFSETS IN ARCMINUTES
            1.11 RAL.DEC1 2F10.5
        21.31 RA2. DEC2 2F10.5
        41.51 RA3. DEC3 2F10.5
        61.71 RA4. OEC4 2F10.5
        3 COEFFICIENTS OF RA POINTING CURVE:
            CRA = N +N:TANI DEC 1 + C/COSI DEC I
                ISEE TABLE 8-1 IN THE 300-FOOT MANUALI
        1
        1 1
        21
4
                #
                        M
                                F10.5
                                    F10.5
                                    F10.5
            COEFFICIENTS OF DEC POINTING CURVE:
```

```
                                    C-3
            CDEC = C1 + C 2*DEC + C 3*DEC*:2 + C 4*DEC:*3
                (See table 8-1 in the 300-foot manual)
                    O1 F10.5
                    O2 F10.5
                    0 3 ~ F 1 0 . 5
                            04
                            F10.5
UP TC 2C DECLINATION OFFSETS IN ARCMINUTES
        NUMBER OF OFFSETS I4
        OFFSETII) F7.3
        OFFSET(2) F7.3
        *}
        \bullet••
        GFFSET(10) F7.3
        GFFSET(11) F7.3
                (CONTINUES ON SECCND CARDI
            DETAILS CF CESERVING PROCEDURE (SEE 300' MANUAL)
        SCAN LENGTH IN ARCMINUTES F10.4
        ADDITIONAL BASELINE LENGTH (SECONDS) FIO.4
        PCSITIONING CCCE (ONLY 1-3 AND 13, [2
            SEE PRCGRAM POINT3OO FOR OTHERSI
        DECLINATION SCANNING RATE I5
            arcninutes/minute
        rCtation angle
        I5
        INTEGRATION PERIOD IN SECONDS F5.I
        haIT CCDE. IF=l THEN DATA TAKING Il
            IS DELAYED FROM THE INDICATED
            START TIME UNTIL THE DEC ERROR
            IS LESS THAN 2O ARCSECONDS.
7 WOBBLE LIMITS ABOLT SPECIFIED POSITION
            1.11 NCRTH, SCUTH LIMITS IN ARCMINUTES 2F10.5
        21.31 EAST, WEST LIMITS IN SECONDS 2F10.5
            SOLRCE CARCS
            1 SCURCE NAME
                A8,A2
            11 RIGHT ASCENSICN 11950.01
        25 DECLINATION (1950.0) S14.4:
        39 IREAD, FLAG TC LOOK CN FILE 9 IF 12
            IREAD -NE. ZERO
    FLUX IOPTIONAL, I.E. NOT PUNCHEDI F6.1
    SCURCE WICTH IN ARCMIN
    NCTE
                                    F3.1
                                    A6
:FORMAT FCR R14.4 IS SHH MM SS.SSSS
    FORMAT FOR S14.4 IS SOD MM SS.SSSS
the duration of the drift scans is taken fron the information ON BCTH THE SETUP CARDS AND INDIVICUAL SOURCE CARDS. the total dURATION OF A SCAN IN SECONOS OF TIME IS GIVEN EY THE FORMULA
```

```
SCAN CURATICN = 4:\SCAN LENGTH + WASTE + WIDTH I/COSI DEC )
```

SCAN CURATICN = 4:\SCAN LENGTH + WASTE + WIDTH I/COSI DEC)
+ 2*BASELINE LENGTH
+ 2*BASELINE LENGTH
-WASTE' IS CCMPUTED IN THE PROGRAM FROM THE FEED OFFSETS ON CARD 2.
"SCAN LENGTH' AND 'BASELINE LENGTH' ARE TAKEN FRCM CARD 6. AND
'WIDTH' IS TAKEN FRCM THE SOURCE CARDS. IF A PULSED CAL WDULD
CCCUR IN THE LAST OR SECOND-TO-LAST DATA POINT CF A SCAN, THEN
the sCaN IS leNGTHENED to avoid this.

```
\(/ /\) POLNT 300 JOQ \((533,300), G B O P E R, M S G L E V E L=(2,01, C L A S S=0\)
\(1 \because\) ROUTE PRINT REMOTEI
// EXEC FORTGCL,PARM.FORT=ID.ERROR =E
//:FFORT.SYSPRINT DD DUMMY
//FORT•SYSIN CD :

C
C PROGRAM POINT300

VERSION 2.020 JULY 1982
PRCGRAM POINT 300 IS A CCMPANION PRCGRAM TO PROGRAM PREP300. PROGRAM POINT \(3 C C\) PREPARES OBSERVING CARDS FOR DECLINATION SCANS AT THE 300-FOOT TELESCOPE IN POSITICNING MODES 3. 8. 13. OR 18. SEE PROGRAM PREP 300 FOR MOCES \(1-3\) AND 13 . PROGRAM POINT3OO IS PRIMARILY INTENDED FCR PREPARING OBSERVATIONS TC CHECK THE DECLINATION POINTING CF THE 3OO-FOOT TELESCOPE. THERE ARE RELATIVELY FEW PARAMETERS WHICH CAN BE SPECIFIED BY THE USER, AND THESE ARE READ FRDM THE FIRST TWO CARDS ON THE CARD INPUT FILE THE REMAINING CARDS ON THE CARD INPUT FILE ARE SCURCE CARDS, CONTAINING THE NAME AND 1950.0 COOROINATES OF A SOURCE. TWO OBSERVING CARDS ARE PRODUCED FOR EACH SOURCE CARD: ONE MARKED 'NS' SCANS THE TELESCCPE FROM NORTH TC SCUTH, AND ANOTHER MARKED SN' SCANS FROM SOUTH TC NORTH. THESE PAIRS ARE SEGREGATED INTO TWO SEPARATE OBSERVING DECKS WHICH ARE PRODUCED AT THE END OF THE COMPUTATIONS. THE DECKS ARE FOR USE ON SUCCESSIVE DAYS. IN BOTH DECKS. SUCCESSIVE SCANS ALTERNATE EETWEEN 'NS' AND 'SA' SCANS BUT THE TWC DECKS ARE OUT OF PHASE', ONE GOING NORTH WHERE THE OTHER GOES SDUTH.

PROGRAM PCINT 300 PREPARES CARDS FOR SCANS DRIVEN IN DECLINATION SO THAT THE SOURCE SHOULD PEAK AT THE CENTER OF THE SCAN. FOR THOSE PCSITICNING MCDES IN WHICH THE TELESCCPE IS SIMULTANECUSLY TRACKING IN RIGHT ASCENSION 18 ANO 181 . THE SOURCE SHOULO PEAK AT TRANSIT. ALL OF THE OBSERVING CARDS CONTAIN A CCOE FOR PULSED CAL OBSERVATIONS 10 IN CCLUMN 54). IF A PULSED CAL WOULD OCCUR IN THE LAST OR SECOND TC LAST DATA POINT THE SCAN IS LENGTHENED.

LEAVING THE DECLINATION RATE FIELD ON INPUT CARD 1 BLANK INVOKES THE DEFAULT DECLINATION RATE OF 15 ARCMINUTES PER MINUTE OF TIME. IF THE SECANTI DEC I INDICATOR IS ZERJ THEN THE SCAN RATE IS ALWAYS 15 ARCMIN/MIN, BUT IF THE SECANTI DEC I INOICATOR IS 1 THEN THE SCAN RATE IS SLOWED BY COSI CEC, AND THE SCAN IS LENGTHED BY SECANTI DEC I TO TAKE ADVANTAGE OF THE THE ABILITY OF THE STERLING MOUNTED RECEIVERS TO TRACK A GIVEN RIGHT ASCENSION FGR A LONGER PERIOC OF TIME AT HIGHER DECLINATIONS. THE INTEGRATION PERIOC, OR SAMPLING RATE REMAINS CONSTANT SD THE HIGHER DECLINATION SCANS HAVE MORE DATA POINTS THAN LOW DECLINATION SCANS.

PRCGRAM POINT 300 DOES NOT HAVE THE FEATURE ALLOWING SCANS AT GIVEN OFFSETS FRCM THE NOMINAL SOURCE POSITION, RUT IT DQES HAVE THE SAME COORDINATE LOOKUP FEATURE AS PROGRM PREP300. THAT IS, IF COLUMNS 39-40 ON A SOURCE CARD ARE NOT ZERO II.E. ELANKI THEN THE PROGRAM WILL SCAN THE CONTENTS OF A LOOKUP FILE, LOCKING FOR AN EXACT MATCH TC THE SQURCE NAME ON THE CARD. IF A MATCH IS FCUNC THEN THE PROGRAM USES THE COORDINATES READ FROM THE DISK FILE I IF NOT, IT USES THE COORCINATES CN THE CARD. THIS PROVIDES A CONVENIENT WAY TO USE UPCATEO COOROINATES FROM A MAINTAINED LOOKUP FILE. IF THE RA AND DEC FIELCS ON A SOURCE CARD ARE BLANK THEN THE PROGRAM WILL ALSO SCAN THE LCOKUP FILE, BUT IF IT COES NCT FIND ANY, IT PRINTS A MESSAGE AND GOES ON TO THE NEXT SOURCE CARD.

TC RUN PROGRAM POINT 300 YOU SHCULO CREATE A PANDORA MEMBER CONTAINING IMAGES CF THE INPUT CAROS TO BE READ EY THE PROGRAM．IN THE FORMATS GIVEN BELOW，AND SAVE IT．THEN CREATE A MEMBER WITH THE NECESSARY JCL STATEMENTS．IF ALL OF YOUR SCURCES ARE SUPPLIEC WITH COCRUINATES UN THE SOURCE CARDS OR CAN BE FOUND IN THE STAFF MAINTAINED LCCKUP FILES，THEN THE FCLLOWING WILL SUFFICE：
／／POINT 300 JCE（〈USER\＃〉，300），〈YOURNAME〉，CLASS＝8，MSGLEVEL＝（2，0）
／：ROUTE PRINT REMOTEI
／：ROUTE PUNCH REMOTEL
／／EXEC POINT300
／／SYSIN DO ：
TAKE NOTE OF THE TWO SPACES AFTER＇ROUTE＇ON THE SECOND ANO THIRO CARDS．TO SUBMIT THIS JOB，TYPE

SUB＜NAME OF JCL MEMBER＞＜NAME SYSIN MEMBER＞
IF YOU ARE SUPPLYING YOUR OWN LOOKUP FILE，THEN YOU NEED YET ANOTHER PANDORA MEMBER，OF WHICH THE FIRST LINE IS：
／／SOURCES DO \(\because, D C B=\) ELKSIZE＝80
FOLLOWED BY LINES OF SOURCE NAMES AND POSITIONS IN THE SAME FORMAT AS FCR SOURCE CARDS．TO SUBMIT THIS JOB，TYPE

SUB＜NAME JCL MEMBER＞＜NAME SYSIN MEMBER＞＜NAME SOURCES MEMBER＞
YOUR LOCKUP FILE WILL BE THE FIRST CNE SEARCHED，RUT IF A SOURCE IS NOT FDUNO THERE，THE SEARCH WILL CONTINUE ON TO THE SUPPLIED LOOKUP FILE．SCANNING STOPS WHEN A MATCH IS FOUND，SO IF A SOURCE COULD BE FCUND ON EOTH YOLR LCOKUP FILE AND THE SUPPLIED LOCKUP FILE，THE PROGRAM WILL ALWAYS TAKE THE INFORMATION FROM YOUR FILE．

\section*{INPUT CARDS}

COLUMN ITEM（S）FORMAT
1 MECIAN OESERVING DATE，OBSERVER NUMBER． CETAILS OF OBSERVING PROCEDURE


11 16 21

26
31
36
41

46
51

DAY

MCNTH
YEAR
OESERVER NUMBER
PCSITIONING CODE IONLY 3．8，13， AND 18．SEE PREP 300 FOR OTHERSI IATEGRATICN PERIOD IN SECONDS SCAN LENGTH IN SECONDS MAXIMUM OF 240 FOR CDDE 8 OR 18 SECANTI DEC，LENGTHENING OF SCAN O FOR ND， 1 FOR YES WAIT CODE IF＝I THEN DATA TAKING IS IS DELAYED FROM THE INDICATED START TIME UNTIL THE DEC ERROR IS LESS THAN 20 ARCSECONDS． ROTATION ANGLE IN DEGREES15
OECLINATION RATE IN ARCMIN／MIN． ..... I 5
```

2
CJEFFICIENTS OF RA POINTING CLRVE:
CRA = + N:TAN(DEC 1 + C/COSI DEC)
(SEE TABLE 8-1 IN THE 300-FOOT MANUAL)
l
11
21
3
l
11
25
39
M
N
C
SOURCE CARCS
SCURCE NAME
RIGHT ASCENSION (1950.0)
DECLINATION 11950.01
IREAD. FLAG TO LOOK CN FILE }9\mathrm{ IF
IREAD -NE. ZERD
CCREAD
DJL
DMAP
IMPLICIT REAL:8 (A-H,O-Z), INTEGER:%4 (I-N)
C
INTEGER*2 SECCEC, NS. SN
REAL:%4 MONTH,MO(12)
REAL:3 CAYMO(12), CELRA(12), DECD(12), M2R, NSCEC, SOURCE(2),
T2R, TWOPI

```

            READ 15,ICOOI ID,IM,IY,IOBCOD,IPCSCO,IPOSCL,ENTP,SCLEN,SECDEC,
    : IWAIT,IROTAN,IRATE
    1000 FCRMAT(4I5.3X,2IL.2F5.1.4I5)
```

```
2
C CRA \(=N+N:\) TAN( DEC \(~+~ C / C O S I ~ D E C ~) ~\)
(SEE TABLE 8-1 IN THE 300-FOOT MANUAL)
1
11
21
1
11
25
```


39
 9

```
    FORMAT FOR RI4.4 IS SHH MM SS.SSSS
```

 FORMAT FOR RI4.4 IS SHH MM SS.SSSS
 FORMAT FOR S14.4 IS SDD MM SS.SSSS
    ```
        FORMAT FOR S14.4 IS SDD MM SS.SSSS
```

```
        SUEROUTINES USEC
```

```
        SUEROUTINES USEC
```

```
C
READ (5.1COOI ID,IM.IY,IOBCOD,IPCSCO,IPOSCI,ENTP,SCLEN,SECDEC,
\(\therefore\) IWAIT,IROTAN,IRATE
1000 FCRMAT(4I5,3X:2IL.2F5.1.4I5)
MAXIMUM SCAN LENGTH FOR STERLING MOUNT IS 240 SEC
IF I[POSC1.EQ.8.AND.SCLEN.GT. 240.000 ) SCLEN=240. CCO
FOR IPOSCI \(=8\) COMPUTER SETS IROTAN \(=0\)
IF (IPOSCI.EQ.8) IROTAN=0
FOR IRATES=O SET DEFAULT IRATE=15
```

C－7
／／LINE 300 JCB $(532,300)$, GBCPER，MSGLEVEL $=(2,0)$, CLASS $=0$
／：ROUTE PRINT REMCTEI
／／EXEC FDRTGCL．ERRCR＝E，PARM•FORT＝＇ID＊
／／：FORT－SYSPRINT CD DUMMY
／／FORT．SYSIN CD ：
C
LINE300 VERSION 2．0 20 JULY 1982

PROGRAM LINE 300 PREPARES OBSERVING CARDS FOR SPECTRAL LINE OBSERVATIONS ON THE 3OO－FOOT TELESCOPE IN POSITIONING CODES 8 OR 18．THE PRGGRAM PRODUCES CARDS FOR A SERIES OF SCANS FOR EACH SOURCE，WITH OFF SOURCE SCANS SYMMETRICALLY ARRANGED ABOUT A SINGLE ON SOURCE SCAN．THE NUMEER OF OFF SOURCE SCANS ON EACH SIDE OF THE ON SQURCE SCAN CAN RE SPECIFIED，FOR TOTAL POWER OBSERVING，OR CAN EE SET TO ZERO FCR SWITCHEC POWER OBSERVING．

BESICES THE NUMBER OF OFFS，THE ONLY OESERVING PARAMETERS THAT CAN SE SET BY THE USER ARE THE POSITIONING CODE AND THE SCAN LENGTH． THE SCAN LENGTH WILL BE ROUNDED DOWN TO A MULTIPLE OF 20 SECONOS TO SATISFY TINING REQUIREMENTS OF THE AUTOCORRELATOR• IF THE SCAN LENGTH FIELC CN A SCURCE CARD IS LEFT BLANK．THEN THE PROGRAM SUPPLIES A DEFAULT SCAN LENGTH CF $240 \div$ SECANTI DEC ，SECCNDS． ROUNDED DOWN TO A MULTIPLE OF 20 SECONDS．THIS IS THE MAXIMUM SCAN LENGTH ALLOWEC BY THE STERLING MOUNT．

THE INTERVAL BETWEEN SCANS IN A SEQUENCE IS 64 SECONDS．THIS IS THE TIME REQUIRED FOR THE STERLING MOUNT TO RETURN TG ITS EAST－ ERNMOST POSITION．THE PROGRAM ALSO ADDS DNE SECCND TO THE SCAN LENGTH TO AVOID A TIMING PECULIARITY BETWEEN THE CORRELATOR AND THE COMPUTER．

PROGRAM LINE 300 SHARES WITH PRCGRAM PREP 300 THE FEATURE OF SCANNING A LOOKUP FILE FOR SOURCE CCORDINATES．THAT IS，IF COLUMNS 39－40 ON A SCURCE CARD ARE NOT ZERO II•E．BLANKI THEN THE PROGRAM WILL SCAN THE CONTENTS CF A LOOKUP FILE LOOKING FOR AN EXACT MATCH TO THE SOURCE NAME ON THE CARD．IF A MATCH IS FOUNO THEN THE PROGRAM USES THE COORDINATES READ FROM THE DISK FILE IF NOT，IT USES THE COORCINATES ON THE CARD．THIS PROVIDES A CCNVEN－ IENT WAY TC USE UPCATED COOROINATES FROM A MAINTAINED LOOKUP FILE． IF THE RA AND OEC FIELDS ON A SOURCE CARD ARE BLANK THEN THE PROGRAM WILL ALSO SCAN TFE LCOKUP FILE，BUT IF IT DOES NOT FIND ANY，IT PRINTS A MESSAGE AND GOES ON TO THE NEXT SOURCE CARD．

TO RUN PROGRAN LINE 300 YOU SHOULD CREATE A PANDORA MEMBER CONTAINING IMAGES CF THE INPUT CARDS TO BE READ EY THE PROGRAM．IN THE FORMATS GIVEN BELOW，AND SAVE IT．THEN CREATE A MEMBER WITH THE NECESSARY JCL STATEMENTS．IF ALL OF YOUR SOURCES ARE SUPPLIEC WITH CCCROINATES ON THE SOURCE CARDS OR CAN EE FDUND IN THE STAFF MAINTAINED LOOKUP FILES，THEN THE FCLLOWING WILL SUFFICE：
／／LINE 300 JCE（〈USER出〉，300），〈YOURNAME〉，CLASS＝B，MSGLEVEL＝（2，0）
／\because ROUTE PRINT REMCTEL
／：ROUTE PUNCH REMCTEL
／／EXEC LINE300
／／SYSIN DD：

TAKE NOTE OF THE TWO SPACES AFTER •ROUTE ON THE SECOND AND THIRD C CARDS，WHICH SENO THE OUTPUT TO GREEN BANK．TO SUBMIT．TYPE

```
C
```

```
SUE <NAME OF JCL MEMEER> <NAME SYSIN MEMBER>
```

SUE <NAME OF JCL MEMEER> <NAME SYSIN MEMBER>
IF YOU ARE SUPPLYING YOUR OWN LOOKUP FILE, THEN YOU NEED YET
IF YOU ARE SUPPLYING YOUR OWN LOOKUP FILE, THEN YOU NEED YET
ANOTHER PANOORA NEMEER, OF WHICH THE FIRST LINE IS:
ANOTHER PANOORA NEMEER, OF WHICH THE FIRST LINE IS:
//SOURCES CD:
//SOURCES CD:
FOLLOWED BY LINES OF SOURCE NAMES AND POSITIONS IN THE SAME FORMAT
FOLLOWED BY LINES OF SOURCE NAMES AND POSITIONS IN THE SAME FORMAT
AS FCR SOURCE CARDS. TO SUEMIT THIS JOB, TYPE
AS FCR SOURCE CARDS. TO SUEMIT THIS JOB, TYPE
SUB <NAME JCL MEMBER> <NAME SYSIN MEMBER> <NAME SCURCES MEMBER>
SUB <NAME JCL MEMBER> <NAME SYSIN MEMBER> <NAME SCURCES MEMBER>
YOUR LOCKUP FILE WILL BE THE FIRST ONE SEARCHED, BUT IF A SOURCE
YOUR LOCKUP FILE WILL BE THE FIRST ONE SEARCHED, BUT IF A SOURCE
IS NOT FOUND THERE, THE SEARCH WILL CONTINUE ON TO THE SUPPLIED
IS NOT FOUND THERE, THE SEARCH WILL CONTINUE ON TO THE SUPPLIED
LOOKUP FILE. SCANNING STOPS WHEN A MATCH IS FOUND, SO IF A SOURCE
LOOKUP FILE. SCANNING STOPS WHEN A MATCH IS FOUND, SO IF A SOURCE
COULD BE FOUND CN BOTH YOUR LOOKUP FILE AND THE SUPPLIED LOOKUP
COULD BE FOUND CN BOTH YOUR LOOKUP FILE AND THE SUPPLIED LOOKUP
FILE, THE PROGRAM WILL ALWAYS TAKE THE INFORMATION FROM YOUR FILE.
FILE, THE PROGRAM WILL ALWAYS TAKE THE INFORMATION FROM YOUR FILE.
INPUT CARDS
INPUT CARDS
COLUMN ITEMISI FORMAT
COLUMN ITEMISI FORMAT
1 MEDIAN OESERVING DATE, OBSERVER NUMBER,
1 MEDIAN OESERVING DATE, OBSERVER NUMBER,
DETAILS OF OBSERVING PROCEDURE
DETAILS OF OBSERVING PROCEDURE
UAY I5
UAY I5
MCNTH I5
MCNTH I5
YEAR I5
YEAR I5
OESERVER NUMBER I5
OESERVER NUMBER I5
POSITIONING COOE (ONLY 8 OR 18) I5
POSITIONING COOE (ONLY 8 OR 18) I5
NUMEER OF OFFS ON EACH SIDE OF ON IS
NUMEER OF OFFS ON EACH SIDE OF ON IS
2 COEFFICIENTS OF RA POINTING CURVE:
2 COEFFICIENTS OF RA POINTING CURVE:
DRA = M + N:%TAN(DEC 1 + C/COSI DEC)
DRA = M + N:%TAN(DEC 1 + C/COSI DEC)
(SEE TABLE 8-1 IN THE 300-FOOT MANUAL)
(SEE TABLE 8-1 IN THE 300-FOOT MANUAL)
11 M
11 M
21 C
21 C
3 SOURCE CARCS
3 SOURCE CARCS
SCURCE NAME
SCURCE NAME
A8,A2
A8,A2
11
11
25
25
39
39
RIGHT ASCENSION 11950.01
RIGHT ASCENSION 11950.01
DECLINATION (1950.0)
DECLINATION (1950.0)
IREAO: FLAG TO SCAN LOOKUP FILE FOR
IREAO: FLAG TO SCAN LOOKUP FILE FOR
COORDINATES IF IREAD.NE.ZERO
COORDINATES IF IREAD.NE.ZERO
SCAN LENGTH IN SECONDS
SCAN LENGTH IN SECONDS
F7.1
F7.1
AN LENGTH IN SECONDS
AN LENGTH IN SECONDS
F10.5
F10.5
F10.5
F10.5
F10.5
F10.5
1
1
6
6
11
11
16
16
21
21
26
26
SOURCE CARCS
SOURCE CARCS
R14.4:
R14.4:
S14.4:
S14.4:
I2
I2
41
41
\& FORMAT FOR R14.4 IS SHH MM SS.SSSS
\& FORMAT FOR R14.4 IS SHH MM SS.SSSS
FORMAT FOR S14.4 IS SDD MM SS.SSSS
FORMAT FOR S14.4 IS SDD MM SS.SSSS
SUEROUTINES USED
SUEROUTINES USED
CDREAD
CDREAD
DJL
DJL
DMAP

```
            DMAP
```


PURPCSE
PLAN300 ASSISTS IN OPTIMIZING A 300-FOOT CESERVING
PROGRAM BY CCMPUTING FOR EACH OBSERVATION WHICH AMONG THE NEXT TEN CESERVATIONS WOULD ALLOW SUFFICIENT SLEW AND SETUP (10 SEC) TIME. THE RESULT IS EXPRESSED AS A POSITIVE CR NEGATIVE 'ICLE TIME'. PREP300. POINT300. AND LINE300 CARDS MAY BE USEC AS INPUT, AS WELL AS CARCS PUNCHEC BY HAND. CARDS CTHER THAN SOURCE CARDS WILL BE IGNORED, SO YOU NEED NCT REMCVE THEM FRCM YOUR DECK.

THEREAFTER THE PRCGRAM SCHEDULES THE ENTIRE SET OF OBSERVATICN BY SELECTING THE NEXT POSSIBLE SDURCE IN EVERY CASE.

PLAN 300 CCES NCT MAKE ANY ALLCWANCE FOR PRECESSION, ETC. IF MOCES 13 ANC 18 ARE USED. BOTH PRECESSION AND POINTING CCRRECTIONS CAN SCREW THINGS UP.

TC RUN THE PRCGRAM PUNCH THESE CARDS WHICH PROCEED YOUR OESERVING DECK:
 /:ROUTE PRINT REMOTEI
// EXEC PLAN300
//SYSIN CD :
TAKE NOTE CF THE TWO SPACES AFTER •RJUTE CN THE SECOND ©ARC, WHICH SENDS THE OUTPUT TO GREEN BANK. ALSC. PUNCH AN ENC-CFFILE CARC TO FCLLCW YCUR CBSERVING DECK:
/ \because EOF
SUBMIT THE RESULTING DECK VIA A REMOTE CARD READER.
CAPACITY
UP TE 2000 CBSERVING CARDS
IMPLICIT REAL: :8 (A-H,O-2), INTEGER::4 (I-N)
LOGICAL: 1 CONE(2010)/2010\%.FALSE./
INTEGER: 2 POSCOD,KOUNT $1101 / 0,1,2,3,4,5,6,7,8,9 /$.

PLOT(71)/71:\% •/,ISEC(101.ID(2010)/2010\%0/,
CARC(80), BLANK/• /
INTEGER $: 4$ ICAY2S/86400/
REAL: $\because 4$ SCURCE(2010.3).TSTART(2010),TSTOP(2010).
$\because \quad$ SIX/6.0/,SETUP/10.0/ SMI 20101/2010\%0.0/
REAL: $\%$ CEC(2010).DEC8,DAY2S/86400.000/.R2S/13750.98708/.
$\because \quad$ R20/57.2957795100/
set up the numbering system

APPENDIX D

EXPECTED PERFORMANCE OF THE $300-1000 \mathrm{MHz}$ RECEIVER ON THE 300 FOOT TRAVELLING FEED

General

Users should be aware of the expected changes in beam shape and reduced gain caused by the lateral displacement of the feed during normal operation of the tracking mechanism. As the feed is moved off axis, the beam is scanned in the opposite direction. The ratio of the angle of the beam to the angle of the feed measured from the vertex of the antenna is the beam deviation factor. As the beam is scanned, the gain is reduced and the beam is broadened on the side away from the antenna axis. Also, the side lobe level on the axis side of the main beam increases in amplitude.

Beam Deviation Factor

The beam deviation factor is dependent upon the f / D ratio for the antenna, the the edge illumination provided by the feed, and the displacement off axis [1]. The $300-1000 \mathrm{MHz}$ receiver feeds provide 12 to 15 dB edge illumination. On the 300 -foot the computed beam deviation factor varies from .847 at one foot displacement to . 850 at eleven feet displacement.

Tracking Range

With the cooled $300-1000 \mathrm{MHz}$ receiver installed, the traveling carriage range is restricted to plus or minus eleven feet. The feeds are offset 34 inches on either side of the center of the carriage. With a beam deviation factor of . 85, the beam angle is 1.89 minutes per inch of travel. The maximum displacement of the feed that is on the side of the box away from the antenna axis would be $132+34$ or 166 inches. This should scan the beam 314 minutes in one direction. The feed on the side of the box toward the antenna axis would have a beam shift of 185 minutes.

The number of half-power beamwidths corresponding to these angular shifts in the beam are tabulated below for 300 and 1000 MHz .

| Frequency | Half
 Power
 Beamwidth | Beam Angles | |
| :---: | :---: | :---: | :---: |
| | 314 Minutes | 185 Minutes | |
| 300 MHz | 46.0 minutes | 6.8 HPBW | 4.0 HPBW |
| 1000 MHz | 13.8 minutes | 22.8 HPBW | 13.4 HPBW |

Beam Gain Reduction and Sidelobe Level
The predicted gain reduction is 2 dB at a 6 HPBW beam angle [2]. This value is based on the movement of the feed along a maximum gain curve which
requires increasing the focal distance at larger scan angles. Since the traveling feed movement is restricted to the focal plane, a somewhat larger gain reduction may occur at 6 HPBW . In fact, measurements made with the old tracking feed show 3 dB gain reduction at 6 HPBW .

The sidelobe level (coma lobe) is expected to be only 10 dB below the main beam angles of 4 HPBW [3]. If the usable scanning range is determined to be 4 HPBW , then the tracking range should be limited to:

$$
\begin{aligned}
4 \text { HPBW Tracking Range }= & \pm 29.1 / f_{\mathrm{GHz}} \text { inches }+(\mp 34 \text { " feed offset) } \\
& -63 \text { to }+131 \text { inches at } 300 \mathrm{MHz} \\
& +5 \text { to }+63 \text { inches at } 1 \mathrm{GHz} .
\end{aligned}
$$

Depolarization Effects

Studies of off-axis-fed paraboloids indicate an increase in the cross-polarization for linearly polarized antennas and beam separation for circularly polarized antennas which increase with offset angle [4]. The maximum traveling feed angular offset of about five degrees may cause some degradation of the polarization properties of the 300 -foot antenna feed system.

References

[1] Y. L. Lo, "On the Beam Deviation Factor of a Parabolic Reflector." In: Reflector Antennas, edited by A. W. Love, pp. 252-254 (IEEE Press, 1978).
[2] W. V. T. Rusch and A. G. Ludwig, "Determination of the Maximum ScanGain Contours of a Beam-Scanning Paraboloid and Their Relation to the Petzval Surface." In: Reflector Antennas, editec by A. W. Love, pp. 268-274 (IEEE Press, 1978).
[3] J. Ruze, "Lateral-Feed Displacement in a Paraboloid." In: Reflector Antennas, edited by A. W. Love, pp. 255-260 (IEEE Press, 1978).
[4] T. Chu and R. H. Turrin, "Depolarization Properties of Offset Reflector Antennas." In: Reflector Antennas, edited by A. W. Love, pp. 212-218 (IEEE Press, 1978).

$$
\begin{aligned}
& \text { J. Coe } \\
& 3-27-81
\end{aligned}
$$

[^0]: * Start Time of Integration of Signal Averager

