National Radio Astronomy Observatory

Charlottesville, Virginia

December 3, 1970
To: M. Davis and Engineering

From: S. von Hoerner

Subject: Non-Homologous Deformations of the 300-ft.

In his memo of April 2, 1969, M. Davis has plotted the aperture efficiency η of the $300-f t$ telescope as a function of zenith angle ϕ, as measured at $\lambda=21.4 \mathrm{~cm}$. His Fig. 3 shows three curves $\eta(\phi):(a)$ 1962-66, before readjustment; (b) 1967-69, after readjustment; showing the single measured points for both curves; and (c) a prediction for the new surface. By comparis on of two wavelengths (21.4 and 40 cm) he also finds the efficiency η_{0} for $\lambda \rightarrow \infty$ as (a) $n_{0}=.67$ and (b) $n_{0}=.59$ and he adopts (b) $n_{0}=.63$.

In the following, I make a best-fit of a theoretical formula to (a) and (b) and derive a somewhat different prediction (c), using the same three values η_{0} as M. Davis. Let a telescope be adjusted without gravity to a perfect paraboloid. Then, with gravity, call ΔH_{1} the rms deviation of the surface from a bestfit paraboloid in zenith position, and $\Delta \mathrm{H}_{2}$ likewise in horizon position. These two parameters fully describe the gravitational effects.

If a telescope is adjusted to a perfect paraboloid at zenith angle θ, and then observes at zenith angle ϕ, the deviation ΔH from a best-fit paraboloid is

$$
\begin{equation*}
\Delta \mathrm{H}=\sqrt{\Delta \mathrm{H}_{1}^{2}(\cos \phi-\cos \theta)^{2}+\Delta \mathrm{H}_{2}^{2}(\sin \phi-\sin \theta)^{2}} \tag{1}
\end{equation*}
$$

If the surface itself has an rms error σ_{0}, the total rms deviation from a paraboloid then is

$$
\begin{equation*}
\sigma=\sqrt{\Delta H^{2}+\sigma_{o}^{2}} \tag{2}
\end{equation*}
$$

and the aperture efficiency is

$$
\begin{equation*}
\eta=\eta_{0} e^{-(4 \pi \sigma / \lambda)^{2}} \tag{3}
\end{equation*}
$$

Regarding $\Delta \mathrm{H}_{1}$ and $\Delta \mathrm{H}_{2}$, it would be interesting to see whether or not there is a difference before and after the readjustment, since this was connected with some strengthening of the back-up structure (mainly the wheel); but the data cover too small a range in ϕ and scatter too much for this purpose. There seems to be a small improvement (about 20%), but in the following we neglect the difference and adopt the same $\Delta \mathrm{H}_{1}$ and $\Delta \mathrm{H}_{2}$ for (a), (b) and (c).

Since the second term in (1) is always much larger than the first one for the range of ϕ covered, we have a large uncertainty for $\Delta \mathrm{H}_{1}$; but this does not
M. Davis and Engineering

Page 2
December 3, 1970
effect prediction (c) very much, for the same reason. The best-fitting values and their estimated mean errors are

$$
\begin{align*}
\Delta \mathrm{H}_{1} & =18.5 \pm 5.0 \mathrm{~mm} \tag{4}\\
\Delta \mathrm{H}_{2} & =7.5 \pm 1.5 \mathrm{~mm} \tag{5}
\end{align*}
$$

and their ratio is

$$
\begin{equation*}
g=\Delta \mathrm{H}_{2} / \Delta \mathrm{H}_{1}=0.405 \tag{6}
\end{equation*}
$$

In a reproduction of M. Davis' Fig. 3, I have entered the points calculated with equation (1), using parameters (4) and (5) and adopting the same values n_{0} as M. Davis. The agreement with the measured points is certainly within the scatter of the data.

Next, prediction (c) is plotted for a new surface adopting $\sigma_{0}=4 \mathrm{~mm}$ as M. Davis did. This new prediction gives smaller efficiencies for large ϕ than the old one.

Finally, if the best adjustment angle θ is defined by the demand

$$
\begin{equation*}
\Delta \mathrm{H}_{-30^{\circ}}=\Delta \mathrm{H}_{+60^{\circ}} \tag{7}
\end{equation*}
$$

see Fig. 2, then one obtains from (1) and (6) that $\theta=29.3^{\circ}$ or roughly

$$
\begin{equation*}
\theta=30^{\circ} \tag{8}
\end{equation*}
$$

With the available data, the uncertainty of g is rather large. With a probable error range of

$$
\begin{equation*}
0.29 \leq \mathrm{g} \leq 0.58 \tag{9}
\end{equation*}
$$

we find from Fig. 2

$$
\begin{equation*}
22^{\circ} \leq \theta \leq 36^{\circ} \tag{10}
\end{equation*}
$$

Prediction (c) also has a large uncertainty. From (4) and (5) we obtain, for example, the probable error ranges

$$
\begin{equation*}
10.08 \leq \sigma\left(60^{\circ}\right) \leq 14.38 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
0.324 \leq \eta\left(60^{\circ}\right) \leq 0.465 \tag{12}
\end{equation*}
$$

SvH:jab

funchom of $g=\Delta H_{2} / \Delta H_{1}$
if one dennands Me same efficícicy for zenila angoles $y=-30^{\circ} \operatorname{and} y=+60^{\circ}$.

