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Summary

There is a maximum size for a self-supporting structure made of any 

given material, no matter what its purpose, and a further limiting size for 

maintaining a given accuracy if the structure is tilted. This second limit is 

essential in antenna design.

A movable structure should have about the same diameter in every direc­

tion, since deflections increase with the square of the ratio of diameters.

The regular octahedron is adopted as the best basic structural principle.

A large surface should not be supported, it should be pulled by cables. 

The spcked wheel is adopted as the best principle.

Temperature deformations can be neglected for diameters over 300 feet.

Vi.j number of compression members, as well as the weight of their in­

ternal oraces, should be kept as low as possible. All remaining members 

being cables, the structure should be pre-stressed to half of its capacity.

a given diameter, the connection between weight (price) and wave­

length _hows three characteristic points: first, the weight of a self- 

supporting structure for X -*■ ". At the second point, the strength needed 

for safety just yields the rigidity needed for observation. At the third 

point„ the shortest possible wavelength is approached with infinite mass.

Betwi.. first and second point, the weight is entirely defined by safety

again.c strongest winds, and between second and third point enti-rely by the
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deflections tolerated for observation. Economical antennas ought to be 

close to the second point, any other point giving a waste of either strength 

or rigidity.

A model-design for fully steerable antennas is developed which can be 

scaled for both diameter and wavelength (within the limits given), and the 

total weight of dish plus towers is calculated as function of both.

One example of a complete price estimate including foundations showed 

that it should be possible to build a fully steerable antenna of 500 feet 

diameter, usable down <to 20 cm wavelength, for a total price of 1.5 million 

dollars.



Introduction

The present investigation was inspired by the question of how to build 

a special antenna for lunar occultations as cheaply as possible. This antenna 

must be a fully steerable parabolic reflector; it should be at least 300 feet 

in diameter, but much more if possible; and it should be usable down to at 

least 50 cm wavelength, or to 20 cm if possible within a reasonable price.

The antenna could be used for other purposes half of the time.

Since the specifications give only lower limits while the actual values 

will depend on price, and since, in general, economy will play a decisive 

role for any future very large antenna, the investigation is made as general 

as possible. The first step, then, is to find the basic principles involved 

and the general limitations they impose. The second step is to develop a 

certain overall antenna design supposed to be the most economical one, 

which can be scaled to any desired size and accuracy within the limits de­

rived in the first step. The third step will go to some more details and 

will yield the price of such an antenna as function of both diameter and 

wavelength. Whereas the results up to here could be applied to any future 

antenna, the fourth step finally selects a special antenna for the purpose 

in mind, as a compromise between the opposing demands of price, diameter, 

and wavelength. Total costs for this antenna then are estimated.



I. Basic Principles

1. Gravity and Elasticity

Even with gravity as the only force (no wind, no load), one could not

build indefinitely high structures. The limit is reached when the weight

of the structure gives a pressure at its bottom equal to the maximum allowed

stress of the material used. If we call

S * maximum allowed stress of material

p *. density of material

h “ maximum height of structureo

we then have, for a structure of constant cross section, like a standing 

solid block or a hanging cable:

h0 « S/p (1)

This is our first general limit, giving a maximum size for any structure, 

no matter what its purpose. A second limit comes from the accuracy desired 

(smallest wavelength in our case), since even a standing block will get com­

presses. under its own weight, the lower parts more than the upper ones. We

call

E ■ modulus of elasticity 

h » height of structure 
Ah * change of height under own weight 

and find, by integrating the compression from ground to top:

Ah " \ 5 h2 (2)

This second limit is especially severe since the deformation goes with the



square of the size. For antennas of increasing size, the second limit is 

reached much earlier than the first one.

Both limits can easily be understood, since the weight goes with the 

volume, r , while the strength goes only with the cross section, r . The 

same limits apply to animals, too; if you want something considerably bigger 

than an elephant, you must fight gravity by floating it in water, like a 

whale. And the bigger an animal, the clumsier it gets. These limits are 

not ultimate but can be surpassed by special tricks. As to the first limit, 

one can start at the bottom with a large cron* section and taper it toward 
the top, but this type of structure cannot be tilted. As for the second 

limit, one can adjust a surface in any position by servo motors, but this 

gets extremely expensive and awkward.

Both limits depend on the combination of only three material constants: 

maximum stress, density and elasticity. Table 1 gives some examples, together 
with an average price including erection; the coefficient of linear thermal 

expansion, is included for later use. As we see, the largest structure

can be made from aluminum, over three kilometers high; all three materials 

give the same order of magnitude for this maximum height, which could be in­

creased only by tapering, and we understand why even mountains cannot be 

higher than a few kilometers. All three materials are about equal with re­

spect to deflections under their own weight, steel being slightly better, 

while for thermal deformation aluminum is worst and wood is best (but wood 

has too much deformation with humidity). Since the second limit will be 

rcached first, there is no need to go to the more expensive aluminum, and 

we finally arrive at steel as the best material. The largest block of 

steel could be a mile high, but a block only 300 feet high is already com­

pressed under its own weight by 4 millimeters.
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Table 1 
Some Material Constants

Density
P

Maximum
stress
S

Elasticity
B

Maximum 
size ‘
S/P

Deflection
P/B

Therm, exp. 
Cth

Price
P

g/cm** kg/cm2 kg/cm2 km cmAlOOm)2 1/#C $/kg
Steel 7.8 1400 2.1 x 106 1.79 0.37 12 x 10~6 1.0
Aluminum 2.7 910 0.7 x 106 3.37 0.38 24 x 10-6 4.5

Wood 0.5 133 0.12 x 106 2.77 0.40 3.5 x 10-6 0.5

2, Shape Factor

We want some large structure, held at certain points, to be turned about 

in all directions, and the question is: what should be the over-all shape of 

the structure in order to have the smallest possible amount of deflection under 

its own weight plus wind force?

In Figure 1 we have two columns, held at 

their endpoints to a "base" of length 2b, while 
at their junction, at distance JL from the base, 
a force F̂  is applied parallel to the base. This 

will result in a deflection Ah. Question: if JL 
is given, what is the value of b which makes Ah 

a minimum? The answer is found by calculus as 

b * >]%&,

Next, we apply a force F2 perpendicular to the 
base. If now b is given, the best value o

making AJi a minimum, is found as Figure 1.
JL ■ >/2t>

AH'



Thus, the best solution for forces in all directions is

b « X (3)

and since the baseline should go through the center of gravity in order to 

avoid torques, equation (3) requires equal diameters in both directions.

If this rule is not fulfilled, we get, for example, for the extreme case of

Fi:

Ah ~ ( ^ A )2 for b «  JL (4)

In summary, the structure should have about the same diameter in every 

direction. Small deviations from this rule do not matter much, but for 

greater deviations the deflection increases in proportion to the square of 

the ratio of the diameters.

3. The Octahedron

The simplest structure approaching re­

quirement (3) which still is easy to hold and 

to turn, and which provides a flat surface 

through its center with a point normal to it 

for the focus, is the octahedron. It has the 

additional advantage that its deflections can 

easily be calculated. Thus we adopt the octa~ 

hedron as the basic structural principle of 

our antenna, modifications like a curved sur-* 

face being introduced later on.

If all members shown in Figure 2 have equal cross sections Q, the force 

along one outer member, resulting from the weight of the whole structure,

Figure 2, Octahedron with 
diagonals.



turns out to be * 2.88 DQP. The largest possible size D0 of an octa­
hedron then is 1/2.88 of the value found in equation (l):

- 0.347 S/p

* 622 meter for steel

According to equation (2), the deflection
should be

Ah ■ Y D2 p/B 
but the numerical value of Y depends on where

we measure the deflection and with respect

(5)

+ 1.

and D in units of 100 meters, we get the 

values shown in Figure 3, with respect to 

the focal point at the top. The rms de­

flection over the whole horizontal plane, 

as seen from the top, is given by Y ■ 0.34; 
but since we have neglected any deflections 

arising from lateral sagging of the members, 

and since we really want to be on the safe side, we multiply by a safety 

factor of 1.5 and obtain for the rms deflection:

-0.4-1

Figure 3. Deflections (in cm) 
in the horizontal plane of an 
octahedron of 100 meter diam­
eter, as seen from the top 
point.

Ah/cm ■ 0.51 (D/l00m)2 ( 6)

Finally, denoting the shortest wavelength to be used by X and requiring 

that the rms deflection should be V l 6* we get

V m  - 0.0816 (D/l00m)2 (7)



Some examples are given in Table 2, but for actual antennas these 

values will be modified in two ways. First, the antenna surface can extend 

beyond the supporting octahedron, by an amount limited by equation (3).

Second, the limiting wavelength will become larger than the one shown if 

all additional weight (surface and its supporting structure, braces, etc.) 

is not negligible compared to the main chords of the octahedron. Since 

the two modifications work in opposite directions, Table 2 still might be 
used for a first estimate of the limiting wavelength for large antennas.

4. Temperature

If C i s  the coefficient of linear thermal expansion as given in 

Table 1, and if one member in Figure 1 (with b ■ JL ■ D/2) is AT degrees 
warmer than the other one, the resulting deflection is Ah^ ■ Cth AT D.
By some geometrical considerations one can show that the rms deflection of 

the surface, even in unfavorable cases, will not exceed 1/4 of this value, 

which gives for steel:

Ahth/°m ■ 0.03 AT D/100m (8)

This thermal deflection is to be compared with the gravitational de­

flection from equation (6), and we see that temperature effects may dominate 
in small antennas but can be neglected in large ones, as is illustrated in 

the last column of Table 2. For antennas standing in the open, larger 

temperature differences can occur only through the combined influence of 

sunlight and shadow, and they will mostly be below 109C. We thus conclude 

that thermal deflections may be neglected for antennas over 300 feet diameter. 

If an antenna is enclosed in a radome, a vertical temperature gradient will
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Table 2
Shortest Wavelength X for an Octahedral Structure 

of Diameter D, if Temperature Differences 
__  are Smaller than AT

D
meter

X
centimeter

AT
centigrade

25 0.51 4.3

50 2.0 8.5

100 8.2 17

150 18.4 25

200 32.6 34

300 73 51

500 204 85

exist, and the larger the antenna the larger the temperature differences 

will be. The thermal deflection thus becomes proportional to D2, just as 
with the gravitational onet and the question of which deflection is larger 

then depends on the gradient, but not on the antenna size. An estimate 

showed that the two deflections are equal if the gradient is about 25°C/100m.

5. Active and Passive Weight

Since the next point is a crucial 

one for large antennas, and since no 

suitable terminology seems to exist,

I shall introduce my own:

Active weight * weight of those parts

which oppose deflections of the structure to the same extent as they 

add weight to it. In our case, only the main chords of the octahedron

Plgure 4;



members are active. If each member were simply a solid rod, or a 

single beam or pipe (all of the same cross section) and no other weight 

were added, we would have nothing but active weight, and the amount of 

gravitational deflection would be independent of the cross section and 

thus of the weight of the octahedron for given diameter.

Passive weight ■ weight of everything else, such as the braces in the octa­

hedron members, the surface, any additional structures to hold the 

surface, as well as any parts of the drive mechanism which are fixed 

to the octahedron. Passive weight adds to the total weight without 

opposing the deflection it causes and thus increases the deflection 

of the structure. Furthermore, any asymmetry of the octahedron would 

ucd passive weight: if we double the cross section of just one of the 

members, most of the weight added would be passive.

Total weight « active weight plus passive weight.

Weighi factor » K * (total weight) / (active weight) (9)

If any passive weight is present, the deflections calculated up to now 

must be multiplied by the weight factor K, and from equation (7) we get for 
the shortest wavelength to be used:

V m  « 0.0816 K (D/100m)2 (10)

We see how important it is to keep the passive weight down; but how do 

we accomplish this? A long compression member needs a certain minimum 

diameter in order to prevent sagging under its own weight and buckling under its 

longitudinal force, and for the same reasons the wall of a pipe must have a 

certain thickness. There are two possibilities: first, we might avoid all



passive weight and build the members from single steel pipes of proper diam­

eter and wall thickness. This gives us K * 1, at least for the octahedron 

itself, but for a diameter of, say, 400 feet, we obtain an octahedron weight 

of 2000 tons. Since this is much more than we want to pay for, and also 

much more than we need for holding the surface against any wind, we should 

compromise to some extent and go to the second possibility of splitting up 

the members into three or more chords connected by braces. In this way we 

sacrifice some accuracy and pay considerably less money. But this bargain 

is a good one only up to a point: even if we didn’t care at all about 

accuracy or wind force, we still have to build a certain minimum structure 

just for a stable self-support. This problem, that the self-support of a 

structure tends to become more important than its purpose, seems to be a 

good example of Parkinson*s Law.

In order to proceed in a general way, we now need a formula which gives 

the weight W of a member (split up into chords like a tower) as function 

of its length &  and of the force P it should be able to hold. Arguing 

that we need a minimum structure even without any force, and additional 

strength in the chords to hold the force, we might look for a formula of 

the type

W » A F ^ + B l n

where the second term is the weight of the minimum structure. We see that 

A s P/S, but B and n should best be obtained empirically. Since exactly 

the same type of problem must arise in communication towers, I have taken 

the data quoted for 10 different towers, with a non-guyed length between 
40 and 140 feet, and forces between 7 and 120 tons. From a best fit with
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these data I find

W « 0.06 f£ + 6,5t2 W and F in tons 

H  in 100 meters
(11)

For further use we will always assume that the first term is active, the 

second one passive.

In order to keep the passive weight down, the number of compression 

members should be as small as possible, the remaining tension members being 

cables with no passive weight. A structure of this type, of course, must 

be "pre-stres-sed" for avoiding the sagging of cables, which gives the further 

advantage that we do not have any loose joints or rattling pieces. I suggest 

pre-stressing up to 1/2 of the full capacity of the material, the other half 
being left for taking up the wind forces.

6. Surface and Wind Force

For wavelengths above 10 cm we do not need a closed surface, and for 

the following we adopt galvanized wire mesh, with square openings, and with 

a wire diameter of 2 mm. The distance 6 between neighboring wires then is 
given by the shortest wavelength to be used and by the transmission through 

the surface that can be tolerated. For the transmission we will demand 

"15 db down"; this reduces the gain by 3.2% and gives a noise contribution 

from the ground of 10 *K. We use a nomogram given by Jasik (Handbook of 

Antenna Design, Figure 25-40) and replace it by a formula

which is a sufficiently good approximation in the range 0.1 m ■ X ■ 2.0 m.

6/cm - 5.4 CVm)2/3 (12)



From this formula, we calculate the weight of the surface. With re­

spect to the model discussed later on, we assume that the diameter of the 

surface is 1.26 times the diameter of the octahedron; we multiply the weight 

by a factor of 2  in order to allow for wires or frames holding the mesh wire, 

and obtain
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“surf * 8'° X_2/3 1,2 Wsut £  in tons
X in meter (13)

D in 100 meter

The next problem is the wind force. First, a general consideration. 

Even for a closed surface in the strongest storm, the wind pressure is about 

1 0  ̂times smaller than the maximum stress of steel, and this figure goes up 

to 1 0 6 or 10? for mesh wire. Thus, a small cross section of steel would be 

sufficient for holding a very large surface against the wind. But we must 

support a large surface at many points, and the small cross section of steel 

actually needed cannot be split up into many thin members because of the 

length to thickness ratio needed for preventing compression members from 

buckling. Thus, a lot of steel usually is wasted in the support of the 

surface, and the dish gets much more weight than needed. I think there is 

just one conclusion to be drawn: the surface should never be supported, it 

should be pulled by cables. Unlike compression members, cables can be split 

up unlimited, without any waste of material. Since we need a curved surface 

opening in forward direction, the cables could be kept within and behind the 

surface. Of course, the surface or its cables must be supported somewhere, 

and the most economical model seems to be one circular rim around the whole 

surface, all the rest being done by cables.



We want to know the amount of the wind force for two cases: stow 

position with 85 miles/hour true wind velocity (30 lb/ft2), and observing 

positions with, say, 25 miles/hour* We use measurements of wind forces on 

flat mesh wire by K. N. Astill et al. (Aerodynamic and Radar Transmissivity 

Properties of Screen Materials; Cambridge, Mass* 1954). But since the wind 

force on curved surfaces might be more complicated, since we neglect all 

forces on the structure itself, and since our estimate should really be on 

the safe side, we multiply in most cases with a safety factor of 2, and in 
stow position we assume a closed surface for X < 0.2 m. Omitting the de­

tails, we finally obtain (measuring again F in tons, X in meters, and D in 

100 meters)

Stow position
310 D2 for X < 0.2 m

looking at zenith F (14)W,St \  .
106 X“2/3 D2 for X > 0.2 m

Observing positions
0/3 olooking at horizon Fw Qbs » 29 T  D (15)

maximum uplifting F » 7.5 X"2/3 D2 (16)
force, at 45°

Another question which can be answered in general is the following: 

given a structure built for survival in the strongest wind, up to which wind 

velocity is observation possible for a given wavelength? Let £  be the 

length of a member and Q its cross section. At the safety limit we then 

have ?w g<t « QS, and the deflection in observing position is obs^^E^



We see another essential combination of material constants, S/E, which 

for steel is 6.67 x 10~4. Omitting all details, and calling v the wind 

velocity during observation, we derive for our antenna, if X > 0,2 m,

"m" “ 0,21 lOCTm (25 mph> (18)

With an octahedron diameter of 300 feet, for example, built for survival at 
85 mph, we can observe at 21 cm up to 25 mph.



II. Suggested Design

1 . Summary of Basic Principles to be Followed

1) For given material and dismater, there is a shortest wavelength 

(Table 2) which cannot be surpassed within reasonable costs.

2) The structure should have about the same diameter in every direction, 

It should have at least three defined points where it should be held 

and about which it must turn, and it should provide support for a 

surface through its center. The best solution is a regular octa­

hedron or some modification of it.

3) Thermal deformations can be neglected for diameters over 300 feet,

4) The number of compression members, as well as the weight of their 

internal braces, should be kept as small as possible, all remaining 

members being cables. The structure should be pre-stressed to half 

of its capacity.

5) The surface should be pulled by cables, being supported only by an 

outer rim.

2. The Spoked Wheel

The easiest way to get a stable rim surrounding the surface is a wheel 

with two systems of spokes to the two ends of a hub. In order to approach 

the octahedral shape, we make the hub as long as the diameter of the rim; 

a third system of spokes to the middle of the hub (representing two di­

agonals of the octahedron) would provide a flat surface through the center 

of the structure. Up to here, all weight could be made active if wanted 

by constructing hub and rim from single pipes. But two problems still re­

main to be solved: how to pull the surface into a parabolic shape, and where 

to hold and turn the structure; both should be solved with the least amount 

of passive weight.
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rim and center spokes into two separate

systems, and pull the center'spokes to­

gether by short cables. One of the two 

curvcd systems of center spokes then

holds the surface. Only the short ca­

bles and the surface provide passive

First, the shape. We split up the

Focus

weight, the connections between the two 

rims being part of the outer spokes.

With only little more passive weight,

the surface could be estended somewhat
Figure 5. Spoked Wheel with 
Double Rim.

beyond the rim.

The spokes holding the surface are polygons instead of parabolas. The 

deviation should not exceed X/16; from this we derive that the distance 

between these cables, as well as the distance between the short cables, 

should not exceed 0,57\/dR, For a surface of 500 feet diameter and a wave­

length of 20 cm, for example, we need 370 short cables and 6 6  outer cables.

One might object that these outer cables are situated in front of the dish, 

disturbing the observation. But for the example given, the 6 6  outer cables 

block only 3% of the surface for X = 20 cm, and ll7o for X « 1 m. Since 

they are distributed evenly and symmetrically, no serious side lobes could 

be introduced.
Second, the external support. The structure as shown in Figure 5 can 

be held at only three points without breaking its symmetry: at the center 

and at both ends of the hub. If there were some good way of using these points 

for support and drive, nothing would have to be added to the internal structure



of Figure 5. Unfortunately, I was not able to find any safe and economical 

solution.

Let us decide to hold the structure 

at two opposite points of the rim, at equal 

height above ground. Only in one case 

would the structure of Figure 5 be suffi­

cient: looking at the horizon without wind.

For any other case we need an additional 

square of strong cables, connecting both 

supporting points with both ends of the 

hub. The hub must get additional strength, 

and we need a second diagonal between the 

supporting points. The cross section of the strong cables should be equal 

to the active cross section of the rim. Since we have departed from the 

complete symmetry of Figures 2 or 5, we have introduced passive weight. A 

calculation showed that even if we make all compression members in Figure 6 
from single pipes, the weight factor needed for equation (10) cannot be re­
duced below
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Figure 6. Strengthening of 
vertical plane.

This will be sufficient for many 

cases. But if we are to reduce down to 

K » 1, we must go one step further by cont- 
pleting all additional parts of Figure 6 
to a full octahedron. This gives a com­

bination of the systems of Figures 2 and

5. If, in Figure 7, both systems have

(19)

Figure 7. Octahedron plus 
wheel (spokes not shown)



equal strength, we still get only K « 1.27; but now we can increase all 

cross sections of the octahedron until the weight of the wheel could be 

neglected, and can approach K ■ 1 in this way, although at considerable 

expenses.

3. Support, Drive, and Foundation

Having tried many other ideas without success, I suggest using the con­

servative approach: two supporting towers on wheels, running in a circle on 

tracks. This has the disadvantage that every point of the tracks must have 

the full strength for holding a tower, although only very few points actually 

hold the towers at any given position. But still it seems to be the best 

solution, if done as economically as possible.

Let us begin with the part where economy becomes most important: 

foundation and rails. These would become extremely expensive if built for 

special purpose and extreme conditions, especially in case of uplifting or 

lateral forces. For this reason we choose the opposite approach: we start with 

the usual, normal kind of railroad, with roadbed, ties and rails, and we try 

to adapt our structure to whatever conditions are given by this start. The 

usual railroad, for $80,000/mile, has a maximum load of 30 tons on 6ne axle, 
and of 450 tons per 100 feet. It cannot restrain upward or lateral forces.

Its accuracy after one year of use will be about 1/2 inch. Upward forces, 

then, must be avoided by counterweights over the wheels. For eliminating 

lateral forces we must have a strong pintle bearing at the center point of 

the circular track which takes up all horizontal wind force. As to maximum 

loads we suggest buying normal steel hoppers (without springs), mount the 

towers on just as many hoppers as needed for the combination of the weight
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of the structure plus downward component of the wind force plus counter­

weight against uplifts, and to get the counterweight by filling the hoppers 

with rock and gravel; since we drive our telescope extremely slowly as com­

pared to a railroad train, we might surpass the load limits given by, say, 

50%. As to the accuracy, we keep in mind that the circular track will have 

a diameter about equal to that of the dish; if we demand that the pointing 

accuracy of the telescope should be 1/10 of a beamwidth, we find that the 
accuracy of the rails must be 1/10 of a wavelength no matter what the di­
ameter. Adopting + 1/2 inch as the accuracy given for the rails, we arrive 

at a lower limit of 12 cm for the wavelength. Actually, this will even be 

better, since the tracks in the model I suggest will have a diameter larger 

than the dish by a factor of 1.39, which gives a lower limit of 9 cm.
For comparison 1 would like to show what happens if we go the other 

way. If we ask, for example, for a special single rail on concrete founda­

tion, taking 300 tons down and 80 tons up and laterally, we arrive at 

$704,000/mile, almost ten times more than the usual railroad.

The next question is the shape of the towers. The most stable and most 

economical shape is a tetrahedron. Since railroad is expensive, we would 

like to do with only one circular roadbed, which can be done by putting 

one leg of the tetrahedron right at the center of the circle; strong con­

nections to the pintle bearing at the center are needed anyway. This design 

cause* a little trouble because of the clearance needed for the rim of our 

antenna wheel, but this can be solved as shown in Figure 8. The pintle 

bearing must hold a horizontal force equal to the full wind force in stow 

position; in addition, it has to hold a downward force equal to 1/3 of the 
total weight of dish and towers. Since the vertical components of the wind 

force from both towers always cancel at the pintle bearing, no uplifting
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Figure 8. The supporting towers

force will result.

Next we have to decide about the drives. The azimuth drive is no 

problem and could be done with friction wheels on the rails. Since hori­

zontal forces are taken care of at the pintle bearing, the only force acting 

on the drive could be a differential wind force, if the wind occasionally 

blows more on one side of the dish than on the other one. As to the elevation 

drive, we must be prepared for stronger and more permanent differential wind 

forces because of the great height of the dish when looking at the horizon; 

we thus want to have the drive point as far removed from the axle as possi­

ble. In general, the drive needs a round structure, at least a quarter of a 

full circle, and a point being guided along it. Since the round part would 

add a large amount of passive weight if mounted to the dish structure, we do 

it the other way and mount the round part on a third tower on wheels, guiding 

from there the lower end of the hub, as shown in Figure 9. One possibility 

might be to have a slit along the center line of the round part and a chain 

gliding behind this slit; a pin at the end of the hub sticks through the 

slit into the chain.
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Figure 9. Third tower for elevation drive

Figure 10. All three towers as seen from 
above. Each leg mounted on a freight 
car filled with rocks. Dashed lines 
are connections between*towers.



Our last question is whether or not we should provide additional foun­

dations in six points for a special stow position, plus some equipment for 

holding the tower legs fixed to these points. In Table 3 we have calculated 

for our model the forces (including counterweights) for stow position and 

the strongest wind, as compared to forces in observing conditions at 25 mph. 

The result reads: up to about 300 feet diameter (antenna surface) one might 

as well just make the whole track a little stronger. But for larger dishes 
it becomes definitely .more economical to provide a specially fortified atow 
position.
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Table 3
Forces for Stow and Observation

diameter ^stow
feet ôbs

300 1.45

400 2.17

500 3.17

600 3.12
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III. Diameter, Wavelength, and Price
1. General Picture

For any antenna of given diameter, the connection between price and 

shortest wavelength will show three characteristic points. The first point 

is the price of the minimum structure for X «, just for a stable self- 

support. If we now insert surfaces of decreasing mesh size for observing at 

decreasing wavelengths, we take up increasing wind forces in the surface, 

and thus have to build stronger structures for safety; the result is a steady 

but 8low increase in price with decreasing wavelength. During this process 

we always calculate the gravitational deflection of the resulting structure 

and find it smaller than X/16 (which can be tolerated for observation), until 
we reach the second characteristic point where the deflection just equals 

X/16. From there on to still shorter wavelengths, the weight of the structure 

is no longer defined by the wind force, but by the demand that the deflection 

be smaller than X/16. This results in a steep increase of the price. Finally, 

we approach the shortest possible wavelength, as given in Table 2, which 

could be reached only with infinite mass (because of the passive weight of 

the surface). This limit is our third characteristic point. The position 

of each characteristic point, of course, is itself a function of the diameter 
chosen.

It is obvious from these considerations that an economical 
antenna should be somewhere close to the second character­
istic point, where the strength needed for safety just yields 
the rigidity needed for observation. At any other point, we 
have a waste of either strength or rigidity.

For practical application we need numerical values. We thus go to some

more details and try to find the •'price as function of size and wavelength.

For reasons of simplicity we confine this investigation to the dish and the



three towers (omitting drives and foundations, which are estimated later on 

for one example). And as a convenient measure of price we just take the 

weight of the material needed. Altogether, we ask for the weight of dish 

plus towers as function of diameter and wavelength.

2. Balance of Forces

In order to obtain the weight, all cross sections must be determined.

We do this in three steps. First, we want the structure to be balanced in 

the sense that all forces (pre-stressing, gravitation, wind) in the average 

create the same stress in all members; this yields the maximum forces in 

all members relative to each other. Second, we need one of these forces 

determined in an absolute way, which is done by requiring safety in stow 

conditions. Third, we calculate the gravitational deflection; if it is 

larger than X/16 we fortify the active weight until we reach this limit.

In the following we skip most of the details and just give all assumptions 

used and the results derived.

First, balance for the wheel of Figure 5, for example, is obtained if

F(rim) * F0/2n F(all outer cables) * FoA/2*
(20)

F(hub) ■ Fq/4 F(all center cables) * FQ/2

where

F0 « sum of all radial forces projected into the plane of the rim.

For the additions of Figure 6 we demand that its square of heavy cables 
take up as much force as half of all outer cables of the wheel; this also 

defines the forces in the second diagonal and the additional force in the 
hub.
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Since the transformation from force to weight follows equation (11), we 

need the non-guyed length JL of compression members. Ideally, this would 

be D/2 for hub and diagonal, and the distance between cables for the rim.

Such a structure would be perfectly stable after being completely finished, 

but it never could be erected. In order to be on the safe side, we take 

JL 3 D for hub and diagonal, and JL ■ D/2 for the rim. From equations (11), 
(13) and (20) we obtain for the total weight of the dish structure (rim, hub, 

cables and strengthening, plus the surface)

wdish " °*140 Fo D ♦ <30.3 + 8 \"2/3) D2 (21)

the active part of which is (averaged over all dish elevations)

W . * 0.110 F D (22)act o

Second, we relate this result to the wind force in stow position, and

I think we are on the safe side if we demand FQ ■* 2 Fw at, which gives with 
equation (14) finally

3

<
+ 87 D for X < 0.2 m

(23)

+ 30 \”2/3 D3 for X > 0.2 m

Third, the weight factor, averaged over all dish elevations, turns out
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to be

<
+ (0.444 + 0.117 X“2/3)/b for X < 0.2 m

♦ (1.30 \2/3 ♦ 0.343)/D for X > 0.2 m

(24)



3. Increased Rigidity

The structure, up to here, is entirely defined by the strength needed 

for safety. If the value of K obtained from equation (24) is smaller than 

the one demanded by equation (1 0 ), the rigidity of the structure is good 

enough for observation, and the final weight is given by equation (23). But 

if K(24) is larger than K(10), we must increase the active weight. Both 

values of K are equal at the second characteristic point mentioned earlier. 

Table 4 gives some examples, compared with the shortest possible wavelength 

at the third characteristic point, from equation (7), where K * 1.

Table 4
Wavelength X2 at the second characteristic point, for various 
surface diameters a. At X2 , the strength needed for safety 
just yields the rigidity needed for observation. Por compar­

ison: X3 is the shortest possible wavelength. __
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a
feet

D
1 0 0  meter

X2

meter
X3

meter

1 0 0 0.242 0.036 0.005

2 0 0 .484 .069 .019

300 .726 . 1 1 1 .043

400 .968 .162 .076

500 1 . 2 2 .243 . 1 2 2

600 1.45 .337 .172

The second characteristic point is also the most economical point, but 

perhaps we have to go to shorter wavelengths. The structure then is defined 

entirely by the rigidity needed for observation. For the weight of the com­

plete dish, in the range > X > X3 , we find after some calculation:
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(18.6 D + 30 + 8 X~2/3) D2  for X < 0.2 m
^  C

- —V - [(6.4 D + 8 ) X- 2 / 3  + 30] D2 for X > 0.2 m X-X3  ““

From equations (23) and (25) we have calculated the values given in 

Table 5. As compared to conventional antennas, the weights are lower by 

almost a factor of ten. The step line in the table represents X * X2 .

Table 5.
The weight of the complete dish (all structure plus surface) for
various surface diameters a. The step line is the most economical 
point, the last row (X «= <*>) is the minimum weight for self support.J---- t -

X wdish in tons
in meter a * 300 feet 400 feet 500 feet 600 feet

0.06 143 - - -
0.08 99 - - -

0 . 1 0 75 340 - -
0.15 63 155 650 -
0 . 2 0 60 127 293 1 2 1 0

0.30 49 103 190 340

0.50 39 81 147 231

1 . 0 0 30 60. 107 166

2 . 0 0 24 47 82 126
OO 14 25 40 57



4. The Towers

We adopt two supporting towers as shown in Figure 8 , and one elevation 

tower as in Figure 9. For simplicity we calculate the weight assuming all 

towers to be regular tetrahedrons, all three of the same strength. Actually, 

the towers have additional members and thus more weight, but the elevation 

tower does not need so much strength. These deviations go the opposite way 

and may about cancel each other. The horizontal connections between any two 

legs of each tower are given the same strength as the legs. The strength of 

a leg is calculated according to the weight of the complete dish, plus the 

wind force in most unfavourable stow conditions, both acting only on the legs 

of the two supporting towers. The result is given in Table 6 .
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Table 6
The Combined Weight of all Three Towers 
(without drives, wheels, counterweights)

X
in xcter

1

^3tow in tons
a « 300 feet 400 feet 500 feet 600 feet

0.06 104 - - mm

0.08 99 - - -
0 . 1 0 96 239 - mm

0.15 94 209 474 -
0 . 2 0 93 204 400 842

0.30 81 172 323 533

0.50 69 143 263 419

1 . 0 0 58 116 207 323

2 . 0 0 51 99 172 263

39 70 1 1 2 161



5. The Total Weight

Figure 11 shows the total weight of dish plus towers for various surface 

diameters as function of the shortest wavelength. This figure should be used 

for decisions about diameter and wavelength for large antennas. The three 

characteristic points are marked, and we see that the best choice is always 

somewhat to the left of the second point, before the steep increase toward 

the third point begins. For smaller dishes, there is a flat part, left of 

X a 2 0  cm, because for smaller wavelengths we have assumed a closcd surface 

in stow position, thus the wind force cannot increase any more by having 

smaller meshes for smaller wavelengths. From Figure 11 we get a first rough 

estimate for the total price of such an antenna, if we assume $l0 0 0 /ton of 

steel plus erection, and if we then multiply by about a factor of two in 

order to allow for drives, bearings, foundations, tracks and cars.

6 . Foundations and Total Price

The foundations will not be included in the general investigation. We 

just select a few ’’economical" antenna models, and calculate the forces 

acting on a single leg of a tower under unfavorable conditions.

In Figure 11 we select for each diameter a wavelength somewhat left 

of X2 » as given in Table 7. The next column shows the weight of dish plus 

towers, from which we obtain a rough estimate of total price (including 

foundations and drives) given in the fourth column. The next six columns 

show the maximum forces on a single leg, for stow and observation: downward 

force, upward force, and the sum of both. If we fight uplifting forces by 

counterweights, as we propose to do for observation, this sum is the force 
the rail has to withstand.
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6 7 8 8 10

T±r 4n , The total weight of dish plus three towers.
W is the weight of a minimum structure for self-support
The most economical point is at \2(waste of neither strength nor rigidity)
X* is the shortest possible wavelength
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Table 7
SomeSelected "Economical" Antennas. See text.

Total
price

Max. forces on single tower-leg
a X ^dish,3t Stow position Observing posit.

down ......UP. sum down up sum

Feet cm tons 106 $ tons tons

300 5 380 0.76 114 59 173 79 40 119

400 10 580 1.16 193 111 304 104 38 142

500 20 690 1.38 284 185 469 115 33 148

600 30 870 1.74 317 192 509 135 28 163

The forces given in Table 7 should now be compared with the limits given 

for normal railway tracks and cars:

Railway track Price
max. load on single axle 
max. load per 100 feet 
accuracy after 1 year

$80,000/mile 
30 tons 
450 tons 

+ l/2 inch
Freight cars

steel hopper largest gondola
price per car $17,000 $35,000
empty weight 20 tons 40 tons
total weight loaded 70 tons 160 tons

In order to be on the safe side, we ought to multiply all forces from 

Table 7 by a factor of, say, 1.5; but on the other side, the load limits given 

above rrdght easily be surpassed by 50% with respect to the slow motion of a 

telescope as compared to a train. We thus conclude that even the largest 

antenna from Table 7 does not need more than one gondola per leg of the support* 

ing towers for observation. A steel hopper will probably do for the legs of 

the elevation tower; the capacity per 100 feet is nowhere surpassed for ob­
servation. The stow positions will need extra support from concrete, and some



means for tying the legs down.

IV. Total Price for 500 Feet Diameter and 20 cm Wavelength.

For the special purpose of observing lunar occultations, a shortest wave­

length of about 50 cm would be sufficient, but a lower limit would be preferred 

if possible; since the instrument will be free for other users half of the 

time, we choose 20 cm. From Figure 11 we then select a surface diameter of 

500 feet. This represents a large, general purpose instrument for many uses.

Dish 300 tons }
> 700 tons; $l000/ton $700,000 

Towers 400 tons J

additional for more difficult erection 100,000
Bearings and pintle bearing 60,000

Drives 150,000

Dish surface 2 x 10^ ft2; 10 cent/ft2 20,000
Controls 80,000

Miscellaneous 10,000

Complete dish, towers,
drives $1,120,000

Railroad 0.834 miles; $80,000/mile 70,000

Cars (4 gondolas, 2 hoppers) 170,000

Stow supports 100,000

I/-ntle foundation 40,000
Complete foundations

and cars $ 380,000

Total « $1,500,000


