Fluctuation of antenna temperature from background sources at the resolution limit

S. von Hoerner Apr. 27, 1966

From formula (5) of NRAO Publ.No. 2 we have for the number of sources, in general,

N = 624 $\lambda^{1.2}$ S^{-1.5} sources/steradian, with fluxes \geq S

and the resolution limit of an antenna of diameter a is given by formula (24) as

$$N_{res} = 1.18 \times 10^{-2} (a/\lambda)^2$$
 sources/sterad.

Both together give, for the flux of the faintest sources at the resolution limit:

S = 1.31 x 10³ $\lambda^{2.13}$ a^{-4/3} $\begin{cases} S \text{ in flux units} \\ \lambda \text{ in meter} \\ a \text{ in meter} \end{cases}$

These numerical values were obtained by a fit to the 3C data. We now should rather fit to Hoglunds SOS data; it turns out that by doing so we must multiply S by 1.5. which gives

$$S = 1.97 \times 10^3 \lambda^{2.13} a^{-4/3}$$

These values were derived by adopting a signal/noise ratio of 5; thus, we divide by 5 in order to get the fluctuations. We then transform the flux denisty S into antenna temperature T by use of

$$T = 1.71 \times 10^{-4} S a^2$$

and obtain finally

ł.

 $\Delta T = 6.7 \times 10^{-2} \lambda^{2.13} a^{2/3} \begin{cases} \Delta T \text{ in } {}^{\circ} K \\ \lambda \text{ in meter} \end{cases}$

$\lambda(cm)$	85 ft	140 ft	<u>300 ft</u>				
100	0.59	0.85	1.36	\mathbf{i}			
40	.083	• 12	. 19				
20	.019	•026	.044	1			
10	.0043	.0060	.010	5	= ΔT	in	°ĸ
6	.0014	•0020					
3	.00033	•00046					
2		.00020)			

For lunar occultations, the resolution of the antenna plays no role. The antenna temperature from moon and sky is, for example:

Frequency	234	405	1400	MH_{Z}
Antenna Temperature	91	65	130	°ĸ