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Summary

A telescope tilted in elevation angle must deform under its dead load, and 

this sets a lower limit to the shortest wavelength of observation once the diameter 

is chosen. A most natural way of passing this limit is by designing a structure 

which deforms unhindered, but which deforms one paraboloid of revolution into an

other, thus yielding a perfect mirror for any angle of tilt. Focal length and 

axial direction are permitted to change (to be servo-corrected by focal adjustments).

First, a proof is given that any stable structure has homologous solutions, at 

least in a mathematical sense (whereas physical solutions must have all bar areas 

positive, and practical solutions must fulfill all specifications with a low total 

weight). Second, a mathematical method is described for obtaining such solutions on 

a computer, it is linearized and iterative, changing all bar areas simultaneously in 

each iteration step. Calling AH the rms deviation between the deformed surface and 

a best-fit paraboloid, the goal is to obtain a set of bar areas such that AH * 0 , 

for a fixed but arbitrary number N of equally-spaced surface points. Third, exact 

solutions (physical and practical) are obtained for a variety of structures, yield

ing AH < 10 inch after only 2 - 4  iterations. Fourth, the total weight is obtained

conditions. Fifth, the sensitivity of AH to manufacturing tolerances is investigated.

Two designs for 300 feet diameter are given. The first is defined by survival, 

yielding a shortest wavelength of X • 4.4 cm with a total weight of 476 tons (same 

weight as our 300-foot at NRAO, but more than three times shorter X). The second is 

defined by wind deformations, yielding X ■ 2.1 cm with 748 tons. Both can be built 

from off-the-shelf pipes and can observe in sunshine and shadow. Focal adjustments 

are about one inch. It seems that gravity can be omitted without paying any price.

as defined by wind deformations during observations and by stresses during survival



I. The Gravitational Limit

There are three natural limits (as opposed to financial ones) for diameter D 

and shortest wavelength X, for tiltabla conventional telescopes [1]:

stress limit D £ Dst * 600 m; (1)

thermal limit X > Xth * 2.4 cm — ; (2)

gravitational limit X > Xft„ '* 8.0 cm i— 2— ] 2. (3)
®r  1100 mj

The stress limit is reached when the dead load of the structure produces at 

the bearings the maximum allowed stress of the material; at present we are far 

below this limit. The thermal limit applies to a telescope with good protective 

paint in full sunshine (AT * 5°C); this limit can be passed by a factor 2 - 5 in 

a radome, or an open dome (36-foot telescope at Kitt Peak), or at night. The 

gravitational limit arises from the deformations under dead load if the telescope 

is tilted from zenith to horizon; the value given, 8.0 cm, applies to an economical 

structure and is the same for steel and aluminum* it can be brought down to 5.3 

cm with an uneconomically high total weight. We see in Figure 1 that the grav

itational limit is the essential one for large telescopes (D > 100 ft); some 

telescopes come very close to it, but not a single existing tiltable telescope 

passes it.

II. Homologous Deformations

There are several ways of passing this gravitational limit: (1) Fixed el

evation transit telescopes (the 1000-foot dish in Arecibo does not move at all; 

the LFST group has worked out three 600-foot telescopes moving 360° in azimutti);

[1] S. von Hoerner: "Design of Large Steerable Antennas", Astron. J. 72, 35, 1967.

(First published as an LFST-REPORT, June 1965. The LFST group, headed by Dr.
Findlay of NRAO, investigates the possibilities for a Largest Feasible
Steerable Telescope; its reports and summaries can be obtained from Green
Bank on request.)



(2) Motors in the structure or at the surface panels, correcting the defor

mations; (3) Levers and counterweights as in large optical telescopes. But 

the most natural way seems to be: (4) Designing a structure which deforms com

pletely unhindered, but which deforms one paraboloid of revolution into another 

one, thus yielding a perfect mirror for any angle of tilt. Since this defor

mation transforms one member of a given family of surfaces into another member 

of the same family, we suggest to call it a "homologous deformation" [1], and 

the permitted changes of focal length and axial direction we call "homology 

parameters".

Homologous deformations can be demanded for an arbitrary number N of 

equally spaced structural points, holding' the surface or the panels, where N 

must be chosen so large that any deformation between neighboring points can be 

neglected (< A/16). The minimum N then is proportional to X”1, and we must have 

N ■ 2 for X ■ Xgr (two bearings of the conventional telescope). But the design 

of the panels is somewhat eased if we demand at least:

N » 3 . (4)

Since small deformations can be superimposed, homology holds for all angles 

of tilt if it holds for two; a paraboloid of revolution is defined by 6 points, 

and since deformations parallel to the surface do not matter, we obtain 

homology if a set of 2(N-6) conditions is fulfilled. On the other hand, a 

structure of N unconstrained points needs at least 3(N-2) members just for 

stability, and even for a 'fixed geometry we still have 3(N-2) degrees of freedom 

just for the bar areas. Since 3(N-2) - 2(N-6) ■ N+6 > 0, the problem is 

solvable and there is a family of solutions with at least N+6 free parameters.
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But this existence proof holds for "mathematical solutions", whereas a 

"physical solution" demands all bar areas to be positive and finite, and a 

"practical solution" must fulfill all specifications with a small total weight. 

There certainly are structures which have only mathematical solutions but no 

physical ones, for example, if we mount the two elevation bearings at surface 

points.

As a first approach to homology, the concept of an "equal softness 

structure" was introduced in [1], which is explained in Figure 2. A conventional 

structure mostly has hard and soft surface points, which clearly is illustrated 

by the measured deformation patterns of several telescopes. Since we cannot 

make the soft points hard, we have to make the hard points soft, although this 

might hurt our feelings. We obtain about equal softness when the structural 

ways to the nearest bearings are about equal for all surface points. A structure 

like Figure 2c comes already close to a homologous deformation, while a structure 

like Figure 2a mostly has no practical solution at all.

III. The Homology Method

In 1965, a mathematical method was developed [2] for obtaining homology 

solutions on a computer. The homology problem would lead to a set of 2N highly 

non-linear equations, but the method used is linearized and iterative. With 

the input data we give a complete structure, its geometry (coordinates) as 

well as a "first guess" of all bar areas A^. The method then keeps the geometry 

unchanged, but it changes all A^ simultaneously in each iteration step, de

manding a zero rms deviation AH between the surface points and a best-fit

[2] S. von Hoemer: "Homologous Deformations of Tiltable Telescopes", Journal of 

the Structural Division, ASCE, 93 , ^ 6 / , 1967.

(First published as LFST-REPORT No. 4; Nov. 1965).
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paraboloid of revolution. We define
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as the "deviation from homology", where 6z± - Aẑ  ̂- b(Axi , Ay±) is the difference 

in z-direction (parallel to the optical axis) between the deformed surface point

i and the best-fit paraboloid of revolution; Ax^, Ay^, are the deformations 

of point i. The task is to find a set of bar areas such that AH = 0. This 

task is represented by a set of 2N linear equations, which we call "homology 

equations".

From all possible homology solutions (we have at least N+6 free parameters), 

the method selects that solution which is most similar to the first guess. With 

this demand we try to avoid impractical solutions. The first guess should be 

made such that the structure withstands the survival conditions and has only 

small wind deformations, both with a minimum total weight, and the homology 

iterations should stay close to this condition. Finally, keeping all changes 

as small as possible gives the best hope for a good convergence. The method 

is described in full detail in paper [2], and here we give only a brief outline. 

The present method neglects the bending stiffness, regarding each joint as a 

pin-joint.

The method used is a generalization of Newton’s method for finding the 

zero point of a function. If x is wanted such that y(x) ■ 0, Newton’s method 

starts with some initial value x q (first guess), and iterates according to

*“ x£ ~ / (dy/dx)^. This is generalized to n variables, where n ■ nri-4 * 

number of members plus number of homology parameters. The quantity whose zero



is wanted is AH from (5), and we see that we now need 3AH/3A^, the derivatives 

of AH with respect to all bar areas. In (5), AH goes back to the deformations 

Az of the surface points which are given as

Az = K" 1 F (6)

where K” 1 is the inverse of the stiffness matrix K, and F is the force vector

given by dead loads and surface weight. We then need the derivatives of all

elements of K” 1 with respect to all bar areas, T = K” 1 / 3A (a tensor of
ijY ij Y

three dimensions), and we also need all 3Fj / 3A^. Two facts make the method 

easy. First, the derivatives of K” 1 can be obtained from those of K with a 

formula derived in the appendix of [2], which can be written as
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(which simply is the matrix equivalent to (1/y)' = - y'/y2). Second, the elements

o f K are always linear in the A , and thus 3K / 3A = constant throughout all
Y pq Y

iterations for a given and unchanged geometry, and the same is true for the 

3F_. / 3A^. In this way, the wanted change of AH (for obtaining AH = 0) is 

finally traced back to the unknowns, the needed changes of the bar areas.

The combined task of (a) achieving homology, and (b) selecting that solution 

which is most similar to the first guess, is treated by the method of Lagrangean 

multipliers, but we have also included the possibility of making the homology 

parameters as small as wanted if they should turn out too large; we thus mini

mize
m 4

(dA^/A^ ) 2 + a) ^  h 2 ■ Min. (8)

Y“ 1 k=l



where dA is the needed change of bar area A , and h ...h are the homology 
Y Y l ^

parameters; u is a factor given with the input data which tells how important

we consider small homology parameters. One iteration step then runs as

follows. We build up the stiffness matrix, its inverse, and the force vectors.

After several matrix operations we arrive at (8) where we finally have to

solve a set of n linear equations, yielding the changes dA which then are
Y

added to the old values of A^. With these improved bar areas we again build 

up a new stiffness matrix and force vectors, and we repeat the procedure until 

a given number of iterations is finished.

The present method solves an optimum condition, equation (8), together 

with a set of 2N constraint equations (homology equations) for obtaining AH = 0; 

the external specifications (survival stress, wind deformation) are checked 

separately later on. This way was chosen for obtaining best convergence in 

case that convergence is a problem. But from our present experience, con

vergence is no severe problem, and the best method then would be a different 

and more direct one. In addition to the homology equations, one should set 

up the external specifications in a linearized way. The demand on wind 

deformation would be represented by a set of w inequalities (if w different 

wind directions are specified), and the demand on maximum stress would yield a 

set of m inequalities. The optimum condition then should minimize the total 

weight. In the present method we have constraint equations only, whereas in the 

new method we would have equalities as well as inequalities. This task can be 

solved by a combination of Lagrange multiplies and Fritz John multipliers, as 

shown by Mangasarian and Fromovitz [3]. I would like to add that this method 

seems to be the best and most direct one for a large variety of optimization 

tasks in engineering. The only remaining problem is again the convergence;

- 7-

[3] 0. L. Mangasarian and S. Fromovitz: "The Fritz John Necessary Optimality

Conditions in the Presence of Equality and Inequality'Constraints", J. Math 

Anal. Applic. 17» 37, 1967.



we found that the linearization of the homology equations gives fast convergence 

for a wide range of first guesses, but we cannot tell without trying whether 

this also holds for the linearization of the external specifications.

IV. The Total Weight

Homology has nothing to do with the total weight. If we multiply all bar 

areas (and the surface weight) by a factor q, then the weight increases by a 

factor q, but so does the stiffness, and all gravitational deformations stay 

the same. Since the weight must be defined somehow, the present program keeps 

it constant. It also keeps constant the counterweight needed for balance.

Mostly we make our structures completely balanced (counterweight zero) before 

applying the homology iterations, but we also can choose any given amount of 

counterweight. The iterations then keep the counterweight constant, zero or 

not. This means we have two more constraint equations in addition to our 2N 

homology equations.

For an actual design, the total weight is defined by either one of three 

conditions, see [1]. (a) Stable self-support under dead loads, for a telescope 

inside a radome; (b) Stability under specified survival forces, for an exposed 

telescope and medium wavelengths; (c) Specified wind deformations during ob

servation, for an exposed telescope and very short wavelengths. In the present 

program, this final total weight is not obtained automatically. We start with 

a first guess,fulfilling all conditions, then we iterate until homology is 

reached, and thereafter we check with a separate program whether all conditions 

still are fulfilled. If not, we make an improved first guess and try again. 

(Sometimes, we also changed the geometry slightly.) Although this procedure 

does not look very elegant, it still seems to be tfhe best one for gaining
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experience and understanding.

It turned out that this method is very easy for case (c), mostly not too 

difficult for case (b), but a little troublesome for case (c) if one really 

wants a low total weight. This difference is easily understood. If the wind 

deformation is too large by a factor q, we simply have to multiply each bar 

area and the surface weight by q, and we obtain an exact solution even without 

repeating any iteration. Survival stresses again go down (although by a 

smaller factor) if we multiply all bar areas by the same factor, but the dead 

load stresses stay the same. Thus in case (a) we have to try an essentially 

different first guess. It seems that one really should solve case (a) with 

the method suggested at the end of the last section.

The additional program calculates the stress in each bar in zenith 

position, Sz , and in horizon position, S^, where the maximum stress for any 

elevation then is

2 2 2 i/2

m ' (Sz + Sh> •

This is done either for dead loads in case of a radome, or for survival loads 

in case of an exposed telescope. The program then calculates the maximum 

allowed stress, Sq , according to the £/r ratio of this member (more exactly: 

of its chords); each member is actually a built-up member according to Figure 

3, where the influence of the lacings on weight and stiffness has been taken 

into account. The stress factor

Q - s„/so do)

then is printed for each member, and the stability condition is fulfilled if all 

Q̂ , < As to the numerical value of the survival condition, we have adopted
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a time of, say, 30 years after which a telescope becomes obsolete, and a chance 

of, say, 1 per cent for losing the telescope in a storm before it becomes ob

solete. We then obtain from wind statistics at Green Bank [4] a survival wind 

of 110 mph at 200 feet height ( ■ 90 mph as measured at 40 ft height, gusts 

included). Using this value, the telescope then is also stable against a snow 

load of 20 lb/ft2 , or 4 inch of solid ice. And since we should be able to 

dump the snow by tilting, we specify this load for any elevation angle according 

to (9).

The wind deformation is, at present, calculated only for a wind face-on, 

assuming that this is the worst condition (different angles are planned for 

future checks). Since all gravitational deformations are omitted by homology, 

we omit the dead loads and regard the wind loads only. We calculate the rms 

surface deformation in z-direction (no best fit this time) and call it Ac* If 

the telescope is held and guided in an economical way (Section VI), the better 

part of AC is just a parallel translation which does not matter. The remaining 

part which matters is due to (a) gusts of any size but faster than the servo 

loop of the drive, giving rise to pointing errors, and (b) crusts of any speed 

but smaller than the telescope radius, giving rise to surface deformations. An 

estimate of this remaining fraction of AC is in preparatiori, but at present we 

just adopted 0.5AC* Furthermore, the calculations of Simpson, Gumpertz and 

Hager (Section VII, 4) showed an rms difference in half the path length of only

0.777 AC, and both effects combined give 0.389 AC* On the other hand, we should 

add the deformations of the towers holding the telescope, where an estimate 

showed that we should add about 60 per cent (for an economical tower design),

- 10-
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thus obtaining 0.632 Ac* Finally, this value should be 1/16 of x» and we 

arrive at a shortest wavelength X for an rms deformation A5:

X » 10 AC* (11)

How do we specify the highest wind during observation? I have asked several 

observers, what fraction of their observing time they would be willing to lose 

at the shortest wavelength, due to high winds, in order to get the largest 

possible telescope for a given amount of money; the answer was "about one 

quarter". According to our wind statistics [4], we then arrive at a wind 

speed of 22 mph at 300 feet height ( =*17 mph as measured at 40 feet height, 

gusts included); the wind is higher than that for 15 per cent of all time 

during summer, 30 per cent during winter, and 24 per cent all year. This 

speed of 22 mph, together with (11), then gives the specification for the 

deformation Ac»

V. Miscellaneous

1. Sensitivity. The homology program delivers the final bar areas with

6 digits, but what accuracy do we actually need? What is the sensitivity of a

homology solution to manufacturing deviations? This is answered by a small

auxiliary program called "Sensitivity". We start with perfect homology, and

then assume that each bar area is changed according to A (1 + e ), where the
y Y

are uncorrelated random numbers with mean zero and variance e2 «  1. The 

resulting deviation from homology, AH, then can be obtained analytically 

(without using actual random numbers); and demanding AH < X/16 yields the 

maximum tolerated e. Fortunately, it turned out that rms deviations of the 

bar areas of about 12 per cent can be tolerated for most practical purposes
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(see Table 4). This means we can use off-the-shelf shapes or pipes which 

give 10 per cent, if we always choose from the steel manual that size which 

comes closest to our from the computer output.

2. Thermal Deformations. If the gravitational limit is passed by 

homology or else, the next natural limit then is the thermal limit. We do 

not calculate the actual deformation of a given structure under a given 

temperature distribution. Instead, we use with some confidence estimate (2) 

which assumes a temperature difference of AT * 5°C in unfavorable places; 

it further assumes that all bars are made from steel and that the surface, 

if made from aluminum, is allowed to "float" on the back-up structure of the 

panels. As to the expected values of AT, we use some experiments described 

in [5]. For good protective white paint, we found AT - 5°C as the difference 

between sunshine and shadow on the average for clear, sunny summer days at 

noon. A second effect is given by the time-lag of heavy members in case of 

rapidly changing ambient air temperature (mostly around sunrise and sunset).

For hollow members with white paint in winds below 5 mph, the time scale x of 

thermal adaption was found by experiments as 1.73 hours per inch of wall 

thickness for steel, and 1.14 hours per inch of wall thickness for aluminum 

(length and diameter do not matter within wide ranges). The time scales are 

half these values for T and L shapes and solid rods; the time scales of un

painted aluminum and galvanized steel are 1.8 times longer. If the air changes 

by T ( C/hour), a member lags behind with AT ■ -tT. At Green Bank, on 1/4 of 

all days, the measured maximum change of the day is T > 3.5°C/hour. Thus, if 

AT < 5 °C is demanded for 3/4 of all days, the heaviest members then must have
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[5] S. von Hoerner: "Thermal Deformations of Telescopes", LFST-REPORT No. 17; 
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a wall thickness below 0.83 inch for steel pipes, or below 1.66 inch for open 

shapes or rods. This, of course, can always be met by splitting up heavy 

members into several thinner ones; but then the wind resistance increases, and 

a good compromise is needed. One also could blow ambient air through hollow 

members at 15 - 20 mph, which would reduce thermal deformations by about a 

factor 3.

I would like to add that the effect of thermal deformations (just as in 

case of wind deformations) will be reduced by at least a factor 2, if the 

telescope pointing is done as suggested in Section VI.

3. Non-Parabolic Panels. It might be of advantage to make the surface 

panels of a shape which is different from a parabolic one, but easier to 

produce and to measure. For any given shape, a maximum size can be calculated. 

Formulas are given in [6] for flat plates, spherical panels (to be measured 

and adjusted with a pendulum), and for toroidal panels (two-axes pendulum).

These formulas are derived such that no deviation from the true paraboloid is 

more than X/16, which means that the rms deviation from the best-fit paraboloid 

is about X/AO. In this way the values of Table A are calculated.

VI. Telescope Pointing by Optical Means

The following is connected with homologous deformations only insofar as, 

in the present situation, we must find much cheaper ways of building telescopes, 

otherwise we do not get the money for any large telescope, homologous or not.

Many of the older radio telescopes used a polar mount, which is the only 

way of driving a telescope without a computer (or analog coordinate converter).
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Since nowadays large telescopes always will have an on-line computer anyway, 

they mostly use an alt-azimuth mount which has many obvious advantages 

structurally and even some advantages observationally. But in both types of 

mount, the pointing of the telescope mostly is measured at the axes or drive 

rings (too far away from the telescope surface), and with respect to some 

structural elements or rails (stressed by heavy loads). The most logical 

way seems to be measuring the pointing where it matters (right at the apex), 

and with jrespect to something unstressed and unmovable (fixed points on the 

ground), which can be done by optical means. The JPL antenna at Goldstone, 

California, comes close to this demand, measuring the pointing at the apex 

and with respect to an internal unstressed pillar reaching close to the apex. 

But this internal pillar gives some structural (and financial) disadvantages. 

One should go one step further and use a sufficient number of light beacons 

right on the ground, as suggested in [1],

Some satellites, rockets, and balloon telescopes already use optical 

pointing devices, "locked-in" to the bright rim of the Earth or Sun, or to 

some brighter stars. An investigation is planned into the availability, 

accuracy and cost of such devices, and into their application to radio tele

scopes. The basic idea is to have a rotatable platform mounted behind the 

apex, with several small optical systems (theodolites) equipped with photo

cells, looking at as many light beacons (flashlights) mounted on concrete 

blocks on the ground, see Figure 4. A servo-system keeps this platform 

Mlocked~in,f to the beacons. At the joints between platform and telescope 

structure, we measure two angles and thus obtain the pointing direction of 

the telescope. Measuring these two angles, and guiding the telescope into
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the desired direction with a second servo-system, can be done by normal 

techniques already in use; new is only the reference system defined by the 

platform, locked-in optically to the ground.

In principle, we need three beacons, and only two if the direction of 

gravity is measured independently by some kind of pendulum. Actually, we 

should have about twice as many beacons, because in some telescope positions 

one or the other light path will be blocked by the surface or some structural 

members. In a first approach, the pointing direction of the telescope can 

be defined by the structural element where the platform is mounted, and maybe 

this is already all we need in the next future. In a more sophisticated 

version, a second platform, mounted in front of the apex, can look at the feed 

and three or more points on the dish surface, from which the computer can find 

the (best-fitting) pointing direction even of a slightly deformed dish.

The disadvantages of this method are, first, that it does not work in 

heavy fog or cloudburst, but then we cannot observe at very short wavelengths 

anyway; and since we do not need high accuracies for long wavelengths, the 

telescope could be equipped with an additional pointing system of conventional 

type for those cases. Second, there is the usual human inertia against any 

new method; large optical telescopes are still polar-mounted, and nobody can 

explain why.

There are two major advantages. First, this method keeps the pointing 

accuracy completely independent of the accuracy of elevation rings and 

azimuth rails. As far as pointing is concerned, we could as well drive the 

telescope on a circular dirt road, and pull it into the right elevation by 

chains or ropes. Actually, one would use plain, normal railroad equipment
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for the azimuth ring, with $100,000 per mile for erection, $400 per mile and 

year for maintenance, and an accuracy of 1/4 to 1/2 inch vertical and lateral, 

see [7 ]. Second, with respect to thermal deformations, constant wind loads 

and all gusts slower than the servo-loops, we completely omit all deformations 

occurring between the apex and the ground (telescope suspension, bearings, 

elevation ring, towers, rails, and foundation). This will cut down the re

maining effective deformation by at least a factor 2, even for the first 

approach, and the more sophisticated version should yield at least another 

factor 2. It may cut down the costs of foundations and rails by almost a 

factor 10, see [7].

VII. Numerical Results

The homology method was programmed at the Department of Civil Engineering 

of the University of Virginia, Charlottesville, Va. It was run with a 

Burroughs 5500 on several structures with good success. The results will be 

published somewhere else [8]; the following is only a short summary.

We began with very simple structures, just for gaining experience, and 

then proceeded to more complicated ones, looking more and more like telescopes. 

The last one successfully run has N ** 13 homologous surface points, a total 

of p ■ 26 points (pin joints), and m ■ 112 members. The next one with N = 21, 

p ■ 34, m » 128 could not be run because of memory limitations (200,000 word 

disc, magnetic tape is too slow). A second version of the program is now in
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Sept. 1966.
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preparation and half finished; it calculates only one quadrant of a symmetrical 

structure. We then hope to reach about N - 90, p = 190, m - 600. For a 

structure of this size, a full treatment (3 iterations, stress and wind 

analysis) should take about 3 - 4  hours on our IBM 360/50.

1« Floating Sphere Telescope (Structure 3a). The first application to 

an actual telescope design was done for one of the LFST proposals: a complete 

sphere of 750 ft diameter, floating on water or pressurized air; one segment 

is cut off and replaced by a radome, and a stiffener ring at the opening holds 

the rim of a 656-foot parabolic reflector, see Figure 5. First, it was shown 

that a non-deforming ring can be obtained with no extra cost, just by a proper 

distribution of the stiffener ropes and counterweights needed anyway. Second, 

supported at this ring, a parabolic surface structure was designed as a 

2-dimensional network of triangles, replacing a membrane by discrete members, 

with m = 66 and N = 19 (sufficient for X *= 5 cm). This structure ran success

fully on first try; after only 4 iterations the calculating accuracy of the

—  6
machine was reached, giving an rms deviation of only AH = 7 x 10 inch. As 

to the homology parameters, the change of focal length was 3.9 inch, and the 

change of axial direction only 0.72 minutes of arc. For the first guess, we 

took all bar areas equal, and the largest change obtained in the final solution 

was 42 per cent, the average change 8 per cent. The result is not a shell 

which could be replaced by a membrane; it must be a framework since the radial 

members of the final solution are lighter than the ring members. Each iteration 

decreased AH by more than a factor of ten, and this quick convergence showed 

that the floating sphere telescope could easily be supplied with a homologous 

mirror of any accuracy wanted. Furthermore, the convergence and the final 

value of AH * 7 x 10 inch showed that the homology problem actually has exact
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solutions (as we have claimed with the existence proof), and that some 

structures also have practical solutions. Not only can we minimize AH, we can 

make it zero and thus omit gravity completely, in a natural and elegant way.

2. Octahedron and Suspension (Structures 2e). Within the memory limit 

of the present program, we tried to obtain a sufficient number N of surface 

points, with a minimum of total points p and members m, for a telescope to be 

held at two elevation bearings on top of two towers. The best basic principle 

seemed to be an octahedron held with two suspensions (Figure 6a) which we 

called Structure 2. First, we experimented with N = 9 (Structures 2a, b and 

c) in many variations, 3/4 of which converged to physical solutions. A try 

to obtain N « 20 with only p ® 29 (Str. 2d) failed and was given up. We 

finally settled on Structure 2e as shown in Figure 6, with N ■ 13, p - 29, 

varying m from 102 to 116, and also slightly varying the geometry and the 

bearing restraints.

In all these experiments, we found that a good structure, close to equal 

softness and with a first guess well thought of, will mostly give already for 

the first guess a 4H small enough for practical purposes and then converge 

nicely, see Table 1; a wrong geometry or a bad first guess will mostly give 

large 4H and then converge to some negative bar areas. But one of the major 

advantages of the homology program is that it tells you what is wrong; it 

teaches its user after a few trials how to make a good first guess and how to 

choose a proper geometry. Furthermore, the numerical proof that AH can be made 

zero should encourage all designers who try to minimize AH by other methods, 

like trial and error in the simplest case.

The best of our trial structures seemed to be Structure 2e/4, see Table 1, 

with m * 112. Starting at two elevation bearings (points 25 and 26), two
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suspensions of three members each hold an octahedron, thus including the 

feed supports in the basic structure as suggested in [1], The basic square 

of the octahedron then is used for obtaining an octagon. From the octagon 

and its center, 9 points, we reach the 13 surface points with a layer of 45 

bars. The surface structure is represented by 28 surface bars, and the surface 

itself by an additional load of 15,000 poinds per surface point (2.76 lb/ft2). 

The focus is at point 23. Each bar of this structure, actually, is a built- 

up member as shown in Figure 3. The two bearings should be held on top of 

two towers moving on wheels on an azimuth ring. Since the telescope will 

have more stiffness in x-direction than the towers, we neglect their stiffness 

and let the bearings move freely along the x-axis, making up for it by re

straining point 24 in x-direction. Thus, the restraints of all three points 

24, 25 and 26 are represented by gliding cylinder bearings. The actual tower 

stiffness will be introduced later on in the new program. Because of the 

present memory limit, we could not attach an elevation ring to the telescope.

After m and the geometry was settled, we started in earnest and tried to 

make a real good first guess such that the bar areas would meet the survival 

condition by only a small margin, while the ratios of the areas would minimize 

the wind deformation. This is the Structure 2e/16 of Tables 1, 2, 3. The 

diameter was chosen as D * 300 ft, for comparison with our 300-foot telescope 

at Green Bank. Structure 2e/16 started with AH - 0.025 inch and converged 

fast (Table 1) to a physical solution. Table 2 shows the original bar areas 

and those after three iterations; the largest increase is a factor 1.75, and 

the largest decrease a factor 1.64, while the average change is only 18 per 

cent. But we obtained survival stresses slightly larger than the allowed ones
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for three members (Q ■ 1.27 for member 2-15; 1.22 for 3-16; 1.12 for 8-16).

Improvement then was aimed in two directions; first, stability (Q < 1)

with minimum weight just for survival, resulting in Structure 2e/21; second,

stability and minimum weight for obtaining about X ■ 2 cm for wind deformations,

resulting in Structure 2e/18. Table 2 shows the final values of bar area A,

survival stress S from (9), the Z/r ratio A, and the maximum allowed stress 
m

for this A and for steel of 33,000 psi yield. We see that S < S for all
m o

members of both structures, thus both are stable in survival conditions. From

Table 3 we see that X * 4.4 cm, which still is a good wavelength for a 300-

foot telescope, if achieved with only 476 tons total weight (the Green Bank

300-foot has 450 tons, the surface allows only X * 20 cm, but the structure

would allow X ■ 15 cm). And Structure 2e/18 meets the goal closely enough

with X = 2.12 cm for calling it a final solution. Its weight is still fairly

low with only 748 tons. Against survival, it is overdesigned by 21 per cent.

For both structures, the change of focal length is about 1 inch, and the

direction changes by only 3 minutes of arc. The mechanical adjustment of

the feed, with respect to point 23, is only about 1 inch.

P. Weidlinger [9] has pointed out that the ideal minimum-weight structure

should have the same stress S^ in all of its members; and for any given structure

with different S , the ratio of the smallest S over the largest one thus is an 
m m

easy and elegant estimate of how efficiently the material is used. I would like

to modify this in two ways. First, with respect to members of different length,

we use the stress factor Q instead of the stress S ; second, it really does not
m

matter much if one or the other member even has Q * 0, but what counts is the

- 20-
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Table 1 . Convergence of the homology iterations.

AH ■ rms deviations of deformed surface 

from best-fit paraboloid;

<SA/A ■ rms relative change of bar areas between 

iterations;

df ■ change of focal length between zenith and 

horizon, 

i =» iteration (o - first guess)

structure i

ah

inch

<SA/A 

per cent

df

inch

3a 0 0.0856 — - 2.99

1 .0149 15 - 3.71

2 .00074 3.2 - 3.96

3 .000016 .4 - 3.92

4 .000007 .3 - 3.87

2e/4 0 0.202 - + 0.26

1 .0240 21 - 0.46

2 .00089 4 - 0.52

3 .00024 3 - 0.49

2e/16 0 0.0248 - + 0.77

1 .0043 15 .71

2 .0006 5 .70

3 .0004 3 .72

2e/18 0 0.0120 - + 0.80

1 .0045 7 .84

2 .00006 1.4 .85

2e/21 0 0.019 - + 0.98

1 .0015 6.7 1.00

2 .00011 2.4 1.03
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Table 2. Members of Structures 2e/16, 2e/18 and 2e/21. 
m = number of identical members;
A = bar area, in square inch;
Sm ■ survival stress according to equation (9);

A = i/r ratio (of main chords of built-up members);
S0 = maximum allowed stress, for 33,000 yield steel and A.

structure 2e/16 2e/18 2e/21

iteration 0 3 2 2 2 2 2 2 2 2

member m A Ao A0 S A S A0 S A S
0 3 2 m 0 2 m 0

1 - 2 2 12 10.6 9.1 7.2 65 15.8 5.9 9.5 87 14.7
3 2 12 12.0 10.1 1.4 61 16.1 6.9 3.8 79 15.6

14 1 12 9.9 13.8 9.5 36 18.0 8.8 16.2 49 18.5
16 4 10 10.6 13.1 5.5 68 15.6 8.3 8.1 93 14.0

2 - 3 4 15 14.8 13.0 4.9 73 15.2 11.3 6.6 80 15.5
6 2 12 12.8 13.8 8.0 53 16.8 8.4 12.4 73 16.2
7 4 18 18.0 16.3 1.5 67 15.6 9.1 2.8 99 13.3

14 2 10 13.8 11.8 3.6 72 15.2 5.4 5.8 121 10.4
15 2 10 6.1 11.8 10.9 29 18.3 5.8 14.5 47 18.7
16 4 10 13.3 16.9 10.3 44 17.4 8.3 12.6 71 16.5

3 - 7 4 18 16.1 13.7 7.1 75 14.9 8.6 9.6 103 12.8
8 2 12 11.8 9.9 5.6 65 15.8 6.2 6.7 89 14.4

14 2 10 8.7 8.0 6.4 93 13.1 7.6 10.4 97 13.6
16 4 10 11.5 15.2 13.9 47 17.2 13.6 16.3 51 18.3
17 2 10 8.2 14.6 8.6 26 18.6 • 9.5 16.8 34 19.7

6 - 7 4 22 19.7 16.9 8.2 66 15.7 10.5 11.9 90 14.3
15 2 12 18.9 30.6 7.6 31 18.0 32.6 7.7 30 20.0
16 4 10 7.6 10.8 9.9 95 12.7 10.6 11.9 96 13.6

7 - 8 4 22 18.9 16.9 8.1 66 15.7 12.0 9.6 83 15.2
15 4 10 9.7 14.1 4.2 80 14.4 6.4 6.1 135 8.2
16 4 12 14.6 16.8 11.8 47 17.3 12.3 15.3 58 17.7
17 4 10 14.2 13.2 9.4 84 14.1 13.5 9.5 82 15.3

8 -16 4 10 10.9 14.2 12.1 79 14.6 15.3 12.5 75 16.0
17 2 12 15.2 18.9 11.6 43 17.5 14.1 16.4 53 18.2

14 -15 2 40 70.1 55.7 2.9 26 18.5 50.0 3.8 29 20.1
16 4 40 37.1 30.9 2.5 39 17.8 7.1 4.2 104 12.7
17 2 40 44.4 35.0 2.6 36 18.0 10.4 5.4 81 15.4
24 1 40 32.6 29.9 8.5 37 18.0 14.3 15.3 61 17.5

15 -16 4 40 25.4 19.2 14.1 39 17.8 12.4 16.1 52 18.2
24 2 50 53.6 53.0 9.1 43 17.5 35.9 12.5 55 18.0

16 -17 4 40 39.2 41.2 8.7 24 18.7 29.5 12.6 29 20.0
18 2 60 56.9 48.1 7.5 39 17.8 15.6 12.8 83 15.2
22 2 60 63.7 49.2 10.7 39 17.8 32.8 12.1 51 18.4
23 4 15 15.4 13.5 1.1 133 8.4 7.4 1.1 198 3.8
24 4 60 60.1 51.4 7.8 43 17.4 24.5 12.6 71 16.4
26 4 120 115.2 148.1 10.7 13 19.3 76.9 17.5 20 20.7

17 -24 2 50 56.6 55.7 7.1 41 17.6 39.3 11.7 52 18.3

24 -26 2 200 190.0 229.5 8.1 18 19.0 111.9 15.5 30 20.0
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Table 3 . Some final values for Structures 2e/16, 18, and 21.

structure 2e/16 2e/18 2e/21

iterations 3 2 2

rms deviation from homology, AH (inch) 0.00040 0.00006 0.00011

max. surface deformation, AP (inch)
m

1.29 1.04 1.52

change of focal length, df (inch) .72 .85 1.03

change of direction, d<> (min. of arc) 4.20 2.37 3.06

focal adjustment^ j AFz (inch) .90 .48 1.13

rel. to point 23 (inch) 1.89 .84 .89

wind deformation, A? (inch) .102 .0835 .172

shortest wavelength, X (cm) 2.59 2.12 4.40

max. stress factor, Q * S /S
m o 1.27 .83 .90

total weight on elev. axis (tons) 745 748 476

average. We thus define a weight efficiency tj by

maximum 0
n * ---------o . (12)I average Q

This counts most for Structure 2e/18 where we just want to fulfill the survival 

condition. Figure 7 shows the distribution of the stress factors Q for 80 bars 

only, since 32 bars are defined by different criteria (28 surface bars which must 

be widely split-up and must resist bending forces, and 4 feed supports which 

should not go beyond i/r ■ 200). We see that 10 bars have rather low Q, but the 

remaining 70 bars form a nice, dense group. For all 80 bars,, we obtain r| 88 0.786, 

which we consider close enough to 1 for calling it a final solution. The maximum 

is Q *= 0.90, leaving a margin of 10 per cent for nuts and bolts and other things 

neglected.



3. Comparison with Theoretical Estimates* In 1965 several formulas were 

developed on purely theoretical grounds, for estimating the weight of tiltable 

telescopes of a "near-to-ideal design", and it is interesting to compare these 

old theoretical estimates with the present actual designs. For a structure de

fined by survival, and for X £  5 cm, formula (24) of paper [1] reads (W measured 

in tons, D in 100 m ) :

W « 432 D3 + 160 D2 (13)

which yields W « 467 tons as compared to W = 476 tons of Structure 2e/21. For a 

structure defined by wind deformations, X = 16 A? was used in [1] instead of 

10 A£ used now in (11) where we neglect parallel translations; if corrected for 

this difference, formula (30) of [1], for X <_ 5 cm, reads (W in tons, D in 100 m,

X in cm):

W = (2025 + 181 D 3) / X + 122 D2 (14)

which yields W ■ 842 tons for X ■ 2.12 cm, as compared to W ■ 748 tons of Structure 

2e/18. This is a difference of 12 per cent, while the old estimates did "not ask 

for more accuracy than, say, + 30 per cent". Finally, if a structure is defined 

by survival, formula (18) of [1] gives the shortest wavelength from wind deformations, 

corrected for (11), then as (X in cm, D in 100 m ) :

X - 4.7 D (15)

which yields X 88 4.3 cm as compared to X = 4.4 cm of Structure 2e/21. All three 

results give a nice mutual confirmation of both estimate and. design.

The fact that our homology solutions agree completely with the old estimates 

based on a near-to-ideal design, and that Structure 2e/21 gives the same weight 

as the 300-foot at Green Bank while beating its wavelength by more than a factor 3, 

shows that we have omitted gravity without paying any price for it, and I would
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like to emphasize this point.

4. Check Calculations. Usually, a computer program is checked, before 

its application, by some hand calculation of a simple case. This is impossible 

with our homology program. Since a paraboloid of revolution is defined by 6 

points, we need at least 7 surface points to make the method work, which means 

at least a total of, say, 10 points and 30 members, which is far beyond the 

scope of a hand calculation. We thus have taken one of our final results, 

Structure 2e/18 after two iterations from Table 2, and have sent its coordinates 

and bar areas to Simpson, Gumpertz and Heger (Cambridge, Mass.), asking for a 

complete stress and deformation analysis under all of our load conditions in

cluding survival. For dead loads only, a best-fit paraboloid of revolution and 

the deviations AH from it should be calculated for elevation angles 0°, 45° and 

90°, thus also checking at 45° our statement that homology holds in all angles 

if it holds in two.

The results are just as good as can be expected for the finite calculating 

accuracy of the computers. All stresses and deformations agree with our results 

within 5 decimals. For the rms deviations AH from the best-fit paraboloid, 

Simpson, Gumpertz and Heger obtain:
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position AH

horizon, 0° 0.000052 inch

45° 0.000051 inch

zenith, 90° 0.000049 inch

This agrees within the calculating accuracy with our value of H ■ 6 x 10~5 inch 

from Table 3 for the average of horizon and zenith according to (5), and it also 

shows that our statement is correct at 45° elevation angle.



VIII. Further Possibilities and Plans

I, Radome. We also tried to work out a telescope of D * 300 feet to be enclosed 

in a radome (dead loads only). But since this turned out more difficult, as ex

plained in Section IV, and since we think that exposed telescopes can be made less 

expensive than those in a radome, we have not tried as hard as for the exposed 

ones. A series of first guesses was run, called Structure 2f/l to 2f/8, using 

about the same geometry as Figure 6 and varying m between 104 and 112.

A final result (all Q <_ 1 with low total weight) has not yet been obtained, 

but the best solution comes already close to it, giving still Q > 1 for 6 

members but with a maximum of only Q = 1.24, similar to Structure 2e/16. This 

solution, Structure 2f/5, has m « 104 bars, and a total weight of W = 237 tons. 

From our previous experience we feel confident that a final solution with about 

W ** 200 tons can be reached after some more trials, especially with the new 

program, and we have dared to enter this expected value in Table 4 for com

parison.

The new version of the program will be much more flexible than the present 

one, and it can be run in a mode which already comes close to the method suggested 

at the end of Section III, which is better suited to this task.

9 Telescopes of other D and X . Although we have calculated our structures 

only with D « 300 feet, we can predict a selection of other telescopes as shown 

in Table 4; N is found from equations (4) and (3); AT from (2); AA/A is based 

on the calculated sensitivity of Structures 2e/18 and 2e/21, and then is scaled 

according to A A / A ^ X / D 2 ; and formulas for n and A are given in [6]. The total

weight for exposed telescopes is calculated from equation (14) which gave good
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Table 4 . Some Telescopes with Homologous.Deformations.

D X $ N AT AA/A n a
W

radome . exposed

feet cm arc sec °C per cent m tons tons

30 .0025 .7 80 .06 1.7 770 .01 3 -

85 .1 10 17 .8 9 165 .11 25 131

300 2 54 10 4.5 14 60 .96 200 888

400 3 61 12 5.2 12 56 1.35 410 1790

450 4 72 11 5.4 12 51 1.65 550 2150

500 5 81 11 6.7 12 47 1.95 750 2570

600 6 81 13 6.7 12 42 2.34 1300 4370

Free choice:

D - telescope diameter ?
> $ = 1 . 2  X/D = half power beam width.

\ ■ shortest wavelength j

Requirements:

N ** minimum number of homologous surface points (the present program is 
memory-limited and gives N * 13; the planned version should reach 
N * 80 or more);

AT » maximum tolerated temperature differences in the structure (good 
protective paint gives about 5 C in sunshine);

AA/A ** maximum tolerated rms deviation of bar areas from computed values 
(off-the-shelf structural pipes give 10 per cent.)

Surface:

n ■ minimum number of toroidal panels;

I - maximum size of flat plates.

Weight (of elevation-moving structure: dish, surface, feed-legs) ■ W

radome: minimum structure for stable self-support, inside radome;

exposed: a) wind deformation <_ X/10 for 17 mph on ground (22 mph at 
300 ft height);

b) survival ■ 20 lb/ft2 of snow, or 4 inch solid ice, or 90 mph 
on ground (110 mph at 200 ft height);

comparison: the NRAO 300-ft telescope (X » 15 cm) has W » 450 tons.



agreement with Structures 2e/18 and 2e/21. The weight of telescopes in a 

radome is based on the expected value for 300 feet, and then scaled according 

to W " D 2*5.

The first line of Table 4 is an "infrared telescope" and needs some ex

planation. Several colleagues have suggested to build a small model of a 

homologous telescope, about 30 feet diameter. Its gravitational deformations 

(~ D2) then will be only 0.3 mm a 300 micron, and in order to show that they 

are homologous, they must be measured with an accuracy of only 10 micron; this 

can be done with an optical Michelson interferometer, as an experiment by J. 

Hungerbuhler of NRAO has shown. But a good model should do more than just 

demonstrate what a computer already has calculated; it should make itself use

ful as a telescope. The trouble then is that our atmosphere is opaque from

1 mm all the way down to 25 micron wavelength. A homologous telescope for 

that wavelength could be built, with N = 80 surface points, although it needs 

a temperature stability of 0.06 °C and a structural accuracy of 1.6 per cent. 

The most severe problem, however, is how to obtain a large surface of almost 

optical quality within low costs, and this has not yet been solved. The 

second line of Table 4 is an 85-foot telescope for 1 mm wavelength which 

certainly can be built.

For the larger telescopes (D 300 ft) we have always chosen the smallest 

X such that N, AT and AA/A can easily be met. We see that all large telescopes 

can be designed from Structure 2e/18 (all N < 13), they can be built from off- 

the-shelf pipes (all AA/A > 10 per cent), and they can observe in sunshine (all 

AT * 5 °C).
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3.Final Designs. Our plan is, first, to finish the new program, allowing 

more complicated structures and more flexibility. Second, we will develop some 

good structures with 60 - 80 surface points; this is not necessary for observation, 

but it reduces the size of surface panels and eases the erection. Third, we will 

consider more details of survival stresses and wind deformations, like various 

angles of the wind and the actual resistance and bending of the members. Fourth, 

a dynamical analysis of the more promising structures will be done somewhere 

else.

Finally, we plan to work out three complete designs (D = 85 ft, 300 ft,

500 ft from Table 4) in all details, no matter what the financial hope for 

building them happens to be. They will be published, and anyone interested is 

welcome.
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Figure f« Three natural limits for conventional, tiltable telescopes, with nine actual examples for comparison 

The Kitt Peak telescope is inside an open dome, passing the thermal limit set by sunshine and shadow

D = telescope diameter, in meter; \ = shortest wavelength to be observed, in centimeter#

STRESS LIMIT

1. 36-foo», NRAO, Kitt Peak
2. 22-meter, Lebedev, Serpukhof
3. 120-foot, MIT,  Haystack
4 .140-foot, NRAO, Green Bank 
5. Various 85-foot telescopes 
6.130-foot, Owens Valley
7. 210-foot, Parkes
8. 300-foot, NRAO, Green Bank
9. 4 5 0 -foot (design E. Faelten)

1 1 1 1 1
0.1 0.3 3

X/cm
10 30 100



a.

b.

Figure 2. Equal-softness Structures*

(a) Conventional design, with hard (h) and soft (s) surface points.

(b) Deformation of this telescope, looking at zenith; the best-fit paraboloid 

is represented by a straight line.

(c) Structure where all surface points have about equal softness.



Figure 4« Position measurments by optical means.

A
A small tiltable and rotatable platform P is mounted behind the apex^and looks with 

about six theodolites T to as many optical beacons B fixed at the ground. Three servo 

motors keep the platform "locked-in" to the beacons; elevation <p and azimuth a then 

are measured between structure and platform. In this way, the position is measured 

where it matters and with respect to something unstressed and unmovable. No high 

accuracy is required for foundations, azimuth rails and elevation ring; also, all 

deformations between apex and ground are omitted.



Figure 5. Parabolic reflector for floating-sphere telescope*

The reflector structure P is a two-dimensional network, suspended at the stiffener 

ring S inside the radome R. First, a non-deforming ring could be obtained. Second, 

all 66 members of the reflector were given the same area of 80 square inch for the 

first guess; after four iterations, the rms deviation between the deformed surface 

and a best-fit paraboloid was only AH a 7 x 10~6 inch. The final bar areas are 

written at each bar of one quadrant (all four quadrants are identical).



L

Figure 3. Built-up structural members.

In principle all members could be different; but at present the same values are 

adopted for all members: n » to, Y  * 55°, A^ = Aq * o.3 A&. This built-up 

member then is represented in our program by a single shape or pipe of area 

A •  3.34 A&t density f * 1*19 and unchanged elasticity E. With respect to 

stability| we call S t the Jfyv ratio of the single chord, use standard pipes 

of the Steel Construction Manual* and obtain J l *  L / (s.ae A2̂ 3).
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b) Octagon and layer 1»

c) Surface and layer _j? (one quadrant). 

Circle 3 rim of surface pannels.

d) Side view of plane 12-6-24, 

octahedron and suspension.

Figure Geometry of Structures 2e/4 to 2e/2i• The basic structure is an octahedron, 

held by a suspension from two elevation bearings mounted on top of two towers. 

Barr'areao a*«~giv«n-in-Table^ 2, final data in Table 3. This structure has 13 

homologous surface points, a total of 26 points (pin joints) and 112 members.
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Figure 7« Distribution of stress factors Q from equations (9) and (to), 

for Structure 2e/2i•


