Snall Suxface Plates for Large vado Telegcoges
 S. von Hosmer; mRNO, Green Bank, W.Va.

Sumaxy

Four triangular plates (side length $\ell=3.12 \mathrm{ft}=95 \mathrm{~cm}$) are cut from $1 / 0$ inch aluminum sheet, theis sides are rivetet on ribs of aluminum chamels. Intemal adjustw ment at four points is provided by a simple second system of ribs undemeath; the plate center and the midule of each side can be pulled down by giveri amounts by four adrate ment screws. The plate shape is measured at 21 equally spaced surface points with ass ras accuracy of .0005 inch $=.023$ man . The results then are scaled to $\hat{L}=2.22$ ft $=$ 67.5 cm for the new design of the homologons telescope with $D=213 \mathrm{ft}=65$ dianeter. This type of surface then costs $2.5 \% / f t^{2}$ including the intermal adjustments, and $7.3 \$ / i t^{2}$ without it.

The gravitational sag under dead load gives an rms deviation from the average of .0000 inch $=.021$ win whoth intermal adjustments, and .0006 inch $=.015 \mathrm{~mm}$ with it. The rms deviation between the average plate shape and the telescope paraboloid is .0067 inch $=.169$ without adjuctement, and only .009 inch $=.027$ ma with it, varym ing as ℓ^{2} / D. The internal bumpiness of the plates (ma deviation of single point from average shape) is .0054 inch $=.137 \mathrm{man}$ whont adjustments, and .0036 inch $=.002 \mathrm{ma}$ with it, varying as $l^{1 \cdot 3}$.

If the comers of all plates are exacty on the design paraboloid of the telescope, the totsil rus deviation of the surface from the best-fit paraboloid is .008 inch $=$.225 mat whont internal adjustments, about as good as honeycomb panels; and it is .0039 inch $=.100 \mathrm{~m}$ with adjustments, almost as good as a milled surface of extremely hish cost.

For finding the performane of the 65 m telescope, 10 contributions to the total ras surface deviation are adaed up. Calling $\lambda=16$ mas (Δz), the shortest wavelength of observation is $\lambda=2.3$ wa at zenith without wind or temperature differences. At 60° from zenith, $\lambda \leqslant 3.4$ nal for 55% of all nights (disregarding clouds and snow);
 for 93% of all tise.

I. Ineroduction

At present there are thee methods for wanfacturng the surface of a radio telecone to be used at short wavelengths. The following data are from discussions with Rolur Cormpany:

1. Curver stin with ribs. Rohr offers plates 4×10 ft, ribs 10 inch apart. 1 matix. Yiolcing an mas accuracy of .013 inch $=.33$ rus at bsst. At a cost of $10 \% / h^{2}{ }^{2}$ plus. $200 \mathrm{k} \%$ for tooling, totaling $15 \% \mathrm{He}^{2}$ for a talescope of $D=65 \mathrm{n}=29 \mathrm{ft}$ diamoter.
 totaling $32 \% / \mathrm{St}^{2}$ for $\mathrm{D}=65 \mathrm{~m}$.
2. Mined surface (itre the Kitt Peak 36oft telescope). May yield an rras of oov inch $=.076$ Em at best, at a cost of up to $200 / 1 / t^{2}$. The $36=f t$ vas milled in one piece, but that is already too laree with respect to thermal deformetions. It seeme to be somewht more difficult to mill swaller, separate pieces.

For observisg at a waveleagth λ_{0} the total mus deviation of the surface from tho bestm fit paraboloid of revolution should not be nore thai $\lambda / 16$. Ard about $1 / 2$ of that, $N / 32$, may be allowed for the ranufacturing accusacy of the surface plates (assumine that thts is one owt of four uncorrelated axd equal najor contributions to the total devistion), Values fors $\lambda=32$ mis (Δz) are shown in Table 1 , together with the cost.

Table 1. Accuracy, cost, and shostest wavelength for three available surface tspes.

	$\operatorname{rns}(\Delta z)$ \min	cost $\$ / \mathrm{f}^{2}$	λ
Curved skin and ribs	.33	15	10.6
Honeycom	.20	32	6.4
Minled surface	.086	200	2.4

For the proposed homologons telescope, a diferent approach has been sugested: naking the nufaes plates so small that thoy can be flat. For a 300 ft telescope and $\lambda=1$ cin, an estrate ytelded a side longtr, of 3.12 it $=95 \mathrm{ca}$ for trianguas plates.
 somemat larger plates ($h=104 \mathrm{~cm}$), including tooling, whing goes up to $5.3 \mathrm{p} / \mathrm{LE}^{2}$ fos $\ell=05 \mathrm{~cm}$. The plates are cut from $1 / 0$ jnch aluainum sheets; thets thee sides are riveted on ribs of aluminum chamel.
 and 900 comer adusters are needed on the teloscope, cach carryirg six trionglo cors
 to keep the number of plates and comer adjusters the same, yielding $\ell=2.22$ ft w 67.5 cri. These swaller plates then will be $\% .3 / f / t^{2}$, but will alrost reach the accuracy of honeyconb.

If a vavelength $\lambda<6$ mis wanted, and since the step from honeycond to a milled surface is extremely expensive, a further improverent of the small plabes, by interral adjustments, should be considered. First, a cestral adjustment scrow puls the piate center dow toward a light chanal fastsued underneath two of the ribs. An erperiment gave some but not much taprovement. Socond, three additional screws, one on the midde of each triangle side. pull the midle of ach rib dow toward a light angle Deam fastered at both its cads a littie below the ends of the rib. the spaciry being provided by little blocks. This experiment inproved the accuracy considerably.

The final version then has four internal adyustment screws per plate: one at its ceater, and three at the middle of the sides; this is the maximum possible number of independent adjustnents for a triangle. It needs three additional angles under tra ribs, and one light chamel across and below the plate centers. The manfacturer should adgut all foux screvs before dalivery, to a given height below the plane defined by the three plate comess, with au accusacy of 002 inch $=.05$ m naximum. This can be done within a fen minutes per plate, with a prorer template having four dial indicators and resting with thyee pins on the plate corners. It is estimated that the additional material, Hex labous and the adjustrent will prease the cost from 7.3 to $9.5 \not \equiv /$ Pt 2, yiclding almost the accuracy of a miled surfaco.

This approach has the advantage of high aceracy at low costs, and the disadvantage of neving the large number of 9000 corner adjusters on the tolescope. But this disadm vantage uill not be crucial if a nou nosuring bechnique (now in preparation) can be applied, wish will allos esasurixe 9000 points or nore within $1 / 2$ hous, and probably yielding an mas acouracy of 003 inch $=.08$ nta, The mechanical adjustment of the comer adjusters then con bs dono by 10 men within \& wooks (ossuming 2 mon and 5 minutes per point).

The prescnt invectigution wonts to detemine the actual shape of such plates, with and without adjubhent srws, and theis ras deviation from the telescope parabola. The results then ase combined with all other surface errors for finding the showsert wave length λ under various observing conditions.

11. Esperimental Method

8. Mne Plates

A sample of rour triangular plates are cht from $/$ /a tnch aluminum sheot, and thois
 tening or triming was done. The rivets are $3 / 76$ enick. with $1 / 32$ heade, and cpoced by 1 s/e inch. Each plate has a weight of if. 16 . The plates are designed for carrge ing a man of 200 lb on eny point. without any pemanent defomation.

For the central adjustwent screw, a thin chamel is fastened to the lower side of two of the ribs. For the adustwant cerews at cach side, ar argle bean is put under cach rib and parallel to it; epacing is provired by two smonl blocks between rib and angle at both ends, and the conters of $2 \boldsymbol{i b}$ and angle are pulled togethers by the serons For later aplication on the telescope, sommore practical surution might be foum.

Fig. 1 sows a skocoh of a pate and its side adjustment. For reasuring the shape of the surface, it was decided to for use 21 equally spaced points as show; this nuabers tumed out to be large enough since no appreciable shorbscale bumpiness was found.

2. Measuring iechuses

For weasuring tha shape of the plate suriace, one would lite to have a dial indicators noving in a pland or the deviations frow a plane should at least be small, neasurable and repeatiag, Afer varions tries with other nethods, it was dectied to use the laxe nilling machine of the Green Eank woxshop (spas of s.s peet). A rod replaces the mining bit, akd a dial indicator (vith ooos inch divisions) is fastened vertically to the rod, such that it cas bo esved out of the wy and back to working coadition without any meacurable change of its positien the dial indicatos hens is moved manally, by rot= ating the am of the mil about its pilan, ama by cranking the notor block aloag the arn.

The plates rest horizontaly with thain three corners on adjustable support screws on a trishanas fig fastensa on the woring pleffom of the mill. The plates can be masured in nomal position (skin pointiag up) as well as upside-down, for separating the plate chape proper fron the gravtational sag. Por this separation one then neods

 vith the dial indicator exactly above the piss.

Since the notor block of the miling machine does not move exactyy in a plune this measuring technique needs a calibration. A template was nade out of four nonly bougt straight edges, foming the three sidea of a triangle ard one center line his template rests on the same adjustable support screws as used for the plates. But the ridule of each straight edge is supported by a spring carrying hais the woight the unsupposted lergth then is 1.5 ft , and the gravitational sag of the edge is only 3×10^{-5} inch map. The quality of this tempate was checked by rotating it twice by 60° and measuacing agains no measurable differesce was found.
 the position of the motor box along the ami (2) a hysteresis of .000 inch $=.0$ en m maximum, explazned by onemsided piling-up of lubricant. Both effects (i) and (2) ase show in Figs 2 and are used for comrecting the plate measurnents. The following smalleg effects are not used for corrections: (3) an effect of . 0003 inch $=.008$ m mas, regarem ing the rotation of the arm about the pillar; (4) a temprature effect of 00015 inch $=.004$ nim yms and (5) a. shortritern repeatability of the same amonht.

For obtaining the combined meosuring erros, a total of 12 single contributions was added up, regadiag the template, the mill, the postezoning of the plates, and the reado Liag exros. The reant is, averaged over the who plate:
cme naturing ceror $=.0005$ inch $=.013$ mw.

Setsing up a plate on the fie, adjusting the support screws, and measuring the 20 points is doze by one ran in 20 minutes. Adusting the center and three sides to given anombs is dons by ono man in an aditional oninues per plate.

3. Definitious and Fomulas

All fom plates, with various amounts of intemal adjustment, were measurod in "up" position, with the skin pointing upvard. plates and 2 , once without adjustment and once with it, were also neasured is "dom" position; also the skin thickness was reasured for these two plates at all 21 points. We call
$u=$ dial indicator readiog in "up" position;
$\alpha=$ dial indicatos reading in "dom" position;
$t=$ reasured skin thickreas ($1 /$ s inch nominal);
$z=p l a t a$ shapo ju "up" position (doviation from plane defined by 3 comers);
$z_{\mathrm{g}}=$ gravitational sag under dead load;
$z_{p}=$ plate shape proper (no gravity);
$c=$ calibration as show in Fig.2.

We define z as positive if pointing dow. Since a positive dial reading points up, we have

$$
\begin{align*}
& u=-z_{p}-z_{G}+c_{i} \tag{2}\\
& d=t z_{p}-z_{B}+c+t \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
z=z_{p}+z_{g} \tag{4}
\end{equation*}
$$

In most cases, only 2 is wanted and is found from

$$
\begin{equation*}
z=c=u . \tag{5}
\end{equation*}
$$

In some cases, the influence of gravity shall be separated according to

$$
z_{G}=c-\frac{\mathrm{d} u-t}{2},
$$

and

$$
\begin{equation*}
z_{p}=\frac{d-u-t}{2}=z-z_{E} \tag{7}
\end{equation*}
$$

We define the following running indices, where "distance" refers to the plate center:

```
1\congi\leqslant2t point numbor in plate, see Fig.1;
1\leqslant j S nk point number in distance gromp k;
1\leqslantk\leqslant5 distance group;
1 < m <N plate numben (N-s in our caso);
```

and the following quantities:

```
b = distance of comer point from plate center;
rk
nk
N = total number of plates investigated;
```

and finally cali

$$
\begin{equation*}
q_{k}=\overline{r^{2}}-r_{k}^{2} . \tag{8}
\end{equation*}
$$

Then, for example,

$$
\begin{aligned}
& z_{j k y}=\quad \text { deviation (frow plane defined by } 3 \text { corners) of point } j_{2} \text { within distance } \\
& \text { group } k_{j} \text { of plate } n \text {. }
\end{aligned}
$$

The arrangements of the 24 points is show in Fig. P, and the values of r and G are given in Table 2.

Table 2. The 21 points of Fico, divided in distance grows k, according to distance r from plate center.

The .9253 in table 2 results from the comer points being shirted inward by to $4 \mathrm{~cm}_{\mathrm{m}}$ see Fig. T. The values r_{k} are defined by

$$
\begin{equation*}
p_{k}=n_{k} c_{k} / .1076 \tag{9}
\end{equation*}
$$

and one finds

$$
\begin{equation*}
\overline{x^{2}}=.2764 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\overline{q^{2}}=.04126=1 / 24.23 \tag{17}
\end{equation*}
$$

while, by definition,

$$
\begin{equation*}
\vec{q}=\sum p_{k}=0 . \tag{12}
\end{equation*}
$$

The following averages are used:

$$
\begin{align*}
& u_{\mathrm{ka}}=\frac{i}{n_{k}} \sum_{j=\{ }^{n_{k}} z_{j k a}=\text { average } z \text { in distance group k, of plate } m i \tag{13}\\
& z_{k}=\frac{1}{N} \sum_{\mathrm{E}=1}^{N} z_{\mathrm{km}}=\text { average } z \operatorname{in} \text { distance group } \mathrm{k} \text {, all plates; } \tag{16}\\
& z_{\mathrm{i}}^{2}=\frac{1}{2 i} \sum_{i=1}^{21} \mathrm{z}_{\mathrm{in}}^{2}=\text { average } \mathrm{z}^{2} \text { of plate } \mathrm{m} ; \tag{15}\\
& z_{\mathrm{m}}=\frac{1}{2 i} \sum_{i=1}^{21} z_{i m}=\text { average } z \text { of place } \mathrm{m} \tag{16}\\
& z_{0}=\frac{1}{N} \sum_{n=1}^{N} z_{m}=\text { average } z \text { of all plates. } \tag{17}
\end{align*}
$$

4. The best-fitting Adjuctnents

The paraboloid of the telescope shall have a given focal length and directicn, but it shall be best-fitted in height (parallel translation up or dow). The focal ratio is always used as

$$
\begin{equation*}
f / D=.427 . \tag{18}
\end{equation*}
$$

The comer points defining the plane of reference are shifted inward by 4.1 cm , which reduces b by a factor of .9253 , and we assume in general the same factor; thus

$$
\begin{equation*}
\mathrm{b}=(.9253 / \sqrt{3}) \ell_{0} \tag{19}
\end{equation*}
$$

Consider a single plate at the apex. A paraboloid of revolution, having its apex at the center of the plane of reference of the plate, and its axis perpendicular to it, has the equation

$$
\begin{equation*}
z_{\text {par, } 0}=-\frac{r^{2}}{4 \mathrm{f}}, \tag{20}
\end{equation*}
$$

and a parallel translation to the best fit in height gives, with (s),

$$
\begin{equation*}
z_{p a r}=s\left(\overline{r^{2}}-r^{2}\right)+z_{m}=s q_{R}+z_{m}, \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
s=b^{2} / 4 \rho ; \tag{22}
\end{equation*}
$$

or, with (16) and (19),

$$
\begin{equation*}
s=.1674 \ell^{2 / D} \tag{23}
\end{equation*}
$$

For example, with $D=65 \mathrm{~m}$ and $\ell=67.5 \mathrm{~cm}$, we have

$$
\begin{equation*}
s=.0462 \text { inch }=1.173 \mathrm{~mm} \tag{24}
\end{equation*}
$$

Equations (20) to (26) apply directly to the plate right at the telescope aper, and in good appoximation to plates nearby. At larger distances x from the axis, one should replace $2 f$ by R, the local average radius of curvature (average of radial and tang ential direction). Using the geonetrical mean instead of the average, one can derive an easy formua

$$
\begin{equation*}
R=2 \hat{I}\left[1+(\mathbb{N} / 2 \hat{I})^{2}\right], \tag{25}
\end{equation*}
$$

and equation (22) then reads

$$
\begin{equation*}
s=b^{2} / 2 R=\left(b^{2} / 4 f\right) /\left[1+(x / 2 f)^{2}\right] \tag{20}
\end{equation*}
$$

At the telescope rin, (26) is 25% smaller than (22), and 14% in the averace. Eut in the following estimates, we use (22) instead of (20), constierine the worst case only.

For determining the best amount of intemal adjustment, one needs to krow ${ }_{\mathrm{H}}^{\mathrm{n}}$, the best-fitting radius of curvature, for plate m and with various amonts of adustment. In addition to the averages of (13) to (17), we define a curvature tem prom the single plate and for all plates, as $p=\overline{2 q}$:

$$
\begin{align*}
& p_{n}=\frac{1}{21} \sum_{k=1}^{5} n_{k} q_{k} z_{k m}=.02370 \sum_{k=1}^{5} p_{k} z_{k m}, \tag{27}\\
& p_{0}=.02370 \sum_{k=1}^{5} p_{k} z_{k} . \tag{20}
\end{align*}
$$

It can be shown that the best-fitting radius then is

$$
\begin{equation*}
R_{m}=\frac{b^{2} Q}{2 P_{m}} \tag{29}
\end{equation*}
$$

and the adjustmonts should be varted until $R_{n} \approx R=2 f_{\text {, or }}$

$$
\begin{equation*}
p_{n} \approx Q s=\frac{Q b^{2}}{42} \tag{30}
\end{equation*}
$$

Regaring the ris deviation, we consider plate mas being located at the apey, all three conners esactly level. The ras deviation between the plate surface, z and a paraboloid of focal lengeh if and bestofitting height, $z_{\text {par }}$ from (21), is

$$
\begin{equation*}
\Delta_{\mathrm{i}}=\operatorname{mis}\left(z_{i n}-z_{p a r}\right) \tag{31}
\end{equation*}
$$

It can be shom that Δ_{m} can be split up into two contributions,

$$
\begin{equation*}
\Delta_{m}=\sqrt{\Delta_{\mathrm{no}}^{\varepsilon}+\Delta_{\mathrm{nc}}^{2}} \tag{32}
\end{equation*}
$$

with
and

$$
\begin{equation*}
\Delta_{\mathrm{mo}}=\sqrt{\mathrm{z}_{\mathrm{m}}^{2}-\mathrm{z}_{\mathrm{m}}^{2}-\mathrm{P}_{\mathrm{k}}^{2} / Q}=\underset{\text { beat-fitting curvature } \mathrm{R}_{\mathrm{m}}}{\text { rus deviation of paraboloid with }} \tag{33}
\end{equation*}
$$

$$
\Delta_{\text {me }}=\sqrt{Q\left(z-P_{m}(Q)^{2}\right.}=\begin{aligned}
& \text { rms deviation between paraboloid of curvature } \\
& \mathrm{F}_{\mathrm{m}} \text { and paraboloid of curvature } \mathrm{R}=2 \hat{i}^{2} .
\end{aligned}
$$

The task, then, is finding

$$
\begin{align*}
& z_{c}=\text { height of center adjustnent, below plane of reference, } \tag{35}\\
& z_{s}=\text { height of side adjustement, below plane of reference, }
\end{align*}
$$

such that $\Delta_{\mathrm{m}}=$ minimum. Instead of using this demand, it was found easier and almost correct to demand condition (30) which yields

$$
\begin{equation*}
\Delta_{\mathrm{nic}} \approx 0 \tag{36}
\end{equation*}
$$

and, simultaneously, demanding

$$
\begin{equation*}
\Delta_{\text {mo }}=\text { minimum. } \tag{37}
\end{equation*}
$$

In this way the best adjustments were determined, for "up" position, as

$$
\begin{align*}
& z_{c}=.080 \text { inch }=7.53 \mathrm{man} \tag{as}\\
& z_{S}=.052 \text { inch }=1.32 \mathrm{man}
\end{align*}
$$

for $D=65 \mathrm{~m}$ and $\ell=67.5 \mathrm{~cm}$. For other values, both adjustments vary as

$$
\begin{equation*}
z_{c}, z_{s} \propto L^{2} / D \tag{39}
\end{equation*}
$$

All four plates then were adjusted to the same values, given by (30), and were measured again. The following refers to thee e measurments after adjustment.

5. Application to Telescope

Consider the telescope surface consisting of a large number of such plates, similar to the ones measured, asa assume that all plate comers are exactly adjusted on a paraboloid of revolution given by (20). The plates have internal adjustments according to (38) for the final version; or center adjustment only, or none, for comparison.

The best-fit paraboloid then is shifted down by z_{0} from (it). It also shows a small change of focal length, $d f_{0}=-71 z_{0}$ as can be shown, which is disregarded in the fol lowing. The rms deviation Δ_{p} between the plates and the bestofit paraboloid is split up into two contributions, regarding the internal "bumpiness" of the plate surfaces, and the quality of the fit achieved by the internal adjustment. In addition, we need a correction regarding the small number N of plates measured as compared to the large number used; we call

$$
\begin{align*}
& \Delta_{b}^{2}=\overline{\left(z-z_{k}\right)^{2}}=\frac{1}{21} \sum_{m=1}^{N} \sum_{k=1}^{5} \sum_{j=1}^{n_{k}}\left(z_{j k m}-z_{k}\right)^{2}=\text { bumpiness } \tag{10}\\
& \Delta_{a}^{2}=\overline{\left(z_{k}-z_{p a r}\right)^{2}}=\frac{1}{21} \sum_{k=1}^{5} n_{k}\left(z_{k}-z_{\text {pap }}\right)^{2}=\text { quality of inbersadustr. } \tag{4,4}
\end{align*}
$$

$$
\begin{equation*}
\Delta_{N}^{2}=\frac{1}{N+1} \overline{\left(z_{m}-z_{0}\right)^{2}}=\frac{1}{N(N-1)} \sum_{n=1}^{N}\left(z_{i n}-z_{0}\right)^{2}=\text { correction. } \tag{42}
\end{equation*}
$$

The total rus deviation of all plate surfaces then is

$$
\begin{equation*}
\Delta_{p}=\sqrt{\Delta_{b}^{2}+\Delta_{a}^{2}+\Delta_{N}^{2}} \tag{43}
\end{equation*}
$$

For scaling to various values of D and l, we have

$$
\begin{array}{r}
\Delta_{b} \cdot \Delta_{N} \sim l^{\beta} \\
\Delta_{a} \sim l^{2 / D} \tag{45}
\end{array}
$$

where the exponent β of the bumpiness must be found experimontally.

6. Error Contributions from Plate Comers

In adaition to (43), we have three contributions regarding the plate corners. First, the plate comer rests on the support of a comer adjuster, the plate surface thus being lifted by the amount t_{c} of the comer thickess (thickness of skin, of rib flange, and of a little plate, each one being $1 / a$ inch nominal) with an average of about $3 / 8$ inch $=9.6 \mathrm{~mm}$. We call

$$
\begin{equation*}
\Delta_{c t}=\text { rus difference between single } t_{c} \text { and the average. } \tag{40}
\end{equation*}
$$

Second, the corner adjusters will have manufacturing inaccuracies. We call $\Delta_{c a}$ the ris deviation in height between a single corner support and the average of six supports on one adjuster. It was estivated for our present design that the following specification could be met without difficulties:

$$
\begin{equation*}
\Delta_{c a}=.002 \text { inct }=.05 \mathrm{~mm} \tag{49}
\end{equation*}
$$

Third, the comer adjusters should be welded on the telescope perpendicular to the surface; but the surface position is not know exactly at this time, and maybe one should consider a flexible mount instead bf a rigid welding. Menwhile we assume an ado juster scaled dom to $1 / 2$ of the preserst design (which was done for $D=300 \mathrm{ft}$, and is too clunsy, anyway), and we assume that the coordinates of the surface structure (of the panels) have been measured with an was accuracy of . 080 inch $=2 \mathrm{~mm}$. It can be show that the resulting comer emror then is

$$
\begin{equation*}
\Delta_{\mathrm{c} \alpha}=.0022 \mathrm{inch}=.056 \mathrm{man} \tag{48}
\end{equation*}
$$

The total error of a single comer then is

$$
\begin{equation*}
\varepsilon_{c}=\sqrt{\Delta_{c t}^{2}+\Delta_{c a}^{2}+\Delta_{c a}^{2}}=\sqrt{\Delta_{c t}^{2}+(.075 \operatorname{man})^{2}} . \tag{49}
\end{equation*}
$$

With respect to scaling, smaller plates can be thinner, and

$$
\begin{equation*}
\Delta_{c t} \sim l \tag{50}
\end{equation*}
$$

is adopted; whereas $\Delta_{c a}$ and $\Delta_{c \alpha}$ are considered to be constant.

If the corners of a triangular plate are vertically shifted by random amounts of mos \mathcal{E}_{c}, it can be show that the rus surface shift then is

$$
\Delta_{c}=\varepsilon_{c} / \sqrt{2} ; \text { independent of } L \text { and } D_{i}
$$

which means that a large number of comer adjusters contributes the sane surface compo as a small number would. With (69) we then have

$$
\begin{equation*}
\Delta_{c}=\sqrt{\Delta_{c t}^{2} / 2+(.053 \mathrm{~min})^{2}} \tag{52}
\end{equation*}
$$

Finally, we call

$$
\begin{equation*}
\Delta_{p c}=\sqrt{\Delta_{p}^{2}+\Delta_{c}^{2}}, \tag{53}
\end{equation*}
$$

which is the total rms surface deviation arising from the use of small triangular plates and their comer adjusters (but not includises the final telescope adjustment to be discussed later on).

1. Surface distortion by Rivets

Measurments of z have been taken along one side of a plate, on a line going through the centers of the rivets, with 8 measuments per inch; 3 measuments on each rivet, and 10 in between rivets.

The result is show in Fig. 3. The riveting depresses the surface next to the rivets by about $2 / 1000$ inch, and the rivet heads stick out by about the same anount. Along this line centered on the rivets, the average distortion is only

$$
\begin{equation*}
\text { rims } z=.0012 \text { inch }=.087 \text { mim } \tag{56}
\end{equation*}
$$

Since this concerns less then $1 / 10$ of the plate surface, it will be neglected further ons.

2. Skin Thickoess and Cxevitational Sag

The skin thickess, needed for equation (s), has been measured for plates 1 and 2 at 21 points each. The average thickness of these 42 points is found as

$$
\begin{equation*}
\bar{t}=.1244 \text { inch }=3.16 \mathrm{man}^{3} \tag{55}
\end{equation*}
$$

to be compared with $1 / 8=.125$ inch nominal. The ras deviation of the single point from the average is only

$$
\begin{equation*}
\text { rins }(t-\bar{t})=.00037 \text { inch }=.0096 \mathrm{~mm} \tag{56}
\end{equation*}
$$

which means that the thickness of the aluninum sheets is amazingly constant. Even the maximum deviation fron the average is only

$$
\begin{equation*}
\max |t-\bar{t}|=.0011 \text { inch }=.028 \mathrm{~mm} \tag{57}
\end{equation*}
$$

The sag wader dead load thon is calculated from equation (0) for these two plates, once without and once with internal adjustreats of center and sides. The results are shown in Fig.t. The difforence, of conrse, is not due to the adjustment itself, but to the additional beans fastenol udemeath the plates, yielding much additional stiffneas/waight for the centrr point and some for the sides.

Without adjustprocnt, the centex sag is found as $z_{g C}=.0062$ inch $=.158$ mot which compares favouxably with .0088 inch predicted and used in Report 25 (March 12, 1969), where the torsional stiffness of the ribs was neglected. The average sag over the plate is $\overline{z_{g}}=.00289$ inch $=.0735 \mathrm{ma}$, and the rms deviation from the average,

$$
\begin{equation*}
\Delta_{G}=\operatorname{rms}\left(z_{g}=z_{\mathcal{E}}\right) \tag{58}
\end{equation*}
$$

is found as .0016 inch $=.0497$ m, as compared to .0017 inch predicted in Report 25. The best-fitting radius of curvature is found from (27) and (29) as $R_{g}=2330 \mathrm{ft}=$ 710 m.

The abovementioned values are determined with $\ell=95 \mathrm{~cm}$ plate size. They vary as l^{2} if the thickness of skin and ribs is scaled in proportion to ℓ. With this assumption, the values of table 3 are calculated from the measured values (except for R which stays constant).

Table 3. The gravitational sas of triangular plates of $\ell=67.5 \mathrm{~cm}$ side length, without and with internal adjustments.

+	center	average	rins dev.	curvature
	280	${ }_{2}$	${ }^{\wedge}$	R_{8}
	nm	mas	nta	5
No adjustm.	.0793	. 0369	. 0209	790
With adjustm.	.0404	.0280	. 0151	979

If the plates at the apex are intemelly adjusted with values (30) for "up" position. then the sag does not contribute explicitly to the total surface deviation if the telec. cope looks at zenith. If the telescope then is tilted to horizon, the contribution from the sag to be aded to the total deviation is $\Delta_{\mathcal{E}}$ as defined in (50) and as given in Table 3. The fact, that plotes tovard the win behave differently from those at the apex, has beow already treated ("A 300-ft High Preision Radio Melescope"; NRHO, May 15s9; Vol. I, pase s-G) with the result that this effect is negligitle except for a small charee in focal lencti. Thus,

$$
\begin{equation*}
\Delta_{G}=.000593 \text { inch }=.0151 \mathrm{~mm} \tag{59}
\end{equation*}
$$

is to be used for the nev design with $D=65$:

3. Bumpiness of the Surface

Fig. 5 shows the shape of the surface along a center line, for the bumpest plate and the most even one; both in "up" posjition without intemal adjustments. We see the dominating largemscale waves, but also some shorter waves of smaller amplitude.

The main task is finding the buminess as a function of the plate size. Instead of cutting and riveting many plates of various size, the four plates with $h=95$ cur have been measured along all three center lines up to various distances x from the plate comex, as sketched in Fig. 6. A straight line then is put through the plate comer and the surface point at distance x, and the deviation of the surface from this line is called z_{i}. The rms value of z_{b} is show in Fig . 6 as a function of x . The bestfitting Eranutuline has a slope of $\beta=1.30 \pm .15$, to be used in (44) as the erporent of the bumpiness. Thus

$$
\begin{equation*}
\Delta_{\mathrm{b}} \cdot \Delta_{\mathrm{N}} \cap \mathcal{L}^{1.30} \tag{60}
\end{equation*}
$$

The bumpiness depends on the plate size, as well as on the internal adjustmant which in effect reduces the "wadjusted" size. All four plates have been measured in "up" position at all 21 points of Fig. 1, with and without adjustments. The bumpiness as defined in equation (40) is shom in Table a, scaled fron $l=95 \mathrm{~cm}$ to 57.5 ch according to (60). Table 4 also gives the comection A_{N} as defined in equation (62), with $N=4$. The last line of Table 4 then gives the values of Δ_{b} and Δ_{N} to be used for the new design with $D=65 \mathrm{n}$ diameter.

Table is Bumpiness Δ_{b} and correction Δ_{N}, for $\ell=67.5 \mathrm{~cm}$ and various intermal adjustaents.

	Δ_{b}	Δ_{N}
mas	man^{2}	
No adSustment	.137	.059
Center orly	.099	.029
Sides and center	.092	.029

We see in Table 4 that the buapiness is considerably reduced by adjusting the soft plate center, whereas adjusting the stiff sides does not yield much decrease.

4. Internel Adjustment, Prabolic Ett, and Comer Empor

After the bestwifting values (38) for the internal adjustment vere determined, alt four plates are adjusted with these valuss and are measured at all 21 points. For each distance r_{k} from the plate center, the averase z_{k} according to (16) then is calculated, from (60) we find the burpiness Δ_{b}, and from (if) the ras deviabion between the averace shape z_{k} and the telescone parabola zpar* This is done in two steps: first with centar adjustment only, and second with adjustments of sides and center.

Fig. 7 shows the result with center adjustment only. Since the plate regions toward the corners are not afsected, a rather odd shape results. The fit to the parebola is slightly inproved as compared to the unadjusted plate (straight line).

The fit is considerably improved by adding the side adjustments, as show in Fig. e. The fit actually is now so good that the total suxface deviation is manly determined by the buminess and not any more by the fit of the average shape.

The measmed values are scaled according to (45) and (60) to $C=57.5 \mathrm{~cm}$, and the recultixe Δ_{a} is given in Table 5 , together with the total surface deviation Δ_{p} according to (43) wich combines fit, bumpiness and correction.

Comparing Δ_{p} from Table 5 with $\operatorname{sms}(\Delta z)$ fron fable in wo find that tise plain triank gular plates (no adjustment) are sligitly worse than honeycomb. while the center adjustm ment nakes them slightly bottes. The triangular plates with both side and center aducto ment come close to the quality of a milled surface, in spite of their low cost of only Q.5 $\$ / f t^{2}$, see Introduetion.

Table 5. The quality of the adjustment fit Δ_{a}, the total of the plate error Δ_{p}, and the total of plate and comer exror $\Delta_{p c}$. For $D=65 \mathrm{~m}=213 \mathrm{ft}$, and $h=67.5 \mathrm{~cm}=2.22 \mathrm{ft}$.

	Δ_{a} nim	Δ_{p}	Δ_{pe}
No adjustanno	. 169	. 225	. 235
Center only	. 134	. 189	. 182
Sices and center	. 027	. 100	. 120

Next, the comer emors must be added. The comer thichess has been measured at all 12 corners, and the ras deviation from the average according to (4s) is .0032s inc:
$=.0020$ mata This then is scaled with (50) to $l=67.5 \mathrm{~cm}$. yielding

$$
\begin{equation*}
\Delta_{c t}=.00229 \mathrm{inch}=.0532 \mathrm{ins} \tag{8p}
\end{equation*}
$$

Together with the two other comer errors, from manfacturing (67) and froin tilt (ts), we find from (52) the rms contribution to the surface deviation as

$$
\begin{equation*}
\Delta_{c}=.00264 \text { inch }=.0879 \text { nain } \tag{62}
\end{equation*}
$$

This is added quadratically to Δ_{p} according to (53), and the resultiag total ras deviaten ion $A_{p e}$ is given in the last colum of Table 5 . Thnos, the value to be used for the new desiga, for the combinod was deviation resulting from the use of swall triangular plates and their comer adjusters, is

$$
\begin{equation*}
\Delta_{\mathrm{pe}}=.00473 \mathrm{inch}=.120 \text { man } \tag{63}
\end{equation*}
$$

Mable e. Values of the rus deviation $\Delta_{\text {pe }}$ for several D and h.

	$\mathrm{D}=300 \mathrm{ft}$	213 ft	213 ft
	$\ell=95 \mathrm{~cm}$	95 cm	67.5 cm
	$\mathrm{~N}=88000$	9000	18000
No adjustrent	.415 mm	.532 mm	.235 mm
Center only	.322	.415	.182
Sjdes and center	.179	.187	.120

Table o shows $\Delta_{p c}$ for three combinations of D and l : the old $300=f t$ design, the new dianeter of 55 a but the old plate size, and the new design with swaller plates. The last two cases show that cne should not decrease the number iN of plates, becanse going to $N=9000$ increases $\Delta_{p e}$ already by 56%. The first and third case show that $\Delta_{p e}$ with complete adjusmont, vaxies roughy as $\Delta_{p c} \sim D$, if we scale $\ell \sim D$.

Finally, surface deviatsens and numes of plates are shown in Fig. θ as functions of C for $D=0 s$ a. An accuracy combidrably better than that of the present desigh could irdecd be achieved by a larges nuaber of shaller plates, but thon it becomes more and wore crucial that means be fowd for decreasing the corner errors, too, Whont comer error, $N=30000$ plates of sise $\mathcal{N}=52 \mathrm{~cm}$ could enable observations even at $\lambda=2 \mathrm{~mm}$, for $D=65 \mathrm{~m}$.

IV. The Pexformance of the 65 m Telescore

1. The Surface Deviation

The new design of $D=65 m=213$ fit is mank scaled dowa fron the previous design of 300 it ("A 300 Foot HighmPrecision Radio Telescope"; NRAO, May 19ss; VoI. I, II, and III. Scaling to various diameters is described in Vol. I, Chapter 7).

Table 7 gives to items of the surface deviation from the best-fit paraboloid of revolutions, for $D=65 \mathrm{~m}$ and a plate sise of $h=67.5 \mathrm{~cm}$. For scalisis to other D and L, the single items vary as

$$
\begin{equation*}
\Delta z \sim D^{\gamma} \mathscr{L}^{\beta} \tag{1}
\end{equation*}
$$

with γ and β given in Table $\%$. The single items come from the following sources:

Itens i through of from the present measuments;
Item 7 assums that a new measuring techmique (to be described later) can be sucossso fully applied, masuring 9000 points or nore within $1 / 2$ hour, with an rus accuracy of . 003 inch $=$. Oe man. On it assumes that some such technicqu will be developed within the next 4 years.

Items assumes an ras accunacy of .00 wh for the mecharical adjustment, which means tuming a corner adjuster by a given angle. With a thread of $32 / i n c h$, this domonds an angular accuacy of $\pm 27^{\circ}$, or about $1 / 4$ of a right angle.

Iteng is scaled from the 300 fit design.
Item 10 resuits fron the present neasurments, equation (50).
Items it 1018 are scaled from the 300 it design.

As to the themal deformations, a good protective wite paint is assumed. Our ow measumerits of $\triangle T=5{ }^{\circ} \mathrm{C}$, between sunchine and shadow on clear summer days, hes also been confirmed by masuments of Pohr Co. Furthemore, it should be mentioned that caln nichts give small values of 4 , vile fast changes of amient air temperature (Iarger ΔT) are connected with higher winds.

Items \& through \& give $1 / \sqrt{2}$ of the actual corner error, according to (51).

Table 7 . Single contributions to the rms surface deviadion, for $\mathrm{D}=65 \mathrm{~m}$ and $L=67.5 \mathrm{cra}$. Scaling to other D and l according to $D^{\gamma} L^{P}$.

Items	γ	β	$\underset{\operatorname{man}}{\mathrm{mas}^{2}(\Delta z)}$	Combinations (m) and remaris
plates ($2=67.5 \mathrm{~cm}$)				
1. Bumpiness	0	8.3	. 022)
2. Average shape	- 1	2	. 027	. 100
3. Number correction	0	1.3	. 029	
Comers $(\varepsilon / \sqrt{2})$				
4. Comer thickness	0	\%	. 048	
5. Adjuster tolerance	0	0	. 035	\}.067 $\} .140 \quad \begin{aligned} & \text { Telescope } \\ & \text { at zentin. }\end{aligned}$
6. Adjuster tilt	0	0	. 040	\int no mind,
Telescone adustment ($\varepsilon / \sqrt{2}$)				$\Delta \mathrm{S}=0$ 。
7. Measuring	1	0	. 057) $\quad(\lambda=2.28 \mathrm{~mm})$
8. Adjusting	0	0	. 042	$\} .078$
Gravity				
9. Use of standerd pipes	2	0	. 122	$)$
10. Sag of plate and ribs	0	2	. 015	(Tire or 90° :
11. Say of large parels	2	0	. 080	\}-1,8 otherwise $\sim(1-\cos \xi)$,
12. Datomal Joad on panels	2	0	. 019	
Wind				
13. Plate and xibs	0	1	. 013	(Wind of 10 maph (3/4 anl inm
14. Pancls	1,2	0	. 027	\}.229 otheruisenver ${ }^{2}$.
15. Eack-up staucture	1.2	0	. 227	
Teneematuse				
$f \Delta T=1^{\circ} \mathrm{C}$	1	0	. 412	nost of all nights,
	\uparrow	0	. 500	full sunshine and caln.

2. The Shortest Wavelencth of Onservation

Figs. 10 and is show the shortest wavelength, defined as

$$
\begin{equation*}
\lambda=16 \operatorname{ras}(\Delta z)_{0} \tag{65}
\end{equation*}
$$

for various observing conditions. We see that the influence of gravity is very small; the thermal defomations in sumshine are rather dominant, wile the wind deformations are mostly in between. The results are sumarized in Table δ.

Table s. Shortest wavelength λ for various conditions.

	Conditions	Fraction of tiate (disregarding clouds, snow)
$\lambda \leq 9.2 \mathrm{~nm}$	Sunshine and calm; or wind $\leqslant 28 \mathrm{mph}$	$\} 93 \%$ of all time
$\lambda \leqslant 6.0 \mathrm{na}$	Sumbine and $5.5 \leqslant \mathrm{~V} \leqslant 21 \mathrm{mph} ;$ or nisht, and wind ≤ 21 mph	$\left.\begin{array}{l} 56 \% \text { of all days } \\ 82 \% \text { of all nightes } \end{array}\right\}=\begin{aligned} & 60 \% \text { of } \\ & \text { ancme } \end{aligned}$
$\lambda \leq 4.0 \mathrm{~mm}$	Nismt and wird $\leq 15 \mathrm{mph}$	67% of all nights
$\lambda \leqslant 2.4 \mathrm{~mm}$	Night and wind $\leqslant 11$ mph	55\% of all nights
$\lambda=2.26 \mathrm{n}$ \%	Zenstin, no wiad, Δ 管 $=0$	0

3. Whe Pointing Erros

A final estimate of the pointing error has to wait for a finshed remesigh of the pointing system, and for an experiment (in prepaxation) with a servoed platform and a laser beacon. Prelininany estimates of 0 . Heine lead to an ma pointing erros of

$$
\Delta \varphi=2.3 \text { arcsec. }
$$

For some obsorvations it holps if at least the pointing mouledge is more accurate. Preliainary ostimates show that the pointing at any given tine will be known within

$$
\begin{equation*}
\Delta \varphi_{0}=1.5 \text { axcsec. } \tag{07}
\end{equation*}
$$

As compred to a beammideh of

$$
\beta=11 \operatorname{arcsec}(\text { for } \lambda=3 \mathrm{man}),
$$

the pointing errors then are

$$
\begin{align*}
& \Delta \varphi=.210 \beta \tag{69}\\
& \Delta \varphi_{0}=.137 \beta_{0}
\end{align*}
$$

which may be compared to $\Delta \varphi=.22 \beta$ for our $140=1 t$ at $\lambda=2$ cm.

A final improvement of the pointing error, from 2.3 dom to 7,5 aresec, seens possible with a Cassegrain mirror oriented by fast servo motors, which decreases the dynanical lag of the pointing.

It also should be mentioned that a preliminary cost estimate, scaled from the previous 300 m t design, yields $4-5 \mathrm{~N}$ for the total cost.

Finally, Fig. 12 shows the attennation of the atmosphere ass a function of waver length. Several know or suspected molecular lines are added (from I. Snyder).

Fig. 1. The triangular plate and its side adjustment.

- 3 corner points defining the plane of reference;

O \& shews for the internal adjustment, pulling dow;

- 21 points where deviation z from plane is measured.

Hitte 10×10 TO $1 / 2$ iNCH $\quad 461320$
9

§

$$
0
$$

$$
.8 \quad .6
$$

$$
\cdot 4
$$

Fig. 9. The rms surface deviation of the plates, as a function of plate size ℓ, for $D=65 \mathrm{~m}$ telescope diameter.
$\Delta_{p}=$ plate deviation only (if corners are exactly on paraboloid);
$\Delta_{p c}=$ combination of plate deviation and comer errons;
$\mathrm{N}=$ number of plates needed for $\mathrm{D}=65 \mathrm{~m}$.

Fig. 22-1. Attenuation, calculated from measurements, by combined water vapor and oxygen. (After C. W. Tolbert, A. W. Straiton, J. H. Douglas, Electrical Engineering Lab. Rept. No. 104, University of Texas, 1958.)
Fig. 12. Attenuation from the atmosphere.

