
AIPS++ Software Design: Telescope Data Handling
Last changed on $Date: 1993/11/01 04:17:50 $

T. Bottomly

Introduction

Introduction

This is a design document intended to describe both the object and functional models relating
to the input processing of telescope data in the AIPS++ system. This is, by no means, a final design
document; suggestions for improvement, change, etc. are welcomed.

The following approach was taken in deriving the design diagrams:

1. An object model was developed for VLA Archive Tape Processing. The model did not include
attributes or methods for the defined classes.

2. The object model was "generalized" to handle the following types of telescope data sources:
the real-time system, a telescope system simulator, and other data media on which telescope
data resides. Again, the model lacked class attributes and methods.

3. Functional diagrams were developed for the VLA Tape Processing case.

4. The object model (VLA-specific) was updated to reflect the methods and attributes made
apparent during the creation of the functional diagrams.

5. Functional diagrams were developed for the "general case".

6. The object model (general) was updated to reflect the functional diagrams.

This document describes the design for the general case followed by that for the VLA.

AIPS++ Software Design: Telescope Data Handling

References

References

Related documents include the following:

• Object-Oriented Modeling and Design] Rumbaugh, Blaha, Premerlani, Eddy and Lorenson,
Prentice-Hall, 1991.

• AJPS++ Software Design - Analysis and Design of Major AIPS++ Subsystems; Hjellming and
Glendenning, 1993.

• AIPS++ Implementation Memo #109, An Overview of AIPS++ Design, Hjellming and Glen¬
denning, 1993.

• VLA Synchronous System Archive Tape Format; Sowinski and Bottomly, 1993.

AIPS++ Software Design: Telescope Data Handling

Chapter 1: Class Design - General

1 Class Design — General

The following diagram describes the class structure related to a DataSource - a source of mea¬
surements for a MeasurementSet and data for a TeJescopeModeJ.1. The different "kinds" of Data-
Sources include: the data media written by a telescope data system, a real-time data stream from
a telescope system, and a telescope system simulator.

Associated with each DataSource is an optional ObservingSchedule which reflects the param¬
eters chosen for an observation. The second prototype does not include any processing of the
ObservingSchedule, but it could be used in the future for a comparison between scheduled observa¬
tion parameters and the results of the corresponding observation run. The ObservingLog contains
results of the observation run in the form of a time-based summary of the measurements and tele¬
scope behavior from a DataSource. Log entries are generated when there is a significant change of
parameters in the input data stream.

Additionally associated with each DataSource is an optional OperationsLog. This is a collection
of entries made by operations personnel or the real-time telescope data system during an observation
run. An observed problem with antenna power and corresponding time is one example of the
contents in a log entry. Data could be flagged during input processing based on the entries in this
log. This is another item which is not considered in the second prototype.

Each DataSource is made up of many DataRecords which in turn are made up of many
Da t ait ems. A Dataltem is associated with a Measure as the input stream is processed. This
association represents at least two diffent kinds of DataJtems: those which are "control" or "con¬
text" items, i.e., define record size or structure; and those which contain the data related to the
observation run, i.e., measurement values or instrument-related data. The former type of data is
used in parsing a data stream, the latter type is placed into a TeiescopeDataAssociation.

A DataRecord may or may not require decoding before DataJtems are extracted. In the general
case, it is assumed that decoding is unnecessary. Selection Criteria can be applied to a Dataltem
or a DataRecord. Finally, the selected DataJtems are placed in TeiescopeDataAssociation tables
via the TDAMapping.

1 AIPS++ Software Design - Analysis and Design of Major AIPS++ Subsystems; Hjellming and
Glendenning, 1993

AIPS++ Software Design: Telescope Data Handling

TelSystemSimulator

RealTimeSystem TelDataMedia

ObservingSchedule

OperationsLog y

TDAMapping

applyTo(Dataltem)

\7

DataSource

f
DataRecord

build
extractDataltem

apply(SeleptionCriteria)

5
Dataltem

Label
apply(SelectionCriteria)

I
Measure

ObservingLog

add Entry
setSelection

display

A.

SelectionCriteria

Data Source

Chapter 2: Functional Design - General

2 Functional Design — General

User
Selection
Criteria

Data
Source

^V > 1 /

Operations
Log

TDA
Tables

Process Data Source

The initial functional diagram for processing telescope data from a Data Source shows the
context in which the processing is done. Filling of the tables which make up the Teiescope Data
Association is based on User Selection Criteria. Observation summary information created during

AIPS++ Software Design: Telescope Data Handling

the process of filling the TDA tables is made available to the user via the User Display. An
Operations Log may or may not be available to allow the flagging of data or the bypass of decoding
input data.

Chapter 2: Functional Design - General

User
Display

Operations
Log

Data
Source

TDA
Tables

User
Selection
O'teria

TDA
Mapping

Fill TDA Tables

In this diagram the Fiii TDA Tables process has been functionally decomposed into the following
processes:

• a process which handles selection of observing log entries

• a process which interprets the input and

• a process which applies the TDA Mapping

10 AIPS++ Software Design: Telescope Data Handling

Selection can occur before or after interpretation of the data.

Interpret and Select Data obtains data from Data Source, creating labeled DataJtems and their
associated Measures. The input data stream frequently consists of "header" and "measurement"
data. The former is often "control" or "context" information which is processed internally by the
Interpret and Select process. The latter type of data is placed into Interpreted Data store for later
mapping into the TDA hierarchy. When applicable, observingJogjentries are generated.

It is intended that the internal data store Input to TDA Mapping be a static mapping which
"directs" a Dataltem, based on its Label, to the target table. Implementation of the store should
be flexible enough to allow for ease of change in an input data stream with minimal impact.
Determination of placement of the Dataltems produced by the Data Source is the major piece of
work associated with this process.

Further decomposition is ended at this point for the general case.

Chapter 3: Class Design - VLA-specific 11

3 Class Design - VLA-specific

The following diagram shows the classes related to a particular set of instances of TelDataMedia
in the general case, i.e., the VXAArciiiveTape class. Instances of this hierarchy are different based
on IbrmatHevision.

Notable differences between this and that of the general case are related to the Dataltecord class
and its methods and relationships. The functionality of DataRecord is represented in the following
classes:

• the LogicalRecord class and its associated hierarchy,

• the PhysicalRecord class and

• the VLADecodedData class and its associated hierarchy (which is shown on another diagram).

The binding of the design to a particular DataSource introduces data layering specific to its
structure and content.

A LogicalRecord on a VXAArciiiveTape contains all the data relating to a given integration
time for an observation. It can span many physical data records. Each LogicalRecord is made up
of an ordered set of subrecords - RCA, SDA, ADA and CDA (the latter two may have multiple
instances forming an ADASet and CDASet respectively). Each of these subrecords is a DataArea
which can be decoded and can have SelectionCriteria applied.

The Revision of a particular kind of DataArea is defined by the FormatRevision of the
VLAArchiveTape currently found in the RCA. Forcing tape and data area revision numbers
to be identical dictates the need for a set of DataAreas for each FormatRevision even though some
DataAreas may not have changed. If the revision numbers are allowed to differ, however, then
any given DataArea revision might be found in a number of different tape revisions, thus avoiding
a proliferation of instances of a given DataArea which has not changed. It is suggested that the
latter be implemented, since changes are usually localized to DataAreas; in this case, a mapping
between FormatRevision and DataArea Revision must be implemented.

The items explicitly named as attributes of the DataAreas in the diagram are those that
determine the sizes and structures of other records, and those which determine whether decod¬
ing might be bypassed. The number of ADA records in an ADASet, for example, is based on
the AntennaCount found in the RCA. Therefore, the constructor (ADASet) is dependent on
RCA.AntennaCount.

12 AIPS++ Software Design: Telescope Data Handling

VLAArchiveTape K
FormatRevision /

VLADataSource

PhysicalRecord
Size

SequenceNumber
NumberPerLogicalRecord

read

■K>
LogicalRecord

build
decodelnto(VLADecodedData)

apply(Sei06t|pnCriteiia) aieCtk:

2

VLADecodedData
SelectionModes
extractDataltem

apply(SelectionCriteria)

{ordered}

ADASet
AntennaOrder
BypassDecode

ADASet(RCAAntennaCount)

RecordControlArea
(RCA)

CDAHeaderSize
CDARelativeOffset

BaselineRecordSize
AntennaCount
FormatRevision

;A^n

AntennaDataArea
(ADA)

il
CDASet

BypassDecode
CDASet(RCA.CDAHeaderSize,

RCA.CDARelativeOffset,
RCA.BaselineRecordSize,

SDA.CorrelatorMode,
ADAAotennaOrder) Anten

CorrelatorDataArea
(CDA)

SubarrayDataArea
(SPA)

CorrelatorMode

i

ObservingLog

addEntry
setSelection

display

I
DataArea
Revision

decodelnto(VLADecodedData)
apply(SelectionCriteria)

VLA Data Source

£■ n
SelectionCriteria

TimeRange
BandList

FrequencyList
SourceList

QualifierList
ChannelList

CorrelatorMode
ObservingMode

SubarrayList
Flags

AntennaList
ProgramID

UserNumber
ObservingMode

SubarrayList

Chapter 3: Class Design - VLA-specific 13

SelectionCriteria which determine whether other DataAreas are decoded or not are applied at
the LogicalRecord level, which in turn are applied to its components. For example, the TimeRange
criterion is applied at the LogicalRecord level, which is then applied to the SDA. If the DateTime
in the SDA falls outside the selected TimeRange, the ADASet and CDASet need not be decoded;
hence, the capability to set the BypassDecode mode in each of these classes. SelectionCriteria
which can be applied before data is decoded follow:

• time range

• source and source qualifier

• correlator mode

• observing mode

• subarray

• program ID

• user number

The current set of criteria applies to data in the SDA only. The design is left general enough to
allow selection to be applied to any DataArea.

It is also the case that some Selection Criteria are applied after the data is decoded; i.e., selection
by:

• channel

• flag

• antenna

• frequency

• band

In these cases, the appropriate SelectionModes are set in the DecodedData area before extraction
of Dataltems.

All decoded telescope data from a LogicalRecord is placed into the VLADecodedData area (not
necessarily in the same form as the logical record). This method is used instead of one in which
each DataArea is decoded into its own "decoded instance" for the following reasons:

• The DataArea information is not self-contained (e.g., the DateTime value in the SDA applies
to the data in both the ADASet and the CDASet). In general, a Dataltem contains entries
present in more than one DataArea.

14 AIPS++ Software Design: Telescope Data Handling

• It is desirable to avoid the inclusion of a method to extract each piece of data in a DataArea
thus avoiding a dependence between the object interface and the form of the data. A goal
in this design is to hide this dependence in the decodelnto method which is inherited by all
DataAreas.

This design decision is subject to change, based on the efficiency of implementation.

Chapter 3: Class Design - VLA-specific 15

The next diagram specifies the class hierarchy of VLADecodedData. The decoded set of data is
made of of many "labeled" DataJtems, each of which has an associated Measure, and TDAMapping.
The relation of Dataltems to SelectionCriteria is not shown in the VLA case, since it is probable
that all SelectionCriteria have been applied during the decoding process or upon extraction from
VLADecodedData.

VLADecodedData
SelectionModes
extractDataltem

apply(SeleptionCriteria) leptjoi

Dataltem
Label

Measure

TDAMapping

applyTo(Dataltem)

VLA Decoded Data

16 AIPS++ Software Design: Telescope Data Handling

Chapter 4: Functional Design - VLA-specific 17

4 Functional Design - VLA-specific

There is no Operations Log depicted in the VLA-specific context diagram. For the VLA the log
exists on paper; there is yet no automated way of processing it in the system.

User
Selection
Criteria

1

Data
Source

>iV \ >. >

^V^Fill TDAN,
■ Tahlp^ From 1 ^ TDA

Tables

Process VLA Tape

18 AIPS++ Software Design: Telescope Data Handling

Because the data from the VLA data stream is decoded as well as interpreted, the diagram
containing the decomposition of Fill Tables From VLA Tape represents the VLA-specific "decoding"
process. There are no other differences in the VLA case, save the omission of the Operations Log.

Fill TDA Tables From VLA Tape

Chapter 4: Functional Design - VLA-specific 19

The Decode VLA Tape diagram depicts the interrelationships of the RCA, the SDA, and the
ADA and CDA Sets; e.g., the dependence of the CDA Set on parameters from the RCA, SDA and
ADA.

Observing ^_
Log ^r

observing.
log_
entry

VLA
Tape

header_size,
relative_offset

baseline record_size

User Selection Criteria

Decode and Select VLA Tape

It shows that bypass.decode is determined by comparison of User Selection Criteria and the
following SDA-parameters:

20 AIPS++ Software Design: Telescope Data Handling

• date/time

• source name

• source qualifier

• correlator mode

• observing mode

• subarray ID

• program ID

• user number

While processing the VLA input data stream changes in the following items in the SDA generate
observing iog entries:

• correlator mode

• frequency

• source name

• source qualifier

• source position

• observing mode

• program ID

As is shown in this final diagram, the relationships of the VLA-specific data can be localized.
It is hoped that the filling of data from other telescope sources can follow a similar design.

Table of Contents

Introduction 1

References 3

1 Class Design — General 5

2 Functional Design - General 7

3 Class Design - VLA-specific 11

4 Functional Design — VLA-specific 17

AIPS++ Software Design: Telescope Data Handling

