
] AIPS MEMO NO.__ 3

ADAPTING RANCID TO THE U. OF MINN. GDC CYBER 74
— a progress report

by Frank D. Ghigo
September 23, 1980

INTRODUCTION

I obtained a copy of the MODCOMP version of RANCID from E. Greisen during
the last week of April 1980. The program consisted of about 130 routines.
At present, I have gotten a subset of 70 subroutines to run. These include
the basic POPS language implementation. I have ignored, up to now, all of the
routines called by the VERBS subroutine.

The^adaptation of the input and output abilities went fairly smoothly
by writing the appropriate Z-routines, much as the authors of RANCID intended.
But considerable changes were required to take care of character handling,
and a few changes were required by the lack of 1*2 and R*4 variables. In’
most cases, I was able to rewrite sections of non Z-routines in a way that
makes^them now independent of the number of characters per word and the
relation between integer and real word size. Although RANCID was meant for
byte-oriented machines, the changes I have made to adapt to arbitrary word
length may be useful to install in the official version. The DEC-10, for
example, has five characters per word (36-bit words), and many of the problems

have solved on the Cyber can probably be solved the same way on the DEC-10.
There are still some things which seem impossible to make machine indepen

dent, most notably many format statements, and some array size declarations as discussed later. ’
. 1S *ls° be a Problem in POPS which may be a real bug in the program:
hollerith constants cannot be passed through a procedure call if the procedure contains a RETURN statement.

I have been working on this off and on for the last 3t months. Probably
I have spent the equivalent of about 6 full weeks on it. I regard this as
a pretty speedy job, and would like to point out a number of circumstances
Cyber 7 ^ * & helpful in deciPherinS RANCID and adapting it to the

1. There was adequate internal documentation which consisted of,
at the beginning of each routine, a statement of its function*
and a description of the calling parameters, and during the
routine, there were comments identifying the function of each
group of statements. This made it fairly easy to follow what was
going on. The documentation, though good, could still stand some
improvement. Many of the routines make extensive use of
parameters passed through common. These parameters and their
functions should be explained at the beginning of each routine
Most of the comments in the body of the routines are overly terse.

2. The great modularity was helpful. Few routines are longer than
a page or two, which makes it easier for us feeble-minded folk
to encompass them.

- 2 -

3. Each routine follows good "Structured programming" practice
with a fairly easy to follow flow of logic and no wild jumping
about, except for the final leap for the exit. Each routine is
structured similarly, with a standard way of exiting, whether a
normal or error exit.
The extensive error checking and error traceback features

built into RANCID were indispensable for debugging. Also,
the debug option, which gives extra printing in a number of
places, was very useful.

5. Sume's POPS manual for the Onsala system was extremely important
for learning the organization of the K-array and the data blocks
within it, which are, of course, the heart of POPS. It was
especially useful that I had copied Eric's copy of Sume's manual
which had handwritten addenda indicating the new symbol types
that were not in the older POPS.

6. I had some previous experience with POPS in trying to puzzle out a
few things in the Cyber version of TPOWER/SPOWER which George
Martin installed at the U.of Minn, last year. A long conversation
with G. Martin was informative in this regard. In a few cases
the Cyber version of TPOWER/SPOWER provided some useful clues for
putting RANCID on the Cyber. For the most part, I went in a
different direction in the way I set up the I/O handling and
character manipulation.

7• Since I am fairly well versed in the Cyber system, it was easy to
write the appropriate machine-dependent parts, once I figured out
what was needed.

CHARACTERISTICS OF THE CPC CYBER 7^ WHICH WE HAVE TO RECKON WITH

It has 60-bit words. Fortran uses the same 60-bit word length for both
real and integer variables. 1*2, R*^, etc., are unheard of. The Cyber uses
octal as the internal representation. It doesn't understand hexadecimal
constants. The internal character set uses a 6—bit code, so that there are
ten characters per word. There is an extended character set using an inter
mixture of 12-bit and 6-bit characters which I have avoided like the plague.
Fortunately all the characters POPS needs seem to be in the basic set of
6^ characters. So don't add any exotic characters, OK? Files are fairly
simple entities, each having a unique file name of 7 characters. Extension
files, version numbers, and members of files are unknown concepts.
I/O WOES

If one makes use of the Fortran read and write routines on the Cyber, the
files must be named in the PROGRAM statement and of necessity remain open and
exclusive for the duration of the program. The alternative is to use various
subroutine calls to the Cyber Record Manager (CRM) which allow opening and
closing of files which may be sequential or random access. Files handled by
Fortran cannot be accessed by CRM calls, and vice versa. In VLAGEN, and
possibly other places, files were opened with ZOPEN or ZTOPEN and then Fortran
read or write statements were used. Such a mixture is not permitted on the Cyber.

It was clear at an early stage that the message writing facility, MSGWRT,
was all pervasive. Initial attempts to decipher MSGWRT and its attendant
Z-routines led me to suspect the work of a madman. In order to make progress

- 3 -

in the early stages, I made the log file and the terminal into regular
Fortran files so that MSGWRT became simply two write statements and two
IF statements to select whether writing on the terminal, log file, or both
is to occur. Perhaps someday I will put back in the more elaborate features
of MSGWRT if I figure out what they are.

It would have been nice to have had better documentation in the Z-routines
handling I/O. One needs to know how the MODCOMP i/O calls worked in order to
put the equivalent functions in their place. An explanation of the FTAB and
FDL tables might have been enlightening. Also helpful would have been an
explanation of RANCID's general file philosophy. What is the intended use of
the four types of files? (i.e. those with DEVTAB= 0,1,2,3) And how do these
types relate to the different groups of file handling routines? Apparantly,
DEVTAB=0 files are disk files which may either be binary files handled by
routines Z0PEN, ZCLOSE, and ZFIO, or they may be text files handled by ZTQPEN,
ZTCLOS and ZTREAD. DEVTAB=1 files seem to be files handled entirely by
the standard Fortran calls, and DEVTAB= 2 files I suppose are double-buffered
files handled by ZOPEN, ZCLOSE, and ZFIO, which I have not yet implemented.
DEVTAB=3 files seem to be unused, whatever they are.

To implement the file handling routines based on the CRM calls, I made
the FTAB table into the file information tables required by the Cyber. This may
be parallel to their original use.

To implement the ZTREAD, ZTOPEN, ZTCLOS functions in which subsets of files,
known as "members" are read, I defined a member of a file to be a portion of a
file delimited by "end of record" marks, which are special symbols allowed by
the Cyber in text files (since each line of a text file is also known as a record,
this is a confusing nomenclature). I required a member name to appear as the
first linê after an end of record mark. Thus, a call to ZTOPEN will look for
the first occurrence of the member name following an end of record mark.
Subsequent calls to ZTREAD will read lines following that "member identifier"
until the next end of record is encountered.
CHARACTER CAPERS

At first it seemed as if I could continue to put only 2 characters in
each word and get away with few changes. But this is incompatible with the
usage of ENCODE and DECODE which pack or unpack characters densely. For
example, every ENCODE of a message to be printed would have to be decoded with
a 40A2 before printing, so that it could be printed with a ^0A2 format.
Encoding and decoding is done so often that I decided to change things so that
all character strings would be packed ten to a word. This required a number
of changes, but it has the advantage that much less storage space in the
K-array is required for symbols and character strings. Many format statements
had to change from nA2 to mA10 as a result. Places where character strings
were moved from one place to another by simply copying arrays had to be
changed so that the subroutine ZMOVE moved the characters one at a time.
These places occurred in the PRINT verb (subroutine QUICK) and the INPUTS
verb (subroutine HELPS). As a result of these changes, RANCID is now less
machine-dependent. This was done by introducing new variables in a common
block (COMMON/CHARAC/) and using the variables in many places. They are
NWPL (number of words per line on a CRT screen) and NCPW (number of characters
per word). With these values set to NWPI^B and NCPW=10, the program works on
the Cyber, and with NWPL=40 and NCPW=2, it would work on the MODCOMP or VAX,
assuming the appropriate Z-routines are substituted.

It might have been less work to have kept the 2-character-per-word structure
and to have put in the extra DECODES, but doing it the way I have gives a
more compact K-array, which may be a significant advantage in the long run.

- 4 -

Another problem was two cases in which a comparison of character strings
was done by comparing 2-character words. One case occurred in VLAGEN in which
a test for a comment line was done by comparing the first word of the input
line with the string "C-". This clearly doesn’t work if there are ten
characters in the word. I therefore wrote a new Z-routine, called ZGETWD,
to extract 2 characters from a word and put the two, left justified, into a
different word, so that it would be directly comparable to the words it was
to be compared with. This was also needed in the HELP verb, for matching the
argument of the HELP command with the strings "VERBS", "ADVERBS", etc.

And, finally, some of the message generating parts required no changes at all.
For example, messages in OERROR are set in data statements and printed with
nA4 formats. Also, the error traceback required no alterations because although
the subroutine names were set as 2—character per word strings, they were simply
printed as is with nA2 formats.
WORD-LENGTH WORRIES

Because integers are the same size as reals in the Cyber rather than half
the length, a number of problems with equivalencing integer with real arrays
were encountered. One problem which I do not see how to fix in a machine-
independent way involves the equivalencing of the adverb names to their locations
in the K-array, which is done'Ijy means of the COMMON/CORE/ declaration in
HELPS and AU1, AU2, etc. For the real values there is no problem, but the
string variables are declared as integers, so their size declaration must be
halved for the Cyber version. The machine-independent solution would be to
require all adverbs to be real-sized variables and arrays.

Most of the potential problems with using the K-array as both an integer and
a real array are taken care of by the use of the functions IREALP and IINITP.
These two should be Z-routines. For the Cyber, I altered them to return the
same number they were given. That is, IREALP(lP) = IP and IINITP(lP) = IP.
IREALP is called in four places and the above definition works in two of them
(in subroutines ASSIGN and SYMBOL). However, in the routines LTSTOR and INIT
the wrong address is calculated unless IREALP(lP) = IP + 1. I took care of this
in a quasi-machine-independent way by the introduction of a fudge parameter
(in COMMON/CHARAC/) to be added to the appropriate address in LTSTOR and INIT
and whose value would be set appropriately for whichever computer is being used.
It would be nice to think of a more elegant way to handle this problem.
OVERLAYING

To make RANCID fit in the 25K word space allowed for Cyber interactive jobs
I have overlayed the program as follows: ’

HELPS
PSEUDO
STORES
COMPIL
EDITOR

In this form, the most core is needed vhen INT2RP and QUICK are loaded, and
that amount is 15K words. Of coiirse, things will become tighter when VERBS
and all the things it calls are installed. One should note that I decreased
the required core CDnsiderably by making the size of LISTF be 1024 and the size
of the K-array be 3072, rather than 2048 and 7680. These lower sizes are
reasonable since they refer to 60-bit words.

RANCID INTERP, QUICK

- 5 -

A FEW RANDOM SUGGESTIONS

1. The equating of string constants seems overly limited since only strings
defined with identical lengths can be equated with each other. Surely it

should always be OK to equate, e.g., STRl*n = STR2*m if n> m. And the
case of m > n should be allowed with perhaps an error message saying
"string truncated".
2. It would be nice to be able to SCRATCH adverbs as well as procedures.

CATALOG OF CHANGES MADE TO NON-Z ROUTINES

Most of these were required to make the program work on the Cyber. Some
however, were done merely for aesthetic or other metaphysical reasons. I have
not detailed changes In RANCID and VLAGEN since these main programs are
expected to be a little machine-dependent.

comments changed routine
now machine-

. _________ independent?
COMMON/CHARAC/ installed in many routines. ves

this common includes NWPL,NCPW,NIPR,IFUDGE
(= # words per line, # char.per word, # integers per real,
and the fudge parameter)
values for Cyber = 8,10,1,2
values for MODCOMP/VAX = io,2,2,1

These values are initialized in RANCID. They cannot be
initialized in INIT because RDUSER needs them.

— routines needing COMMON/CHARAC/ :
RANCID VLAGEN FILZCH FRMT GETSTR HELPS INIT IWPC
IWPR KPACK LTSTOR MSGWRT 0ERR0R PREAD PSEUDO QUICK
RDUSER SPFIL SYMBOL UNPACK

All calls to UHPACK — The call: CALL UNPACK(40, JBUF, KARBUF) yes
now becomes: CALL UNPACK(MWPL,JBUF,KARBUF)

Falling; through computed GO TO statements
On the Cyber, unnumbered statements immediately following a
computed GO TO statement are unreachable. I thus preceded yes?
the GO TO statements with an IF statement to check whether
the index was in the allowed range, and if not, to jump to
the immediately following code, which was usually an error
message setup.

Declarations changed
REAL V(40) became V(60) and X(5) became X(l0) in many no
routines, since these are equivalenced to integer arrays,

routines affected: (routines in parentheses have these
arrays defined but do not use them)

(ASSIGN) BCLEAN COMPIL EDITOR GETFLD
(GETNAM) (GTLINE) HELPS INIT INTERG
INTERP LTSTOR (MASSGN) (0ERR0R) (POLISH)
PSEUDO QUICK STORES SUBS (SYMBOL)

- 6 -

CATALOG OF CHANGES (continued)

comments

Quote Symbol — Cyber Fortran quote symbol for delimiting
hollerith strings is " not '. Thus all single quotes from
C-ville were changed to double quotes. But POPS quote

symbol was and should be kept as a single quote, which
entailed slight changes in the data statements which set
constants containing the quote symbol. Appropriate changes
were made to the following items in these subroutines:

variable subroutine

is changed
routine now
machine-
independent?

no

IQUOTE
IQUOTE
IOPNQ
ICLSQ

GETFLD
GETSTR
HELPS
HELPS

Format Statements -- numerous A2's became AlO's,
I'm not going to list them all. no

subroutine comments

FILZCH

FRMT

GETSTR

is changed
routine now
machine-
independent?

installed COMMON/CHARAC/.
loop now runs: DO 10 J= 1 NCPW yes

installed COMMON/CHARAC/, code altered to make use
of NCPW. Also the DATA statement setting hexadecimal
constants was changed to the equivalent Cyber form
(octal constants). Thus my changed data statement
is machine dependent, but this could be make independent
by setting these constants in regular hollerith form
and using ZGTBYT to extract the wanted characters
in right-justified form.

yes

installed COMMON/CHARAC/
of NCPW, etc. code altered to make use yes

HELPS -verb INPUT- moving of text now done by character, not by word. yes
also, in the printing of the INPUTS header, we now
generate the header by ENCODE statements, rather than by
copying arrays HEAD and IDASH to MSGTXT.

HELPS -verb DEFAULT- I made the file name read by the DEFAULT
command dependent on the user number, so each user can
have his own default file. The file name was formed
thus: DEvssvv, but is now formed thus: DElOnnn,
where nnn = user ID number.

CATALOG OF CHANGES (continued)

subroutine

HELPS

HELPS

IINITP

INIT

IREALP

IWPC

IWPR

KDUMP

KPACK

LLOCAT

LTSTOR

MSGWRT

is changed
routine

comments now machine-
-------------------- ------- _---------- ---------- __ independent?
-verb HELP- To compare IXMEM with TYPNAM (this is
how we figure out which HELP listing to do) IXMEM yes
first had to be torn apart into 2-byte words by use
of the new Z-routine ZGETWD.
Halved the array sizes for the integer arrays that no
appear in COMMON/CORE/. This is required so that the
adverb name in COMMON/CORE/ contains the correct value
which was put into the K-array earlier.

Changed to IINITP = IP. This should probably be no
a Z-routine.

installed COMMON/CHARAC/. The two statements
involving IREALP changed to:
TAG = IREALP(L) + IFUDGE

yes

The constants ITRUE and IFALSE were not recognized while no
hunting the K-array, if they were set as 2-character-per-
word arrays. Changed to:

DATA ITRUE, IFALSE / "TRUE", "FALSE" /
Changed to IREALP = IP. Should probably be no
a Z-routine.

COMMON/CHARAC/ installed. Now reads:
IWPC = (IP-1)/ NCPW + 1

COMMON/CHARAC/ installed. Now reads:
IWPR = NIPR*IP

yes

yes
This should be a Z-routine since the optimum way to no
dump an array depends on the machine.

COMMON/CHARAC/ installed. Program altered to make use
of NCPW. yes

The requirement that all blocks in the K-array occupy
an even number of words was removed, to allow denser
use of the K-array.

COMMON/CHARAC/ installed. Statement 30 changed
to : TAG = IREALP(L) + IFUDGE

Somewhat simplified, as mentioned under i/O Woes.
I also surpressed the annoying "RANCID:" beginning
of each line, though leaving this prefix for
error messages.

no

yes

no

CATALOG OF CHANGES (continued)

subroutine

OERROR

PREAD

PSEUDO

QUICK

RDUSER
SPFIL
SYMBOL

is changed
routine now

comments machine-indepen-
----------------------------- dent?

yes

yes

COMMON/CHARAC/ installed. NWPL, NCPW inserted in yes
appropriate places. Format 1000 changed to (3A4,8A10) no
COMMON/CHARAC/ installed. NWPL inserted in
UNPACK call.

COMMON/CHARAC/ installed. The setting of the
string size is now more general:
NSIZE (= number of real words needed to hold the string)
= (NCPW-1 + int(c (t ag)))/(ncpw*nipr)

COMMON/CHARAC/ was installed.
-PRINT verb- KARLM1 set to 72, not 32, and all yes

moving of text is done by ZMOVE (i.e., by character)
rather than by COPY. Numerous counters were
changed to facilitate this.

-DUMP verb- Most of the code in this section was yes
replaced by a call to KDUMP.

COMMON/CHARAC/ installed, and NWPL, NCPW were put in.
COMMON/CHARAC/ installed, etc.

COMMON/CHARAC/ installed. Setting of TAG under
"variable storage" section is now:
TAG = LL0CAT(NIPR, K(KXORG), KXLINK) + KXORG - 1

yes
yes
yes

UNPACK COMMON/CHARAC/ installed, etc. yes

