
Going fiJFSi.
h Jgrogrammfirs GaMe to. 1 NMQ Astronomical Imagg Processing System

W. D. Cotton and a cast of AIPS
Version 15 May 84

ABSTRACT

This manual is designed for persons wishing to write
programs using the NRAO Astronomical Image Processing
System (AIPS)• It should be useful for a wide range of
applications from making minor changes in existing
programs to writing major new applications routines.
All basic aspects of AIPS programming are dealt with in
some detail.

AIPS programmers contributing to this manual
John Benson - VLBI
Bill Cotton - Array processors and applications routines
Gary Fickling - Systems and plotting
Eric Greisen - Head knocker, TVs and AIPS

system integration
Kerry Hilldrup - Unix implementation
Fred Schwab - Mathematics
Craig Walker - Gadfly and VLBI
Don Wells - Hardware implementations and

image processing techniques
Gustaaf van Moorsal - Spectral line

1.1 S C O P E .. 1-1
1.2 HEY YOU, READ THIS..............................1-1
1.3 PHILOSOPHY.....................................1-2
1.4 AN OVERVIEW OF THE AIPS SYSTEM................. 1-3
1.4.1 T a s k s 1-4
1.4.2 V e r b s 1-4
1.4.3 Data Files...................................1-4

1.4.4 I / O .. .
1.5 S T Y L E 1-5
1.5.1 Precursor Comments1-5
1.5.2 Body Comments...............................1-6
1.5.3 Indentation.................................1-6
1.5.4 Statement Numbers1-7
1.5.5 Blanks...................................... 1-7
1.5.6 Modular Code.................................1-7
1.5.7 Portability.................................1-8
1.6 LANGUAGE...................................... 1-8
1.6.1 FORTRAN.................................... 1-9
1.6.2 Statement O r d e r 1-10

1.6.3 INCLUDES......................................
1.6.4 Variable Declaration 1-11

1.7 DOCUMENTATION 1-11
1.7.1 User Documentation......................... 1-12
1.7.1.1 HELP Files...............................1-12
1.7.1.2 AIPS Manual And Cookbook................. 1-13

1.7.2 Programmer Documentation 1-13
1.7.2.1 Precursor Comments....................... 1-13

1.7.2.2 Shopping Lists1-13
1.7.2.3 CHANGE.DOC...............................1-13

1.7.2.4 The Checkout System1-13

Page 2
07 May 84

CHAPTER 1 INTRODUCTION

CHAPTER 2 SKELETON TASKS
2.1 DATA MODIFICATION TASKS - FUDGE AND TAFFY 2-1
2.1.1 F U D G E 2-2
2.1.2 T A F F Y 2-5
2.2 DATA ENTRY TASKS (UVFIL AND CANDY) 2-8
2.2.1 U V F I L 2-9
2.2.2 C A N D Y 2-13
2.3 MODIFIYING A SKELETON TASK................... 2-16

2.4 HINTS FOR USING THE VAX/VMS DEBUGGER IN AIPS. . 2-17

CHAPTER 3 GETTING STARTED - TASKS
3.1 OVERVIEW...................................... .
3.2 THE COST OF MACHINE INDEPENDENCE...........]] 3-3

3.2.1 Character Strings 3-3
3.2.2 Integers......................................
3.2.3 Call Arguments................................
3.3 TASK NAME CONVENTIONS 3 -5
3.4 GETTING THE PARAMETERS......................... .
3.4.1 In AIPS (Help File) 3 -5

Page 3
07 May 84

3.4.2 In The Task (GTPARM) 3-7
3.5 RESTARTING AIPS 3-7
3.6 INCLUDE F I L E S3-7
3.7 INITIALIZING COMMONS 3-8
3.7.1 Device Characteristics Common 3-8
3.7.2 Catalogue Pointer Common 3-9
3.7.3 History Common...............................3-9
3.7.4 TV C o m m o n 3-9
3.7.5 UV Data Pointer Common..................... 3-10
3.7.6 Files Common, /CFILES/ . • 3-10
3.8 INPUT AND OUTPUT FILE N A M E S 3-11
3.9 COPYING EXTENSION FILES 3-12
3.9.1 History...................................3-12
3.9.2 Extension Files (EXTCOP) 3-13
3.10 COMMUNICATION WITH THE USER 3-13
3.10.1 Writing Messages 3-13
3.10.2 Turning Off System Messages • • • • . . • • • 3-14
3.10.3 Writing To The Line Printer............... 3-14
3.10.4 Writing To The Terminal (ZTTYIO) 3-16
3.11 SCRATCH F I L E S3-17
3.12 TERMINATING THE PROGRAM3-18
3.13 BATCH JOBS...................................3-18
3.14 INSTALLING A NEW T A S K 3-19
3.14.1 On A VAX[B.................................3-19
3.14.1.1 Logical Assignments 3-19
3.14.1.2 Where To Put The Files (AIPS Directories). . 3-20
3.14.1.3 Where To Put The Files (Programmers

Directory) 3-20
3.14.1.4 Compile And Link Edit Procedures . « • • • • 3-21
3.15 INCLUDES.....................................3-22
3.15.1 CDCD.INC...................................3-22
3.15.2 CFIL.INC...................................3-22
3.15.3 CMSG.INC...................................3-23
3.15.4 CUVH.INC...................................3-23
3.15.5 DDCH.INC 3-23
3.15.6 DFIL.INC 3-23
3.15.7 DMSG.INC 3-24
3.15.8 DUVH.INC 3-24
3.15.9 IDCH.INC 3-24
3.16 ROUTINES.....................................3-25
3.16.1 CHCOPY 3-25
3.16.2 CHCOMP 3-25
3.16.3 CHFILL 3-25
3.16.4 CHLTOU 3-25
3.16.5 CHMATC 3-26
3.16.6 CHPACK 3-26
3.16.7 CHPAC2.................................... 3-26
3.16.8 CHWMAT.....................................3-26
3.16.9 CHXPND 3-27
3.16.10 CHXPN2 3-27
3.16.11 D I E 3-27
3.16.12 DIETSK 3-28
3.16.13 EXTCOP 3-28
3.16.14 GTPARM 3-28
3.16.15 HIADD 3-29
3.16.16 HICLOS 3-29

3.16.17 HIINIT 3-29
3.16.18 HISCOP.................................... 3-29
3.16.19 MAKOUT.................................... 3-30

3.16.20 PSFORM 3-31
3.16.21 RELPOP........... 3-31

3.16.22 SNCRC 3-31
3.16.23 UVPGET.................................... 3-32

3.16.24 ZDCHIN 3-32
3.16.25 Z MATH 4 3-33

3.16.26 ZR8P4 3-33
3.16.27 ZTTYIO...........3-33

Page 4
07 May 84

CHAPTER 4 THE AIPS PROGRAM
4.1 OVERVIEW...................................... 4-1
4.2 STRUCTURE OF THE AIPS PROGRAM................. 4-1
4.2.1 The POPS Processor........................... 4-2
4.2.2 POPS Commons.................................4-5
4.2.2.1 /CORE/.................................... 4-5

4.2.2.2 /POPS/ 4-7
4.2.2.3 /SMSTUF/...................................4-8
4.2.2.4 /IO/...................................... 4-9
4.2.3 TAG And TYPE.................................4-9
4.2.4 Error Handling.............................4-10
4.2.5 Memory Files...............................4-10
4.2.6 Special M o d e s4-10
4.2.6.1 RUN F i l e s4-11
4.2.6.2 B a t c h4-11

4.2.6.3 Procedures 4-11
4.3 EXAMPLE OF THE POPS PROCESSOR................. 4-11
4.3.1 The Compiler...............................4-12
4.3.2 The Interpreter........................... 4-14
4.4 INSTALLING NEW VERBS......................... 4-16
4.5 INSTALLING NEW ADVERBS....................... 4-18
4.6 POPSGN...................................... 4-18
4.6.1 Function.................................. 4-18
4.6.2 POPSDAT. H L P4-19
4.7 INCLUDES.................................... 4-29
4.7.1 CAPL.INC...................................4-29
4.7.2 CBAT.INC...................................4-29
4.7.3 CBWT.INC...................................4-30
4.7.4 CCON.INC...................................4-30
4.7.5 CERR.INC...................................4-30
4.7.6 CIO.INC...................................4-30
4.7.7 CPOP.INC...................................4-30
4.7.8 CSMS.INC.................................. 4-31
4.7.9 DAPL.INC...................................4-31

4.7.10 DBAT.INC4-32
4.7.11 DBWT.INC 4-32
4.7.12 DCON.INC.................................. 4-32

4.7.13 DERR.INC4-32
4.7.14 DIO.INC4-32
4.7.15 DPOP.INC............. 4-33
4.7.16 DSMS.INC4-33
4.7.17 ECON.INC4-33

Page 5
07 May 84

5.1 OVERVIEW...................................... 5-1
5.2 PUBLIC AND PRIVATE CATALOGUES................... 5-2
5.3 FILE NAMES.................................... 5-2
5.4 DATA CATALOGUE.................................5-3
5.4.1 Structure Of The Catalogue Header Record 5-3
5.4.1.1 Image Files 5-6
5.4.1.2 Uv Data F i l e s5-7
5.4.2 Routines To Access The Data Catalogue....... 5-7
5.4.2.1 MAPOPN And MAPCLS 5-7
5.4.2.2 CATDIR And CATIO 5-8
5.4.3 Routines To Interpret The Catalogue Header . . . 5-8
5.4.4 Catalogue Status 5-8
5.5 IMAGE CATALOGUE...............................5-9
5.5.1 Overview.................................... 5-9
5.5.2 Data Structures..................... . 5-9
5.5.3 Usage N o t e s5-10
5.5.4 Subroutines...............................5-11
5.5.5 Image Catalogue Commons 5-11
5.6 COORDINATE SYSTEMS 5-12
5.6.1 Velocity And Frequency..................... 5-12
5.6.1.1 Axis L a b e l s5-12
5.6.1.2 Catalogue Information 5-12
5.6.2 Celestial Positions 5-13
5.6.2.1 Axis L a b e l s............. 5-13
5.6.2.2 Determining Positions 5-14
5.6.2.2.1 Position Routines 5-14
5.6.2.2.2 Common /LOCATI/ 5-14
5.6.3 Rotations................. 5-15
5.7 TEXT OF INCLUDE F I L E S 5-17
5.7.1 CHDR.INC.................................. 5-17
5.7.2 CLOC.INC 5-18
5.7.3 CTVC.INC.................................. 5-18
5.7.4 DHDR.INC.................................. 5-18
5.7.5 DLOC.INC.................................. 5-19
5.7.6 DTVC.INC................... 5-19
5.8 ROUTINES.................................... 5-20
5.8.1 AXEFND.................................... 5-20
5.8.2 CATDIR.................................... 5-20
5.8.3 C A T I O 5-21
5.8.4 ICINIT.................................... 5-22
5.8.5 ICOVER.................................... 5-22
5.8.6 ICWRIT.................................... 5-22
5.8.7 ICREAD.................................... 5-22
5.8.8 FNDX...................................... 5-23
5.8.9 FNDY...................................... 5-23
5.8.10 MAPCLS 5-23
5.8.11 MAPOPN 5-24
5.8.12 ROTFND 5-24
5.8.13 SETLOC 5-25
5.8.14 TVFIND 5-25
5.8.15 UVPGET 5-25
5.8.16 X Y P I X5-26
5.8.17 XYVAL 5-26

CHAPTER 5 CATALOGUES

Page 6
07 May 84

6.1 OVERVIEW...................................... 6-1
6.2 TYPES OF FILES.................................6-2
6.3 FILE MANAGMENT.................................6-2
6.3.1 Creating Files...............................6-2
6.3.2 Example Using ZCREAT 6-4
6.3.3 Destruction Routines..................... . . 6-5
6.3.4 Expansion And Contraction Of Files........... 6-5
6.4 I/O TO DISK F I L E S6-6
6.4.1 Upper Level I/O Routines...................... 6-7
6.4.2 Logical Unit Numbers......................... 6-7
6.4.3 Contents Of The Device Characteristics Common . 6-8
6.4.4 Image F i l e s6-9
6.4.4.1 Opening Image Files 6-10
6.4.4.2 MINIT And MDISK 6-11
6.4.4.3 Multi-plane Images (COMOFF) 6-11
6.4.4.4 Example Of MINIT And MDISK 6-12
6.4.4.5 MINSK And MSKIP 6-14
6.4.5 Image File Manipulation Routines 6-14
6.4.6 Uv Data F i l e s6-15
6.4.6.1 Subarrays 6-15
6.4.6.2 Visibility Record Structure 6-16
6.4.6.3 Data Order, UVPGET 6-18
6.4.6.4 Data Reformatting Routines 6-18
6.4.6.5 UVINIT And UVDISK 6-18
6.4.6.6 Example Using UVINIT And UVDISK 6-20
6.4.7 Extension F i l e s6-22
6.4.8 Text Files 6-25
6.5 BOTTOM LEVEL I/O ROUTINES................... 6-26
6.5.1 ZMIO And ZWAIT.............................6-26
6.5.2 ZFIO...................................... 6-27
6.6 ROUTINES 6-28
6.6.1 COMOFF.................................... 6-28
6.6.2 CONVRT.................................... 6-28
6.6.3 DSKFFT.................................... 6-28
6.6.4 EXTIN I 6-29
6.6.5 E X T I O 6-31
6.6.6 GETVIS.................................... 6-31
6.6.7 GET1VS.................................... 6-32
6.6.8 K E Y I N 6-32
6.6.9 MAPSIZ.................................... 6-33
6.6.10 MAPCLS 6-33
6.6.11 MAPOPN 6-33
6.6.12 MCREAT 6-3 4
6.6.13 MDESTR 6-34
6.6.14 MDISK 6-35
6.6.15 MINIT 6-35
6.6.16 MINSK 6-36
6.6.17 MSCALE 6-37
6.6.18 MSCALF 6-3 8
6.6.19 MSCALI 6-39
6.6.20 MSKIP 6-39
6.6.21 PLNGET 6-40
6.6.22 PLNPUT 6-41
6.6.23 SETVIS 6-41

CHAPTER 6 DISK FILES

Page 7
07 May 84

6.6.24 SET1VS6-42
6.6.25 UVCREA6-42
6.6.26 UVDISK6-43
6.6.27 UVINIT6-44
6.6.28 UVPGET6-45
6.6.29 ZCLOSE6-46
6.6.30 ZCMPRS6-47
6.6.31 ZCREAT6-47
6.6.32 ZDESTR6-47
6.6.33 ZEXPND6-48
6.6.34 ZFIO...................................... 6-48
6.6.35 ZMIO...................................... 6-49

6.6.36 ZOPEN6-49
6.6.37 ZPHFIL6-50
6.6.38 ZTCLOS6-50
6.6.39 ZTOPEN6-51
6.6.40 ZTREAD6-51
6.6.41 ZWAIT6-51

CHAPTER 7 DEVICES
7.1 OVERVIEW...................................... 7-1
7.2 TAPE D R I V E S7-1
7.2.1 Opening Tape Files...........................7-2

7.2.2 Positioning Tapes 7-2
7.2.3 I/O To Tape F i l e s7-3
7.2.3.1 MINIT/MDISK And UVINIT/UVDISK............. 7-3
7.2.3.2 ZFIO...................................... 7-3
7.2.3.3 V B O U T 7-3
7.2.4 Tape Data Structure......................... 7-3

7.3 GRAPHICS DISPLAYS 7-4
7.3.1 Opening The Graphics Terminal................. 7-4
7.3.2 Writing To The Graphics Terminal............. 7-4
7.3.3 Activating And Reading The Cursor............. 7-5

7.3.4 Updating The Image Catalog 7-5
7.3.5 An Example.................................. 7-6
7.4 INCLUDES...................................... 7-8
7.4.1 CTKS.INC.................................... 7-8
7.4.2 CTVC.INC.................................... 7-8
7.4.3 DTKS.INC.................................... 7-8
7.4.4 DTVC.INC.................................... 7-8
7.5 ROUTINES...................................... 7-9
7.5.1 ICINIT...................................... 7-9
7.5.2 ICWRIT...................................... 7-9
7.5.3 M D I S K 7-9
7.5.4 M I N I T 7-10
7.5.5 TEKFLS.................................... 7-11
7.5.6 TEKVEC.................................... 7-11
7.5.7 TKCHAR.................................... 7-12
7.5.8 T K C L R 7-12
7.5.9 TKCURS.................................... 7-12

7.5.10 TKDVEC 7-12
7.5.11 UVDISK 7-13
7.5.12 UVINIT 7-14
7.5.13 VBOUT 7-15

Page 8
07 May 84

7.5.14 YTVCIN7-15
7.5.15 ZOPEN7-16
7.5.16 ZPHFIL7-16
7.5.17 ZTAPE7-17

CHAPTER 8 WAWA ("EASY") I/O
8.1 OVERVIEW...................................... 8-1
8.2 SALIENT FEATURES OF THE WAWA I/O PACKAGE........8-1

8.3 NAMESTRINGS 8-2
8.4 SUBROUTINES.................................. 8-3
8.5 THINGS WAWA CAN* T DO WELL OR AT A L L 8-4
8.5.1 Non-map Files................................8-4
8.5.2 UV Data Files.................................8-4

8.5.3 Plotting 8-4
8.5.4 History.................................... 8-4
8.5.5 More Than 5 I/O Streams At A Time............. 8-4
8.5.6 I/O To Tapes. 8-5

8.6 ADDITIONAL GOODIES AND "HELPFUL" HINTS 8-5
8.6.1 Use Of L U N s8-5
8.6.2 WaWa Commons.................................8-5
8.6.2.1 Information Common......................... 8-5

8.6.2.2 Catalogue And Buffer Commons. 8-6
8.6.2.3 Declaration Of Commons...................... 8-7
8.6.3 Error Return Codes............ • • • • • • • • 8-7
8.7 INCLUDES...................................... 8-8
8.7.1 IBU1.INC.................................... 8-9
8.7.2 IBU2.INC 8-9
8.7.3 IBU3.INC.................................... 8-9
8.7.4 IBU4.INC.................................... 8-9
8.7.5 IBU5.INC.................................... 8-9
8.7.6 IITB.INC...................................8-10
8.7.7 DCAT.INC...................................8-10
8.7.8 CBUF.INC.................................. 8-10
8.7.9 CITB.INC...................................8-10
8.7.10 CCAT.INC....................... 8-11

8.7.11 EBUF.INC 8-11
8.7.12 ECAT.INC 8-11
8.7.13 ZFT5.INC 8-11
8.8 DETAILED DESCRIPTIONS OF THE SUBROUTINES. . . . 8-12

8.8.1 CLENUP.................................... 8-12
8.8.2 FILCLS.................................... 8-12
8.8.3 F I L C R 8-12
8.8.4 FILDES.................................... 8-12
8.8.5 F I L I O 8-12
8.8.6 FILOPN.................................... 8-13
8.8.7 GETHDR.................................... 8-13
8.8.8 HDRINF.................................... 8-13

8.8.9 IOSET1, IOSET2, IOSET3, IOSET4, And IOSET5 . . 8-13
8.8.10 MAPCR 8-14
8.8.11 MAPFIX 8-14
8.8.12 MAPIO 8-14
8.8.13 MAPMAX 8-15
8.8.14 MAPWIN 8-15
8.8.15 MAPXY 8-15

Page 9
07 May 84

8.8.16 OPENCF................... 8-15
8.8.17 TSKBE1, TSKBE2, TSKBE3, TSKBE4, And TSKBE5 . . 8-16
8.8.18 TSKEND8-16
8.8.19 UNSCR8-16

CHAPTER 9 USING THE TV DISPLAY
9.1 OVERVIEW...................................... 9-1
9.1.1 Why Use (or Not Use) The TV Display?..........9-1
9.1.2 The AIPS Model Of A TV Display Device..........9-2
9.2 FUNDAMENTALS OF THE CODING..................... 9-4

9.2.1 The Parameter Commons And Their Maintenance . . 9-4
9.2.2 The I/O Routines.............................9-6
9.2.3 The Y Routines:.............................9-7
9.2.3.1 Level 09-7
9.2.3.2 Level 19-8
9.2.3.3 Level 29-9
9.2.3.3.1 IIS Models 70 And 7 5 9-9
9.2.3.3.2 DeAnza.................................9-10

9.3 CURRENT APPLICATIONS 9-11
9.3.1 Status Setting.............................9-11
9.3.2 Load Images, Label......................... 9-12
9.3.3 U V M A P9-14
9.3.4 APCLN, VM, MX, Et A1........................ 9-14
9.3.5 Plot Files (TVPL) 9-18

9.3.6 Transfer Function Modification, Zooming . . . 9-19
9.3.7 Object Location, Window Setting 9-21

9.3.8 Blotch Setting, U s e 9-23
9.3.9 Roam..................................... 9-23

9.3.10 Movie, Blink 9-24
9.3.11 Non-standard Tasks 9-24

9.4 INCLUDES.....................................9-25
9.4.1 DTVC.INC...................................9-25
9.4.2 CTVC.INC...................................9-25
9.4.3 DTVD.INC...................................9-25
9.4.4 CTVD.INC...................................9-26

9.5 Y-ROUTINE PRECURSOR REMARKS: 9-26
9.5.1 Level 09-26

9.5.1.1 YCHRW 9-26
9.5.1.2 YCNECT 9-26

9.5.1.3 YCUCOR........... 9-27
9.5.1.4 YCURSE...................................9-27

9.5.1.5 YGRAPH 9-28
9.5.1.6 YLNCLR...................................9-28

9.5.1.7 YSLECT 9-28
9.5.1.8 YTVCIN...................................9-29

9.5.1.9 YZERO 9-29
9.5.1.10 YTVCLS 9-29
9.5.1.11 Y T V M C 9-30
9.5.1.12 YTVOPN 9-30

9.5.2 Level 19-30
9.5.2.1 YCRCTL...................................9-30

9.5.2.2 YIMGIO 9-31
9.5.2.3 Y I N I T9-31
9.5.2.4 YLUT.....................................9-31

Page 10
07 May 84

9.5.2.5 YOFM..................... 9-32
9.5.2.6 YSCROL9-32
9.5.2.7 YSPLIT9-32
9.5.2.8 YZOOMC9-33
9.5.3 Level 2 (Used As Level 1 In Non-standard Tasks) 9-33
9.5.3.1 YALUCT9-33
9.5.3.2 YFDBCK9-3 4
9.5.3.3 YGYHDR9-34
9.5.3.4 YIFM.................................... 9-35
9.5.3.5 YRHIST................................. 9-35

9.5.4 Selected Applications Subroutines9-35
9.5.4.1 TVOPEN9-35
9.5.4.2 TVCLOS9-36
9.5.4.3 TVFIND9-36
9.5.4.4 TVWIND9-36
9.5.4.5 TVLOAD9-37
9.5.4.6 TVFIDL9-37
9.5.4.7 IMANOT9-38
9.5.4.8 IMCHAR9-38
9.5.4.9 IMVECT9-3 9
9.5.4.10 IENHNS9-39
9.5.4.11 DLINTR9-3 9
9.5.4.12 RNGSET9-40
9.5.4.13 DECBIT9-40
9.5.4.14 MOVIST9-40

CHAPTER 10 PLOTTING
10.1 OVERVIEW.................................... 10-1
10.2 PLOT FILES.................................. 10-2
10.2.1 General Comments............................10-2
10.2.2 Structure Of A Plot File................... 10-2
10.2.3 Types Of Plot File Logical Records..........10-3
10.2.3.1 Initialize Plot Record.................... 10-3
10.2.3.2 Initialize For Line Drawing Record.........10-4
10.2.3.3 Initialize For Grey Scale Record.......... 10-4

10.2.3.4 Position Record. 10-4
10.2.3.5 Draw Vector Record. 10-5

10.2.3.6 Write Character String Record............. 10-5
10.2.3.7 Write Pixels Record....................... 10-5

10.2.3.8 Write Misc. Info To Image Catalog Record. . 10-5
10.2.3.9 End Of Plot Record........................ 10-6
10.3 PLOT PARAFORM T A S K S 10-6

10.3.1 Introduction 10-6
10.3.2 Getting Started 10-7

10.3.3 Labeling The P l o t 10-7
10.3.4 Plotting 10-8

10.3.5 Map I / O 10-8
10.3.6 Cleaning U p10-9

10.3.7 The Three Paraform Plot Tasks 10-10
10.3.7.1 PFPL1 10-10
10.3.7.2 PFPL2 10-11
10.3.7.3 PFPL3 10-12
10.3.8 Routines • . . • • • . • • • • • • • • • • . . 10-13
10.3.8.1 PLEND 10-13

10.3.8.2 PLPOS 10-13
10.3.8.3 PLVEC 10-13
10.3.8.4 PLMAKE 10-13
10.3.8.5 PLGRY 10-14
10.3.8.6 MAKNAM 10-14
10.3.8.7 INTMIO 10-14
10.3.8.8 REXMIO..................................10-15

10.3.8.9 GETROW 10-15

Page 11
07 May 84

CHAPTER 11 USING THE ARRAY PROCESSORS
11.1 OVERVIEW.................................... 11-1
11.1.1 Why Use The Array Processor?............... 11-1

11.1.2 When To Use And Not To Use The AP. 11-2
11.2 THE AIPS MODEL OF AN ARRAY PROCESSOR..........11-2
11.3 HOW TO USE THE ARRAY PROCESSOR............... 11-4
11.3.1 AP Data Addresses......... 11-4

11.3.1.1 Pseudo 1*4 Addresses 11-4
11.3.1.2 Array Processor Memory Size 11-5

11.3.2 Assigning The AP11-5
11.3.3 Data Transfers To And From The AP............11-6
11.3.4 Loading And Executing AP Programs........... 11-7

11.3.5 Timing Calls.............................. 11-7
11.3.6 Writing AP Routines............... 11-8
11.3.6.1 Microcoding Routines...................... 11-8
11.3.6.2 Vector Function Chainer................... 11-9
11.3.7 FFTs 11-9

11.4 PSEUDO-ARRAY PROCESSOR 11-10
11.5 EXAMPLE OF THE USE OF THE A P 11-10
11.6 INCLUDES.................................... 11-13

11.6.1 CAPC.INC 11-13
11.6.2 CBPR.INC 11-13
11.6.3 CDCD.INC 11-14
11.6.4 DAPC.INC 11-14
11.6.5 DBPR.INC 11-14
11.6.6 DDCH.INC 11-14
11.6.7 EAPC.INC 11-15
11.6.8 IDCH.INC 11-15
11.7 ROUTINES.................................... 11-16

11.7.1 Utility Routines 11-16
11.7.1.1 APIO.................................... 11-16

11.7.1.2 BPROLL11-17
11.7.1.3 DSKFFT11-17
11.7.1.4 PEAKFN11-18
11.7.1.5 PLNGET11-19
11.7.1.6 ZP4I411-20
11.7.2 Array Processor Routines 11-20
11.7.3 AP Routine Call Sequences 11-23
11.7.3.1 A P G E T11-23
11.7.3.2 APGSP11-23
11.7.3.3 APPUT11-24
11.7.3.4 APRFT11-24
11.7.3.5 APWAIT11-24
11.7.3.6 APWD.................................... 11-25
11.7.3.7 APWR.................................... 11-25

Page 12
07 May 84

11.7.3.8 BOXSUM 11-25
11.7.3.9 BPINIT 11-25
11.7.3.10 BPRLSE 11-25
11.7.3.11 CFFT................. 11-26
11.7.3.12 CRVMUL 11-26
11.7.3.13 CSQTRN 11-26
11.7.3.14 CVCMUL 11-27
11.7.3.15 CVCONJ 11-27
11.7.3.16 CVEXP 11-27
11.7.3.17 CVJADD 11-28
11.7.3.18 CVMAGS 11-28
11.7.3.19 CVMMAX 11-28
11.7.3.20 CVMOV 11-29
11.7.3.21 CVMUL 11-29
11.7.3.22 CVSDIV............... 11-29
11.7.3.23 CVSMS 11-30
11.7.3.24 DIRADD 11-30
11.7.3.25 HIST................. 11-30
11.7.3.26 LVGT................. 11-31
11.7.3.27 MAXMIN 11-31
11.7.3.28 MAXV................. 11-31
11.7.3.29 MINV................. 11-32
11.7.3.30 MTRANS 11-32
11.7.3.31 PHSROT 11-32
11.7.3.32 POLAR 11-33
11.7.3.33 RECT................. 11-33
11.7.3.34 RFFT................. 11-33
11.7.3.35 S V E 11-34
11.7.3.36 SVESQ 11-34
11.7.3.37 VABS................. 11-34
11.7.3.38 VADD................. 11-34
11.7.3.39 VCLIP 11-35
11.7.3.40 VCLR................. 11-35
11.7.3.41 VCOS................. 11-35
11.7.3.42 VDIV................. 11-36
11.7.3.43 VEXP................. 11-36
11.7.3.44 VFILL 11-36
11.7.3.45 VFIX................. 11-36
11.7.3.46 VFLT................. 11-37
11.7.3.47 VIDIV 11-37
11.7.3.48 V L N 11-37
11.7.3.49 V M A 11-38
11.7.3.50 VMOV................. 11-38
11.7.3.51 VMUL................. 11-38
11.7.3.52 VNEG................. 11-39
11.7.3.53 VRVRS 11-3911.7.3.54 VSADD 11-39
11.7.3.55 VSIN................. 11-40
11.7.3.56 VSMA................. 11-40
11.7.3.57 VSMAFX 11-40
11.7.3.58 VSMSA 11-41
11.7.3.59 VSMUL 11-41
11.7.3.60 V S Q 11-41
11.7.3.61 VSQRT 11-42
11.7.3.62 VSUB................. 11-42
11.7.3.63 VSWAP 11-42

11.7.3.6 4 VTRANS.................................. 11-43

CHAPTER 12 THE Z ROUTINES
12.1 OVERVIEW.................................... 12-1

12.1.1 Device Characteristics Common 12-2
12.1.2 FTAB...................................... 12-2
12.1.3 Disk Files.................................12-3

12.1.3.1 Binary (data) Files 12-3
12.1.3.2 Text Files...............................12-4
12.2 DATA MANIPULATION ROUTINES................... 12-5

12.3 DISK I/O AND FILE MANIPULATION ROUTINES 12-6
12.4 SYSTEM FUNCTIONS 12-7
12.5 DEVICE (NON-DISK) I/O ROUTINES 12-8

12.6 DIRECTORY AND TEXT FILE ROUTINES............. 12-9
12.7 MISCELLANEOUS...............................12-9

12.8 INCLUDES.................................... 12-10
12.8.1 CDCD.INC12-10
12.8.2 CMSG.INC12-10
12.8.3 DDCH.INC12-11
12.8.4 DMSG.INC12-11
12.8.5 IDCH.INC12-11
12.9 ROUTINES.................................... 12-12

12.9.1 Data Manipulation 12-12
12.9.1.1 ZCLC812-12
12.9.1.2 ZC8CL12-12
12.9.1.3 ZI16IL12-12
12.9.1.4 ZI32IL12-12
12.9.1.5 ZI8L812-13
12.9.1.6 ZILI1612-13
12.9.1.7 ZP4I412-13
12.9.1.8 ZR8P412-14
12.9.2 Disk I/ O................................... 12-14
12.9.2.1 ZCMPRS12-14
12.9.2.2 ZCREAT12-14
12.9.2.3 ZDESTR12-15
12.9.2.4 ZEXIST12-15
12.9.2.5 ZEXPND12-15
12.9.2.6 ZFIO.................................... 12-16
12.9.2.7 ZMIO.................................... 12-16
12.9.2.8 ZMSGCL12-17
12.9.2.9 ZMSGDK12-17
12.9.2.10 ZMSGOP12-17
12.9.2.11 ZOPEN12-18
12.9.2.12 ZPHFIL12-18
12.9.2.13 ZRENAM12-19
12.9.2.14 ZWAIT12-19
12.9.3 System Functions12-20
12.9.3.1 ZCPU.................................... 12-20
12.9.3.2 ZDATE12-20
12.9.3.3 ZDELAY12-20
12.9.3.4 ZPRIO12-20
12.9.3.5 ZTACTQ12-21
12.9.3.6 ZTIME12-21
12.9.3.7 ZTRSUM12-21

Page 13
07 May 84

12.9.3.8 ZFREE 12-21
12.9.3.9 ZSTAIP 12-22
12.9.3.10 ZSUSPN 12-22
12.9.3.11 ZTKILL 12-22
12.9.3.12 ZTQSPY 12-22
12.9.3.13 ZWHOMX 12-23
12.9.4 Non-disk I/O Routines • • • • • • • • • • • • 12-23
12.9.4.1 ZDOPRT 12-23
12.9.4.2 ZENDPG 12-23
12.9.4.3 ZTAPE 12-24
12.9.4.4 ZTKBUF 12-24
12.9.4.5 ZTTY10 12-25
12.9.4.6 ZTVMC 12-25
12.9.4.7 ZPRMPT 12-25
12.9.5 Directory And Text File12-25

12.9.5.1 ZTCLOS 12-25
12.9.5.2 ZTOPEN 12-26
12.9.5.3 ZTREAD 12-26
12.9.5.4 ZTXMAT 12-26
12.9.5.5 ZGTDIR 12-27
12.9.6 Miscellaneous 12-27
12.9.6.1 ZDCHIN 12-27
12.9.6.2 ZMATH4 12-27
12.9.6.3 ZKDUMP 12-28

Page 14
07 May 84

CHAPTER 13 FITS TAPES
13.1 OVERVIEW.................................... 13-1
13.2 PHILOSPHY.................................. 13-1
13.3 IMAGE F I L E S13-2

13.3.1 Overall Structure 13-2
13.3.2 Header Records • • • • . • • • 13-3
13.3.2.1 Keywords....................... 13-4
13.3.2.2 History 13-5
13.3.2.3 AIPS Nonstandard Image File Keywords 13-6
13.3.2.4 Coordinate Systems 13-7
13.3.2.5 Example Image Header 13-8
13.3.2.6 Units 13-10
13.3.3 Data Records...........13-10
13.4 RANDOM GROUP (UV DATA) FILES................. 13-10

13.4.1 Header Record 13-11
13.4.2 Data Records...............................13-12

13.4.2.1 Weights And Flagging 13-12
13.4.2.2 Antennas And Subarrays 13-13
13.4.2.3 Coordinates 13-13
13.4.2.4 Sort Order...............................13-14

13.4.3 Typical VLA Record Structure 13-14
13.5 EXTENSION F I L E S13-16

13.5.1 Standard Extension 13-16
13.5.2 Tables Extension 13-18
13.5.2.1 Tables Header Record 13-18
13.5.2.2 Table Data Records13-20

13.5.2.3 Example Table Header And Data 13-20
13.5.3 Older AIPS Tables 13-21
13.5.3.1 General Form Of Header 13-21

Page 15
07 May 84

13.5.3.2 Data Records 13-22
13.5.3.3 CC Files.................................13-22
13.5.3.4 AN Files.................................13-22
13.6 AIPS FITS INCLUDES........................... 13-23
13.6.1 DFUV.INC 13-24
13.6.2 DFIT.INC 13-24
13.6.3 EFUV.INC 13-24
13.6.4 EFIT.INC 13-24
13.6.5 VFUV.INC.................................. 13-25
13.6.6 VFIT.INC 13-26
13.7 AIPS FITS PARSING ROUTINES................... 13-27
13.7.1 FPARSE 13-28
13.7.2 GETCRD 13-28
13.7.3 GETLOG 13-29
13.7.4 GETNUM 13-29
13.7.5 GETSTR 13-29
13.7.6 GETSYM 13-29
13.8 REFERENCES...................................13-30

CHAPTER 1
INTRODUCTION

1.1 SCOPE
This document is intended for programmers who are familiar with

general programming practices and Fortran in particular and who are
familiar with the common techniques for manipulating astronomical
data. This manual is intended to be used in conjunction with the AIPS
manual, especially volumes 2 and 3 and should be of use to casual as
well as serious programmers wishing to program using the AIPS system.
.Going ZLIZS. is not intended to be an exhaustive description of the
functions and subroutines available in AIPS but rather to illustrate
general techniques.

1.2 HEY YOU, READ THIS.
This manual is designed for a wide variety of users; ranging

from those wishing to add 1 line of code to an existing task to the
poor soul who has to assume the care and feeding of AIPS in the case
all the current AIPS programmers are hit by a truck. While the weight
of this manual would tend to bring on attacks of massive depression or
homicidal mania in the lighter users from the above mentioned range,
it should be noted that, for many purposes, only a small fraction of
the material in this manual is necessary in order to program in the
AIPS system. The following table suggests courses of action for
various situations.

- "I want to get my data into AIPS."
There are a number of skeleton tasks which make this

relatively straightforward — frequently requiring several
hours of effort. See the chapter on the skeleton tasks and
ignore the rest of this manual unless you run into problems.

- "I just want to do something simple to my data."
See the chapter on skeleton tasks. There are two tasks,

FUDGE and TAFFY, which read uv data or an image, pass the
data to a user provided subroutine and write what comes back
into a new file. All of the messy stuff is already taken care of.

INTRODUCTION
HEY YOU, READ THIS

Page 1-2
07 May 84

"I have this idea."
This requires a bit more understanding about how AIPS

works. Read the rest of this chapter, the chapter on the
skeleton tasks, the chapter on tasks, and the chapter on disk
I/O. Depending on the application several other chapters may
be relevant. Then find an existing task that is closest to
your need and start from there. For a great many purposes
the skeleton tasks are a good place to start.
"I have lots of ideas."

Find a comfortable chair, open a six pack of beer and
start reading
"We just bought the Whizbang 8000 computer and want to run
AIPS on it."

Read all of this manual, then give us a call.
"Why didn't you %#&(*&! see that #&*@!~% truck."

Read it all, then write the parts left out. Lots of
luck.

1.3 PHILOSOPHY
The NRAO Astronomical Image Processing System (AIPS) is designed

to give the astronomer an integrated system of flexible tools with
which to manipulate a wide variety of astronomical data. To be of
maximum benefit to the general astronomical community and to increase
the useful lifetime of the software, the AIPS system has gone to great
lengths to isolate the effects of the particular computer and
installation on which it is run. Needless to say, this portability
requirement makes the programmer's life more difficult.

The routines which depend on the host machine or operating system
are denoted by using a nZ" as the first character of the name; these
are refered to as the "Z routines". No other "standard" routines
should depend on the host machine or operating system to work
properly. Routines which depend on the particular television display
device are denoted with names beginning with a "Y"; these are the "Y
routines".

It has been argued that it is not worth the additional effort to
isolate the machine dependencies; We are all aware of usable packages
that have died because they were strongly tied to a particular
computer. VAXes currently dominate the astronomical computing
community but those with a sufficiently long memory will recall that
IBM 360s and 370s and CDC Cybers had a similar stranglehold during the
60s and early 70s. By not tying ourselves to a particular computer or
even vendor, we have the freedom to buy hardware from the vendor who
offers the most cost effective models. This strategy should allow the

INTRODUCTION
PHILOSOPHY

Page 1-3
07 May 84

AIPS system to last longer than previous systems so we can spend more
time investigating new algorithms and less time patching or recoding
old programs every time we change computer.

In addition to isolating machine dependencies, we advocate
modular program structure. By this we mean that the main program
should be relatively short and should basically call routines each of
which has a well defined and limited function. Modular coding is
especially important for machines on which most programs must be
overlaid (hopefully a dying species), but it also makes the code
easier to debug, easier to maintain, and very importantly, easier from
which to steal pieces. Routines which may be of use in other
applications should be coded in as general a form as possible and
placed in the appropriate AIPS subroutine library. This may take
longer in the short run but should pay off in the long run.

Another philosophical feature of AIPS is that the programs should
run as quickly as possible without making the code too difficult to
maintain. This is frequently a matter of judgment but, in general,
tricks and excessive cleverness should be avoided.

Since many of the most expensive AIPS tasks are I/O limited, the
AIPS I/O system has been designed for maximum performance. In
general, this means that I/O is done in a double buffered mode, in as
large blocks as possible, with fixed logical record size and programs
work directly out of the I/O buffers. This makes many of the features
of the I/O system which are normally hidden from the programmer much
more obvious and allows the I/O to run as fast as the computer can
manage.

The AIPS philosophy has always been that it should always be
possible to determine what has been done to a data set. For this
purpose, every cataloged data file has an associated history file in
which a permanent record is kept of the processing done to the data in
that file. It is the responsibility of the programmer to insure the
integrity of the history. In addition to the history files, most
communications between the user and AIPS or tasks are logged in a file
which can be printed.

1.4 AN OVERVIEW OF THE AIPS SYSTEM
The AIPS system consists of several distinct parts. First and

most obvious to users is the program called AIPS. This program, based
around the People Oriented Parsing System (POPS), interacts with the
user, performs many of the display functions, does some manipulation
of data and initiates other programs which run asynchronously from
AIPS. Functions built into AIPS are called verbs, the asynchronous
programs are called tasks, and both are controlled by the values of
parameters in the POPS processor known as adverbs. A third type of
program in the AIPS system is the standalone utility program which is
mostly of interest to the AIPS system manager.

INTRODUCTION
AN OVERVIEW OP THE AIPS SYSTEM

Page 1-4
07 May 84

1.4.1 Tasks
Communication between the AIPS program and the tasks it spawns is

fairly limited. When a task is initiated from AIPS an external file
is read which specifies the number and order of adverbs whose values
are sent to the task. These values, along with some "hidden" values,
are written into a disk file. AIPS then initiates the requested task
and suspends itself indefinitely. The task reads the disk file and
depending on the value of a logical "hidden" adverb (DOWAIT in AIPS
and RQUICK in the task) may resume AIPS. The task then does the
requested operation and before stopping resumes AIPS if this was not
done previously. The task sends AIPS a return code when AIPS is
resumed.

Tasks are used for operations which either require much computer
memory or CPU time or both, whereas verbs are used for operations
which take no longer than a few seconds to finish. Since the tasks
run asynchronously from AIPS, the user may do other things while one
or more tasks are running. Since there is a minimal interaction
between AIPS and tasks, programming tasks is much simpler than
programming verbs; AIPS does not need to be modified to install a new
task. Tasks may communicate directly to the user.

1.4.2 Verbs
Verbs are the functions built into the AIPS program itself. Many

of these involve the display of images and most of the interactive
features of the AIPS system. POPS is a programming language itself,
and complicated combinations of tasks and verbs may be assembled into
POPS procedures. Verbs but not tasks may change the value of POPS
adverbs.

The AIPS program is very modular and most verbs are implemented
via a branch table contained in an external file. Most of the adverbs
are called from subroutines with names like AU1, AU2, AU5C etc. A
table read from an external text file determines the subroutine and a
function number for each function. The values of adverbs are
contained in a common.

1.4.3 Data Files
Data is kept in files which are catalogued in AIPS. At present

we have two kinds of data (more are possible): images and uv data.
The internal structure is much like that of a FITS format tape except
that the data may be in floating point format. Associated with each
main data file may be up to 10 types of auxiliary information files
with up to 255 versions of each type. The basic information about the
main data file and the existence of the auxiliary files (called
extension files) is kept in a catalog file. Bookkeeping and other
information is kept in the first record of most of the extension
files. One example of the extension file is the History file in which
a record of the processing of the data is automatically logged by the

INTRODUCTION
AN OVERVIEW OF THE AIPS SYSTEM

Page 1-5
07 May 84

AIPS tasks.

1.4.4 I/O
The AIPS system has two basic types of files and two types of I/O

to access them. The main data files which are assumed to contain the
bulk of the data are read in a double buffered mode with large blocks
being transferred. The extension files are read by single buffered
transfers of 512 bytes. Both types are intrinsically random access;
however, in practice the main data file access is sequential but the
extension file access is frequently random. For the main data file,
I/O tasks usually work directly from the I/O buffer. More details
about the I/O routines can be found in the chapter on I/O.

1.5 STYLE
1.5.1 Precursor Comments

The main point of this exercise is to make routines
comprehensible to programmers who read them. Comment statements are
the most powerful tool for this purpose. "Prologue" comments are
placed immediately following the PROGRAM, SUBROUTINE, or FUNCTION
statement. These comments explain the purpose and methods of the
routine, the input and output arguments, any use of variables in
commons, and any special coding techniques or limitations in the
transportability of the routine. Prologue comments do not need to be
verbose, but they must explain most things which a programmer must
know about calling the routine. Routines must have acceptable
prologue comments before they will be accepted into the AIPS system.
As a simple example, consider:

SUBROUTINE COPY (N, KFROM, KTO)

C COPY copies integer words from one array to another
C Inputs: N 1*2 number of words to be copied
C KFROM 1*2(N) source array
C Outputs: KTO I*2(N) destination array

INTEGER*2 N, K FROM(1), KTO(l)

C no copy: N <= 0

IF (N.LE.O) GO TO 999
DO 10 I = 1,N

KTO(I) = KFROM(I)
10 CONTINUE
C
999 RETURN

END

INTRODUCTION Page 1-6
STYLE 07 May 84

1.5.2 Body Comments
"Body" comments are placed at strategic locations throughout the

body of the code. They act as sign posts to alert the reader to each
logical block of code and also to clarify any difficult portions.
Ideal places for body comments are prior to DO loops and IF clauses.
Body comments within a routine must all begin in the same column and
that column should be near column 41. Body comments (and prologue
comments) should be typed in lower case letters. This helps to
separate visually the comments from the program text (which must be
all in upper easel!!).

1.5.3 Indentation
Another powerful tool to illustrate to the reader the logical

structure of a routine is indentation. By indenting statements to
indicate that they belong together, one can enhance greatly the
readability of one's programs. Each step of indentation shall be
three (3) spaces, beginning in column 7. Numbered CONTINUE statements
should be employed to enhance the indentation pattern. DO loops and
IF clauses are prime candidates for indentation. As an example,
consider:
C Multiply by transform matrix

DO 10 I - 1,3
VEC(I) = 0.0
DO 10 J = 1,3

VEC(I) = VEC(I) + TMATX(I,J)*VEC0(J)
10 CONTINUE
C Unit vector to polar
C Case at pole

IF ((X.NE.0.0) .OR. (Y.NE.0.0)) GO TO 20
ALPHA =0.0
DELTA = 0.0
GO TO 30

20 CONTINUE
ALPHA = ATAN2 (X, Y)
DELTA = SQRT (X*X + Y*Y)

30 PDIST = ATAN2 (Z, DELTA)
IF (A.LT.B) GO TO 40

C = A
A = B
B = C

40 CONTINUE
Z = Z ** (B-A)

Swap to increasing order

Note that all DO loops end with CONTINUE statements rather than
some executable statement. This enhances legibility as well as
preventing compilation errors on those statements which are not
allowed, by some compilers, to be the last statement in a DO loop.

INTRODUCTION
STYLE

Page 1-7
07 May 84

1.5*4 Statement Numbers
The use of GO TO statements is the cause of most logic errors in

programming. Unfortunately, FORTRAN offers us no alternative.
However with the use of standard indentation and statement numbering
schemes, errors can be reduced and readability enhanced. Statement
numbers must increase through the routine and should be integer
multiples of 5 or 10. They should not exceed 999. Format numbers
should have 4 digits with the low order 3 giving the nearest preceding
statement number to the first statement using that format. All
statement numbers are left justified beginning in column 2.

Statement numbers can help to clarify the logical structure of a
routine. Let us consider the common example of a routine which begins
with some setup operations (e.g. file opening), then does operation
set A or B or C or D, and then does some close down operations (e.g.
file closing) before returning. Where possible, such a routine should
use statement numbers 5 - 9 5 for the setup, 100 - 195 for set A, 200 -
295 for set B, 300 - 395 for set C, 400 - 495 for set D, and 900 - 995
for the close down.

1.5.5 Blanks
Blank spaces can improve the readability of the routine as can

parentheses. Blanks should surround equals signs and separate
multiple word statements. Parentheses are a great help in compound
logical expressions. For example,

A = B
DO 10 I = 1,10
GO TO 999
CALL KPACK (IX,IY)
IF ((A.GT.B) .AND. (C.LE.D)) GO TO 20

1.5.6 Modular Code
Modularity in program design is a very important asset for many

reasons. Complicated tasks become clearer, to coder and reader alike,
when constructed from a logical sequence of smaller operations
performed by subroutine call. Such well-ordered tasks are far easier
to design, to understand, and to make work correctly than vast
monolithic single programs. Furthermore, the small operation
subroutines will often turn out to be fairly general and useful to
many other tasks as well. Programmers will have to remember that
their tasks will have to run not only in the "unlimited" address space
of 32-bit virtual computers, but also in the very limited address
space of 16-bit computers. The task should be designed in a modular
way to allow it to be overlayed on the "smaller" machines.

INTRODUCTION
STYLE

Page 1-8
07 May 84

1.5.7 Portability
The code of AIPS is intended to achieve a very high degree of

portability between computers. Programmers for the system must be
aware of this requirement and avoid the easy assumptions about such
matters as word and character lengths. The basic common /DCHCOM/
contains parameters giving the number of bits/word, words/floating
point, words/double precision floating point, and characters/floating
point. These must be used, rather than simple equivalence statements,
when dealing with "data structures" (arrays containing a mixture of
integer, character, and floating point variables). One may use DATA
statements to assign two characters to an integer and four characters
to a real and then use formats A2 and A4, respectively, to print them.
However, one cannot regard these variables as being fully packed with
characters. The technique one must use to handle data structures,
such as the map catalog data block described later in this manual,
goes as follows: One equivalences integer, real, and double precision
arrays to the full structure. Then one computes, using the parameters
in /DCHCOM/, the subscripts needed with the three types of arrays to
extract the desired quantities. The routine VHDRIN perforins this
computation for catalog blocks, storing its results in the common
/HDRCOM/. Programmers will find this routine instructive. There are
a wide variety of service routines to manipulate characers and to
compute addresses.

All of the things mentioned in this chapter should be used in
moderation. One can bury good code in a plethora of inane comments.
One can inundate statements with parentheses or spread them out with
blanks until they are no longer legible. Vastly elaborate indentation
and numbering schemes can confuse rather than aid the reader. The
creation of large numbers of very short, special purpose subroutines
will overburden linkage editors and AIPS's bookkeeping schemes. (In
this regard, AIPS already contains a wide range of useful utility
subroutines. Programmers should check to see if a function is already
available before creating additional subroutines.) Basically,
programmers should use good common sense in applying the standards
described in this chapter.

1.6 LANGUAGE
The magnitude of the AIPS project and the desire to achieve

portability of the software require a high degree of standardization
in the programming language and style. One must code in a language
which can be compiled on all machines. One must follow strict rules
in statement ordering and location so that simple preprocessors may,
when necessary, locate and modify the standard code. Everyone must
type code in the same way so that all programmers will be able to read
it with as little effort and confusion as possible. All experienced
programmers develop a personal typing style which they prefer. To
them, the rules given in this chapter may seem arbitrary, capricious,
and unworkable. Nonetheless, they are the rules to be followed when
coding for the AIPS system. Routines which do not meet these
standards will not be accepted. This project is too important and too
large to allow compromise at this level. Also, we have found these

INTRODUCTION
LANGUAGE

Page 1-9
07 May 84

rules to be fairly comfortable - after we got used to them.

1.6.1 FORTRAN
The programming language will be ANSI standard FORTRAN 66, except

for the addition of INCLUDE, ENCODE, and DECODE statements and the use
of a minimum number of local assembly language in Z routines when
absolutely required. I cannot review the entire language here, but I
urge programmers to reread a basic reference. (Do not read your local
FORTRAN IV PLUS or FORTRAN 77 manual. Use a fundamental reference
such as IBM's Fortran Language manual.) In particular, I remind
programmers that the names of commons, variables, functions, and
subroutines must begin with a letter and contain no more than six (6)
characters. In AIPS, program names may have no more than five
characters because of the need to append the value of NPOPS. Comments
are introduced by placing the capital letter C in column 1 of the
card. No in-line comments are allowed. Continuation statements are
formed by placing a non-blank character in column 6 of the card. In
AIPS, this character shall be an asterisk (*). There may be no more
than 19 continuations of a single statement. Only card columns 1 - 7 2
are used, even in comments. Executable statements at the first level
of indentation begin in column 7. TAB characters must not be left in
the code after it is typed and edited. The three non-standard
statements have the forms:

1. INCLUDE 1 <name> 1
where INCLUDE begins in column 7, the first single quote

is in column 15, the <name> is a left justified character
string of no more than 8 characters, and the second single
quote follows <name> with no blanks. The conventions for
<name> will be described later. The statement causes the
file called <name> to be inserted in the routine in place of
the INCLUDE statement.

2. ENCODE (<nchar> , <format> , <array>) <list>
where <nchar> is the total number of characters to be

encoded, <format> is the format number, <array> is the
variable into which the data are to be encoded, and <list> is
an optional list of the variables whose values are to be
encoded. The value of <nchar> may exceed the actual number
of characters to be encoded, but may not exceed the number of
characters which will fit in <array>. ENCODE performs a
formatted write into memory.

INTRODUCTION
LANGUAGE

Page 1-10
07 May 84

3.
DECODE (<nchar> , <format> , <array>) <list>
where <nchar> is the total number of characters to be

decoded, <format> is the format number, <array> is the
variable from which the data are to be decoded, and <list> is
the list of variables to receive the decoded values. DECODE
performs a formatted read from memory.

1.6.2 Statement Order
Statements must be ordered as follows. The PROGRAM, FUNCTION, or

SUBROUTINE statement must occupy the first line and must begin in
column 7. Then come the prologue comments, the body of the program,
the format statements, and the END statement. Each of these segments
will be separated by a comment delimiter line (i.e. C followed by 71
or so minus signs). The last line of the body of the routine must
have the statement number 999 and be a STOP (for programs) or RETURN
(for functions and subroutines) statement. There must be no other
STOP or RETURN statement in the routine.

Many computer systems allow declaration statements to occur in
almost any order. However, some of the simpler compilers do not.
Therefore, in AIPS, we will use the following order:

1. Data type and dimension statements: INTEGER*2, LOGICAL*2,
REAL*4, and REAL*8 in any order. We prohibit DIMENSION,
INTEGER, REAL, DOUBLE PRECISION, INTEGER*3, INTEGER*4,
LOGICAL*l, LOGICAL*4, REAL*6, and CHARACTER statements and
any use of these statements for data initialization.
COMPLEX*8 and COMPLEX*16 are allowed.

2. Common statements: COMMON. We prohibit unlabeled common and
use of the COMMON statement to give the types and dimensions
of variables.

3. Equivalence statements: EQUIVALENCE.
4. Data initialization statements: DATA. We prohibit the use

of DATA statements to initialize variables in commons.
Character data must be typed correctly. Thus, although

INTEGER*2 IC(2)
DATA IC /1IAMC1/

will work on many computers, we prohibit it. The use of
octal and hexadecimal numbers in data statements is strongly
discouraged.

INTRODUCTION
LANGUAGE

Page 1-11
07 May 84

5, Function definitions.

1.6.3 INCLUDES
INCLUDE statements are used in AIPS primarily to provide a fixed

and uniform set of declarations for commons and data structures. The
naming conventions for such INCLUDES is 1accc.INC1 , where *a' is D,
C, E, and V for the above types 1, 2, 3, and 4, respectively and 'ccc'
is a one to three character name for the INCLUDE. Since the statement
order is fixed, an include text file may contain statements of only
one of the above types. For example,

INCLUDE 1DBWT.INC'
INCLUDE 'CBWT.INC1

causes the text
C Include DBWT

INTEGER*2 BWTLUN,BWTIND,BWTREC,BWTDAT(256)
LOGICAL*2 WASERR

C End DBWT
C Include CBWT

COMMON /BWTCH/ BWTLUN,BWTIND,BWTREC,WASERR,BWTDAT
C End CBWT

to be inserted.

1.6.4 Variable Declaration
The programmer is urged to declare every variable in the routine.

This will avoid any problems with the various default data types in
various computer systems. Of particular importance, in this regard,
are those variables and constants which appear in CALL statements.
Using the example of the subroutine COPY given below, the statement

CALL COPY (2, KF, KT)
will work on some machines, but will not work on computers which
default to INTEGER*4 with an address which points to the high-order
byte. The right way to code this is:

INTEGER*2 KF(n), KT(n), N2
• • •
DATA N2 / 2 /
CALL COPY (N2, KF, KT)

All declaration statements must begin in column 7.

1.7 DOCUMENTATION
Proper documentation for both users and programmers is vital to

the success of any software system. In the AIPS system, this
documentation is primarily the responsibility of the programmer. In
the following sections the various categories of AIPS documentation

INTRODUCTION
DOCUMENTATION

Page 1-12
07 May 84

are discussed.

1.7.1 User Documentation
1.7.1.1 HELP Files - The primary source of user documentation is the
HELP file. This information is available to the user on-line from the
AIPS program. There are several types of help files: 1) task help
files, 2) general help files, and 3) adverb help files. The general
help files aid the user in finding the name of the task or verbs for a
given operation. These entries consist of the name and a one line
description of a task or verb. New tasks should be entered into the
appropriate general help files. Task help files are the primary user
documentation for a task or verb.

There are three parts of the task HELP file separated by a line
of 64 -'s. Details about the format of the HELP file are found in the
chapter on tasks.

1. INPUTS
The INPUTS section of the help file is required for any

task to run. AIPS uses this section to determine the number
and order of adverbs to be sent to the task and can check on
limits on the values. The INPUTS section also contains a
short description of the use of the task and of each of the
adverbs. A listing of the INPUTS section of the help file is
displayed on the user's terminal showing the current values
of the named adverbs when the user types "INPUT" to AIPS.

2. HELP
The HELP section of the help file gives a more detailed

description of the function of the task and a more complete
description of the meaning of each of the adverbs than the
INPUTS section. This section should also explain the default
values of the adverbs. The HELP section of the HELP file is
listed on the users terminal when the user types "HELP name".

3. EXPLAIN
The EXPLAIN section of the help file should describe the

techniques for properly using the task? hints about
reasonable value of the adverbs can be given here. A
discussion of the interaction of the given task with other
tasks is also appropriate. It is best if someone other than
the programmer writes the EXPLAIN section of the help file.
The HELP and EXPLAIN sections of the help file are written on
the line printer when the user types "EXPLAIN name" to AIPS.

INTRODUCTION
DOCUMENTATION

Page 1-13
07 May 84

1.7.1.2 AIPS Manual And Cookbook - The AIPS manual and especially the
AIPS cookbook are employed by many AIPS users as a guide to using
AIPS. In particular, many users are unaware of the existance of any
feature in AIPS not advertised in the cookbook? unfortunately, the
Cookbook only covers the most elementary portions of the AIPS system.
The AIPS manual and the Cookbook are maintained by Eric Greisen in
Charlottesville.

1.7.2 Programmer Documentation
1.7.2.1 Precursor Comments - The most fundamental source of detailed
programmer documentation in the AIPS system are comments in the source
code especially the precursor comments. A listing of all of the
precursor comments in the AIPS system can be found in the AIPS manual
volume 3. The precursor comments for all routines should describe the
use of the routine as well as the meaning, units etc. of all call
arguments. Many of the detailed descriptions of call sequences in
this manual are essentially the precursor comments of the routines.

1.7.2.2 Shopping Lists - There are a number of list of AIPS routines
with one line descriptions of their functions. These lists are a good
place to discover what utility routines are available.

1.7.2.3 CHANGE.DOC - Once source code, text files, etc. are entered
into the AIPS libraries all changes should be documented in the
CHANGE.DOC file. Installations outside of the main AIPS programming
group are encouraged to adopt this system. The CHANGE.DOC file
contains entries giving the date, name of the routine, and the name ot
the person making the change with a short description of the changes.
If a bug is being corrected, its symptoms should be described. The
CHANGE.DOC file associated with the master version of the AIPS system
is published bi-monthly in the AlPSletter.

1.7.2.4 The Checkout System - The AIPS group has instituted a
check-out system for the text files in the master version of the AIPS
system (including CHANGE.DOC). The purpose of this check out system
is to prevent different programmers from destroying each others
changes to code by trying to work on the same routines at the same
time. There are occasionally changes made in AIPS which require
changes in most or all tasks; frequently the original programmer of a
task will be unaware of these changes. For these reasons,
modifications or additions to the the master version of AIPS should
(are required to):

INTRODUCTION
DOCUMENTATION

Page 1-14
07 May 84

1. Check out the relevant files. A detailed description of the
current check-out routines may be obtained from Gary Fickling
in Charlottesville.

2. Modify the files.
3. Check the files back in.
4. Document the changes in CHANGE.DOC (which must itself be

checked out).

CHAPTER 2
SKELETON TASKS

By far the easiest way to write a new task is to find an old one
that does something similar to what is desired and change it. With
this thought in mind, we have written tasks whose sole purpose is to
be changed into something useful. These tasks take care of most of
the bookkeeping chores and make certain limited classes of operations
quite simple. The source code for these tasks is heavily commented to
aid the user in making the necessary modifications. The names and
functions of these tasks are given in the following list.

- FUDGE This task modifies an existing uv data base and writes
a new one.

- TAFFY This task modifies an existing image file and writes a
new one.

- UVFIL This task creates, catalogues and fills a new uv data
file.

- CANDY This task creates, catalogues and fills a new image
file.

- PRPLn These tasks (PRPL1, PRPL2, PRPL3) are used to generate
plots and are discussed in detail in the chapter on plotting.

Since these tasks contain most of the startup, shutdown,
cataloguing, etc. chores, they are a good place to start writing a
new task. Many of the standard AIPS tasks are cloned from FUDGE or
TAFFY. No one in the AIPS programming group has written a task from
scratch in years. This chapter will describe in some detail the
structure and use of the skeleton tasks.

2.1 DATA MODIFICATION TASKS - FUDGE AND TAFFY
There are two data modification tasks for the two types of data

files, uv data (FUDGE) and images (TAFFY). The basic structure of
these two tasks are very similar. The main routine in these tasks is
very short and calls routines to do the basic functions:

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY

1. Startup (FUDGIN in FUDGE, TAFIN in TAFFY)
initialize commons

- get adverb values
- restart AIPS (If DOWAIT is FALSE)
- find input file in catalogue
- create and catalogue output file

2. Process data (SENDUV in FUDGE, SENDMA in TAFFY)
3. Convert output file to integer form if requested (OUTMA,

TAFFY only)
4. write history (FUGHIS in FUDGE, TAFHIS, called from OUTMA in

TAFFY)
5. Shut down (DIE)

- unmark catalogue file statuses
restart AIPS if not done previously

Both FUDGE and TAFFY send one logical record (a visibility
record in uv data or a row of an image) at a time to a user supplied
subroutine. This subroutine can do some operation on the logical
record and return the result. The result is then written to an output
file. When all of the data has been processed, a final call is made
to the user routine. In this call, the routine can record any entries
to be made in the history file. In the history routine the old
history file is copied to the new file and some standard history
entries are made. Then any user supplied entries are added. More
detailed descriptions of FUDGE and TAFFY can be found in the following
sections

2.1.1 FUDGE
FUDGE sends uv data records to a user supplied routine one at a

time. The user routine performs some operation on the record and
returns the record with a flag which says whether the result is to be
kept or ignored. Many operations which require operating on several
data records can be done by sorting the data with UVSRT so that
records which are to be combined are adjacent in the data file.

If the size of the visibility record is unchanged, the only
changes needed in FUDGE for most simple operations are in the user
supplied routine DIDDLE. If the record size is changed there must be
changes made in FUDGIN so that the output file created has the correct

Page 2-2
07 May 84

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY

Page 2-3
07 May 84

size and catalogue header information. SENDUV must also be modified
so that it writes correct size records to the output file.

The source code for DIDDLE contains precursor comments explaining
the use of the routine; these comments are reproduced below.

SUBROUTINE DIDDLE (NUMVIS, U, V, W, T, IA1, IA2, VIS, RPARM,
* IRET)

C--
C This is a skeleton version of subroutine DIDDLE which allows the
C user to modify a UV data base. Visibilities are sent one at a time
C and when returned are written on the output file if so specified.
C
C Up to 10 history entries can be written by using ENCODE to
C record up to 64 characters per entry into array HISCRD. Ex:
C ENCODE (64,format #,HISCRD(1,entry #)) list
C The history is written after the last call to DIDDLE.
C
C Messages can be written to the monitor/logfile by encoding
C the message (up to 80 char) into array MSGTXT in COMMON /MSGCOM/
C and then issuing a call:
C CALL MSGWRT (priority #)
C
C Unit 1 is the line printer
C
C If IRET .GT. 0 then the output file will be destroyed iff
C it was created in the current execution.
C
C If the size of the vis record is to be changed, appropriate
C modifications should be made to CATBLK in FUDGIN before the call
C to UVCREA and LRECO in SENDUV should reflect the correct size of
C the output record.
C
C See the precursor comments for UVPGET for a description
C of the contents of COMMON /UVHDR/ which allows easy access to
C much of the information from the catalogue header (CATBLK) and
C which describes the order in which the data is given.
C
C After all data has been processed a final call will be made to
C DIDDLE with NUMVIS=-1.0D0. This is to allow for the completion of
C pending operations, i.e. preparation of History cards. Data
C returned is ignored. If valid data is to be returned then SENDUV
C should be modified.
C
C LUN's 16 and 17 are open and not available to DIDDLE.
C
C The current contents of CATBLK will be written back to the
C catalogue after the last call to DIDDLE.
C
C Inputs:
C NUMVIS R*8 Visibility number, -1.0=> final call, no data
C passed but allows any operations to be completed.
C U R*4 U in wavelengths
C V R*4 V in wavelengths
C w R*4 W in wavelengths
C T R*4 Time in days since 0 IAT on the first day for which

SKELETON TASKS Page 2-4
DATA MODIFICATION TASKS - FUDGE AND TAFFY 07 May 84

c there is data, the julian day corresponding to
c to this day can be obtained in R*8 form by:
c CALL JULDAY (CAT4(K4DOB),XDAY) where XDAY will
c be the julian day number.
c IA1 1*2 First antenna number
c IA2 1*2 Second antenna number IA1 < IA2
c RPARM(*) 1*2 Random parameter array which includes U,V,W etc
c but also any other random parameters.
c VIS(3,*) R*4 Visibilities in order real, imaginary, weight (Jy)
c
c

Nonpositive weight means the data is flagged.
c Inputs from COMMON
c NAME2(3) R*4 Name of the aux. file (12 char)
c CLAS2 (2) R*4 Class of the aux. file (6 char)
c SEQ2 1*2 Sequence number of the aux. file.
c DISK2 1*2 Volumn number of the aux. file.
c APARM(10) R*4 User array.
c BPARM(10) R*4 User array.
c BOX(4,10) R*4 User array.
c RA R*8 Right ascension of epoch CAT4(K4EPO) of phase center
c (Deg.)
c DEC R*8 Declination of epoch CAT4(K4EPO) of phase center.
c (deg)
c FREQ R*8 Frequency of observation (Hz)
c NRPARM 1*2 # random parameters.
c NCOR 1*2 # stokes parameters.
c CATBLK(256)1*2 Catalogue header record. See the chapter on
c
c

catalogues for details.
c Output:
c U R*4 U in wavelengths
c V R*4 V in wavelengths
c W R*4 W in wavelengths
c T R*4 Time in same units as input.
c RPARM R*4 Modified random parameter array. NB U,V,Wr
c time and baseline should not be modified in RPARM
c VIS R*4 Visibilities
c IRET 1*2 Return code -1 => don't write
c 0 => OK
c >0 => error, terminate.
C
C Output in COMMON
C NUMHIS 1*2 # history entries (max, 10)
C HISCRD(16,NUMHIS) R*4 History records
C CATBLK 1*2 Catalogue header block
C

There are a number of adverbs already included in FUDGE to pass
user information to the user routine; these are specifications for a
second input file and the arrays CPARM, DPARM and BOX, More or
different adverbs are readily added.

FUDGE will automatically compress the output file if the number
of visibility records in the file is reduced. The source code for
FUDGE can be found in the standard program source area; this is
usually assigned the logical name "APLPGMj" whose current value is

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY

Page 2-5
07 May 84

UMAOs[AIPS.15MAY84.APL.PGM].

2.1.2 TAFFY
TAFFY reads a selected subset (or all) of an image, sends the

image one row at a time to a user supplied routine (DIDDLE) which
operates on the row. The user routine sends back the result which may
be of arbitrary length; in particular the input row may be reduced to
a single value. The values sent back from the user supplied routine
are written into the new catalogued file. DIDDLE can defer returning
the next row; this allows the use of scrolling buffer. TAFFY can
handle multidimensional, blanked, and integer or floating format
images. The task TRANS may be used before a TAFFY clone to transpose
which ever axis is necessary to the first axis.

If the size or format of the output file is to be different from
the input file, or if it is necessary to check that the proper axis
occurs first in the data array, or if there are several possible
operations to be specified by the adverb OPCODE, then the routine
NEWHED needs to be modified. The main purpose of NEWHED is to form
the catalogue header record for the output file. For many purposes
the only modifications needed to NEWHED are to modify the values in
DATA statements from the default values supplied. The beginning
portion of NEWHED is reproduced below.

SUBROUTINE NEWHED (IRET)
C--
C NEWHED is a routine in which the user performs several operations
C associated with beginning the task. For many purposes simply
C changing some of the values in the DATA statments will be all that
C is necessary. The following functions are/can be performed
C in NEWHED:
C 1) Modifying the catalogue header block to represent the
C output file. The MINIMUM modifications required here are those
C required to define the size of the output file; ie.
C CATBLK(K2DIM) = the number of axes,
C CATBLK(K2NAX+i) = the dimension of each axis, and
C CATBLK(K2BPX) => 1 = integer*2, 2 = real*4 pixel values.
C Other changes can be made either here or in DIDDLE; the
C catalogue block will be updated when the history file is
C written.
C 2) Checking the input image and/or input parameters.
C For example, if a given first axis type such as
C Frequency/Velocity is required this should be checked. The
C routine currently does this and all that is required to
C implement this is to modify the DATA statments.
C A returned value of IRET .NE. 0 will cause the task to terminate.
C A message to the user via MSGWRT about the reason for the
C termination would be friendly. This can be done by encoding
C the message into MSGTXT, setting IRET to a non-zero value
C and issuing a GO TO 990.
C 3) Setting default values of some of the input parameters
C (OUTNAME, OUTCLASS, OUTSEQ, OUTDISK, TRC and BLC defaults are
C set elsewhere). As currently set, the default OPCODE is the

SKELETON TASKS Page 2-6
DATA MODIFICATION TASKS - FUDGE AND TAFFY 07 May 84

C
C
C
C
C
C
C
C
C-

first value in the array CODES which is set in a data statment.

C
C
C
C

C
C
C
C

Input:
CATBLK(256)
CATOLD(256)
Output:
CATBLK(256)
IRET

1*2 Output catalog header, also CAT4, CAT8
1*2 Input catalog header, also OLD4, OLD8
1*2 Modified output catalog header.
1*2 Return error code, Q=>OK, otherwise abort

INTEGER*2 LIMIT, I, FIRSTI, FIRSTO, N1, N4, N8, IRET, IFPC
REAL*4 CAT4(128) , OLD4U28)
REAL*8 CAT8 (6 4) , OLD8(6 4)
INTEGER*2 SEQIN, SEQOUT, DISKIN, DISKO, NEWCNO, OLDCNO,
* CATOLD(256), CATBLK(256), NUMHIS, JBUFSZ, ICODE
LOGICAL*2 DROP1
REAL * 4 NAMEIN(3), CLAIN(2), XSEQIN, XDISKI, NAMOUT(3),
* CLAOUT(2), XSEQO, XDISKO, BLC(7), TRC(7), OPCODE, CPARM(IO),
* DPARM(IO), HISCRD(16,10), FBLANK, BADD(10)
INTEGER*2 NCODE, NTYPES, IOFF, IERR, INDXI, INC, INDEX, ITYPE,
* NCHTYP(10)
REAL*4 CODES(10), UNITS(2,10), ATYPES(2,10), BLANK(2), TEMP,
* FCHARS(3)
LOGICAL*2 LDROP1
INCLUDE 1INCS:DDCH.INC1

1INCS:DMSG•INC1
1INCS:DHDR.INC'
INCS:CDCH.INC
1INCS:CMSG.INC'
1INCS:CHDR.INC1

/INPARM/ NAMEIN, CLAIN, XSEQIN, XDISKI, NAMOUT, CLAOUT,

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
COMMON
* XSEQO, XDISKO, BLC, TRC, OPCODE, CPARM, DPARM, BADD
COMMON /PARMS/ FBLANK,
* DROP1,
* SEQIN, SEQOUT, DISKIN, DISKO, NEWCNO, OLDCNO,
* CATOLD, JBUFSZ, ICODE
COMMON /HISTRY/ HISCRD, NUMHIS
COMMON /MAPHDR/ CATBLK
EQUIVALENCE (CATBLK, CAT4, CAT8),
DATA FCHARS /1 FREQ',1VELO',1FELO'/
DATA Nl, N4, N8 /l,4,8/,

(CATOLD, OLD4, OLD8)
BLANK /2*1 '/
User definable values
and value of OPCODES

DATA
DATA

NCODE
CODES

/0/
/ 10*'

DATA
DATA

NTYPES
ATYPES

DATA NCHTYP
/0/
/20* 1
/10*4/

Output units for each OPCODE.
Two R*4 words with 4 char. ea.
'/
Allowed number of axis types
and types.

If LDROP1 is .TRUE, then the
first axis will be dropped,
(ie, one value results from
the operation on each row.)

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY

Page 2-7
07 May 84

C
C
C

DATA LDROP1 /.FALSE./

DATA ITYPE /0/

Set desired output pixel type
0 = same as input,
1=1*2, 2=R*4;

The data modification routine in TAFFY is DIDDLE which contains
numerous precursor comments describing its use; these precursor
comments follow.

SUBROUTINE DIDDLE (IPOS, DATA, RESULT, IRET)
C --
C This is a skeleton version of subroutine DIDDLE which allows
C operations on an image one row at a time (1st dimension).
C Input, DATA, are Real*4 with blanking if necessary; output values
C are R*4 which may also be blanked. The calling routine keeps track
C of max., min. and the occurence of blanking. If DROP1 is .TRUE.,
C the calling routine expects 1 value returned per call;
C otherwise, CATBLK(K2NAX) values per call are expected returned.
C NOTE: blanked values are denoted by the value of the common variable
C FBLANK.
C DIDDLE may accumulate a scrolling buffer by returning a negative
C value of IRET. This tells the calling routine to defer writting the
C next row. If rows are deferred then and equal number of calls to
C DIDDLE will be made with no input data; this allows reading out any
C rows left in DIDDLEs internal buffers. Such a "no input call" is
C indicated by a value of IPOS(l) of -1. The writting of the returned
C values of these "no input calls" may NOT be deferred.
C Up to 10 history entries can be written by using ENCODE to
C record up to 64 characters per entry into array HISCRD. Ex:
C ENCODE (64,format #,HISCRD(1,entry #)) list
C TRC, BLC and OPCODE are already taken care of.
C The history is written after the last call to DIDDLE.
C Messages can be written to the monitor/logfile by encoding
C the message (up to 80 char) into array MSGTXT in COMMON /MSGCOM/
C and then issuing a call:
C CALL MSGWRT (priority #)
C Unit 1 is the line printer
C
C If IRET .GT. 0 then the output file will be destroyed.
C
C After all data have been processed a final call will be made to
C DIDDLE with IPOS(l)=-2. This is to allow for the completion of
C pending operations, i.e. preparation of History cards.
CC LUN's 16-18 are open and not available to DIDDLE.
C
C The current contents of CATBLK will be written back to the
C catalogue after the last call to DIDDLE.
C
C Inputs:
C IPOS(7) 1*2 BLC (input image) of first value in DATA
C IPOS(l) = -1 => no input data this call.
C IPOS(2) = -2 => last call (no input data).
C DATA(*) R*4 Input row, magic value blanked.

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY

c Values from commons:
c ICODE 1*2 Opcode number from list in NEWHED.
c FBLANK R*4 Value of blanked pixel.
c CPARM(10) R* 4 Input adverb array.
c DPARM(10) R*4 Input adverb array.
c CATBLK 1*2 Output catalog header (also CAT4, CAT8)
c CATOLD 1*2 Input catalog header (also OLD4, OLD8)
c DROP1 L*2 True if one output value per call.
c Output:
c RESULT(*) R*4 Output row.
c IRET 1*2 Return code 0 => OK
c >0 => error, terminate.
c Output in COMMON
c NUMHIS 1*2 # history entries (max. 10)
c HISCRD(16,NUMHIS) R*4 History records
c CATBLK 1*2 Catalogue header block

In addition to the adverb OPCODE to specify the desired operation
and the adverbs BLC and TRC to specify the window in the input map,
there are several user defined adverbs sent to TAFFY, These are the
arrays CPARM and DPARM; more and/or other adverbs can be added.

If the output file from TAFFY is to be in the form of scaled
integers, the temporary results are kept in a scratch file. More
details about TAFFY can be found in the comments in the source version
of the program. The source code for TAFFY can be found in the
standard program souce area; this is usually assigned the logical
name ”APLPGM:n whose current value is UMAO:[AIPS.15MAY84.APL.PGM].

2.2 DATA ENTRY TASKS (UVFIL AND CANDY)
There is a pair of skeleton tasks for entering data into AIPS,

UVFIL for uv data and CANDY for images. These tasks are used to enter
either observational or model data into the AIPS system. CANDY
especially has been used a number of times and usually takes a couple
of hours to produce a working program.

These tasks each have two subroutines which may need to be
supplied or modified. The first routine is the one to create the new
header record and for UVFIL to enter information about the antennas,
most of the modifications required are to change data statements from
the supplied default values. The beginning portion of these routines
will be given with the detailed descriptions of UVFIL and CANDY.
Details about the catalogue header record are given in the chapter on
catalogues.

The second routine, to be supplied by the user, generates the
data to be written to the output file. This may be done by reading an
external disk or tape file or by any other means.

The basic structure of UVFIL and CANDY are very similar. The
main routine in these tasks is very short and calls routines to do the
basic functions:

Page 2-8
07 May 84

1. Startup (UVFILN in UVFIL, CANIN in CANDY)
- initialize commons
- get adverb values
- restart AIPS (If DOWAIT is FALSE)

SKELETON TASKS
DATA ENTRY TASKS (UVFIL AND CANDY)

2. Create new catalogue header record (NEWHED)
- create and catalogue output file
- Enter antenna information (In UVFIL only)

3. Read/generate data (GETUV in UVFIL, MAKMAP in CANDY)
4. Convert output file to integer format if requested (CANDY

only in OUTMA)
5. Write history (and antenna file) (FILHIS in UVFIL, CANHIS in

CANDY)
6. Shut down (DIE)

- Unmark catalogue file statuses
- Restart AIPS if not done previously

2.2.1 UVFIL
UVFIL creates, catalogues and fills an AIPS uv data file. It can

be used either to translate uv data from another format or generate
model data. Since clones of this task are likely to be specialized,
some of the AIPS transportability requirements may be relaxed. In
particular, the source code for UVFIL expects the names of external
text files to be opened and read by normal Fortran calls. UVFIL comes
with specific example code reading such a file.

The first routine, NEWHED, which the user may need to modify is
needed to enter information used to create the catalogue header block
and to enter information about the antennas. The beginning portion of
this routine follows:

Page 2-9
07 May 84

SKELETON TASKS Page 2-10
DATA ENTRY TASKS (UVFIL AND CANDY) 07 May 84

SUBROUTINE NEWHED (IRET)
C-
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c-

NEWHED is a routine in which the catalogue header is constructed.
Necessary values can be read in in the areas markes "USER CODE
GOES HERE".
NOTE: the AIPS convention for the coordinate reference value
for the STOKES axis is that 1,2,3,4 represent I, Q, U, V
stokes' parameters and -1,-2,-3,-4 represent RR, LL, RL and
LR correlator values. Currently set for R and L polarization
ie Ref. value = -1 and increment = -1.
The MINIMUM information required here is that
required to define the size of the output file; ie.

CATBLK(K2GCN) = Pseudo 1*4 number of visibility records
CATBLK(K2PCN) = Number of random parameters.
CATBLK(K2DIM)= the number of axes,
CATBLK(K2NAX+i) = the dimension of each axis.

Other changes can be made either here or in FIDDLE; the
catalogue block will be updated when the history file is
written.

The antenna information can also be entered in this
routine. It is possible to put much more information in the
ANtenna file, see the AIPS manual vol. 2 for details.
Input:
CATBLK(256)

Output:
CATBLK(256)
IRET

1*2

1*2
1*2

Output catalogue header, also CAT4, CAT8
The OUTNAME, OUTCLASS, OUTSEQ are entered
elsewhere.
Modified output catalogue header.
Return error code, 0=>QK, otherwise abort

Also the antenna informtion can be filled into a common.
INTEGER*2

REAL*4

REAL*8
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

CATBLK(256), SEQOUT, I, NAXIS, NRAN, ANTSYM(30),
NO, Nl, N2, N8, N256, NCHAN, NPOLN,
DISKO, JBUFSZ, IERR, NANT, NDIM(7), INDEX, INC,
ISTAR
INFILE(12), IN2FIL(12), TYPES(2,7), RTYPES(2,7),
NAMOUT(3), CLAOUT(2), XSOUT, XDISO,
APARM(10), BPARM(10),
BUFFER(1600) , CAT4U28) , ANTNAM(2,30) , IATUTC,
CRPIX(7), CRINC(7), UNITS(2), 0P4T08, BANDW,
TELE (2), OBSR (2) , INSTR(2), BLANK (2) ,
UT1UTC, OBSDAT(2)
CAT8(64), ANTLOC(3,30), GST0, CRVAL(7), XCOUNT
INCS:DDCH.INC'
INCS:DMSG.INC'
INCS:DHDR.INC'
INCS:DUVH.INC1
INCS:CDCH.INC'
INCS:CMSG.INC'
INCS:CHDR.INC'
INCS:CUVH.INC'

Antenna info common

COMMON /ANTS/ ANTLOC, GSTO, IATUTCr UT1UTC, ANTNAMr NANT,
* ANTSYM
COMMON /BUFRS/ BUFFER, JBUFSZ
COMMON /INPARM/ INFILE, IN2FIL,
* NAMOUT, CLAOUT, XSOUT, XDISO,
* APARM, BPARM,
* SEQOUT, DISKO
COMMON /MAPHDR/ CATBLK
EQUIVALENCE (CATBLK, CAT4, CAT8)
DATA NO, Nl, N2, N8, N256 /0,1,2,8,256/, BLANK /2*' '/
DATA 0P8T04 /'8T04'/, ISTAR /'**'/

C User definable values
C Random parameters.
C No. random parameters.

DATA NRAN /5/
C Rand. parm. names.

DATA RTYPES /'UU-L' ,' ','VV-L',' ','WW-L',' ',
* 'TIME','l ','BASE','LINE',4*' '/

C Uniform axes.
C No. axes.

DATA NAXIS /5/
C Axes names.

DATA TYPES /'COMP','LEX ','STOK','ES ','FREQ',' ',
* 'RA ',' ','DEC ',' ',4*' '/

C Axis dimensions
DATA NDIM /3,1,1,1,1,0,0/

C Reference values
DATA CRVAL /1.0D0, -1.0D0, 5*0.0D0/

C Reference pixel.
DATA CRPIX /7*1.0/

C Coordinate increment.
DATA CRINC /1.0, -1.0, 0.0, 0.0, 0.0, 2*0.0/

C Epoch of position.
DATA EPOCH /I950.0/

C Units
DATA UNITS /'JY ',' '/

SKELETON TASKS Page 2-11
DATA ENTRY TASKS (UVFIL AND CANDY) 07 May 84

The user supplied routine FIDDLE returns visibility records which
are written into the catalogued output file. The precursor comments
describing the use of FIDDLE follow.

SUBROUTINE FIDDLE (NUMVIS, U, V, W, T, IA1, IA2, VIS, RPARM,
* IRET)

C---
C This is a skeleton version of subroutine FIDDLE which allows the
C user to create a UV data base. Visibilities are returned one at
C a time and are written on the output file.
C
C Up to 10 history entries can be written by using ENCODE to
C record up to 64 characters per entry into array HISCRD. Ex:
C ENCODE (64,format #,HISCRD(1,entry #)) list
C The history is written after the last call to FIDDLE.
C
C Messages can be written to the monitor/logfile by encoding
C the message (up to 80 char) into array MSGTXT in COMMON /MSGCOM/

SKELETON TASKS
DATA ENTRY TASKS (UVFIL AND CANDY)

Page 2-12
07 May 84

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

and then issuing a call:
CALL MSGWRT (priority #)
Unit 1 is the line printer
If IRET .GT. 0 then the output file will be destroyed,
A value of IRET .It. 0 indicates the end of the data.

See the precursor comments for UVPGET in the chapter on
the catalogues for a description of the contents of
COMMON /UVHDR/ which allows easy access to much of the information
from the catalogue header (CATBLK) and which describes the order
in which the data is being written.

After all data has been processed a final call will be made to
FIDDLE with NUMVIS=-1.0D0. This is to allow for the completion of
pending operations, i.e. preparation of History cards.

AIPS I/O LUN 16 is open and not available to FIDDLE.
FORTRAN unit numbers greater than 50 will probably not get the
AIPS routines confused. (Any unit numbers other that 1 and 5
will probably also work.)

c The current contents of CATBLK will be written back to the
c
c

catalogue after the last call to FIDDLE.
V

C Inputs:
C NUMVIS R*8 Visibility number, -1.0=> final call, no data
c passed but allows any operations to be completed.
V*

c Inputs from COMMON
c IN2FIL(12) R*4 Name of the aux. file (48 char)
c APARM(10) R*4 User array.
c BPARM(10) R*4 User array.
c RA R*8 Right ascension of epoch CAT4(K4EPO) of phase center
c (Deg.)
c DEC R*8 Declination of epoch CAT4(K4EPO) of phase center.
c (deg)
c FREQ R*8 Frequency of observation (Hz)
c NRPARM 1*2 # random parameters.
c NCOR 1*2 # correlators
c CATBLK(256) 1*2 Catalogue header record. See the catalogue chapter
c
c

for more details.
c Output:
c U R*4 U in wavelengths at the reference frequency.
c V R*4 V in wavelengths
c W R*4 W in wavelengths
c T R*4 Time in days since the midnight at the start of
c the reference date.
c IA1 1*2 Antenna number of the first antenna.
c IA2 1*2 Antenna number of the second antenna.
c NOTE: IA2 MUST be greater that IA1
c RPARM R*4 Modified random parameter array. NB U,V,W,

time and baseline should not be modified in RPARM

SKELETON TASKS Page 2-13
DATA ENTRY TASKS (UVFIL AND CANDY) 07 May 84

C VIS(3,*) R*4 Visibilities. The first dimension is the COMPLEX
C axis in the order Real part, Imaginary part, weight.
C The order of the following visibilities is defined
C by variables in COMMOM /UVHDR/ (originally
C specified in NEWHDR)• The order number for Stokes
C parameters is JLOCS and the order number for
C frequency is given by JLOCF. The lower order number
C increases faster in the array.
C See precursor comments in UVPGET for more details.
C IRET 1*2 Return code -1 => End of data.
C 0 => OK
C >0 => error, terminate.
C
C Output in COMMON
C NUMHIS 1*2 # history entries (max. 10)
C HISCRD(16,NUMHIS) R*4 History records
C CATBLK 1*2 Catalogue header block
C

The user defined array adverbs APARM and BPARM are sent to UVFIL?
more and/or other adverbs can easily be added. The source code for
UVFIL can be found in the nonstandard program souce area; this is
usually assigned the logical name "NOTPGMs” whose current value is
UMAOs[AIPS.15MAY84.NOTST.PGM].

2.2.2 CANDY
CANDY is similar to TAFFY except there is no AIPS input data

file. This is a good routine to use to generate an AIPS image from
either a model or an external data file. Candy has example code
(mostly commented out) in the text which give an example of reading a
formatted disk file using Fortran 77.

The routine in CANDY in which the values necessary for the
catalogue header must be entered is named NEWHED. The beginning,
heavily commented, portion of NEWHED follows.

SUBROUTINE NEWHED (IRET)
C--
C NEWHED is a routine in which the user performs several operations
C associated with beginning the task. For many purposes simply
C changing some of the values in the DATA statments will be all that
C is necessary. The following functions are/can be preformed
C in NEWHED:
C 1) Creating the catalogue header block to represent the
C output file. The MINIMUM information required here is that
C required to define the size of the output file? ie.
C CATBLK(K2DIM)= the number of axes,
C CATBLK(K2NAX+i) = the dimension of each axis, and
C CATBLK(K2BPX) => 1 = integer*2, 2 = real*4 pixel values.
C Other changes can be made either here or in MAKMAP; the
C catalogue block will be updated when the history file is
C written.

SKELETON TASKS
DATA ENTRY TASKS (UVFIL AND CANDY)

Page 2-14
07 May 84

C 2) Setting default values of some of the input parameters
C As currently set the default OPCODE is the first value in the
C array CODES which is set in a data statment.
C
C
C
C
C
C
C

Input:
CATBLK(256)

Output:
CATBLK(256)
IRET

1*2

1*2
1*2

Output catalog header, also CAT 4, CAT8
The OUTNAME, OUTCLASS, OUTSEQ are entered
elsewhere.
Modified output catalog header.
Return error code, 0=>QK, otherwise abort

INTEGER*2 LIMIT, I, NAXIS, Nl, N8
REAL*4 CAT4(128)
REAL*8 CAT8(6 4)
INTEGER*2 SEQOUT, DISKO, NEWCNO,CATBLK(256),
* NUMHIS, JBUFSZ, ICODE
REAL*4 FILEIN(12), SOURCE(2), XMSIZE(2), CELLS(2),
* NAMOUT(3), CLAOUT(2), XSEQO, XDISKO,
* OPCODE, CPARM(IO), DPARM(IO),
* HISCRD(16,10), FBLANK
INTEGER*2 NCODE, NTYPES, IOFF, IERR, INDXI, NX, NY,
* INC, INDEX, ITYPE
REAL*4 CODES(10), UNITS(2,10), ATYPES(2,7),
* BLANK(2), TEMP, FCHARS(3)

Q* *
C SAMPLE CODE
C

CHARACTER*48 INFILE
c *

INCLUDE 1INCS:DDCH•INC'
1INCS:DMSG.INC'
1INCS:DHDR.INC1
'INCS:CDCH.INC'
'INCS:CMSG.INC'
'INCS:CHDR.INC'

COMMON /INPARM/ FILEIN, SOURCE, XMSIZE, CELLS,
* NAMOUT, CLAOUT, XSEQO, XDISKO,
* OPCODE, CPARM, DPARM
COMMON /PARMS/ FBLANK, SEQOUT, DISKO, NEWCNO,
* JBUFSZ, ICODE
COMMON /HISTRY/ HISCRD, NUMHIS
COMMON /MAPHDR/ CATBLK
EQUIVALENCE (CATBLK, CAT4, CAT8)
DATA FCHARS /'FREQ',1VELO','FELO1/

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

C
c

c
c
c
c

DATA Nl, N8 /l,8/, BLANK /2*'

DATA NCODE /0/
DATA CODES /10*1

DATA NAXIS /2/

'/
User definable values
and value of OPCODES

Output units for each OPCODE.
Two R*4 words with 4 char. ea.
'/
Number of axes and types.
(Set for two axes = Ra, Dec.)

SKELETON TASKS
DATA ENTRY TASKS (UVFIL AND CANDY)

Page 2-15
07 May 84

DATA ATYPES /'RA— 1,1-SIN1,'DEC-1,'-SIN1,
k * STOK' ,1 ES 1,1 FREQ',1*
* 6*' '/

C Set desired output pixel type
C 1=1*2, 2=R*4

DATA ITYPE /I/

The user supplied routine that reads or generates the image is
MAKMAP. This routine returns the image one row at a time. The
precursor comments describing the use of this routine follow.

SUBROUTINE MAKMAP (IPOS, RESULT, IRET)
C --
C This is a skeleton version of subroutine MAKMAP which allows
C to user to create an image, one row at a time.
C Output values are R*4 which may be blanked.
C The calling routine keeps track of max., min. and the occurence of
C blanking. CATBLK(K2NAX) values per call are expected returned.
C NOTE: blanked values are denoted by the value of the common variable
C FBLANK
C
C Up to 10 history entries can be written by using ENCODE to
C record up to 64 characters per entry into array HISCRD. Ex:
C ENCODE (64,format #,HISCRD(1,entry #)) list
C TRC, BLC and OPCODE are already taken care of.
C The history is written after the last call to MAKMAP.
C
C Messages can be written to the monitor/logfile by encoding
C the message (up to 80 char) into array MSGTXT in COMMON /MSGCOM/
C and then issuing a call:
C CALL MSGWRT (priority #)
C
C Unit 1 is the line printer
C
C If IRET .GT. 0 then the output file will be destroyed.
C
C After all data has been processed a final call will be made to
C MAKMAP with IPOS(l)=-l. This is to allow for the completion of
C pending operations, i.e. preparation of History cards.
C
C AIPS I/O LUN 16 is open and not available to MAKMAP.
C FORTRAN unit numbers greater than 50 will probably not get the
C AIPS routines confused. (Any unit numbers other that 1 and 5
C will probably also work.)
C
C The current contents of CATBLK will be written back to the
C catalogue after the last call to MAKMAP.
C
C Inputs:
C IPOS(7) 1*2 BLC (input image) of first value in DATA
C Values from commons:
C ICODE 1*2 Opcode number from list in NEWHED.
C FBLANK R*4 Value of blanked pixel.
C CPARM(10) R*4 Input adverb array.
C DPARM(10) R*4 Input adverb array.

SKELETON TASKS
DATA ENTRY TASKS (UVFIL AND CANDY)

C CATBLK 1*2 Output catalog header (also CAT4, CAT8)
C Output:
C RESULT(*) R*4 Output row,
C IRET 1*2 Return code 0 => OK
C >0 => error, terminate.
C
C Output in COMMON
C NUMHIS 1*2 # history entries (max. 10)
C HISCRDU6,NUMHIS) R*4 History records
C CATBLK 1*2 Catalogue header block
C

Pixel blanking is supported thru magic value blanking, i.e., the
value of FBLANK is recognized to mean no value is associated with the
pixel. The source code for CANDY is fairly heavily commented and can
be found in the nonstandard program souce area; this is usually
assigned the logical name "NOTPGM:" whose current value is
UMAO:[AIPS.15MAY84.NOTST.PGM].

2.3 MODIFIYING A SKELETON TASK
To make a modified version of one of the skeleton tasks, first

copy the source code and the help file to the area in which you intend
to work on the task. Then rename the task to avoid confusion (only
five characters are allowed in an AIPS task name). In addition to
changing the name of the files, it is crucial to change the name of
the task entered in a data statement in the main program. You should
also change the task name referenced in the help file. (If there is a
chance that your new task will become part of the standard AIPS
package, and we welcome all contributions, make Eric Greisen's life
easier and rename the names of the subroutines as well.)

The next step is to modify the source code to taste. If the
adverbs which the task uses are changed, the help file should also be
changed to reflect this. If the task is to be of more than temporary
use, then it is friendly to put sufficient documentation into the help
file to assist other users in understanding the use of the input
adverbs; besides, you will also forget just what it is that BPARM(3)
does.

Once the source code is modified, see the section in the chapter
on tasks about installing a new task. Basically this means getting
the proper logical assignments for the include files and the
subroutine libraries so that you can compile and link edit the task.
Then you're all set (on a VAX at least). The VAX/VMS (and UNIX ?)
versions of AIPS support the use of an adverb VERSION which specifies
the directory in which the load module and help file are to be found.
Simply set VERSION to the proper value, set the necessary adverbs and
tell AIPS 'GO'.

Page 2-16
07 May 84

SKELETON TASKS
HINTS FOR USING THE VAX/VMS DEBUGGER IN AIPS

Page 2-17
07 May 84

2.4 HINTS FOR USING THE VAX/VMS DEBUGGER IN AIPS.
The symbolic debugger in VAX/VMS systems is a very powerful tool

for debugging AIPS tasks. In the following section there are a few
hints about using the debugger in AIPS tasks.

- The AIPS compile and link edit command procedures will accept
an argument 'DEBUG' after the name of the task and link a
load module with the debugger. These procedures are @COMLNK
for non-AP standard tasks, 0NCOMLNK for non-AP nonstandard
tasks, 0APCLNK for standard AP tasks, and 0NAPCLNK for
nonstandard AP tasks.

- Use the verb WAITTASK after starting a task with the debugger
on. This keeps AIPS and the debugger from trying to talk to
you at the same time and will resume AIPS when the task quits
for any reason.
'WATCHPOINT' doesn't work in AIPS programs. If a WATCHPOINT
is set, all AIPS I/O routines will fail.

- When specifying a routine, type "SET SCOPE routine\routine"
or give the SET SCOPE command twice? the debugger doesn't
think that you are serious if you only do it once.

CHAPTER 3
GETTING STARTED - TASKS

3*1 OVERVIEW
This chapter will describe both the general structure of AIPS

tasks and the operations which are needed for the smooth startup and
shutdown of most tasks. Following chapters will describe in detail
other aspects of AIPS tasks. The principal steps of a "typical" task
are illustrated in the following. The names of relevant AIPS utility
subroutines are given in parentheses,

1. Startup
- initialize commons (ZDCHIN, VHDRIN etc.)
- get adverb values (GTPARM)
- restart AIPS (RELPOP)

2. Setup data files
- find input file in catalogue (MAPOPN, CATDIR, CATIO)
- create and catalogue output file (MCREAT, UVCREA)
- create scratch files (SNCRC)

3. Process data
4. Write history (HISCOP, HIADD, HICLOS)
5. Shut down (DIETSK, DIE)

- destroy scratch files
- unmark catalogue file statuses
- restart AIPS if not done previously

GETTING STARTED - TASKS
OVERVIEW

Page 3-2
19 Apr 84

The programmer specifies the adverbs to be used for a task in the
first section of the help file. The AIPS user specifies the values of
the adverbs used to control a task and AIPS writes these values into a
disk file. The task must read these values from the disk file. After
AIPS has started up a task itf suspends itself indefinitely. It is
the responsibility of the task to restart AIPS. This is usually done
either at the beginning or at the end of the task, depending on the
value of the adverb DOWAIT (usually called RQUICK in tasks).

AIPS tasks use commons extensively to keep various system and
control information. Since many of these commons are in many hundreds
of routines, their declarations are kept in INCLUDE files. This
allows relatively simple system-wide changes in these basic commons.

Most of the details of the installation on which a task is
running is kept in a disk text file. These details include, how many
tape drives, how many disk drives, how many characters per floating
point word, etc. The parameters characterizing the system are kept in
a common which must be initialized by a call to the routine ZDCHIN.
Several other commons may be used in a given task, and many of these
need to be initialized at the beginning of the program.

There is an accounting file which keeps track of various
bookkeeping details of tasks. Calls to the accounting routines are
hidden from the programmer of the standard startup and shutdown
routines.

Data in the AIPS system are kept in catalogued disk files.
Information about the main data file is kept in a catalogue header
record and only data values are kept in the main data file. Auxiliary
data may be kept in one or more "extension" files associated with a
catalogued file. Most AIPS tasks modify a data file and write the
results into a new catalogued file, although the user is frequently
allowed to specify the input file as the output file.

Each catalogued AIPS data file should have an associated History
extension file in which as complete as possible a record of the
processing is kept. It is the responsibility of the programmer of a
task to copy old history files to a new file, if necessary, and to
update the history information. In general, the values of the adverbs
after defaults have been filled in are kept in the history file.
There are usually other extension files which should also be copied if
a new output file is being generated. These include ANtenna files for
UV data and CLEAN components (CC) files for images.

Most communication between the user and AIPS or tasks is done
thru a single routine (MSGWRT) which logs most of the communications
in a disk file which can be printed. A major difference between the
message file and history files is that history files are permanent,
whereas message files are not. User interaction with a task is
allowed; see the chapter on device I/O and ZTTYIO in particular.

The simplest way to write a program is to find a program that is
close to the one desired and make the necessary changes. In this
spirit, there are two tasks available which read data, send it to a
routine, and write the result back to a new catalogued disk file. Two

GETTING STARTED - TASKS
OVERVIEW Page 3-3

19 Apr 84

others will create and catalogue a new disk file and fill it with data
generated in a subroutine. These routines (FUDGE, CANDY, TAFFY, and
UVFIL) allow the simplest access to the AIPS data files, and even for
fairly complicated tasks, one of these programs is a good place to
start (a great many AIPS uv tasks were cloned from FUDGE). The
chapter on skeleton tasks describes these tasks in more detail. A
number of skeleton task for plotting (PFPL1, PFPL2, and PFPL3) are
described in the plotting chapter.

3.2 THE COST OF MACHINE INDEPENDENCE
There are a number of general programming aspects which are

seriously affected by the requirement of machine independence.
Several of these, which will be discussed in detail below, are
character handling, integers and call arguments for subroutines and
functions.

3.2.1 Character Strings
One of the more serious problems with Fortran is its handling of

characters. In Fortran 66, there is no distinct character data type,
but characters can be put into other data type variables. These
variables can be equivalenced in various ways to form data structures;
that is, arrays which contain data of various types. Fortran 77
introduced explicit character variables and formally forbids storing
characters in other data types. Unfortunately, the internal storage
format for character variables is not defined and varies from machine
to machine. There is even a deliberate attempt to make it difficult
to determine the exact internal structure of character variables.
This means that character variables cannot be equivalenced in any way
to other data types and most compilers check.

The net effect of the changes to Fortran 77 is that data
structures are formally forbidden, although many compilers allow the
Fortran 66 conventions. As a result, the AIPS system uses the Fortran
66 conventions and stores characters in REAL or INTEGER words. We
strongly discourage the use of double precision words to hold 8
characters, since this will not work on some machines like Dec-101s.

Different machines can store different numbers of characters in a
REAL word. We take care of this problem with two types of character
strings, packed and unpacked. Unpacked character strings contain 4
characters per REAL word and packed character strings contain as many
characters as possible. The number of characters per REAL is a
parameter carried in a common. A number of character manipulation
routines are available. A list follows; detailed descriptions of the
call sequence can be found at the end of this chapter.

- CHCOPY moves characters from one string to another

GETTING STARTED - TASKS
THE COST OF MACHINE INDEPENDENCE

Page 3-4
19 Apr 84

- CHCOMP compares two packed character strings.
- CHFILL fills a string with a character
- CHPACK takes 4 characters per real word and packs them into a

string.
- CHPAC2 takes 2 characters per integer and packs them into a

string
- CHXPND expands a packed character string into a real array 4

characters per word.
- CHXPN2 expands a packed character string into a integer array

2 characters per word.
- CHLTOU converts any lower case characters in a packed string

to upper case.
CHMATC searches one packed string for the occurrence of
another.

- CHWMAT matches a pattern string containing "wild-card"
characters with a test string. The wild cards 1 *' for any
number and "?" for exactly one of any character are
supported.

3.2.2 Integers
The number of bits in an integer word is also a problem. In

particular, PDP 11 computers do not support 3 2 bit integers and
Fortran 77 formally does not allow 16 bit integers. The AIPS
convention is to assume that all integers are the smallest supported
on the machine. In the standard versions of our routines integers are
explicitly declared to be INTEGER*2. If this type of integer is not
supported on a given machine then a preprocessor is required to
convert INTEGER*2 to INTEGER. When possible, it is best to tell the
compiler that all undeclared and literal values are INTEGER*2.

The limitation to 16 bit integers causes problems in a number of
cases. To take care of these problems we use the rather unwieldy
concept of "pseudo INTEGER*4" (usually denoted P 14) in which an array
of two INTEGER*2 words are used to represent a larger integer. The
first word contains the lowest order bits and the second word contains
the higher order bits. There are two basic routines for handling
pseudo INTEGER*4 integers, ZR8P4 and ZMATH4. A short description of
each is given here and details of the call sequences are given at the
end of this chapter.

- ZR8P4 converts between pseudo 1*4 and R*8. Pseudo, 1*4 has
the form of two short integers with the least significant
half at the lower 1*2 index. IBM 1*4 has the form of a 2's
complement, 32-bit integer with the most significant 16 bits

GETTING STARTED - TASKS
THE COST OF MACHINE INDEPENDENCE Page 3-5

19 Apr 84

in the 1*2 word of lower index and the least significant 16
bits in the 1*2 word of higher index.
ZMATH4 does 1*4 arithmetic on pseudo 1*4 arguments

3.2,3 Call Arguments
A problem related to the use of integers is the default type of

call arguments. This problem occurs on compilers which support two
lengths of integers, but the default for undeclared and literal
integers is the long integer. In this case, if the call statement
includes an expression, the result of the expression will be a long
integer whereas the routine will expect a short integer.

To avoid the problems resulting from expressions and literal
values in call arguments, we advocate avoiding all expressions and
literals in call arguments. For instance if a value of 1 is needed
for a subroutine call, a variable named Nl is declared and DATAed a
value of 1. The call argument used is then Nl. Literal character
strings should never be used in calls to AIPS system routines.

3.3 TASK NAME CONVENTIONS
The number of characters allowed in task names is limited in many

operating systems to six characters. AIPS uses the last character of
the name to indicate the AIPS number of the initiating process, in
hexadecimal, leaving five characters for a task name. It is most
helpful to the bewildered user looking through the mass of AIPS tasks
if the name is at least vaguely memnonic. For example, most tasks
whose principle output is to the line printer are named 'PRT..'; many
tasks manipulating uv data are named 'UV...' etc.

3.4 GETTING THE PARAMETERS
3.4.1 In AIPS (Help File)

The adverbs to be used by a task are defined by the programmer in
the beginning portion of the help file. This portion of the HELP file
lists the adverbs in order, can give limits on the range of acceptable
values, and gives a short description of the use of the adverb. If
the limit fields for an adverb are left blank then no limits are
enforced. When AIPS receives the GO command, it reads the associated
help file for the list of adverbs and places the current values of
these adverbs as well as a few "hidden" adverbs into the task data
(TD) file. AIPS then starts the requested task. An example, the help
file for PRTTP follows:

GETTING STARTED - TASKS Page 3-6
GETTING THE PARAMETERS 19 Apr 84

PRTTP LLLLLLLLLLLLUUUUUUUUUUUU CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
PRTTP: Task to print contents of tapes (UV data, maps, ...)
INTAPE 0.0 2.0 Tape unit # (0=> 1)
NFILES 0.0 32000.0 # files to advance from

beginning of tape. > 1000 ->
start where tape is now.

PRTLEV -1.0 2.0 Amount of print (2 -> a lot)
(0 -> summaries)
(-1 -> very brief print)

PRTTP
Type: Task (interactive only)
Use: To print on the line printer a fairly detailed summary

of the contents of a tape. The program begins by
rewinding the tape and then advances the tape by the
user specified number of files. PRTTP then reports on
the contents of all files until a double end-of-file
mark is found. The tape is finally positioned after
the first of the two end-of-files. The task can
recognize the FITS formats (map and UV), the IBM map
format, and the VLA UV-data export format.

Adverbs:
INTAPE......Input tape drive number. 0 => 1.
NFILES......Number of files to advance from the beginning

of the tape. <= 0 => 0. To have the program
begin at the current tape position, give
NFILES any number > 1000. The relative file
numbers (n) will appear on the print as
1000+n.

PRTLEV......Amount of print desired (for FITS format only):
-1 => minimal information, 0 => summaries in
IMHEADER form, 1 => add non-History cards,
2 => add History cards too.

On the first line the name of the task is given. The "L", BU"
and "C" are guides showing the fields for the lower and upper limit
for the value of the adverb and for the comment field. These symbols
mark fields in columns 11-22 (lower limit, if any), 23-34 (upper
limit, if any) and 36-64 (comment). No text should extend beyond
column 6 4. The next line gives the name of the task and a short
explanation of the task. Following this is the list of adverbs, their
limits and a short description the use of each. The descriptions
should be in lower case.

Following the inputs section of the HELP file and separated by a
line of 64 signs comes the help section. This is the text which
is displayed on the users terminal when he types "HELP name" to AIPS.
This section gives more details about the use of the task and its
adverbs. The helps section sould have the format shown in the example
above? explanations should be in lower case where appropriate and
text should not extend beyond column 64.

GETTING STARTED - TASKS
GETTING THE PARAMETERS

Page 3-7
19 Apr 84

Following the helps section of the HELP file and separated from
it by a line of 6 4 is the explain section. This text, preceeded
by the help section, is printed when the user types EXPLAIN ... to
AIPS. This section, which is unfortunately absent from the example
above, describes in detail how to use the task and its relation to
other tasks. The general method the task uses should be described in
the explain section.

3.4.2 In The Task (GTPARM)
When the task comes alive it must read the Task data (TD) file to get
the values of the adverbs. This is done via a call to GTPARM.
(Details of the call sequence to GTPARM can be found at the end of
this chapter).

A convenient way to access the values returned by GTPARM is to
declare a common which has the variables in order and pass the name of
the first variable in place of RPARM. The values can then be obtained
by name. Note that all values are as REAL variables. Characters are
in packed strings.

3.5 RESTARTING AIPS
When AIPS starts a task it suspends itself indefinately. It is

therefore the responsibility of the task to restart AIPS. The timing
of this is determined by the value of RQUICK returned by GTPARM (set
by the user as the AIPS adverb DOWAIT). If RQUICK is true, then AIPS
should be restarted as soon as possible (after perhaps some error
checking on the inputs). This is done by the routine RELPOP (the
call sequence is given at the end of this chapter). If the task has
an interactive portion, it should be completed before restarting AIPS;
this will keep the task and AIPS from trying to talk to the user
terminal at the same time.

RELPOP returns to AIPS a return error code RETCOD. A non-zero
value of RETCOD indicates that the task failed, in which case AIPS
will terminate the current line of instructions, procedure or RUN
file. If RQUICK is false, then AIPS is not to be restarted until the
task terminates. In this case RELPOP is called by either DIETSK or
DIE and the programmer only has to be sure the correct value of RQUICK is sent to DIETSK.

3.6 INCLUDE FILES
AIPS tasks make extensive use of commons to keep system constants

and to communicate between subroutines. Many of these commons are in
hundreds of routines. To make these commons manageable, they are
declared in INCLUDE files which are filled into the source code at
compile time. Since many compilers are fussy about the order of
declaration statements, the declarations for most commons are divided

GETTING STARTED - TASKS
INCLUDE FILES

Page 3-8
19 Apr 84

up into several parts.
The INCLUDE files names have the form nxxx.INC where n indicates

the type of include file: D indicates that type declarations are
included, C indicates that COMMON statements are included, E indicates
that EQUIVALENCE statements are included, V indicates that DATA
statements are included, Z indicates that machine dependent
declarations are included, and I is a special version of D in which a
particular declaration is omitted. The directory containing the
INCLUDE files is specified via a logical name. The word INCLUDE must
start in column 7 and the entire name of the file must be bracketed in
single quotes. An example:

INCLUDE 'INCS:DDCH.INC*
On CVAX:: "INCS:" is currently logically assigned the value of
UMAO:[AIPS.15MAY84.INC]. For development and testing purposes INCLUDE
files may be kept in directories other than the one specified by INCS:
for instance on a VAX one might use:

INCLUDE 'UMAO:[WDC]DUVZ.INC'
Many tasks also have their own includes? this greatly reduces the
problems in developing and maintaining tasks.

3.7 INITIALIZING COMMONS
In order for the commons mentioned in the previous section to be

of use, their values must be filled in. For this purpose there are a
number of common initialization routines. These commons and their
initialization are discussed in the following sections.

3.7.1 Device Characteristics Common
The most important common is the Device Characteristics Common;

this common is obtained from the INCLUDE files IDCH.INC, DDCH.INC and
CDCH.INC. The text of these includes are to be found at the end of
this chapter.

The only difference between IDCH.INC and DDCH.INC is the
declaration of the INTEGER array FTAB. This array is used to keep
system tables for the I/O routines. The contents of FTAB are normally
of little interest to the programmer, but the size of this array is
determined by the number of different types of files to be open at the
same time. Thus, in the main routine, the include IDCH.INC should be
used and space reserved for FTAB by an explicit declaration. In
subsequent routines, the INCLUDE DDCH.INC is used to declare the
variables in the common. In all cases CDCH.INC is used for the COMMON
statement.

GETTING STARTED - TASKS
INITIALIZING COMMONS

Page 3-9
19 Apr 84

The FTAB array is used to keep AIPS and system I/O tables so the
size of the array depends on the computer. On Modcomps, which require
the largest tables, the dimension of the FTAB should be

(# devices open) * 2
+ (# of regular (extension) files open) * 22
+ (# of map (image and uv data) files open) * 80 bytes.

Note that a byte is defined here as half a short integer. The number
of files open refers to the maximum number open in each catagory at
any time.

The contents of the Device Characteristics common are initialized
by a call to ZDCHIN. Details of the call sequence can be found at the
end of this chapter.

Many of the values in the Device Characteristics common are read
from a disk file. The values in this file can be read and changed
using the standalone utility program SETPAR. The constants kept in
this common are described in the chapter on disk I/O.

3.7.2 Catalogue Pointer Common
The catalogue header record for an AIPS data file is a data

structure containing characters, integers, and single and double
precision reals. The size of the record is fixed at 512 bytes where a
byte is defined as half a short integer. Values in the catalogue
header record are accessed from a number of arrays of different data
types equivalenced together. Since different computers have different
sizes for different data types, we use pointers in these equivalenced
arrays. These pointers are kept in a common invoked with the INCLUDE
DHDR.INC and CHDR.INC and are initialized by a call to VHDRIN. VHDRIN
has no arguments, but should be called after ZDCHIN. For more
details, see the chapter on the catalogue header.

3.7.3 History Common
The routines that write History files carry information in

pointers in commons invoked with the INCLUDES DHIS.INC and CHIS.INC
and are initialized by a call to HIINIT? the details of the call
sequence are given at the end of this chapter.

3.7.4 TV Common
The routines that talk to the television display use information from
the commons obtained by the INCLUDES DTVC.INC, DTVD.INC, CTVC.INC and
CTVD.INC. If a task uses the TV, there must be an initializing call
to YTVCIN which has no call arguments.

GETTING STARTED - TASKS
INITIALIZING COMMONS

Page 3-10
19 Apr 84

YTVCIN initializes the common which describes the characteristics
of the interactive display devices and the common which has the
current status parameters of the TV. The values set are default
values only. They are reset to the current true values by a call to
TVOPEN• YTVCIN resets the common values of TVZOOM and TVscroll, but
does not call the TV routines to force these to be true. See the
chapter on the television devices for more details.

3.7.5 UV Data Pointer Common
The format in which uv data is stored is relatively flexible and

is described in the chapter on disk I/O. Since it is rather flexible,
the location in a logical record of a given value must be determined
from the catalogue header. In order to make it easier to find values
in a uv data record, we use a common containing pointers; this common
is obtained by using the INCLUDES DUVH.INC and CUVH.INC. This common
is filled in by a call to UVPGET which analyzes the current catalogue
header in common /MAPHDR/. Details of the call arguments and the
pointers etc. set are found at the end of this chapter.

3.7.6 Files Common, /CFILES/
Many tasks open a number of catalogued files and create several

scratch files. The status of the catalogued files are marked 'READ'
or 'WRIT' in the catalogue directory and need to be cleared by the end
of the program. Scratch files must be destroyed by the end of the
program. Since an error might terminate the program at any stage, the
program must be prepared to clear catalogue files and destroy scratch
files under any circumstances in which it controls its death.

Many tasks acomplish these functions through use of the common
obtained from the includes DFIL.INC and CFIL.INC and use of the
termination routine DIE (which will be discussed in a later section).
The contents of the DFIL.INC and CFIL.INC are found at the end of this
chapter.

In this common NSCR is the number of scratch files that have been
created. SCRFIL contains the physical names of the scratch files and
SCRVOL contains the disk numbers of the scratch files.

NCFILE tells how many catalogue files are marked, FVOL contains
the disk numbers of the catalogued files marked, FCNO contains the
catalogue slot numbers of the marked files, and FRW contains flags for
each of the marked catalogue files (0 =*READ', 1='WRIT', 2='WRIT' but
destroy if the task fails.

IBAD is an array to contain the disk drive numbers on which not
to put scratch files; IBAD and MXSFDK are used by the scratch file
creation routine SNCRC. RQUICK is also carryed along in this common
so that AIPS can be restarted by the shutdown routines if necessary.
If the information in this common is kept current, catalogue file
status words will be cleared and scratch file deleted by the shutdown

GETTING STARTED - TASKS
INITIALIZING COMMONS Page 3-11

19 Apr 84

routine DIE • If the /CFILES/ common is being used it should be
initialized with the following statements before use.

NSCR = 0
NCFILE « 0

an by initializing the array IBAD to zeroes or the values of BADDISK
sent by AIPS.

3.8 INPUT AND OUTPUT FILE NAMES
The input and output file name, class, sequence etc. passed to a

task are subject to a number of default and wildcard conventions in
the case that they are not completely specified. For the most part,
these conventions are incorporated into the standard utility routines.
For some tasks, there are logical default values which are not the
standard default which must be handled by the task. An example of
this is the output class for APCLN. If the input class is IMAP and
the output class is not specified (all blanks) then APCLN uses ICLN
for the output class.

The standard defaults for input names are as follows: If the
disk is not specified, all disks are searched in order starting with
disk 1. If the name and/or class is not specified, then the catalogue
(or catalogues) are searched until a file satisfying all specified
criteria is found. If the sequence number is not specified then the
file with the highest sequence number meeting all specified criteria
is picked. In addition to the default conventions, AIPS also supports
two types of wildcards? means any number, including none, of any
character will be accepted, "?" means exactly one character of any
type will be accepted as a match. The standard default and wildcard
are fully supported by the standard catalogue routines.

The standard default for the output name is the input name? the
standard default for the output class is the name of the task, and the
standard default for the output sequence is 1 higher than the highest
sequence number on any disk for any file with the same name and class?
if there are no other matching files, the sequence number is 1. The
default output disk is the highest numbered disk on which space is
available. Wildcards are supported in the output name? basically a
wildcard in the output name and class means to use the corresponding
character (or characters) from the input name or class. Only one
is allowed in an output name or class? others are ignored. These
defaults and wildcard conventions are implemented in the utility
MAKOUT. MAKOUT must be called by all tasks which may create an output
file. The details of the call sequence of MAKOUT are given at the end
of this chapter.

GETTING STARTED - TASKS
COPYING EXTENSION FILES

Page 3-12
19 Apr 84

3.9 COPYING EXTENSION FILES
Each catalogued file may (and usually does) have auxiliary files

containing information related to the catalogued file; these files
are called extension files. There are usually several of these
extension files that a task must copy if it is creating a new output
file. The most important of these is the history file (file type
'HI1) which should be updated as well as copied. For uv data files,
the antenna files (type 'AN') should be copied and for images any
CLEAN components files (type 1CC1) should be copied. Other extension
file types may also have to be copied. The following sections
describe how to copy and/or update these files.

3.9.1 History
Information describing the processing history of a data set is

kept in an extension file to each main data file. These files consist
of 7 2 character records using the FITS convention for history records.
Each task writes into the history file records which begin with the
name of the task and contain information about how data was processed
by that task. This is usually in the form "adverb name=" followed by
the actual value used. These records should be able to be parsed in
the same manner as FITS header records. Comments are preceded by a
"/".

There are a number of utility routines to simplify handling
history files. A short description of each follows and the details of
the call sequences can be found at the end of this chapter.

- HIINIT initialized the history common.
- HISCOP creates and catalogues a new history file, opens it,

opens an old history file and copies it to the new history
file, and leaves the old history file closed and the new file
open.

- HIADD adds a history card to the history file.
- HICLOS closes a history file, flushing the buffer if

requested.

Once the history file is open, entries can be made in it by first
ENCODEing the message (up to 72 characters) into an integer or real
array dimensioned to be at least 72 bytes and calling HIADD. An
example:

GETTING STARTED - TASKS
COPYING EXTENSION FILES

INTEGER*2 CARD(36)
INCLUDE 1INCS:DMSG•INC1
INCLUDE 'INCS:CMSG.INC'

ENCODE (72,2000,CARD) TSKNAM,FACTOR
2000 FORMAT (2A3,1 FACTOR=1,F5.2,1 / CORRECTION FACTOR*)

CALL HIADD (HLUN, CARD, BUFFER, IERR)
Once all new entries have been made to the history file the

buffer is flushed and the file closed by a call to HICLOS. (HICLOS
should normally be called with UPDATE*.TRUE, for a history file being
written)

It should be noted that HISCOP will also work properly if the old
and new history files are actually the same file. In this case, it
simply opens the new file to add new entries. Several other history
utilities which may occasionally be useful, are HICREA which creates a
history file, HIOPEN which opens a history file and HICOPY which
copies the contents of one history file onto the end of another
history file. The functions of these routines are incorporated into
the routines described above so they are normally not of great
interest to the programmer. The percursor comments for these routines
can be found in AIPS manual volumn 3.

3.9.2 Extension Files (EXTCOP)
A simple copy of any or all extension files of a given type may

be performed with a single call to the utility routine EXTCOP.
Certain extension file types are excluded from being copied by EXTCOP,
these being history files (type 'HI') and plot files (type 'PL*). If
the new and old files are physically the same files, then EXTCOP makes
no changes and simply returns. A description of the call sequence is
given at the end of this chapter.

3.10 COMMUNICATION WITH THE USER
3.10.1 Writing Messages
Most of the important communications between a user and AIPS and its
tasks are sent to both a monitor terminal, which may be the users own
terminal, and to a disk log file. This logged information is
primarily of use to the user, but is frequently of great use in
debugging a program. The basic way a task communicates to the user is
through the utility routine MSGWRT. A message of up to 80 characters
is first encoded into array MSGTXT in the message common which is
invoked by the includes DMSG.INC and CMSG.INC. Then a call is made to
the routine MSGWRT with a single INTEGER*2 argument which is the
priority level to write the message. The meaning of the priority is
as follows:

Page 3-13
19 Apr 84

GETTING STARTED - TASKS
COMMUNICATION WITH THE USER

Priority Use
0 Write to log file only
1 Write to monitor terminal only
2 Low interest normal messages

3-4 Normal message
5 High interest normal message.

6-8 Error message
9-10 Severe error messages

An example of the use of MSGWRT follows:
INTEGER*2 N4
INCLUDE 1INCS:DMSG.INC'

INCLUDE 'INCS:CMSG.INC'

DATA N4 /4/

ENCODE (80,1000,MSGTXT)
CALL MSGWRT <N4)

1000 FORMAT ('FINISHED READING THE DATA')

3.10.2 Turning Off System Messages
Many of the AIPS utility routines give messages which may or may

not indicate a problem such as the "FILE ALREADY EXISTS" message from
ZCREAT. Most of the messages are written at priority level 6 or 7 and
may be turned off by setting the variable MSGSUP in common /MSGCOM/
(the same one MSGTXT lives in) to 3 2000. This variable should be
restored to a value of 0 to enable level 6 and 7 messages.

3.10.3 Writing To The Line Printer
The standard Fortran logical unit number for the line printer in

the AIPS system is unit 1. Writing to the line printer can be done
with normal formatted Fortran writes. Before writing to the line
printer it should be opened with a call to ZOPEN and a header page
prepared for batch jobs with a call to BATPRT. When the task is
finished writing to the printer/ a second call to BATPRT will write a
trailer page, a call to ZENDPG will eject a page (very important on
electrostaic printers), and a call to ZCLOSE will close the file and
send it to the printer spooler. An example follows:

Page 3-14
19 Apr 84

GETTING STARTED - TASKS
COMMUNICATION WITH THE USER

Page 3-15
19 Apr 84

INTEGER*2 LPLUN, LPIND, Nl, N2r BUFFER(256)f IPCNT
LOGICAL*2 T,F
REAL*4 LPNAME(6) , VALUE1, VALUE2
INCLUDE 1INCS:DDCH.INC1

INCLUDE •INCS s CHCH.INC1

DATA LPLUN /l/f LPNAME /6*' '/, N1, N2/l,2/
DATA T, F /.TRUE.,.FALSE./

Open the printer,
CALL ZOPEN (LPLUN, LPFINDr Nl, LPNAME, F, T, Tf IERR)

(handle error condition if detected)
Header page if batch

CALL BATPRT (Nl, BUFFER)
IPCNT = 0

C Increment line count
IPCNT = IPCNT + 1

C Check if page full.
IF (IPCNT .LT. PRTMAX) GO TO 100

C Write new page header

ICPNT = 0
C Write to printer
100 WRITE (LPLUN,1000) VALUE1, VALUE2

C Trailer page if batch
CALL BATPRT (N2, BUFFER)

C Eject a page
CALL ZENDPG (IPCNT)

C Close printer and send to
C spooler.

CALL ZCLOSE (LPLUN, LPIND, IERR)

1000 FORMAT (' VALUE1 =',F10.5, ' VALUE2 =',1PE12.6)

The number of lines per page on the line printer is obtained, as
shown in the example, by the variable PRTMAX in the device
characteristics common (DDCH.INC and CDCH.INC). In the example above,
ZOPEN recognized the unit number (LPLUN) value of 1 as meaning the
line printer so most of the arguments to ZOPEN are dummy in this case.

GETTING STARTED - TASKS
COMMUNICATION WITH THE USER

Page 3-16
19 Apr 84

3.10.4 Writing To The Terminal (ZTTYIO)
Many mainframe computers are batch oriented and discourage

programs from talking directly to a terminal. To get around this
problem, AIPS has a "Z" routine for this purpose. ZTTYIO, rather than
Fortran reads and writes to units 5 and 6 is used to communicate with
the terminal.

If a task is going to talk to the user terminal is should not
call RELPOP until after communication with the user terminal is
complete. If AIPS is restarted too soon both AIPS and the task will
be trying to talk to the terminal at the same time? this will
probably confuse the user.

Before calling ZTTYIO, the device must be opened by a call to
ZOPEN, and after the task is through talking to the terminal, it
should be closed with a call to ZCLOSE. Use a value of 5 for the LUN.
In the call to ZOPEN, the file name and disk number are dummy
parameters since ZOPEN recognizes LUN=5 as a Fortran device. Encode
messages to be sent into an array and send the array to ZTTYIO. Lines
read from the terminal will be returned by ZTTYIO as a packed
character string. An example of the use of ZTTYIO is the following:

INTEGER*2 Nl, N72
INTEGER*2 TYYLUN, TYYIND, IRET, LINE(36)
LOGICAL*2 T,F
REAL * 4 READ, WRITE

•

DATA Nl, N72 /l,72/, TTYLUN, TTYIND /5,0/
DATA T, F /.TRUE.,.FALSE/, READ, WRITE /'READ','WRIT'/

C Open the terminal
CALL ZOPEN (TTYLUN, TTYIND, Nl, LINE, F, T, T, IERR)

C Error if IERR .NE. 0

C Encode message for terminalENCODE (72,1000,LINE)
C Send to terminal
C Set here to read and write
C up to 72 characters per
C transmission.

CALL ZTTYIO (WRITE, TTYLUN, TTYIND, N7 2, LINE, IERR)
c Error i f IERR .NE. 0

C Read from terminal.
C Up to 72 characters.

CALL ZTTYIO (READ, TTYLUN, TTYIND, N72, LINE, IERR)
c Error if IERR .NE. 0

C Close terminal
CALL ZCLOSE (TTYLUN, TTYIND, IERR)

GETTING STARTED - TASKS
COMMUNICATION WITH THE USER

Page 3-17
19 Apr 84

1000 FORMAT (' HI THERE')

3.11 SCRATCH FILES
Many tasks require the use of scratch files which must be created

at the beginning of the task and destroyed at the end of the task.
Since the task may detect an error condition and decide to quit at an
arbitrary place in the program, some provision must be made to destroy
the scratch files under all conditions for which the task controls its
death. The /CFILES/ common described in a previous section is
designed for this purpose and is obtained by the INCLUDES DFIL.INC and
CFIL.INC.

A simple way to create scratch files is to use the common
/CFILES/ and the routine SNCRC. SNCRC will try to scatter the scratch
files among as many disk drives as possible, will try all of the disks
if necessary to find space for a scratch file, and can be prohibited
from putting scratch files on certain disks by use of the array IBAD
(adverb array BADDISK in AIPS). Details of the call sequence for
SNCRC can be found at the end of this chapter.

An example of the use of SNCRC is the following:
INTEGER*2 SIZE(2), SYM, ISCR, IRET, NX, NY, NP(2), BP, N2
INCLUDE 'INCS:DFIL.INC1
INCLUDE 'INCS:DDCH.INC1

INCLUDE 'INCS:CFIL.INC'
INCLUDE *INCS:CDCH.INC’

DATA SYM /'XX1/, N2 /2/

C
C
C
C
C
C
C
C
C
C
C

a REAL word in terms of
short integers. 1 short
integer * 2 bytes

NX, NY are the size of an
image. Make a scratch file
big enough for a REAL copy
of the image.
Compute the size in bytes.
Note: NWDPFP is from the
/DCHCOM/ and is the size of

BP = 2 * NWDPFP
NP(1) = NX
NP(2) = NY

C
C Compute size needed

SIZE is a pseudo 1*4
CALL MAPSIZ (N2, NP, BP, SIZE)

GETTING STARTED - TASKS
SCRATCH FILES

Page 3-18
19 Apr 84

C Create scratch file of type
C 'XX'

CALL SNCRC (SIZE, SYM, ISCR, IRET)
C Test for errors...

In the above example, the scratch file created will be number
ISCR in the /CFILES/ common. Some routines, such as the FFT routine
DKSFFT, accept these numbers directly. These scratch files can be
opened as follows:

CALL ZOPEN (LUN, IND, SCRVOL(ISCR), SCRFIL(1,ISCR), T, T, T,
* IRET)

Once opened, these files can be initialized and read or written in the
same way as catalogued data files.

3.12 TERMINATING THE PROGRAM
Most tasks create scratch files or open catalogued files which

have status words marked in the catalogue directory. These scratch
files should always be destroyed by the end of the program, and the
catalogue files should be unmarked. Also AIPS may have to be
restarted at the end of the program. For these and other reasons, we
strongly advise that when error conditions are detected that the
routine finding the error set the appropriate error code and return?
all the way back to the main routine. Then a call to one of the
shutdown routines can be followed by a Fortran STOP statement. There
should n& giber STOP statements in th£. program.

In the section describing initialization of the /CFILES/ common,
there is a discussion of using it to carry information about scratch
and catalogued files. If this common is used, the shutdown routine
DIE will take care of deleting all scratch files, unmarking catalogue
files, and restarting AIPS if necessary. If the /CFILES/ common is
not used, the routine DIETSK will restart AIPS and take care of the
other shutdown functions. (DIE calls DIETSK). Both of these routines
accept a return code which is sent to AIPS if it is restarted at that
time? a nonzero value of the return code indicates that the program
failed. Descriptions of DIE and DIETSK can be found at the end of
this chapter.

3.13 BATCH JOBS
AIPS has a capability to run tasks in the batch mode. It usually

makes little difference to a task if it is being run in batch or
interactive mode but use of some devices are forbidden to batch tasks.
These devices are the tape drive, the graphics device, and the
television. After the calls to GTPARM and ZDCHIN, a. task can
determine if it is running as a batch task by comparing the value of
NINTRN (number of interactive AIPS allowed) from the device
characteristics common (DDCH.INC and CDCH.INC) with NPOPS (the AIPS
number of the initiating task) from the message common (DMSG.INC and

GETTING STARTED - TASKS
BATCH JOBS

Page 3-19
19 Apr 84

CMSG.INC). If NPOPS is greater than NINTRN then the task is running
as a batch task and use of the devices mentioned above is disallowed.

3.14 INSTALLING A NEW TASK
The procedure to install a task depends a great deal on the host

computer and operating system. The following sections will describe
the procedure for several operating systems.

3.14.1 On A VAX[B
The AIPS installation on a VAX makes heavy use of the directory

structures, command files, and the logical name capability. AIPS
files are kept in a hierarchial directory structure with logical names
for each of the subdirectories. An example of the directory structure
is:

CVAX::UMA0:[AIPS.15MAY84.APL.ZSUB.VMS]
where:

CVAX:: denotes the DECNET node name (optional)
UMAO: is the name of the disk drive
[AIPS. is the main AIPS directory
.15MAY84. is the directory for the current release
.APL. indicates "standard" non-array processor code
.ZSUB. indicates the "Z" subroutine sub directory
.VMS] indicates the VMS subroutine library.

The logical name for the directory described above is APLVMS:
The steps in installing a task on a VAX/VMS system are then:
1. Set the logical assignments. This is usually done with a

command procedure which will be described below.
2. Create or put the source and help files in the correct

directories. A later section will describe the use of directories.
3. Compile and link edit the task with the AIPS libraries. The

compile and link edit procedures will be described in a later
section.

3.14.1.1 Logical Assignments - The logical assignments are usually
set with the command procedure CDNEW. Programmers in the same VMS
group as AIPS can invoke this by:
$0NEW: CDNEW
Programmers in other groups need to install this procedure in their

GETTING STARTED - TASKS
INSTALLING A NEW TASK

Page 3-20
19 Apr 84

directory. The listing of this procedure follows:
$! CDNEW
$ > ---
$1 CDNEW sets the various process logical assignments required.
$1 It also causes the default protection to go to Owner and
$! Group having RWED.
$1 This is a sample procedure. Each programmer should have a copy
$1 of this procedure in his own area.
$ 1---
$ ASS UMAO:[AIPS.15MAY84] NEW:
$ @NEW:ASSIGNP
$ EXIT
The directory given in the above example should be changed to the
current value for your system. Check with the AIPS system manager for
details.

3.14.1.2 Where To Put The Files (AIPS Directories). - The proper AIPS
directory depends of the type of file involved. The following partial
list tells which directory by logical name corresponds to different
types of files.

File Type Logical name

INCLUDE file................... INCS:
HELP file...................... HLPFIL:
Documentation.................. DOCTXT:
"Standard" subroutines......... APLSUB:
"Nonstandard subroutines........NOTSUB:
"Standard" programs

without array processor......APLPGM:
"Nonstandard" programs

without array processor......NOTPGM:
"Standard" programs

using array processor........APLAPG:
"Nonstandard" programs

using array processor........NOTAPG:
VMS "Z" routines............... APLVMS:
Execute module................. LOAD:

3.14.1.3 Where To Put The Files (Programmers Directory) - For many
purposes, it is convienent to leave a task in the programmers own
directory. The directory in which to find the HELP file and the
executable module can be specified in AIPS using the adve,rb VERSION,
e.g.

VERSION=»UMAO:[MYAIPS.PGM]'
In this case, source and object modules may be kept in any directory.
The HELP file and the execute module must be put in the same
directory.

GETTING STARTED - TASKS
INSTALLING A NEW TASK

Page 3-21
19 Apr 84

3,14*1.4 Compile And Link Edit Procedures - There are a number of
command procedures to compile and link edit programs. These
procedures use logical names for the different libraries, so the
procedure CDNEW must be run before the compile and link edit
procedures. These procedures are kept in the directory obtained with
the logical name NEWs. Programmers using their own directories will
need to copy the relevant procedures to their own area and to change
the directories for source code or execute modules as needed. The
compile and link edit procedures are used as in this example;
$@COMLNK "task name"
The following list describes the use of the major compile and link
edit routines.

Compile subroutine and enter into library
Subroutine type Procedure

Standard (not AP).............. COMRPL
Nonstandard (not AP)........... NCOMRPL
FPS AP routines.......... FCOMRPL
Pseudo AP routines............. PCOMRPL

Compile and link edit task
Task type Procedure

Standard (no AP)............... COMLNK
Nonstandard (no AP)••••••••..••••NCOMLNK
Standard (AP).................. APCLNK
Nonstandard (AP)............... NAPCLNK
AIPS or utility pgm............ ACOMLNK

GETTING STARTED - TASKS
INCLUDES

Page 3-22
19 Apr 84

3.15 INCLUDES
There are several types of INCLUDE file which are distinguished

by the first character of their name. Different INCLUDE file types
contain different types of Fortran declaration statments as described
in the following list.

- Dxxx.INC. These INCLUDE files contain Fortran type (with
dimension) declarations.

- Cxxx.INC. These files contain Fortran COMMON statments.
- Exxx.INC. These contain Fortran EQUIVALENCE statments.
- Vxxx.INC. These contain Fortran DATA statments.
- Ixxx.INC. Similar to Dxxx.INC files in that they contain

type declarations but the declaration of some varaible is
omitted. This type of include is used in the main program to
reserve space for the omitted variable in the appropriate
common. The omitted variable must be declared and
dimensioned separately.
Zxxx.INC. These INCLUDE files contain declarations which may
change from one computer or installation to another.

3.15.1 CDCD.INC

Include CDCH
COMMON /DCHCOM/ NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,

NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR,
CSIZPR, NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP, NBITWD,
NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, XPRDMM, XTKDMM,
NTVACC, NTKACC, UCTSIZ, BYTFLP, SYSNAM, VERNAM, USELIM,
IFILIT, RLSNAM

COMMON /FTABCM/ DEVTAB, FTAB
End CDCH.

3.15.2 CFIL.INC

Include CFILCOMMON /CFILES/ SCRFIL, NSCR, SCRVOL, NCFILE, FVOL, FCNOf FRWf
CCNO, IBAD, LUNS, MXSFDK, RQUICK

End CFIL

GETTING STARTED - TASKS
INCLUDES Page 3-23

19 Apr 84

3.15.

C

C

3.15.

C

C

3.15.

C

C

3.15.

C

C

3 CMSG.INC

Include CMSG
COMMON /MSGCOM/ MSGCNT, TSKNAM, NPOPS, NLUSERf MSGTXT,
* MSGSUP, NACOUN, MSGREC, MSGKIL

End CMSG.

4 CUVH.INC

Include CUVH
COMMON /UVHDR/ FREQ, RA, DEC, SOURCE, NVIS, ILOCU,
* ILOCV, ILOCW, ILOCT, ILOCB, JLOCC, JLOCS, JLOCF,
* JLOCR, JLOCD, INCS, INCF, ICORO, NRPARM, LREC, NCOR, ISORT

End CUVH

5 DDCH.INC

Include DDCH
REAL*4 XPRDMM, XTKDMM, SYSNAM(5), VERNAM, RLSNAM(2)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
* CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP,
* NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC,
* NTKACC, UCTSIZ, BYTFLP, USELIM, IFILIT,
* DEVTAB(50), FTAB(l)

End DDCH.

6 DFIL.INC

Include DFILREAL*4 SCRFIL(6,20)
INTEGER*2 NSCR, SCRVOL(20), IBAD(IO), LUNS(IO), MXSFDK(IO)
INTEGER*2 NCFILE, FVOL(SO), FCNO(50), FRW(50), CCNO
LOGICAL*2 RQUICK

End DFIL

GETTING STARTED - TASKS
INCLUDES Page 3-24

19 Apr 84

3.15.

C

C

3.15.

C

C

3.15.

C

7 DMSG.INC

Include DMSG
INTEGER*2 MSGCNT, TSKNAM(3), NPOPS, NLUSER, MSGSUPf NACOUN,

* MSGREC, MSGKIL
REAL*4 MSGTXTC20)

End DMSG.

8 DUVH.INC

Include DUVHINTEGER*2 NVIS(2), ILOCU, ILOCV, ILOCW, ILOCT, ILOCB,
* JLOCC, JLOCS, JLOCF, JLOCR, JLOCDf NRPARMf LREC,
* NCOR, ISORT, INCS, INCF, ICORO
REAL*4 SOURCE(2)
REAL*8 FREQ, RA, DEC

End DUVH

9 IDCH.INC

Include IDCHREAL*4 XPRDMM, XTKDMM, SYSNAM(5), VERNAM, RLSNAM(2)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
* CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP,

NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC,
NTKACC, UCTSIZ, BYTFLP, IFILIT,
USELIM, DEVTAB(50)

End IDCH.

GETTING STARTED - TASKS
ROUTINES

Page 3-25
19 Apr 84

3.16 ROUTINES
3.16.1 CHCOPY - moves characters from one string to another.

CHCOPY (NCHAR, NP1, STRlf NP2, STR2)
Inputs: NCHAR 1*2

NP1 1*2
STR1 R*4(*)
NP2 1*2

Output: STR2 R*4(*)

Number of characters to move
Start char position in input string
Input string
Start char position in output string
Output string

3.16.2 CHCOMP - compares two character strings.
CHCOMP (NCHAR, KP1, STR1, KP2, STR2, EQUAL)

characters to compare
starting character in string
string 1
starting character in string
string 2
T => strings are same

Inputs: NCHAR 1*2
KP1 1*2
STR1 R*4 (*)KP2 1*2
STR2 R*4 (*)

Output: EQUAL L*2

3.16.3 CHFILL - fills a string with a character.
CHFILL (NCHAR, CHAR,
Inputs: NCHAR 1*2

CHAR 1*2
NBP 1*2

Output: STRING

NBP, STRING)
Number of char positions to fill
Char in char position 1
Start char position to fill

R*4(*) Filled string

3.16.4 CHLTOU - converts any lower case characters in a packed string
to upper case.

CHLTOU (N, STRING)
Inputs: N 1*2 Number of characters
In/out: STRING R*4(*) Packed string to be converted.

GETTING STARTED - TASKS
ROUTINES

Page 3-26
19 Apr 84

3,16,5 CHMATC - searches one string for the occurrence of another
string.

CHMATC (NA, JA, CA, NB, JB, CBr NP)
Inputs: NA 1*2 Number of characters in CA (start at JA)

JA 1*2 Start at char position JA in CA
CA R*4(*) Packed substring to be found in CB
NB 1*2 Number of characters in CB (n.b. TOTAL)
JB 1*2 Start search at offset in CB
CB R*4(*) Packed string.

Output: NP 1*2 start position in CB of CA, 0 if none,
w.r.t. start of string

3.16.6 CHPACK - takes characters 4 /
string.

real and packs them into a

CHPACK (NCH,
Inputs: NCH

ISTR
NP.

Output: OSTR

ISTR, NP, OSTR)
1*2 number of characters
R*4(*) real array 4 char / word
1*2 start position in output string
R*4(*) output packed string

3,16,7 CHPAC2 - takes characters 2 / integer and packs them
string.

CHPAC2 (NCH, ISTR, NP, OSTR)

into a

Inputs: NCH 1*2
ISTR I* 2(*)
NP 1*2

Output: OSTR R*4(*)

number of characters
integer array 2 char / word
start position in output string
output packed string

3.16.8 CHWMAT - matches a pattern string containing "wild-card"
characters with a test string. The wild cards '*' for any number and
"?" for exactly one of any character are supported.

CHWMAT (NPM, PS, IPT, NTS, TS, EQUAL)
Inputs: NPM 1*2

PS
IPT
NTS
TS

Output: EQUAL

R*4(*)
1*2(NPM)
1*2
R*4(*)
L*2

Length of test string (not incl NTS-1
characters)
Packed pattern string
Pattern array prepared by PSFORM
Start char position in TS for testing Packed test string
T => they match

GETTING STARTED - TASKS
ROUTINES

Page 3-27
19 Apr 84

3.16.9 CHXPND - expands a packed character string into a real array
with four characters per word.

CHXPND (NCH, KIN, KFIRST, KOUT)
Inputs: NCH 1*2

KIN R*4(*)
KFIRST 1*2

Outputs: KOUT R*4(*)

Number of characters to unpack
Packed string
First character to unpack
Looser string

3.16.10 CHXPN2 - expands a packed character string into an integer
array with two characters per word.

CHXPN2 (NCH, KIN, KFIRST, KOUT)
Inputs: NCH 1*2 Number of characters to unpack

KIN R*4(*) Packed string
KFIRST 1*2 First character to unpack

Outputs: KOUT 1*2(*) Looser string

3.16.11 DIE - does the housekeeping necessary for an orderly death of
the task, primarily clearing catalogue flags and destroying scratch
files. It also calls RELPOP if RQUICK is false. A call to DIE should
be the last executable statement before the STOP statement.
NOTE: DIE should be used only by tasks using common /CFILES/
(obtained from includes CFIL.INC and DFIL.INC).

DIE (ICODE, BUFF)
Inputs: ICODE 1*2 Return code: 0 => good, other => bad end

BUFF 1*2(256) Work buffer

Locations in catalogue are communicated by COMMON /CFILES/
NCFILE
FVOL (50)
FCNO(50)
FRW(50)

1*2
1*2
1*2
1*2

Number of files marked in catalogue.
Volumn numbers of the maps.
Slot numbers of the maps.
A 0 if READ , 1 if WRITE clear desired,
a 2 if a new file with Write, destroy on ICODE bad
other values => file already closed.

NSCR 1*2 Number of scratch files to be destroyed
SCRVOL(20) 1*2 Scratch file volumn numbers
SCRFIL(6,20) R*4 Scratch file physical names.

GETTING STARTED - TASKS
ROUTINES

Page 3-28
19 Apr 84

3.16.12 DIETSK - must be called at the end of each task as the last
real statement before the final RETURNS and STOP statement. It issues
a closing message, terminates the accounting, and, if RQUICK is false,
restarts the initiating AIPS program. (DIETSK is called by DIE).

DIETSK (IRET, RQUICK, IBUF)
Inputs: IRET 1*2 0 => ok, else bad end

RQUICK L*2 T => initiator already resumed
Output: IBUF 1*2(256) Scratch buffer

3.16.13 EXTCOP - copies a extension file(s) of the EXTINI-EXTIO
variety.

EXTCOP (TYPE, INVER, OUTVER, LUNOLD, LUNNEW, VOLOLD,
* VOLNEW, CNOOLD, CNONEW, CATNEW, BUFFI, BUFF2, BUFF3, IRET)

Extension file type eg 'CC','AN'
Version number to copy, 0=>copy all.
Version number on output file, if more than one
copied (INVER=0) this will be the no. of the first
file. If OUTVER=0 the EXTINI defaults are used.
LUN for old file
LUN for new file
Disk number for old file.
Disk number for new file.
Catalogue slot number for old file
Catalogue slot number for new file
Catalogue header for new file.
Work buffer: 256 words + n * 256 words (enough
to hold at least one logical record)
Work buffer: as BUFFI
Buffer large enough to hold one logical record.
Return error code 0 => ok

1 => files the same, no copy.
2 => no input files exist
3 => failed
4 => no output files created.

3.16.14 GTPARM - obtains the activator (AIPS) task number, obtains
the transmitted parameters, initializes the message common, and
outputs the message 'task NAME begins'. It also handles startup
accounting.

GTPARM (NAME, NPARMS, RQUICK, RPARM, SCRTCH, IERR)
Inputs: NAME 1*2(3) Task name (ASCII) 2 chars / integer

NPARMS 1*2 number of real variables wanted
Outputs: RQUICK L*2 T => release POPs as soon as possible

F => wait until you have finished

TYPE 1*2
INVER 1*2
OUTVER 1*2

LUNOLD 1*2
LUNNEW 1*2
VOLOLD 1*2
VOLNEW 1*2
CNOOLD 1*2
CNONEW 1*2
CATNEW(256)1*2
In/out:
BUFFI 0512) 1*2
BUFF2(>512)1*2
BUFF3(*) 1*2
Output:
IRET 1*2

GETTING STARTED - TASKS
ROUTINES

Page 3-29
19 Apr 84

RPARM R*4(NPARMS) parameters received
SCRTCH 1*2(256) scratch buffer
IERR 1*2 error code: 0 -> ok

1 -> initiator not found
2 -> disk troubles
3 -> initiator zeroed

3.16.15 HIADD - adds a history card to a history file. I/O takes
place only if necessary. Thus UPDATE * .TRUE, on HICLOS is required.

HIADD (HLUN, CARD, BUFFER, IERR)
Inputs: HLUN 1*2 lun of HI file (must be open!I)

CARD 1*2(*) new card
IN/out: BUFFER 1*2(256) HI work buffer
Output: IERR 1*2 0 => ok, other set by HI10

3.16.16 HICLOS - closes a history file updating it if requested.
HICLOS (HLUN, UPDATE, BUFFER, IERR)
Inputs: HLUN 1*2 file lun (already openil)

UPDATE L*2 T => write last record & update pointers
In/out: BUFFER 1*2(256) HI work buffer
Output: IERR 1*2 error code : 0 - ok

1 - LUN not open
2-6 - ZFIO errors

3.16.17 HIINIT - initializes the history common area /HICOM/.
HIINIT (NFILES)
Inputs: NFILES 1*2 number of HI files open at once (max)

at least 3 are available via DHIS.INC

3.16.18 HISCOP - copies one history file to another. If the new
history file already exists, the only action is to open it. At
finish, the old history file is closed? the new history file is open.
The task name, date, and time are entered on the new file. NOTE:
IERR < 3 is a warning only, = 3 serious, = 4 a real problem. Calling
programs should ignore IERR < 3, branch to HICLOS of the new HI file
on IERR = 3, and skip over all HI stuff on IERR « 4.

GETTING STARTED - TASKS
ROUTINES

Page 3-30
19 Apr 84

HISCOP (LUNOLD, LUNNEW, VOLOLD, VOLNEW, CNOOLD,
* CNONEW, CATBLKf BUFER1, BUFER2, IERR)

Inputs: LUNOLD 1*2 LUN for old history file.

In/Out:

Output:

LUNOLD 1*2
LUNNEW 1*2VOLOLD 1*2
VOLNEW 1*2
CNOOLD 1*2
CNONEW 1*2
CATBLK(256) 1*2
BUFER1(256) 1*2
BUFER2(256) 1*2
IERR 1*2

LUN for new history file.
Vol. number for old history file.
Vol. number for new history file.
Catalogue slot number of old history file
Catalogue slot number of new history file
Catalogue header of map for new file.
Work buffer, used for old file.
Work buffer, new file? must be used in
further HIADD calls until file is closed.
Return error code: 0 => OK.
1 => could not open old history file.
2 => could not copy old history file.
3 => could not write time on new file
4 => could not create/open new HI file.

3.16.19 MAKOUT - applies the wild card standards to complete the
preparation of the output file name parameters. Namely:

OUTS
OUTN

< = -1 i i becomes OUTS = INSEQ
becomes OUTN = INN

*yy*zz 1 becomes OUTN = INN with first n characters
replaced by yy and last m chars with zz - if
yy or zz contain ?*s don't replace those char
positions

OUTCL = ' 1 becomes OUTCL= DEFCLS
1yy*zz ' becomes 0UTCL= DEFCLS with same as OUTN

If the 1st character of OUTCL is a 1 V then the default
is replaced with INCL and the remaining 5 characters of
OUTCL are used as normal.

MAKOUT (INN, INCL, INS, DEFCLS, OUTN, OUTCL, OUTS)
Inputs: INN

INCL
R*4(*) Input file name 12 packed chars
R*4(*) Input file class 6 packed chars
1*2 Input file sequence number
R*4(*) Default output file class 6 packed chars

if 1st 4 chars blank, use task name
R*4(*) User-supplied OUTNAME adverb
R*4(*) User-supplied OUTCLASS adverb

OUTS 1*2 User-supplied OUTSEQ adverb in integer
NOTE: the actual Input file name parameters must be supplied,
not the user adverbs (which can themselves contain wild cards,
pure blank fields, zeros, and the like.

INS
DEFCLS

In/Out: OUTN
OUTCL

GETTING STARTED - TASKS
ROUTINES

Page 3-31
19 Apr 8 4

3.16.20 PSFORM - prepares a string patterm array for use by CHWMAT
(the wild card matching subroutine)•

PS FORM (NC, PS, IPT)
Inputs: NC 1*2 Number characters in pattern possible

PS R*4(*) Pattern string (packed)
Output: IPT 1*2(NC) Coded array: value = -2 => position is *

value = -1 => position is ?
value = 0 => position is a blank
value >0 => there are IPT(i) real chars

incl present following

3.16.21 RELPOP - releases the held POPS (AIPS) task, passing it a
return code.

RELPOP (RETCOD, SCRTCH, IERR)
Inputs: RETCOD 1*2 return code number
Outputs: SCRTCH 1*2(256) scratch buffer

IERR 1*2 error number: 0 -> ok
1,2 -> task not resumed
3 -> NPOPS out of range
4 -> parameter not passed

3.16.22 SNCRC - creates a scratch file, in doing so it attempts to
put the file on a disk drive other than the one on which it put the
last file.

SNCRC (SIZE
Inputs: SIZE

SYM
Output: ISCR

IRET

If IRET > 0, f
SNCRC uses the

NSCR
IBADD
MXSFDK

SCRFIL
SCRVOL

, SYM, ISCR, IRET)
1*2(2) File size in bytes as Pseudo 1*4
1*2 File type (2 characters)
1*2 CFILES scratch file number.

used (on output).
1*2 Error code: 0 => ok

1 => disk space unavailable
2 => other

ile has not been created.
common in the INCLUDE CFIL.INC:
1*2 Number of scratch files already.1*2(10) Disk drives to avoid.
1*2(10) Next number for scratch file to use

on each disk. Is one filled when
called with NSCR .le. 0.

R*4(6,20)Scratch file names.
1*2(20) Scratch file volumns

GETTING STARTED - TASKS
ROUTINES

Page 3-32
19 Apr 84

3.16,23 UVPGET - determines pointers and other information from a UV
CATBLK, The address relative to the start of a vis record for the
real part for a given spectral channel (CHAN) and stokes parameter
(ICOR) is given by :
NRPARM + (CHAN-1) * INCF + (ICOR-IABS (ICORO)) * INCS

UVPGET (IERR)
Inputs: From common /MAPHDR/

CATBLK(256) 1*2 Catalogue block
CAT 4 R*4 same as CATBLK
CAT 8 R*8 same as CATBLK
:put: In common /UVHDR/
SOURCE(2) R*4 Packed source name.
ILOCU 1*2 Offset from beginning of vis record of U
ILOCV 1*2 n V
ILOCW 1*2 n WILOCT 1*2 it TimeILOCB 1*2 it BaselineJLO 1*2 Order in data of complex values
JLOCS 1*2 Order in data of Stokes' parameters.
JLOCF 1*2 Order in data of Frequency.JLOCR 1*2 Order in data of RAJLOCD 1*2 Order in data of dec.
INCS 1*2 Increment in data for stokes (see above)INCF 1*2 Increment in data for freq. (see above)ICORO 1*2 Stokes value of first value.NRPARM 1*2 Number of random parameters
LREC 1*2 Length in values of a vis record.
NVIS (2) P 1*4 Number of visibilities
FREQ R*8 Frequency (Hz)
RA R*8 Right ascension (1950) deg.DEC R*8 Declination (1950) deg.NCOR 1*2 Number of correlators
ISORT C*2 Sort order
IERR 1*2 Return error code: 0=>QK,

1, 2, 5, 7 : not all normal rand parms
2, 3, 6, 7 : not all normal axes
4, 5, 6, 1 : wrong bytes/value

3,16,24 ZDCHIN - initializes the disk characteristics common, if
NDISK < 0, ZDCHIN uses ABS (NDISK) but skips reading parameters from
the parameter disk file. Otherwise, ZDCHIN starts by hardcoded
parameter values and then resets some based on values on an alterable disk file.

ZDCHIN (NDEV,
Inputs: NDISK

NMAP
NDEV
IOBLK

NDISK, NMAP, IOBLK)
max number regular disk files open at once
max number of map (double buf) files open at oncemax number of devices open at once
1*2(256) I/O block for reading values off disk.

GETTING STARTED - TASKS
ROUTINES

Page 3-33
19 Apr 84

3.16.25 ZMATH4 - does 1*4 arithmetic on pseudo 1*4 arguments
ZMATH4 (ARG1, OP, ARG2, RESULT)
Inputs:

ARG1 P 1*4 First P 1*4 argument
OP 1*2 OPeration ='PL'(+);'MI'(-);'MU'(x);'DI*(/)

'MN'(min); 'MX1(max)
ARG2 P 1*4 Second P 1*4 argument

Outputs:
RESULT P 1*4 Result

3.16.26 ZR8P4 - converts between pseudo 1*4 and R*8. Pseudo 1*4 has
the form of two short integers with the least significant half at the
lower 1*2 index. IBM 1*4 has the form of a 2's complement, 32-bit
integer with the most significant 16 bits in the 1*2 word of lower
index and the least significant 16 bits in the 1*2 word of higher
index.

ZR8P4 (OP, INTG, DX)
Inputs: OP R*4

In/out: INTG
DX

1*2(2)
R*8

4108 Pseudo 1*4 to R*8
18T04* R*8 to pseudo 1*4
1 4 IB 81 IBM
18IB41 R*8
the 1*4
the R*8

1*4 to R*8
to IBM 1*4

3.16.27 ZTTYIO - performs I/O to a terminal.
SUBROUTINE ZTTYIO (OPER, LUN, FIND, NBYTES, BUFFER, IERR)

Inputs: OPER R*4 'READ' or 1WRIT*
LUN 1*2 LUN of open device
FIND 1*2 Pointer to FTAB for open device
NBYTES 1*2 # bytes (characters) to transmit (<= 132) In/out: BUFFER R*4(*) I/O buffer

Output: IERR 1*2 Error code: 0 => ok
1 => file not open
2 => input parameter error
3 => I/O error
4 => end of file

CHAPTER 4
THE AIPS PROGRAM

4.1 OVERVIEW
The AIPS program is the portion of the AIPS system with which the

user normally interacts. The major functions of the AIPS program are:
1) prepare the parameters for and initiate the tasks which do most of
the computations, 2) allow interactive use of TV and graphics devices,
3) provide limited direct analysis capability and 4) provide a high
level of control logic to allow simple functions to be grouped into
more complex functions (i.e. a programming language).

The basis of the AIPS program is the POPS (People Oriented
Parsing Service) language processor. POPS is an interpretive language
processor which can either accept statments for immediate execution or
in the form of programs, called procedures, which are compiled and
stored for later execution. Operations on data, images etc. are
performed by means of "verbs" and "tasks". Verbs are operations which
are done directly by the AIPS program and tasks are programs which are
run asynchronously from AIPS. Both verbs and tasks are controlled by
a set of global parameters called "adverbs". Verbs may change the
values of adverbs whereas tasks cannot.

This chapter will attempt to describe the basic methods of the
POPS processor and explain how to add new verbs and adverbs. The AIPS
program does not know directly about tasks so adding tasks requires no
modifications to the AIPS program.

Other documentation about POPS processors may be found in a
report by Jerome A. Hudson entitled "POPS People-Oriented Parsing
Service Language Description and Program Documentation" and POPS An
In te ra c t i ve Termi nal Language with A p p lic a tio n s in Radio Astronomy by
A. Sume, 1978, Internal Report no. 115, Research Laboratory of
Electronics and Onsala Space Observatory, Chalmers University of
Technology, Gothenburg, Sweden.

4.2 STRUCTURE OF THE AIPS PROGRAM
The basis of the AIPS program is a POPS processor which

interprets user instructions and calls the relevant applications
routines and spawns the desired tasks. Input to the POPS processor is
in the form of statments which may do one of the following:

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM

Page 4-2
08 May 84

1. Modify an adverb value. This may be either by specifying a
literal constant or an arithmetic, logical or character
string expression.

2. Invoke an applications verb. These are the verbs which are
specific to a given data analysis problem, such as displaying
an image on the TV, rather than general control verbs such as
loop control or sine functions etc.

3. Logic flow control. These statments control the execution of
other statments, eg. loop control, IF, THEN, ELSE etc.

4. Spawn tasks. Tasks are programs which take relatively long
times to run and are executed asynchronously from AIPS.
Communication between AIPS and tasks is primarily by disk
files.

5. Prepare and edit procedures. POPS programs called procedures
may be entered and compiled for later execution. These
procedures may later be edited.

6. Prepare batch file. AIPS can run in a batch mode. To do
this, the user enters and/or edits a list of commands in a
batch file for later execution. This can be done either in
the normal AIPS or a special batch version of AIPS named
BATER.

4.2.1 The POPS Processor
POPS uses an "inverse POLISH" stack to store operands and

operation codes. Symbolics such as verb, adverb or procedure names
are stored in a symbol table and each is identified by a type (TYPE)
and a number (TAG). The initial entries in the symbol table and
initial values of the adverbs are read from an external disk file
which is prepared by the stand alone utility routine POPSGN. The
various tables and stack pointers etc. are carried in common and the
tables are equivalenced into an array known as the "K array".

Multiple statments, separated by semicolons, may be entered in a
single line. There are a number of special verbs known as "pseudo"
verbs which are executed as soon as they are encountered, causing any
other instructions on the same line to be parsed in special fashions,
ignored, or handled normally depending on the pseudoverb.

The basic structure of the AIPS program is very heirarchial. The
main routine calls a startup routine, AIPBEG, a shutdown and error
routine, AIPERR and a single routine GTLINE which controls the bulk of
the processing. The structure of the basic routines in the POPS
processor is shown in the following figure:

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM

Page 4-3
08 May 84

I GTLINE I
I read line I

+--------------+
I OERROR I
I error messages!

I +~
I POLISH I
I compile line I

I I I I I
- + I I I + -
+---- + +-+ +--------------------+ I

I I I I I

ICOMPIL I I PSEUDO I I EDITOR I I STORES I I HELPS I

I INTERP I
I execute I
I POPS code I

I GETFLD I
I VERBS I I QUICK I

I I

I LTSTOR I I SYMBOL I GETNUM I I GETSTR I

More details of each of these routines is given in the following:
- GTLINE this is the main POPS routine. It causes lines to be

read by PREAD, parsed and compiled or executed (in the case
of pseudo verbs) by POLISH, and finally executed by INTERP.
GTLINE returns only on error or requested termination of the
program.

- OERROR this routine displays an error message on the user
terminal and resets POPS.

- INTERP causes POPS code to be executed by placing operands on
the V and STACK stacks and calling VERBS and QUICK for verbs.

- VERBS calls the relevant applications verb routines based on
the verb number. Functions are grouped together in routines
named AUn. The appropriate routine is called with a branch
code as an argument. This branch code in the verb number
minus the first verb number in that AU routine plus one. The
verb numbers are defined in an external file but VERBS must
also know which verb numbers correspond to which AU routine.

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM

Page 4-4
08 May 84

- QUICK executes the basic POPS control verbs. These are the
verbs which don't depend particularly on a given application
but are frequently encountered.

~ POLISH parses the character string entered by the user and
translates it to Polish postfix notation. The result is a
string of integers representing code for the POPS
interpreter. Negative tokens are operand pointers while
positive tokens are operator codes. The array A, which is
equivalenced to STACK, holds the list of tokens; AP points
to the most recent entry and SP points to the next entry.
The operand pointers are to the location of the adverb or
temporary variable in the K array.

- COMPIL does the actual interpretation of instructions and
adds them to the stacks. COMPIL exits when a pseudo-verb or
end-of-line is encountered.

- PSEUDO handles procedure and adverb declarations, sets up for
the runtime operators IF, THEN, ELSE, WHILE (which require
forward references and an additional cleanup pass) and the
FINISH operator.

- EDITOR performs the operations required to begin and stop
editing an existing procedure.

- STORES stores either the procedure source code, procedure
object code, or handles the procedure source code.

- HELPS handles the user assistance facilities HELP, INPUT,
EXPLAIN and RUN and other functions which require access to
external text files. HELP lists symbols by type or lists a
text file whose member name matches a user name. RUN sets
the input to a specified member of a text file. This allows
users to to have personal strings of commands (e.g. procs,
verbs, adverb settings). INPUTS lists the adverbs and their
current values and brief descriptions on the terminal.
Subroutine HELPS simply parses the user input in a more
friendly fashion and places appropriate verb numbers and
strings on the stacks.

- GETFLD finds the next non-blank character in the input
buffer, KARBUF, and determines whether the token begun with
that character is symbolic (1st char is A - Z), numeric (1st
char is 0 - 9 or .), or hollerith (1st char is '). After the
field length is found, appropriate calls are made to the
symbol processing routine, number scanning routine, etc.
Communication back to POLISH is via TYPE and TAG parameters
determined by the processors SYMBOL, GETNUM, LTSTOR...

- LTSTOR searches the list of literals in the K array. If a
matching literal is found, the TAG is returned. If not, a
new one is generated and linked to the literal list. Notes
a "literal" is a constant having either a numeric, character,
or logical value.

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM

Page 4-5
08 May 84

- SYflgQL finds a symbol in the symbol list. The result is
returned as TYPE and TAG through a common. If the routine is
in the variable declaration mode a new entry will be made in
the symbol table if it does not already exist.

- GETNUM converts a character string into a REAL*8 value.
- GETSTR obtains a character string from a buffer.

4.2.2 POPS Commons
Most of the communication between POPS subroutines is by means of

commons. As with most commons in the AIPS system, these commons are
obtained by use of include files. The contents and uses of these
commons are described in the following. The text of the include files
is given at the end of this chapter.

4.2.2.1 /CORE/ - This common is obtained by the includes DCON.INC,
CCON.INC and ECON.INC and contains the basic POPS "memory" or K array,
ie. the symbol tables, adverb values, procedures etc. This common
consists of two equivalenced, 1*2 (K) and R*4 (C), arrays. Included
in the latter part of this array are the adverb values. The variables
used for the installed (predefined) adverbs are declared in the
includes DAPL.INC and CAPL.INC and follow a shortened declaration of
the K array in common /CORE/. They specify the adverbs as
equivalences to the K array beginning at K(KXORG+10).

User defined adverbs as well as as procedures and temporary
literal values are stored beginning at K(301). The names of all
symbolics (adverbs, verbs and procedures) are kept in a symbol table
which is a linked list of symbol names containing the symbol type
(TYPE), location in the K array (TAG) and the location of the array or
string descriptor entries if appropriate. The first entry in the
symbol table is pointed to by K(l) and a zero link indicates the last
entry in the table. More details are given in later sections.

Literals (constants) are kept in a literal table which is also a
linked list in the K array. The first entry is pointed to by K(4) and
the last entry is pointed to by K(10). The literal table entry
contains the type, length, and value of the literal.

The current compiled version of procedures is also kept in the K
array. Each procedure may be divided into several blocks in the K
array; the blocks are connected by forward links. A pointer is kept
to the first location of the source version of the procedure in the
LISTF array kept in the working memory file (kept on disk). The first
block of a procedure is pointed to by the symbol table.

The different portions of the K array are used as follows:

THE AIPS PROGRAM Page 4-6
STRUCTURE OF THE AIPS PROGRAM 08 May 84

K(1) Symbol table link, points to first entry in the symbol table.
K(2) Program link, points to first program (Procedure)
K(3) Next free cell in K array to be allocated.
K(4) Constants (literal) link, points to first entry in the

literal table.
K(5) Number of cells allocatable. Currently 73 80
K(6) KTEMP, pointer to KKT (temporary value) area.
K(7) Symbol protect limit. Names with TAGs greater than this

value may be changed. This is used to protect
procedures compiled by POPSGN.

K(8) KXORG, pointer to KX array (data area). Currently 7381.
K (9) Last symbol pointer.
K(10) Last literal pointer
K (11-50) Not used

KKT area, temporary storage for MODE=0
K(51) Not used
K(52) Program link
K(53) Next free cell
K (54) Constants link
K(55) Number of cells allocatable
K(56-59) not used
K (60) Last constant pointer.
K(301...) Used for program storage, constants, symbols etc. for the

remainder of the program postion of the K array.
KX area, data storage

K(KXORG+O) Not used
K (KXORG+1) not used
K(KXORG+2) Next free cell
K(KXORG+4) Number of cells allocatable
K(KXORG+5) not used
K(KXORG+6) Highest adverb address in K not changable by user.
K(KXORG+7->+9) not used
K(KXORG+IO...) data storage.

Symbol table entries.
Word 1: Link to next symbol table entry. Zero if end of list.

2: bits 2**0 to 2**3 = type.
bits 2**4 to 2**15 = number of words in symbol

3: TAG (location in core where the data is kept)
4: Array data block counter if symbol is an array name,

string, or procedure.
5: Bytes 1 and 2 of the name.
6: Bytes 3 and 4 of symbol name.
7: etc.

Array data blocks, define arrays
(pointed to by symbol table)

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM

Page 4-7
08 May 84

Word

Word

Word 1:
2:

3:
4:

Word 1
2
3
4

Total array size
Number of dimensions
Initial index for first index
first dimension
Initial index for second dimension
etc.

Strings and string arrays
(pointed to by symbol table)

Total array size
Number of dimensions
1
no. floating point words in each element,
initial index for first subscript, if any
first subscript range, if any
etc.

Literal table entries
Pointer to next literal table entry, zero if last entry.
Bits 2**0 to 2**3 = type, the types are ll=>floating point

real (2 integer words), 14=>character string, 15=>
logical constant (TRUE or FALSE)

Bits 2**4 to 2**15 length of literal in integers.
First integer word in literal,
etc.

Procedure storage (compiled code)
(pointed to by symbol table)

Link to next program block, zero if last.
Pointer to text array for purposes of listing.
first interpreter instruction.
etc.

N: 1 An opcode of 1 terminates a block. If the link to the
next block is zero the procedure terminates.

4.2.2.2 /POPS/ - This common carries the various stacks, stack
pointers and other values. This common is obtained from includes
DPOP.INC and CPOP.INC. The contents of this common are described in
the following:

Operand stack for REAL variables.
Intermediate REAL value
Starting location in K array of KKT (temporary) area.
Start address of an entry in the K array. Used while
allocating storage.
Not used
Last token (opcode); if zero, finished with line.
Used by COMPIL.

V (60) R*4
XX R*4
KT 1*2
LPGM 1*2
LLIT 1*2LAST 1*2

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM

Page 4-8
08 May 84

IDEBUG 1*2 A debug flag used in various places. If true
(.GE.O) then debug info about POPS is given.

MODE 1*2 The current mode of the POPS processor.
0 => immediate execution of an input line
1 => compile a procedure
2 => finishing a procedure
3 => editing a procedure
69 => adding a new symbol to symbol table
8 1 if an operator has been found in the current
instruction; 0 otherwise.

IFFLAG 1*2
LINK 1*2 A link (pointer in K array)
L 1*2 Another link (pointer in K array)
NAMEP 1*2 Pointer in K array to a name in the symbol table.
IP 1*2 Pointer in K array
LP 1*2 Pointer in K array
SLIM 1*2 Maximum allowed index in the stacks (currently 60)
AP 1*2 Pointer to last entry in STACK
BP 1*2 Pointer to last entry in CSTACK
ONE 1*2 Pointer in C to value of 1.0
ZERO 1*2 Pointer in C to value of 0.0
TRUE 1*2 Pointer in C to value .TRUE.
FALSE 1*2 Pointer in C to value .FALSE.
STACK(60) 1*2 Instruction stack
CSTACK(60) 1*2 Second (temporary) instruction stack
SP 1*2 Pointer in STACK
CP 1*2 Pointer in CSTACK
SPO 1*2 Another pointer in STACK
MPAGE 1*2 Number of pages (512 bytes) in the Memory file.

(LISTF + K array)
LPAGE 1*2 Number of pages (512 bytes) of the memory file

which contain LISTF (procedure source code)

4.2.2.3 /SMSTUF/ - This common contain various important values
passed between routines. This common is obtained with the includes
DSMS.INC and CSMS.INC. The contents of this common follow.
KPAK(5) R*4 Temporary array for storing a symbol name. A packed

character string.NKAR 1*2 The number of characters in KPAK
KBPTR 1*2 A character pointer in KARBUF, the input line bufferNEWCOD 1*2 Tag given by SYMBOL when allocating space for a new

adverb.
TYPE 1*2 Symbol type. See section on TAG and TYPE.SKEL R*4 Not used.
TAG 1*2 Symbol number. See section on TAG and TYPE.
LEVEL 1*2 Precedence level bias.
LX 1*2 Number of integer words in a character X.
NEXTP 1*2 Precedence level of next item on A-stack.
X (15) R*4 Temporary storage for character strings.
LOCSYM 1*2 Location in symbol or literal table of current

symbol.

THE AIPS PROGRAM Page 4-9
STRUCTURE OF THE AIPS PROGRAM 08 May 84

4.2.2.4 /IO/ - This common contains short I/O buffers and related
information. This common can be obtained from includes DIO.INC and
CIO.INC. The contents of this common follow.
ILF 1*2 Not used.
ICRLF 1*2 Not used.
IPT 1*2 Prompt characterIPAGE 1*2 Not used.
IVEC 1*2 Not used.
NBYTES 1*2 Number of valid characters in KARBUF, number of last

non blank character.
KARBUF(80) 1*2 An unpacked buffer containing the current input line.
JBUFF(40) 1*2 Buffer used to read user input as a packed string.IPRT 1*2 Not used.
KARLIM 1*2 Number of characters in KARBUFIUNIT 1*2 Input unit number for PREAD; 1=> user terminal, 2=>

text editor, 3=>batch input file 4=>text entered durii
screen hold.

HOLDU F(40) 1*2 Buffer for storing text entered during screen hold by
SCHOLD.

4.2.3 TAG And TYPE
Adverbs, verbs, procedures etc. are all represented by symbolic

names to the user. Internally, POPS identifies symbolics by TYPE and
TAG. TYPE determines the type of symbolic (eg. scalar, character
string, verb etc.) and TAG is a label for the particular symbolic (eg.
a verb number). The TYPE of all symbols and the TAG of verbs are
specified to POPSGN in the POPSDAT.HLP file. The TAG of an adverb is
computed by POPS and is the start address of the value field.

The current list of symbolic types is given in the following
list.

1 REAL scalar.
2 REAL array.
3 Procedure name.
4 Verb name
5 Pseudo verb name.
6 Quit (used by POPSGN)
7 Character string
8 Element of character string
9 substring of a character string10 not used

11 Numeric constant
14 Character constant15 Logical constant.

THE AIPS PROGRAM
STRUCTURE OP THE AIPS PROGRAM

Page 4-10
0 8 May 84

4.2.4 Error Handling
If a subroutine determines that an error condition exists it sets

the variable ERRNUM in common /ERRORS/ to an error code known to the
routine OERROR, increments ERRLEV in /ERRORS/, and, if ERRLEV .LE. 5,
copies the name of the subroutine (two characters per integer) into
/ERRORS/ array PNAME. Following this, the subroutine returns. Thus
after each call to another AIPS subroutine a subroutine should check
ERRNUM and if it is not zero then that subroutine should increment
ERRLEV and add its name to PNAME, If GTLINE determines that an error
has occured it returns to to the main AIPS routine which calls AIPERR
which calls OERROR. This provides a traceback capability which can be
exercised setting the AIPS adverb DEBUG to 1.0. Common /ERRORS/ is
obtained from includes DERR.INC and CERR.INC.

4.2.5 Memory Files
The contents of the K array and LISTF, the source code for

procedures, are initially obtained by AIPS from a memory file (type
'ME'). The u^er may save the contents of LISTF and the K array by the
pseudo verbs STORE or SAVE. The contents of these arrays can be
recovered by the pseudo verbs RESTORE and GET. The working version of
LISTF is stored at the beginning of the memory file.

The structure of the memory file is illustrated in the following.
The size of the LISTF is given in pages (512 bytes) by variable LPAGE
in common /POPS/ and the combined number of pages used by the LISTF
and the K array are given by MPAGE in the same common.

I Lw I K0 I L0 I K1 I LI I K2 I L2 I ...
where Lw = working version of LISTF

K0 = startup version of the K array
initialized by POPSGN.

L0 = startup version of the LISTF
initialized by POPSGN.

K1 = user STORE area 1 for K array.
LI = user STORE area 1 for LISTF.
K2 = user STORE area 2 for K array.
L2 = user STORE area 2 for LISTF.
etc.

4.2.6 Special Modes
In the normal mode in which AIPS operates, the user types in

instructions which are executed immediately. There are several
alternate modes in which AIPS can operate. These modes are described
briefly in the following sections.

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM

Page 4-11
08 May 84

4.2.6.1 RUN Files - AIPS can be directed to read input from a disk
text file which can be prepared with the local source editor. The
instructions in such a file will be treated in the same fashion as if
they were typed in through the terminal. RUN files are used mostly
for permanent storage of complex procedures or other fixed data
processing schemes. In AIPS, if IUNIT=3 in common /IO/, instructions
are read from the RUN file until an end-of-file or an error is
encountered.

4.2.6.2 Batch - AIPS can also be made to run in batch mode at a lower
priority. To run AIPS batch, the user edits a file of instructions
which are the same as would be given to an interactive AIPS. The
major difference is that all tasks are run with DOWAIT=TRUE. This
causes AIPS to suspend itself until the task is finished. Another
difference is that tape drives, TVs, and graphics devices are not
allowed for batch jobs.

The batch file can be created either by an interactive AIPS or a
special version of AIPS, called BATER, for this purpose. Once the
file is created the SUBMIT verb sends it to AIPSC which checks the
syntax. One of several possible AIPSBs, the batch AIPSs, is scheduled
to execute the batch file. Each of the three versions of AIPS (AIPS,
the interactive program? AIPSC, the batch checker? and AIPSB, the
batch AIPS) has a separate version of the subroutine VERBS called
VERBS, VERBSC and VERBSB respectively.

4.2.6.3 Procedures - POPS programs, called procedures, can be entered
into the K array or edited by the user with the editor in the POPS
processor. Alternately, procedures can be entered by POPSGN when
creating the POPS memory files. As a procedure is entered it is
compiled line by line and the final compiled code is stored in the K
array. Editing or modifying a procedure will cause the procedure to
be recompiled and replaced in the K array.

The source version of the procedures is stored in an array called
LISTF which is kept on disk in the current working memory file. All access to the source code causes this file to be read and/or written.

When procedures are recompiled and stored in the K array, the
space for the old instructions is not recovered. The verb, COMPRESS,
which was to recover this unused space, has never been implemented.

4.3 EXAMPLE OF THE POPS PROCESSOR.
The following discussion of the POPS compiler and an example of

its action is lifted (with some updates) from the 1978 Sume report.

THE AIPS PROGRAM
EXAMPLE OF THE POPS PROCESSOR.

Page 4-12
08 May 84

4.3.1 The Compiler
POPS compiles expressions into reverse polish stacks, which can

then be executed by the interpreter. Operators are translated into
integers 1, 2, 3,... and operands into negative integers. The
magnitudes of the negative integers are the addresses within the K
array of the operands. Arithmetic operators carry a precedence which
is used in converting expressions into polish sequences. Some
operators, such as (and ; are used only at compile time to signal
the elevation of precedence of operators, the end of a statment, etc.

The following table lists POPS operators and their precedence
level.

Symbol Meaning Precedence
= Store 1
1 Or 2
& And 2A Not 2

Equal (as 3
opposed to store)

> Greater than 3
< Less than 3
<= Greater or equal 3
>= Less or equal 3
<> Not equal 3
TO Loop control 4
•• Loop control 4BY Loop control 4
! ! String concatenation 4
+ Add 5
- Subtract 5
SUBSTR String extraction,

insertion 5* Multiply 6
/ Divide 6** Exponentiate 7
- Unary - 8
+ Unary + 0
Verbs ?,FOR,END,READ,TYPE,PRINT,

RETURN, AND DUMP 0All other verbs 9

Translation to polish form takes place in the overlays POLISH and
COMPIL as follows; Three push-down stacks, A, B, and BPR, hold
operands, operators, and operator precedents respectively, while an
expression is scanned from left to right. The expression is contained
in the array KARBUF and the tokens are obtained from KARBUF by the
subroutine GETFLD (in POLISH) called from COMPIL. Operands are placed
on the A stack in order of appearance. Operators are placed on the B

THE AIPS PROGRAM Page 4-13
EXAMPLE OF THE POPS PROCESSOR. 08 May 84

stack if their precedence (NEXTP) exceeds the precedence of the last
operator on the stack, or if the B stack is empty. Using the BCLEAN
subroutine, operators are taken off the B stack and pushed onto A if
their precedence is equal to or great than the precedence of the
operator currently being scanned. This takes place until the top
operator on the B stack has precede e lower than the one being
scanned, or the B stack is emptied, whence the new operator is pushed
onto the B stack, and its precedence onto the BPR stack at the
corresponding position. If the (operator is encountered, the
precedence of every subsequent operator is raised by an amount MAXLEV
(=10) while) lowers the level by MAXLEV. The end of a statment
"operator", the ? operator, and others with which arithmetic
expressions may be associated, such as TO, BY, THEN, ELSE, etc. , are
taken to have lowest possible precedence, so that they have the effect
of empying the B stack. We are then left with the polish sequence of
operators and operands in the A stack. For example, the expression.

Y = A*(B*X + C);
would be translated with the following steps:
Step Token Prec(token) A-stack B-stack BPR-stack

1) Y • • • (empty) (empty) (empty)
2) = 3 Y (empty) (empty)
3) A • • • Y = 3
4) * 6 Y s 3

A
5) (raise level Y s 3

A * 6
6) B • • • — SAME —
7) * 6+MAXLEV Y as 3

A * 6B
8) X • • • Y s 3

A * 6B * 6+MAXLEV
9) + 5+MAXLEV Y = 3

A * 6
B * 6+MAXLEVX

10) c • • • Y 2 3
A ★ 6
B + 5+MAXLEV
X

THE AIPS PROGRAM
EXAMPLE OF THE POPS PROCESSOR

Page 4-14
08 May 84

11) decrement Y 3
6
5+MAXLEV

A
B
X

*
+

★
c

12) 0 SAME
13) Final result Y

A
B
X

(empty) (empty)

C
+★

4,3.2 The Interpreter
The POPS interpreter executes polish postfix code left by the

POPS compiler. To do so requires 3 run-time stacks; the main stack
(STACK), the control stack (CSTACK) and a value stack (V).

The main stack holds operand addresses (tags.) Corresponding to
each operand, the appropriate position in the value stack is loaded
with a floating point number, found in core at the stack address.
This number may or may not be meaningful, depending on the type of
data kept at that address. Operators will make use of the address or
value depending on which is appropriate.

The control stack is used to save the run-time location counter
(L) and the program chunk link (LINK), together with saved stack
pointers, etc. While the main stack could be so used, it was felt
that greater reliability would ensue if the control stack were kept
separate, guarding from user-caused stack errors (such as leaving
garbage on the main stack). Operations using the control stack
require an authentication code to appear on the top of the stack
before they are activated.

The interpreter expects all operands to be negative integers?
all operators, save 0 to be positive (0 is considered a legitimate
operand). Operands will be pushed onto the main stack. The value
stack, described above, holds intermediate results of computations, as
well as the contents of memory when the stack was loaded.

An example, using the arithmetic expression described in the
polish compile segment:

THE AIPS PROGRAM
EXAMPLE OP THE POPS PROCESSOR

Page 4-15
08 May 84

Source code: Y = A * (B * X + C)
Compiled code
1) -addr. of Y
2) -addr. of A
3) -addr. of B
4) -addr. of X
5) +TAG of * operator
6) -addr. of C
7) +TAG of + operator
8) +TAG of * operator
9) +TAG Of operator

Execution: Suppose A = 1.5, B = 2.5, C = 3.5, X =

Step

1)
2)

3)

4)

5)

6)

7)

8)

9)

10)

Token being
executed

Y
A
B

X

finish

stack

(empty)
Y
Y
A
Y
A
B
Y
A
B
X
Y
A*********
Y
A

* * * * * * * * *
C
Y
A

* * * * * * * * * *

Y
* * * * * * * * * *

(empty)

(empty)
* * * * * * * *

* * * * * * * *
1.5

* * * * * * * *
1.5
2.5

* * * * * * * *
1.5
2.5

10.0
* * * * * * * *

1.5
25.0

* * * * * * * *
1.5
25.0
3.5

* * * * * * * * *
1.5
28.5

* * * * * * * * *
42.75
(empty)

10.0

THE AIPS PROGRAM
INSTALLING NEW VERBS Page 4-16

08 May 84

4.4 INSTALLING NEW VERBS
To install a new verb in AIPS several actions are required.
1. Enter the new verb in POPSDAT.HLP and run POPSGN. The new

verb will probably be TYPE 4 and should be assigned a verb
number (TAG) greater than 100? making sure the verb number
is not already used. It should be noted that contigious
groups of verb numbers will use the same AU routine. If the
new verb is similar to existing verbs it should be put in the
same AU routine if possible.

2. Create or modify an AU routine to perform the desired
function. If there are available verb numbers in the range
available to the relevant AU routine, then the function can
be added to that AU routine. If not, then a new AU routine
is required. Note that the branch code sent to the AU
routine is the verb number (one) relative to the first verb
number in that AU routine. If the verb requires more than a
few lines of Fortran, the AU routine should call a subroutine
to do the work.

3. Modify VERBS, if necessary, to call the necessary AU routine
when it is given the new verb number (J in VERBS). The range
of verb numbers in each routine is defined in the arrays IAB
and IAE. If new AU routines are added the dimensions of IAB
and IAE should be changed and the upper limit on the DO loop
index for the loop terminating at statment label 5 should be
changed. The computed GO TO in this loop should be modified
to include the new AU routine. New AU routines should be
added at the end of the list for simplicity. Note that there
are three versions of VERBS (VERBS, VERBSC, and VERBSB) for
the interactive AIPS, the batch AIPS checker program, and
batch AIPS respectively. All three must have corresponding
changes although an error return may be desired for the two
batch versions in the implementation of a new verb.

4. Update the overlay structure on machines with limited address
space.

5. Compile the necessary subroutines and add them to the AIPS
program subroutine library.

6. Recompile and link edit AIPS.
7. Create a HELP file for the verb the the same manner as for a

task. Verbs will work without a HELP file but it is much
friendlier to write one.

As a convenience for developing new verbs, four temporary verbs
are available, T1VERB, T2VERB, T3VERB and T4VERB (verb numbers
900-903) These are accessable through the routine AUT. To use one of
these verbs all that is necessary is to modify AUT, recompile it,
replace it in the AIPS program subroutine library (ACOMRPL), and
recompile AIPS and relink it. Once verbs are tested they should be

THE AIPS PROGRAM
INSTALLING NEW VERBS

Page 4-17
08 May 84

moved to a more permanant AU routine.
The branch code sent to the AU routine is (one) relative to the

first verb number in that AU routine. If the verb has one or more
arguments, they will be found in the value stack V in common /POPS/ in
the reverse of the order in which they were specified. Real values
can then be obtained as in the following examples

SUBROUTINE TESTXX
--
C Routine to average the top two numbers on the V stack.
C This routine is designed to be run from VERBS rather than QUICK,
C that is, it should be called from an AU routine.

REAL*4 VI, V2, RESULT
INTEGER*2 POTERR, N3, PRGNAM(3)
INCLUDE 'INCS:DPOP.INC*
INCLUDE 1INCS:DERR.INC1
INCLUDE 1INCS:CPOP.INC'
INCLUDE 1INCS:CERR.INC1
DATA N3 /3/, PRGNAM /1TE1,'ST',1XX*/

C --
C
C

POTERR = 7
C
C

IP (SP.LT.2) GO TO 980
C

VI = V(SP-l)
V2 = V(SP)

C
RESULT - (VI + V2) / 2.0

C
C
C

SP « SP - 1
STACK(SP) = 0

C
C

V(SP) = RESULT
C

GO TO 999
C
980 ERRNUM = POTERR
C

ERRLEV = ERRLEV + 1
IF (ERRLEV.LE.5) CALL COPY (N3, PRGNAM, PNAME(3*ERRLEV-2))

C Return
999 RETURN

END

The stack contents are as follows when TESTXX is called with an
immediate argument:

Set potential error number,
7 = 'STACK LIMIT'
Check that stack not
exhausted.
Get values from stack.

Average.
For two operands change SP and,
STACK, for one don't change
SP or STACK.

If the verb returns a value,
RESULT, do the following.
Finished OK
Set error code
Fill in /ERRORS/.

THE AIPS PROGRAM
INSTALLING NEW VERBS

Page 4-18
0 8 May 84

1, For a real scalar including a subscripted real array adverb,
SP = 1 STACK(SP) = TAG V(SP) = C(TAG) (=value)

2. For an array adverb,
SP = 1

2
3
4

STACK(SP) = TYPE
N
TAG
2

V (SP) may be ignored

where for TYPE = 2,7 N = K array pointer to array descriptor
block,

14 = number of characters,
9 = 100 * character offset + # character:

Adverbs may be accessed by name using the name as defined in the
include CAPL.INC. Note that the order of adverbs is really defined in
the POPSDAT.HLP file and the order in CAPL.INC must correspond
exactly. Also, all adverbs are of Fortran data type REAL although
they may contain character strings.

4.5 INSTALLING NEW ADVERBS
New, temporary, adverbs can be created in an executing AIPS task

by SCALAR, ARRAY or STRING statments in a procedure. Permanent
installation of an adverb requires entering it in POPSDAT.HLP, running
POPSGN to update the memory files, and adding a variable into the
declarations in common /CORE/ in the includes DAPL.INC and CAPL.INC
The new adverbs should be entered in the same relative location amoung
the other adverbs in CAPL.INC as in the POPSDAT file. The adverb
value will be kept in this variable and is therefore directly
available to verbs.

4.6 POPSGN
The initial contents of the POPS memory files and hence the LISTF

and K arrays are set by the stand alone utility program POPSGN. This
program takes as input the file POPSDAT.HLP.

4.6.1 Function
The function of POPSGN is to initialize the contents of LISTF

(the source code for procedures) and the K array when AIPS starts up
by storing the contents in the POPS memory ('ME') files. This program
is normally found in the same place as the AIPS program itself and
asks for instructions directly from the key board. When the program

THE AIPS PROGRAM
POPSGN Page 4-19

0 8 May 84

begins it asks:
"ENTER NPOPS1,NPOPS2,IDEBUG,MNAME,VERSION (312,4A2,5A4)"

The response should be as follows:
NPOPS1 The lowest POPS number for this run of POPSGN, this

is normally 1.
NPOPS2 The highest POPS number for this run of POPSGN, this

is normally the highest POPS number run * 2 * No.
interactive POPS + number of batch queues + 1.

IDEBUG If not 0, POPSGN will give lots of debug messages.
Use 0.

MNAME The name of the file in the HELP area that contains
the input file for POPSGN. This is normally
POPSDAT.HLP; type only 'POPSDAT'.

VERSION This specifies the version of AIPS to have the
memory files updated. Normally this is blank
which will update the 'NEW' area? 'OLD1 is also
understood by POPSGN.

After POPSGN has digested POPSDAT.HLP it will return a •>'
prompt. Type a blank line to terminate the input and POPSGN will update the memory files.

4.6.2 POPSDAT.HLP
The bulk of the definitions of verbs, adverbs, and standard

procedures are defined in the POPSDAT file. A nC-" in columns one and
two indicate a comment line. A "/" character conventionally indicates
the beginning of an end-of-line comment which must begin after column
44. The names of symbols begin in column 1 with no embedded blanks
and may have no more than 8 characters. The POPSDAT file is read with
a (5A2,IX,13,IX,13,IX,14,IX,14,2(IX,F7.2)) format.

The first portion of the POPSDAT file defines the POPS verbs.
Most of these verbs and pseudo verbs with verb numbers (TAG) less than
100 reside in the AIPS routine QUICK. Verb numbers greater than 100
are all in AU routines called by VERBS. The values following the
symbol name are 1) the number of characters in the symbol name, 2) the
symbol type (4 or 5 for verbs and pseudo verbs) and 3) the TAG, in
this case the verb number. The end—of—line comments for verbs with
numbers (TAG) greater than 100 tell the AU routine in which that verb is found.

Following the verbs come the adverb definitions. The values
following the symbol name are: 1) the number of characters in the
symbol name, 2) the symbol type (see the section of TYPEs and TAGs).
For scalar, real adverbs (TYPE 1) the next two integer fields are

THE AIPS PROGRAM
POPSGN Page 4-20

08 May 84

blank and the following REAL field (F7.0) is taken to be the initial
value of that scalar.

For real arrays (TYPE 2), the first value past the TYPE field is
the number of dimensions (1 or 2), the next integer field is blank and
the following one or two REAL (F7.1) fields give the number of
positions in each of the one or two dimensions.

For character string variables (TYPE 7) the first integer field
past the TYPE is the extent (number of positions) of the first
dimension of the array of character strings. This is normally 1 as
there are only scalar character string adverbs at the moment. The
next integer field is blank and the next REAL (F7.0) field is the
number of characters in the string.

An adverb named QUIT with TYPE = 6 tells POPSGN that all verb and
adverb definitions have been read. Following this, normal POPS
commands may be entered and the definitions of the standard procedures
are normally entered here. A in column 1 indicates a POPS comment
line. The end of file terminates the input.

The current contents of POPSDAT is shown in the following:
C- This module is POPSDAT.
c-
r 1 4 1
(1 4 2
) 1 4 3= 1 4 4+ 1 4 5
- 1 4 6* 1 4 7
/ 1 4 8** 2 4 9
> 1 4 10
< 1 4 11
+ 1 4 12- 1 4 13A 1 4 14TO 2 4 15
•
• 2 4 15
BY 2 4 16= 1 4 17
1 1 4 18
& 1 4 19
•i 1 4 20
FOR 3 4 21
END 3 4 22
READ 4 4 23
TYPE 4 4 24
PRINT 5 4 24
RETURN 6 4 25
LENGTH 6 4 26
C-
C-RUN 3 4

27
28

This module

\ res a

S POPSDAT,

subtract

unary

logical

ray equates

THE AIPS PROGRAM
POPSGN

Page 4-21
08 May 84

C-EXIT 4 4 29 \C-RESTART 7 4 30 \
LOG 3 4 31
LN 2 4 32
MOD 3 4 33
MODULUS 7 4 34
ATAN2 5 4 35
SIN 3 4 36
COS 3 4 37
TAN 3 4 38
ATAN 4 4 39
SQRT 4 4 40
DUMP 4 4 41 \<= 2 4 42 \>= 2 4 43 \
<> 2 4 44 \EXP 3 4 45
SUBSTR 6 4 46
1! 2 4 47
CHAR 4 4 48
VALUE 5 4 49
MSGKILL 7 5 50 ——\
PROCEDURE 9 5 51 — — \
PROC 4 5 51
ARRAY 5 5 52
ELSE 4 5 53
THEN 4 5 54
FINISH 6 5 55
DEBUG 5 5 56
IF 2 5 57
STRING 6 5 58
WHILE 5 5 59
SCALAR 6 5 60
EDIT 4 5 61 \
ENDEDIT 7 5 62 ~ \MODIFY
C-storecode

6 5 63
64 — \STORE 5 5 65 \RESTORE 7 5 66 \

SAVE 4 5 67 \GET 3 5 68 \LIST 4 5 69 \CORE 4 5 70 \SCRATCH 7 5 71 \COMPRESS
C-endmodify

8 5 72
73

\
— \ERASE 5 5 79

RUN 3 5 80 \HELP 4 5 81 ~ \INP 3 5 82 — \
INPUTS 6 5 83
GO 2 5 84
TGET 4 5 85
SGDESTR 7 5 86
ABORTASK 8 5 87
TPUT 4 5 88

PSEUDO

— STORES

— \ reserved

THE AIPS PROGRAM
POPSGN

Page 4-22
08 May 84

WAITTASK 8 5 89
EXPLAIN 7 5 90
CEIL 4 4 91
FLOOR 5 4 92
C- 96
C- 97
C- 98
C- 99
C-
C-C-C-C-C- Nch Typ ITAG
PRTMSG 6 4 100
EXIT 4 4 101
RESTART 7 4 102
CLRMSG 6 4 103
C-HELP 110
C-INP 111
C-INPUTS 112
C-EXPLAIN 113
C-GO 2 4 120
SPY 3 4 121
C-WAITTASK 122
C-ABORTASK 8 4 123
C-TPUT 4 4 124
C-TGET 130
C-SGDESTR 131
TGINDEX 7 4 132
SGINDEX 7 4 133
CATALOG 7 4 150
MCAT 4 4 151
IMHEADER 8 4 152
ZAP 3 4 153
UCAT 4 4 154
QHEADER 7 4 155
FREESPAC 8 4 160
ALLDEST 7 4 161
TIMDEST 7 4 162
SAVDEST 7 4 163
SCRDEST 7 4 164
RENUMBER 8 4 170
RECAT 5 4 171TPHEAD 6 4 180
AVFILE 6 4 181
AVMAP 5 4 182
REWIND 6 4 183
AVEOT 5 4 184
MOUNT 5 4 185
DISMOUNT 8 4 186
TVINIT 6 4 200
TVCLEAR 7 4 201
GRCLEAR 7 4 202
TVON 4 4 203
TVOFF 5 4 204
GRON 4 4 20 5
GROFF 5 4 206
TV3COLOR 8 4 207
TVPOS 5 4 208

FORMAT

■\ res:
res:
res:
res:

\ AU1

\ AU1A

\ AU2

\ AU2A

\ AU3

\ AU3A

\ AU3B
\ AU4

\ AU5

END
WHILE
SUBS
NOP

THE AIPS PROGRAM page 4-23
POPSGN 08 May 84

IMXY 4 4 209
IMPOS 5 4 210TVNAME 6 4 211
CURBLINK 8 4 212
TVLOD 5 4 220 \ AU5ATVROAM 6 4 221
SETROAM 7 4 222
REROAM 6 4 223
TV LAB EL 7 4 240 \ AU5BTVWLABEL 8 4 241
TVWEDGE 7 4 250 \ AU5CI MW EDGE 7 4 251
IMERASE 7 4 253
TVWINDOW 8 4 254
TVBOX 5 4 255
TVSLICE 7 4 256REBOX 5 4 257
TVMOVIE 7 4 260 \ AU5DREMOVIE 7 4 261
OFFPSEUD 8 4 280 \ AU6OFFZOOM 7 4 281
OFFSCROL 8 4 282TVZOOM 6 4 283
TVSCROL 7 4 284
TV PSEUDO 8 4 285
TVHUEINT 8 4 286
OFFTRAN 7 4 290 \ AU6ATV TRANS F 8 4 291TVBLINK 7 4 292
TVMBLINK 8 4 293
TVLUT 5 4 294TVMLUT 6 4 295
CURVALUE 8 4 300 \ AU6BC-TVALL 5 4 305 \ AU6CTVFIDDLE 8 4 306
TVSTAT 6 4 310 \ AU6DIMSTAT 6 4 311PRTHI 5 4 330 \ AU7RENAME 6 4 331RESCALE 7 4 332
CLRSTAT 7 4 333
AXDEFINE 8 4 334
ALTDEF 6 4 335
ALTSWTCH 8 4 336
CELGAL 6 4 337
ADDBEAM 7 4 3 40 \ AU7APUTHEAD 7 4 341
GETHEAD 7 4 342
CLRNAME 7 4 360 \ AU8GETNAME 7 4 361
GET2NAME 8 4 362
GET3NAME 8 4 363EXTDEST 7 4 364
CLR2NAME 8 4 365
CL R3 NAME 8 4 3 66
EGETNAME 8 4 367

THE AIPS PROGRAM
POPSGN

Page 4-24
08 May 84

EXTLIST 7 4 370
MAXFIT 6 4 390
IMVAL 5 4 391
QIMVAL 6 4 392
TKPOS 5 4 400
TKVAL 8 4 401
TKXY 4 4 402
TKSLICE 7 4 410
TKASLICE 8 4 411
TKMODEL 7 4 412
TKAMODEL 8 4 413
TKRESID 7 4 414
TKARESID 8 4 415
TKGUESS 7 4 416
TKAGUESS 8 4 417
TKSET 5 4 420
TK1SET 6 4 421
SUBMIT 6 4 440
BATCH 5 4 441
BATEDIT 7 4 442
UNQUE 5 4 443
BATCLEAR 8 4 444
BATLIST 7 4 445
QUEUES 6 4 446
JOBLIST 7 4 447
BAMODIFY 8 4 448
GRIPE 5 4 460
GRINDEX 7 4 461
GRLIST 6 4 462
T1VERB 6 4 900
T2VERB 6 4 901
T3VERB 6 902
T4VERB 6 4 903
C- FORMAT
C-C-C-C-C- Nch Typ

1
Ndim ???? •

USERID 6 0.00
INNAME 6 7 1 12.00
INCLASS 7 7 1 6.00
INSEQ 5 1 0.00
INDISK 6 1 0.00
INTYPE 6 7 1 2.00
IN2NAME 7 7 1 12.00
IN2CLASS 8 7 1 6.00
IN2SEQ 6 1 0.00
IN2DISK 7 1 0.00
IN2TYPE 7 7 1 2.00
IN3NAME 7 7 1 12.00
IN3CLASS 8 7 1 6.00
IN3SEQ 6 1 0.00
IN3DISK 7 1 0.00
IN3TYPE 7 7 1 2.00
OUTNAME 7 7 1 12.00
OUTCLASS 8 7 1 6.00
OUTSEQ 6 1 0.00
OUTDISK 7 1 1.00
INEXT 5 7 1 2.00

\ AU8A
\ AU9

\ AU9A

\ AU9B

\ AU9C
\ AUA
\ AUB

\ AUC

\ AUT

THE AIPS PROGRAM
POPSGN

Page 4-25
08 May 84

IN2EXT 6 7 1 2.00IN3EXT 6 7 1 2.00
INVERS 6 1 0.00
IN2VERS 7 1 0.00
IN3VERS 7 1 0.00
BADDISK 7 2 1 10.00
INTAPE 6 1 1.00
OUTTAPE 7 1 1.00
NFILES 6 1 0.00
NMAPS 5 1 0.00
TASK 4 7 1 8.00
DOWAIT 6 1 -1.00
PRIORITY 8 1 0.00
BLC 3 2 1 7.00
TRC 3 2 1 7.00
XINC 4 1 1.00
YINC 4 1 1.00
PIXXY 5 2 1 7.00
PIXVAL 6 1 0.00
PIXRANGE 8 2 1 2.00
FACTOR 6 1 0.00
OFFSET 6 1 0.00TVBUT 5 1 0.00
XTYPE 5 1 5.00
XPARM 5 2 1 10.00
YTYPE 5 1 5.00
YPARM 5 2 1 10.00
OPCODE 6 7 1 4.00
FUNCTYPE 8 7 1 2.00
ROTATE 6 1 0.00
GAIN 4 1 0.10
NITER 5 1 0.00
FLUX 4 1 0.00
SOURCE 6 7 1 8.00
QUAL 4 1 -1.00
STOKES 6 7 1 4.00
BAND 4 7 1 1.00
TVCHAN 6 1 1.00
GRCHAN 6 1 0.00
TVLEVS 6 1 256 .00
TVCORN 6 2 1 2.00
COLORS 6 1 0.00
TVXY 4 2 1 2.00
DO TV 4 1 -1.00
BATQUE 6 1 2.00
BATFLINE 8 1 0.00
BATNLINE 8 1 0.00
JOBNUM 6 1 0.00
LTYPE 5 1 3.00
PLEV 4 1 0.00
CLEV 4 1 0.00
LEVS 4 2 1 20.00
XYRATIO 7 1 0.00
DOINVERS 8 1 -1.00
DOCENTER 8 1 1.00
ZXRATIO 7 1 0.25

THE AIPS PROGRAM Page 4-26
POPSGN 0 8 May 84

SKEW 4 1 45.00
DOCONT 6 1 1.00
DOVECT 6 1 1.00
ICUT 4 1 0.10
PCUT 4 1 0.10
DIST 4 1 3.00
IMSIZE 6 2 1 2.00
CELLSIZE 8 2 1 2.00
SHIFT 5 2 1 2.00
SORT 4 7 1 2.00
UVTAPER 7 2 1 2.00
UVRANGE 7 2 1 2.00
UVWTFN 6 7 1 2.00
UVBOX 5 1 0.00
DOGRIDCR 8 1 1.00
ZEROSP 6 1 5.00
BITER 5 1 0.00
BMAJ 4 1 0.00
BMIN 4 1 0.00
BPA 3 1 0.00
NBOXES 6 1 0.00
BOX 3 2 4.00 10.00
DO EOF 5 1 1.00
NDIG 4 1 0.00
DOCAT 5 1 1.00
DOHIST 6 1 -1.00
BDROP 5 1 0.00
EDROP 5 1 0.00
ASPMM 5 1 0.00
MINPATCH 8 1 51.00
APARM 5 2 1 10.00
BPARM 5 2 1 10.00
GPOS 4 2 2 2.00 4.00
GMAX 4 2 1 4.00
GWIDTH 6 2 2 3.00 4.00
DOPOS 5 2 2 2.00 4.00
DOMAX 5 2 1 4.00
DOWIDTH 7 2 2 3.00 4.00
NGAUSS 6 1 0.00
TRANSCOD 8 7 1 14.00AXREF 5 1 1.00
NAXIS 5 1 3.00
AXINC 5 1 0.00
AXVAL 5 1 2.00
AXTYPE 6 7 1 8.00
DOSLICE 7 1 1.00
DOMODEL 7 1 -1.00
DORESID 7 1 -1.00
ROMODE 6 1 0.00
DETIME 6 1 0.00
DOCRT 5 1 -1.00
CHANNEL 7 1 0.00
CPARM 5 1 10.00
DPARM 5 1 10.00
DOALIGN 7 1 1.00
NPOINTS 7 1 0.00

THE AIPS PROGRAM page 4-27
POPSGN 08 May 84

AX2REF 6 1 0.00DO ALL 5 1 -1.00TXINC 5 1 1.00TYINC 5 1 1.00TBLC 4 1 7.00TTRC 4 1 7.00VERSION 7 7 1 48.00DOEOT 5 1 1.00DOSTOKES 8 1 -1.00
PRTLEV 6 1 0.00DOARRAY 7 1 -1.00
ZINC 4 1 1.00
TZ INC 5 1 1.00
BCHAN 5 1 1.00
ECHAN 5 1 0.00
C-C-C-C-C- Nch Typ Ndim ????
RESTFREQ 8 1 2.00INFILE 6 7 1 48.00
IN2FILE 7 7 1 48.00OUTFILE 7 7 1 48.00DENSITY 7 1 1600.00KEYWORD 7 7 1 8.00KEYVALUE 8 1 2.00KEYSTRNG 8 7 1 16.00BCOUNT 6 1 1.00ECOUNT 6 1 0.00NCOUNT 6 1 0.00DOTABLE 7 1 1.00DOTWO 5 1 -1.00COPIES 6 1 1.00PRNUMBER 8 1 0.00PRTIME 6 1 0.00PRTASK 6 7 1 5.00CTYPE 5 1 4.00PIXAVG 6 1 0.00PIXSTD 6 1 0.00DOCIRCLE 8 1 -1.00CHINC 5 1 1.00NFIELD 6 1 1.00FLDSIZE 7 2 2 2.00RASHIFT 7 2 1 16.00DECSHIFT 8 2 1 16.00PHAT 4 1 0.00GAINERR 7 2 1 30.00TIMSMO 6 2 1 30.00DOOUTPUT 8 1 -1.00
DOCONCAT 8 1 -1.00DONEWTAB 8 1 1.00
DOCONFRM 8 1 -1.00DO ALPHA 7 1 -1.00ERROR 5 1 -1.00GRNAME 6 7 1 20.00GRADDRES 8 7 1 48.00GRPHONE 7 7 1 16.00SLOT 4 1 1.00

Adverbs below are dummys for testing.

THE AIPS PROGRAM
POPSGN

Page 4-28
0 8 May 84

STRA1 5 7 1 4.00
STRA2 5 7 1 8.00
STRA3 5 7 1 12.00STRB1 5 7 1 4.00
STRB2 5 7 1 8.00
STRB3 5 7 1 12.00
STRC1 5 7 1 4.00STRC2 5 7 1 8.00
STRC3 5 7 1 12.00ARRAY1 6 2 1 10.00ARRAY2 6 2 2 20.00ARRAY3 6 2 1 3.00
SCALR1 6 1 1.00SCALR2 6 1 0.00
SCALR3 6 1 0.00
C- Quit
QUIT *

tells
4
POPSGN
6

'end of adverbs

VERSION = ' 1
DOPOS = 1 ; DOMAX = 1 ; DOWIDTH = 1 ; *
PROC TSTDUM
SCALAR X, Y, I , J , DELTAX , DELTAY
FINISH *
PROC ABS(X)? IF X>=0 THEN RETURN(X); ELSE RETURN(-X); END
FINISH
*

PROC SETXWIN(DELTAX,DELTAY);IMXY;BLC(1)=PIXXY(1)-DELTAX/2
TRC(1)=BLC(1)+DELTAX;BLC(2)=PIXXY(2)-DELTAY/2;
TRC(2)=BLC(2)+DELTAY;RETURN;FINISH *
PROC OFFROAM;I=TVCHAN;J=GRCHAN;TVCHAN=123 4;GRCHAN=123 4;
OFFSCROL;TVOFF;GRCHAN=J;TVCHAN=I;TVON;RETURN;FINISH *
PROC QEXIT; PRIO=22; EXIT; RETURN; FINISH *
PROC OFFHUINT; I=ABS(TVCHAN); IF I < 12 THEN 1=12; END
J=MOD(1/10,10);I=MOD(I,10);TVOFF(123 4);OFFPS;TVCH=I;OFFTR;
TVCH=J;OFFTR;TVON;RETURN
FINISH
*
PROC TKWIN;TKXY;BLC=PIXXY;TKXY;TRC=PIXXY;
RETURN;FINISH *
PROC TKBOX(I); TKXY;BOX(1,I)=PIXXY(1);BOX(2,I)=PIXXY(2)
TKXY;BOX(3,I)=PIXXY(1);BOX(4,I)=PIXXY(2);RETURN;FINISH *
PROC TKNBOXS(NBOXES); FOR J=l:NBOXES;
TYPE 'SET BOX NUMBER',J,' ;TKBOX(J);END;RETURNFINISH*
PROC TVRESET; COLOR=<);TVOFF (123 45) ,• TVON (TVCH) ; OFFZ ; OFFSC;
OFFPS; GRCH=0;GRCLEAR; OFFTR;RETURN; FINISH
PROC TV ALL; TVOFFC1234) ;OFFZOOM;GROFF (1234) ; J-GRCH;GRCH=24;GRCL;

THE AIPS PROGRAM
POPSGN Page 4-29

08 May 84

GRCH»J;TVCL; TVON (TVCH) ?TVLOD;TVWED (16) ; TVWLAB ? TVFID;RETURN FINISH
* _____________ _____

4.7 INCLUDES
4.7.1 CAPL.INC

Include CAPL
COMMON /CORE/ K, XTRUE, XFALSE, USERID, INNAM, INCLS, INSEQ,
* INDSK, INTYP, IN2NAM, IN2CLSf IN2SEQ, IN2DSK, IN2TYP,
* IN3NAM, IN3CLS, IN3SEQ, IN3DSK, IN3TYP, OUTNAM, OUTCLS,
* OUTSEQ, OUTDSK, INEXT, IN2EXT, IN3EXT, INVER, IN2VER,
* IN3VER, BADDSK, INTAPE, OUTTAP, NFILES, NMAPS, TASK,
* DOWAIT, PRIOTY, BLCORN, TRCORN, XINC, YINC, PIXXY, PIXVAL,
* PXRANG, FACTOR, OFFSET, TVBUTT, XTYPE, XPARM, YTYPE,
* YPARM, OPCODE, FUNTYP, ROTATE, GAIN, NITER, FLUX,
* SOURCE, QUAL, STOKES, BAND, TVCHAN, GRCHAN, TVLEVS,
* TVCORN, COLORS, TVXY, DOTV, BATQUE, BTFLIN, BTNLIN,
* JOBNUM, LTYPE, PLEV, CLEV, LEVS, XYRATO, DOINVR, DOCENT,
* ZXRATO, SKEW, DOCONT, DOVECT, ICUT, PCUT, DIST, IMSIZE
COMMON /CORE/ CELSIZ, SHIFT, SORT, UVTAPR, UVRANG, UVWTFN, UVBOX,
* DOGRDC, ZEROSP, BITER, CBMAJ, CBMIN, CBPA, NBOXES,
* BOX, DOEOF, NDIG, DOCAT, DOHIST, BDROP, EDROP, ASPMM,
* MPTCH, APARMS, BPARMS, GPOS, GMAX, GWIDTH, ERRPOS, ERRMAX,
* ERRWTH, NGAUSS, TRANSC, AXREF, NAXIS, RAXINC, AXVAL, AXTYPE,
* DOSLIC, DOMODL, DORESI, ROMODE, DETIME, DOCRT, CHANNL,
* CPARM, DPARM, DOALIN, NPONTS, AX2REF, DOALL, TVXINC,
* TVYINC, TVBLCO, TVTRCO, VERSON, DOEOT, DOSTOK, LEVPRT,
* DORRAY, ZINC, TVZINC, BECHAN, ENCHAN, RESTFR, INFLL,
* IN2FLL, OUTFLL, DENSTY, KEYWRD, KEYVAL, KEYSTR, BEGCNT,
* ENDCNT, NUMCNT, DOTABL, DOTWO, COPIES, PRNUMB, PRTIME, PRTASK,
* CTYPES, PIXAVG, PIXRMS, DOCIRC, XCHINC, XNFIEL, XRASHF, XDCSHF,
* XFLDSZ, XPHAT, XGNERR, XTMSMO, DOOUTP, DOCNCT, DONEW, DOCONF,
* DOALPH, ERRORA, GRNAME, GRADDR, GRPHON, SLOTAD,
* STRA1, STRA2, STRA3, STRB1, STRB2, STRB3, STRC1, STRC2,
* STRC3, ARRAY1, ARRAY2, ARRAY3, SCALR1, SCALR2, SCALR3

End CAPL

4.7.2 CBAT.INC

c Include CBATCOMMON /BATCH/ BATLUN, BATIND, BATREC, BATDUM, BATDAT
c End CBAT

THE AIPS PROGRAM
INCLUDES

Page 4-30
08 May 84

4.7.3 CBWT.INC

Include CBWT
COMMON /BWTCH/ BWTNAM, BWTNUM, BWTLUN, BWTIND, BWTREC,
r WASERR, BWTDAT

End CBWT

4.7.4 CCON.INC

C Include CCON
COMMON /CORE/ C

C End CCON.

4.7.5 CERR.INC

C Include CERR
COMMON /ERRORS/ ERRNUM, IERROR, ERRLEV, PNAME

C End CERR.

4.7.6 CIO.INC

c Include CIO
COMMON /IO/ ILF, ICRLF, IPT, IPAGE, IVEC, NBYTES, KARBUF,
* JBUFF, IPRT, KARLIM, IUNIT, HOLDUF

C End CIO.

4.7.7 CPOP.INC

Include CPOPCOMMON /POPS/ V, XX, KT, LPGM, LLIT, LAST, IDEBUG, MODE, IFFLAG,
* LINK, L, NAMEP, IP, LP, SLIM, AP, BP, ONE, ZERO, TRUE, FALSE,
* STACK, CSTACK, SP, CP, SPO, MPAGE, LPAGE

End CPOP.

THE AIPS PROGRAM
INCLUDES Page 4-31

08 May 84

4.7.8 CSMS.INC

Include CSMSCOMMON /SMSTUF/ KPAK, NKAR, KBPTR, NEWCOD, TYPE, SKEL,
* TAG, LEVEL, LX, NEXTP, X, LOCSYM

End CSMS.

4.7.9 DAPL.INC

Include DAPLINTEGER*2 K(7390)
character strings

REAL*4 INNAM(3) , INCLS(2), INTYP, IN2NAM(3), IN2CLS(2),
* IN2TYP, IN3NAM(3), IN3CLS(2), IN3TYP, OUTNAM(3),
* OUTCLS(2), INEXT, IN2EXT, IN3EXT, TASK<2), OPCODE,
* FUNTYP, SOURCE(2), STOKES, BAND, SORT, UVWTFN, TRANSC(4),
* AXTYPE (2) , VERSON (12), INFLLU2), IN2FLLU2), OUTFLL(12) ,
* KEYWRD(2) , KEYSTR (4) , PRTASK(2) , GRNAME (5) , GRADDR(12) ,
* GRPHON (4)

numeric variables REAL*4 XTRUE, XFALSE, USERID, INSEQ, INDSK, IN2SEQ, IN2DSK,
* IN3SEQ, IN3DSK, OUTSEQ, OUTDSK, INVER, IN2VER, IN3VER,
* BADDSK(10), INTAPE, OUTTAP, NFILES, NMAPS, DOWAIT, PRIOTY,
* BLCORN(7), TRCORN(7), XINC, YINC, PIXXY(7), PIXVAL,
* PXRANG(2), FACTOR, OFFSET, TVBUTT, XTYPE, XPARM(IO),
* YTYPE, YPARM(10), ROTATE, GAIN, NITER, FLUX, QUAL,
* TVCHAN, GRCHAN, TVLEVS, TVCORN(2), COLORS, TVXY(2),
* DOTV, BATQUE, BTFLIN, BTNLIN, JOBNUM, LTYPE, PLEV, CLEV,
* LEVS(20), XYRATO, DOINVR, DOCENT, ZXRATO, SKEW, DOCONT
REAL*4 DOVECT, ICUT, PCUT, DIST, IMSIZE(2), CELSIZ(2),
* SHIFT(2), UVTAPR(2), UVRANG(2), UVBOX, DOGRDC, ZEROSP(5),
* BITER, CBMAJ, CBMIN, CBPA, NBOXES, BOX(4,10), DOEOF,
* NDIG, DOCAT, DOHIST, BDROP, EDROP, ASPMM, MPTCH, APARMS(IO),
* BPARMS(10), GPOS(2,4), GMAX(4), GWIDTH(3,4), ERRPOS(2,4),
* ERRMAX(4), ERRWTH(3,4), NGAUSS, AXREF, NAXIS, RAXINC,
* AXVAL(2), DOSLIC, DOMODL, DORESI, ROMODE, DETIME, DOCRT,
* CHANNL, CPARM(10), DPARM(IO), DOALIN, NPONTS, AX2REF, DOALL,
* TVXINC, TVYINC, TVBLCO(7), TVTRCO(7), DOEOT, DOSTOK, LEVPRT,
* DORRAY, ZINC, TVZINC, BECHAN, ENCHAN, RESTFR(2), DENSTY,
* KEYVAL(2), BEGCNT, ENDCNT, NUMCNT, DOTABL, DOTWO, COPIES,
* PRNUMB, PRTIME, CTYPES(4), PIXAVG, PIXRMS, DOCIRC,
* XCHINC, XNFIEL, XRASHFU6), XDCSHF(16), XFLDSZ (2,16) ,
* XPHAT, XGNERR(30), XTMSMO(30), DOOUTP, DOCNCT, DONEW,
* DOCONF, DOALPH, ERRORA, SLOTAD,
* STRA1, STRB1, STRC1, STRA2(2), STRB2(2), STRC2(2),
* STRA3(3), STRB3(3), STRC3(3), ARRAY1(10),
* ARRAY2(20,2), ARRAY3(3), SCALR1, SCALR2, SCALR3

End DAPL

THE AIPS PROGRAM
INCLUDES

Page 4-32
08 May 84

4.7,10 DBAT.INC

C Include DBAT
INTEGER*2 BATLUN, BATIND, BATREC, BATDUM, BATDAT(256)

C End DBAT

4,7.11 DBWT.INC

C Include DBWT
INTEGER*2 BWTNUMf BWTLUN, BWTINDr BWTREC, BWTDAT(1)
LOGICAL*2 WASERR
REAL*4 BWTNAM(6)

C End DBWT

4.7.12 DCON.INC

Include DCON
INTEGER*2 KC10752), KXORG
REAL*4 C(53 7 6)

End DCON.

4.7.13 DERR.INC

c Include DERR
INTEGER*2 ERRNUMf IERROR(5), ERRLEV, PNAME(15)

c End DERR.

4.7.14 DIO.INC

Include DioINTEGER*2 ILFr ICRLF, IPT, IPAGE, IVEC, NBYTES, KARBUF(80)f
* JBUFF(40), IPRT, KARLIM, IUNIT, HOLDUF(40)

End DIO.

THE AIPS PROGRAM
INCLUDES Page 4-33

08 May 84

4.7.15 DPOP.INC

Include DPOPINTEGER*2 KT, LPGM, LLIT, LAST, IDEBUG, MODE, IFFLAG, LINK,
* L, NAMEP, IP, LP, SLIM, AP, BP, ONE, ZERO, TRUE, FALSE,
* STACK(60), CSTACK(60), SP, CP, SPO, MPAGE, LPAGE REAL*4 V(60), XX

End DPOP.

4.7.16 DSMS.INC

Include DSMSINTEGER*2 NKAR, KBPTR, NEWCOD, TYPE, TAG,
* LEVEL, LX, NEXTP, LOCSYM
REAL*4 SKEL, X(15), KPAK (5)

End DSMS.

4.7.17 ECON.INC

c Include ECONEQUIVALENCE (K(1),C(1)), (K(8),KXORG)
C End ECON.

CHAPTER 5
CATALOGUES

5.1 OVERVIEW
AIPS keeps a catalogue with a directory which contains an entry

for each data file and its associated extension files. The catalogue
header record is used to keep various pieces of information about the
data in the main data file and keeps track of the number and types of
extension files associated with the main data file. The intent of
this chapter is to describe the contents of the catalogue header and
to describe the use of the routines that access the catalogue header
record.

The information in the catalogue header record is patterned after
the FITS format tape header, although it is not nearly as flexible.
The catalogue header describes the order and amount of data, its
format, scaling information for scaled integer files, maximum and
minimum values, etc.

AIPS data files have a structure very similar to the structure of
data of FITS format tapes. An image consists of a rectangular array
of up to 7 dimensions. Pixels locations must be evenly spaced along
each axis, although a proper redefination of the axis can usually make
this possible. The header record contains the number of pixels along
each axis, a label for each axis, the number of the reference pixel
(may be a fractional pixel and need not be in the portion of the axis
covered), the coordinate at the reference pixel, the coordinate
increment between pixels and the coordinate rotation. The axes of images may be in any order.

The AIPS format for uv data is also similar to the FITS
convention. Each data point has a number of "random parameters",
usually "u", "v", time, baseline number etc. followed by a
rectangular array similar to, but usually smaller than, an image data
array. Up to 7 random parameters have labels kept in the catalogue
header. More than 7 random parameters can be used but the labels for
the eighth and following are lost.

Most tasks read an old data file, do some operation on the data
and write a new data file. In this case, the task simply takes the
old catalogue header record and modifies it to describe the data in
the new file.

CATALOGUES
OVERVIEW

Page 5-2
08 Nay 84

AIPS also keeps a catalogue of the images displayed on all
display devices. This image catalogue allows AIPS interactive verbs
to use the display devices without having to find and read the
original catalogue header record.

5.2 PUBLIC AND PRIVATE CATALOGUES.
AIPS catalogues may be either public, ie. all files on a given

disk are in the same catalogue, or private, ie. each user has a
separate catalogue on each disk. The standalone utility program,
SETPAR, is used to specify which type is currently in use. The
distinction is completely transparent to the programmer; all
distinctions between the two types are hidden in ZPHFIL and the
catalogue routines.

5.3 FILE NAMES
AIPS data files, especially catalogued files, are referenced in a

number of different ways. The following list summarizes the three
basic ways of specifying AIPS data files:

1. AIPS logical names. The full AIPS logical file specification
is the given by disk number, file name, file class, file
sequence number, file physical type, user number, and for
extension files, the version number. These are the
fundamental way an AIPS user specifies a file; although some
of these such as physical type and user number may not have
to be specified directly. In a task, these values are used
by CATDIR (which may be called by a higher level routine such
as MAPOPN) to locate the desired file in the AIPS catalogue
using various default and wildcard conventions.

2. Disk and catalogue number. Just as the AIPS user frequently
uses the disk and catalogue numbers to specify files using
the verb GETNAME, programs usually keep track of catalogued
files by means of the disk and catalogue numbers, file types,
and version numbers for extension files. (Scratch files are
sometimes specified by their order numbers in the /CFILES/
common.)

3. Physical name. The host operating system needs a name for
the file for its own catalogue. The allowed physical file
specifications depends on the host operating system, so AIPS
tasks use the Z routine ZPHFIL to create the physical name
from the disk and catalogue numbers, the file type and
version, and the user number for systems with private
catalogues. These physical names may be up to 2 4 characters
long.

An example from a VAX system with private catalogues is
"DAOn:ttdcccvv.uuu" ; where n is the zero relative disk
drive number, DAOn: is a logical variable which is assigned

CATALOGUES
FILE NAMES

Page 5-3
08 May 84

to a directory, tt is a two character file type (eg. 'MA'),
d is the one relative disk drive number, ccc is the catalogue
slot number, vv is the version (01 for "MA" and "UV" files
), and uuu is the users number in hexidecimal notation.

5.4 DATA CATALOGUE
5.4,1 Structure Of The Catalogue Header Record

The catalogue header block is a fixed format data structure 512
bytes long (one byte is defined in AIPS as half a short integer). The
catalogue header block contains double and single precision floating
point numbers, integers (both short and Pseudo 1*4), and character
strings. The catalogue header record is accessed by equivalencing
integer, real and double precision arrays, and obtaining the
information from the array of the appropriate data type. Since the
amount of storage for different data types varies from machine to
machine, and the contents of the catalogue header record occasionally
change, we use pointers for the different arrays that are computed by
VHDRIN. These pointers are kept in a common invoked with the INCLUDES
DHDR.INC and CHDR.INC.

The uses of the pointers and values on a VAX are given in the
following table. In this table the term "random parameters" refer to
the portion of a uv data record that contain u, v, w, time, baseline
etc.; the term "indeterminate" pixel means a pixel whose value is not given.

DESCRIPTION
Source name
Telescope, i.e. 'VLA'
e.g. receiver or correlator
Observer name
Observation date in format *DD/MM/YY'
Date map created in format 'DD/MM/YY1
Map units, i.e. 'JY/BEAM '
Random Parameter types
Coordinate type, i.e. ' LL'
Map scaling factor
Map offset factor: Real value =
BSCALE * pixel + BZERO
Coordinate value at reference pixel
Coordinate value increment along axis
Coordinate Reference Pixel
Coordinate Rotation Angles
Epoch of coordinates (years)

FSET LENGTH TYPE POINTER
0 8 C*8 K40BJ= 1
8 8 C*8 K4TEL= 3

16 8 C*8 K4INS= 5
24 8 C*8 K40BS= 7
32 8 C*8 K4DOB= 9
40 8 C*8 K4DMP= 11
48 8 C*8 K4BUN= 1356 7*8 C*8(7) K4PTP= 15

(K2PTPN= 7)
112 7*8 C*8(7) K4CTP= 29

(K2CTPN= 7)
168 8 R*8 K8BSC= 22
176 8 R*8 K8BZE* 23
184 56 R*8 (7) K8CRV= 24

(K2CTPN= 7)
240 28 R*4 (7) K4CIC= 61

(K2CTPN= 7)
26 8 28 R*4 (7) K4CRP® 68

(K2CTPN= 7)
296 28 R*4 (7) K4CRT= 75

(K2CTPN= 7)324 4 R*4 K4EPO= 82

CATALOGUES
DATA 'CATALOGUE

328 4 R*4 K4DMX= 83
332 4 R*4 K 4DMN= 84
336 4 R*4 K4BLK= 85
340 4 1*2(2) K2GCN=171

344 2 1*2 K2PCN=173
3 46 2 1*2 K2DIM=17 4
348 14 1*2(7) K2NAX=17 5

(K2CTPN= 7)
362 2 1*2 K2BPX=182

364 2 1*2 K2INH=183

366 2 1*2 K2IMS=184
368 12 C*12 K4IMN= 93

(K4IMN0= 1)
380 6 C*6 K4IMC= 93

(K4IMCO=13)
386 2 C*2 K4PTY= 93

(K4PTYO=l9)
388 2 1*2 K2IMU=195
390 2 1*2 K2NIT=196
392 4 R*4 K4BMJ= 99
396 4 R*4 K4BMN=100
400 4 R*4 K4BPA=101
404 2 1*2 K2TYP=203

406 2 1*2 K2ALT=20 4

40 8 8 R*8 K80RA= 52
416 8 R*8 K80DE= 53
424 8 R*8 K8RST= 54
432 8 R*8 K8ARV= 55
440 4 R*4 K4ARP=111
444 4 R* 4 K4XSH=112
448 4 R*4 K4YSH=113
452 20 1*2(10) K2EXT=227

(K2EXTN=10)
472 20 1*2(10) K2VER=237

(K2EXTN=10)
492 28 1*2(10)

Page 5-4
0 8 May 8 4

Real value of data maximum
Real value of data minumum
Value of indeterminate pixel (real
maps only)
Number of random par. groups given as
a Pseudo-I*4 number. This is the
number of uv data records.
Number of random parameters
Number of coordinate axes
Number of pixels on each axis
Code for pixel type: 1 integer,
2 real, 3 dbl prec, 4 complex, 5 dbl
prec complex
For integer maps: < 0 the value of an
indeterminate pixel, > 0 the number
of bits used to represent noise est.
= 0 no blanking of pixels
Image sequence no.
Image name
Character offset in packed string
Image class
Character offset in packed string
Map physical type (i.e. ,MA',IUVI)
Character offset in packed string
Image user ID number
clean iterations
Beam major axis in degrees
Beam minor axis in degrees
Beam position angle in degrees
Clean map type: 1-4 => normal,
components, residual, points.
For uv data this word contains a
two character sort order code.
Velocity reference frame: 1-3
=> LSR, Helio, Observer +
256 if radio definition.
Antenna pointing Right Ascension
Antenna pointing Declination
Rest frequency of line (Hz)
Alternate ref pixel value
(frequency or velocity)
Alternate ref pixel location
(frequency or velocity)

Names of subsidiary file types
(i.e. 'PL') 2 char unpacked form
Number of versions of corresponding
subsidiary file
Reserved

The actual values of the pointers depend on the size of the
various data types and are computed in the routine VHDRIN. Note that
VHDRIN should be called after ZDCHIN is called because it uses values

CATALOGUES
DATA CATALOGUE Page 5-5

08 May 84

set by ZDCHIN. VHDRIN has no call arguments.
The name of the pointer tells which data type array the data is

to be read from: K2nnn indicates the integer array, K4nnn indicates
the real array, and K8nnn indicates the double precision array. Most
of the character strings are obtained from the real array and many
require special handling. The Name, class, and physical type are
contained in a packed string and the labels of the regular and random
axes are each kept in a packed character string. This is best
explained by an example:

INTEGER*2 CATBLK(256), NDIM1, Nl, N6, N8, INDEX, IPPC
REAL*4 CAT4U28), CRPIX2, CLASS(2), ALABE2(2)
REAL * 8 CAT8 (64), CRVAL3
INCLUDE 'INCS:DHDR.INC*

INCLUDE 'INCS:CHDR.INC1
COMMON /MAPHDR/ CATBLK

EQUIVALENCE (CATBLK, CAT4, CAT8)
DATA Nl, N6, N8 /I,6,8/

C
C

NDIM1 = CATBLK(K2NAX)
C
C

CRPIX2 = CAT4(K4CRP+1)
C
C

CRVAL3 = CAT8 (K8CRV+2)
C
C
C
C
C
C

INDEX = K4PTP + (2-1) * IFPC (N8)
CALL CHCOPY (N8, Nl, CAT4QNDEX), Nl, ALABE2)

c Copy image class.CALL CHCOPY (N6, K4IMCO, CAT4(K4IMC), Nl, CLASS)

In the example above the catalogue header block is obtained from
a common named /MAPHDR/. Many AIPS utility routines get the catalogue
header record from this common, so it is a good place to store it.

Get the dimension of
the first axis (1*2)
Get reference pixel
of second axis (R*4)
Get coordinate at reference
pixel on third axis. (R*8)
Copy axis label for second
axis (R*4 array).
Note: IFPC is an AIPS utility
function that returns the
number of R*4 words for, in
this case, 8 characters.

CATALOGUES
DATA CATALOGUE

Page 5-6
0 8 Nay 84

5.4.1.1 Image Files - Images consist of a single multidimensional (up
to 7), rectangular array of pixel values. The structure of this array
is defined by the catalogue header record which contains the number of
dimensions (K2DIM), the number of pixels on each axis (K2NAX) and the
format of the data (K2BPX). If the data is in the form of scaled
integers, the scaling parameters are kept in the header record (K8BSC,
K8BZE)•

The label for each axis is in a packed character string array
pointed to by K4CTP. The coordinate increment between pixels must be
a constant on each axis, and the array of axis increments is obtained
using the pointer K4CIC. The array of coordinate pixels is pointed to
by K4CRP; the reference pixel need not be either an integral pixel or
in the range covered by the data. The coordinate values at the
reference pixels are pointed to by K8CRV.

Each axis also has an associated rotation angle but the only
rotation currently supported is that on the plane of the sky. This
rotation value is kept on the declination/Galactic latitude/Ecliptic
latitude axis and is the rotation of the coordinate system from north
toward east.

Since there is no explicit provision made in the catalogue header
for such important parameters as position, frequency, and
polarization, these are always declared as axes even if that axis
contains only one pixel. This allows a place in the header record for
these parameters.

Since the stokes1 axis is not inherently an ordered set, we use
the following definations for the values along the stokes' axis.

Pixel values may be blanked using "magic value" blanking. The
magic (stored) value for scaled integer images is obtained using the pointer K2INH (usually -3 276 8) and for floating point images by K4BLK.

Each row of an image (first dimension) starts on a disk sector
boundary unless several rows may fit in a sector. In the latter case,
as many rows as possible are put in a sector but a row is not allowed
to cross a sector boundary. Each plane in the image (dimension 3 and
higher) starts on a sector boundary.

All angles in the header record are in degrees.

0 => beam 5 => Percent polarization
6 => Fractional polarization
7 => Polarization position angle
8 => Spectral index
9 => Optical depth

1 => I
2 => Q
3 => U
4 => V

CATALOGUES
DATA CATALOGUE

Page 5-7
08 May 84

5.4.1.2 Uv Data Files - Uv data files consist of a sequence of
visibility records each of which contains all data measured on a given
baseline in a given integration period. The number of visibility
records is given in the catalogue header record by the pseudo
integer*4 value pointed to by K2GCN. The order of the visibility
records are given by the two character code pointed to by K2TYP.
(More details of the sort order can be found in the chapter on disk
I/O)• All values are in floating point.

Each visibility record consists of a number (K2PCN) of "random"
parameters followed by a data array similar to a miniature image. Any
number of random parameters are allowed but only the labels of 7 can
be kept in the header. These labels are kept in packed character
strings pointed to by K4PTP. The random parameters are used for
values which vary "randomly" from visibility to visibility (ie. u, vr
w, timer baseline). The data array is described by the catalogue
header record in the same ways as for an image file.

The tangent point of the data (position for which the u, v, and w
are computed) is kept as an axis in the data array. The offset in x
and y (RA and dec after rotation) are pointed to by K4XSH and K4YSH.
All angles in the catalogue header record are in degrees.

Uv data may contain correlator based polarization or true Stokes1
parameters. In the former case, the following Stokes* values are
defined:

-1 => RR
-2 => LL
-3 => RL
-4 => LR

Visibility records are allowed to span disk sector boundaries.
More details about the uv data file format are given in the chapter on
disk I/O.

5.4.2 Routines To Access The Data Catalogue
5.4.2.1 MAPOPN And MAPCLS - There are a number of utility routines to
access the catalogue header record. In many cases, most of the
catalogue operations can be taken care of by the pair of routines
MAPOPN and MAPCLS. MAPOPN will locate the correct catalogue entry
from a given Name, class, disk, sequence and physical type following
all default and wildcard conventions. MAPOPN then reads the catalogue
header record, opens the main data file and marks the catalogue status
word. Following a call to an initialization routine the file can be
read from or written to. After all I/O to the file is complete,
MAPCLS will close the file, update the catalogue header record if
requested and clear the catalogue status word for the file. A
description of the call sequence of MAPOPN and MAPCLS is described at
the end of this chapter.

CATALOGUES
DATA CATALOGUE

Page 5-8
08 Hay 84

5*4*2,2 CATDIR And CATIO — If MAPOPN and MAPCLS are not appropriate,
then the use of more specialized routines is necessary. First the
desired file must be located in the catalogue directory. The routine
CATDIR is the basic method of accessing the catalogue directory. This
routine will find the desired file given the name, class, etc.
following the usual default and wildcard conventions. CATDIR returns
the disk number and catalogue slot number. Given a disk number and
catalogue slot number CATIO can read or write a catalogue header
record and/or change the status word. Detailed descriptions of CATDIR
and CATIO can be found at the end of this chapter.

5.4.3 Routines To Interpret The Catalogue Header
There are a number of specialized routines which obtain

information from the catalogue header record. The following list
gives a short description of each and detailed descriptions of the
call sequence are found at the end of this chapter.

- AXEFND will return the axis number of a given type of random
or regular axis.

- ROTFND returns the angle of rotation on the sky of either an
image or uv data file.
UVPGET obtains a number of pointers and other pieces of
information which simplify accessing uv data.

5.4.4 Catalogue Status
The AIPS catalogue directory keeps a status word for each

catalogued file. This status word is used to help prevent conflicting
use of the file. The status may be marked as either 'READ' or 'WRIT';
the status of each file can be seen in AIPS by listing the catalogue.
A file can be marked 'READ' multiple times, but a file marked 'WRIT'
cannot be marked 'READ' or 'WRIT* again, and a file marked 'READ' cannot be marked 'WRIT1.

The use of the status word can complicate updating of the
catalogue header with CATIO. If the status of a file has been marked
as 'WRIT' then the opcode in the call to CATIO must be 'UPDT*. If the
status is not marked the opcode must be 'WRIT' to update the catalogue header block.

CATALOGUES
IMAGE CATALOGUE Page 5-9

08 May 84

5,5 IMAGE CATALOGUE
5,5.1 Overview
The image catalogue contains data for images stored on the TV device
that identify the images, refer them back to their original map files,
and specify scaling of the X-Y and intensity coordinates. There is a
separate image catalogue which performs the same functions for
graphics devices (e.g. TEK4012 storage screens).

There is one image catalogue file for each television device
whose physical name corresponds to IClOOOOn, where n = the device
number (0 for graphics, 1 to n for TVs). They reside on disk 1 and
must be created at AIPS installation, usually by FILAIP.

5.5.2 Data Structures
Generals For each grey-scale image plane of the TV device, the

IC contains N 1-block (256-word) records for cataloguing up to N
subimages, plus a (N-D/51+1 block directory. The directory
immediately precedes the catalogue blocks for each image plane. For
each TV graphics overlay plane there is one catalogue block with no
directory. These blocks follow immediately after the last grey-scale block.

The IC for pure graphics devices (called TK devices) has one
image catalogue block for each device in the system including all
"local" TK devices followed by all remote-entry devices. Record
number n in this file is associated with TK device number n (NTKDEV in /DCHCOM/) .

The image catalogue blocks themselves are essentially duplicates
of the map catalogue blocks except that scaling information replaces
the extension file index of the map catalogue.

The following is a description of the format of the directory
block and the portions of the image catalogue block which is different
from the normal catalogue header block.

Directory Block (Grey-scale image)
OFFSET LENGTH TYPE

2
4

12
14

2 1*2
DESCRIPTION
Sequence number of last sub-image catalogued

on this plane
1*2 Seq. no. of sub-image in slot 1; 0 if slot empty
1*2(4) TV pixel positions of corners of 1st sub-image,

xl,yl,x2,y2
1*2 Seq. no. of sub-image in slot 2; 0 if empty
1*2(4) TV pixel positions of corners of 2nd sub-image

Catalogue Block for each image or subimage:

CATALOGUES
IMAGE CATALOGUE

Page 5-10
08 May 84

Most of the Image Catalogue block is identical to the map
CAtalog block of the source of the image. (See section on CA files.)
The information on antenna pointing, alternate frequency/velocity
axis descriptions, and extension files is replaced in the IC by:
OFFSET LENGTH TYPE POINTER

40 8 8 R*4 (2) I4RAN=103

416 2 1*2 I2VOL=209
418 2 1*2 I2CNO=210
420 8 1*2(4) I2WIN=211
428 10 1*2(5) I2DEP=215
438 8 1*2(4) I2COR=22G
446 2 1*2 I2TRA=224

448 2 1*2 I2PLT=225
450 62 1*2(31) I20TH=226

DESCRIPTION
Map values displayed as min & max
brightness (units are those of file,
not the physical ones)
Disk volume from which map came
Catalogue slot number of orig. map
Map pixel positions of corners of
displayed image (rel. to orig. map)
Depth of displayed image in 7 -
dimensional map (axes 3-7)
TV pixel positions of corners of
image on screen
2-char code for transfer function
used to compute TV brightness from
map intensity values.
Code for type of plot.
Misc. plot type dependent info.
(at the moment no more than 20 used)

The standard pointer values are computed by VHDRIN and are
available through the common /HDRVAL/ via includes DHDR.INC and
CHDR.INC. They are machine-dependent and are used in the same way as
the normal catalogue pointers.

5.5,3 Usage Notes
We assume that single images only are stored on graphics planes;

there is no directory.
When a grey-image plane is cleared, its directory is zeroed. As

images are added to the plane, their coordinates are written into an
open directory slot for that plane, along with the current value of
the plane sequence number. The sequence number is then incremented.
If an old image is completely overwritten by a new one, its directory
slot is cleared. For partially overlapping images, the sequence #
allows the user to select the one most recently loaded into a qiven part of the plane.

CATALOGUES
IMAGE CATALOGUE Page 5-11

08 May 84

5,5.4 Subroutines
There are a number of routines to manipulate the image catalogue.

The following is a short description of each; detailed descriptions
of the call sequences is given at the end of this chapter.

ICINIT clears the Image Catalogue for a given plane.
ICOVER asks if there are any overlapped images in each
quadrant visible.

- ICWRIT adds a new block to the catalogue.
- ICREAD returns the block corresponding to a given TV pixel.
- TVFIND determines desired image, asks user if > 1 visible.

These routines expect the "plane number" as an argument. TV gray
scale planes are numbered 1 - NGRAY, TV graphics overlay planes are
numbered NGRAY+1 - NGRAY+NGRAPH, and TK devices are referenced by any
plane number > NGRAY+NGRAPH.

5.5.5 Image Catalogue Commons
The COMMON /TVCHAR/ referenced by 'DTVC.INC1 and 'CTVC.INC'

contains TV device characteristics such as:
NGRAY = # of grey-scale planes on this device
NGRAPH = # of graphics planes
MAXXTV(2) Maximum number of pixels in x,y directions in image

The listings of DTVC.INC and CTVC.INC are given at the end of this
chapter.

The common /DCHCOM/ contains two important parameters in this
regard: NTVDEV and NTKDEV. The subroutine ZDCHIN sets these to the
actual number of such devices present locally. Then, the routines
ZWHOMI (in AIPS only) and GTPARM (in all tasks) reset them to the
device number assigned to the current user. ZWHOMI determines these
assignments.

CATALOGUES
COORDINATE SYSTEMS

Page 5-12
08 May 84

5.6 COORDINATE SYSTEMS
Astronomical images are usually represented as projections onto a

plane causing the true position on the sky of a pixel to be a
nonlinear function of the pixels location. In a similar fashion, most
spectral observations are done with evenly spaced frequency channels
which results in a non linear relation between the velocity of a
channel and the channel number. AIPS memo no. 27 describes in great
detail the approach AIPS uses to these problems. Much of the
following sections is taken from this memo.

5.6.1 Velocity And Frequency
The physically meaningful measure in a spectrum is the radial

velocity of a feature? unfortunately, observations are normally made
using a uniform spacing in frequency (and may contain Doppler tracking
to remove the effects of the earth's motion). Thus it is necessary to
convert between frequency and velocity. The details of the conversion
are in AIPS memo no. 26 and will not be reproduced here. Conversion
can be done using the routines described in the section on celestial
positions. The following sections describe the naming conventions and
the way in which the necessary information is stored in the catalogue
header block.

5.6.1.1 Axis Labels - The AIPS convention is to use the axis label to
denote the axis type with the first four characters and the inertial
reference system with the last four characters. The axis types
currently supported are 'FREQ...' which is regularly gridded in
frequency, 'VELO...' which is regularly gridded in velocity, and
'FELO...' which is regularly gridded in frequency but expressed in
velocity units in the optical convention.

The inertial reference systems currently supported are '-LSR',
'-HEL', and '-OBS' indicating Local Standard of Rest, heliocentric,
and geocentric. Others may be added if necessary.

5.6.1.2 Catalogue Information - In addition to the normal axis
coordinate information carried in the catalogue header, described
previously in this chapter, the catalogue header record has provision
for storing an alternate frequency axis type. The AIPS verb ALTDEF
allows the user to switch the two axis definitions. The pointers for
these values are given in the following:

CATALOGUES
COORDINATE SYSTEMS Page 5-13

08 May 84

K8RST Rest frequency (Hz)
K4ARP Alternate reference pixel
K8ARV Alternate reference value
K2ALT axis type code. 1=>LSR, 2=>HEL, 3=>OBS (plus 256

if radio convention). 0 implies no alternate axis.

5.6.2 Celestial Positions
The following sections will describe the AIPS conventions and

routines for determining positions from images with different
projections.

5.6.2.1 Axis Labels - The AIPS convention is to use the first four
characters of the axis type and the second four characters to denote
the projection. The standard axis types are given in the followings

- RA— denotes Right ascension
- DEC- denotes declination
- GLON denotes galactic longitude
- GLAT denotes galactic latitude
- ELON denotes Ecliptic longitude
- ELAT denotes Ecliptic latitude

The geometry used for the projection is given in the axis label
using the codes given in the following lists

- -TAN denotes tangent projection. This projection is commonly
used in optical astronomy.

- -SIN denotes sine projection. This projection is commonly
used in radio aperature synthesis images.

- -ARC denotes arc projection. In this geometry, angular
distances are preserved and it is commonly used for Schmidt
telescopes and for single dish radio telescopes.

- —NCP denotes a projection to a plane perpendicular to the
North Celestial Pole. This geometry is used by the WRST.

CATALOGUES
COORDINATE SYSTEMS

Page 5-14
08 May 84

5.6.2.2 Determining Positions - There are a number of AIPS utility
routines which help determine the position of a given location in an
image. These routines use values in the common /LOCATI/ which is
obtained using the INCLUDES DLOC.INC and CLOC.INC. Listings of these
includes can be found at the end of this chapter. The /LOCATI/ common
in initialized by the routine SETLOC.

5.6.2.2.1 Position Routines - The upper level position determination
routines are briefly described in the following; details of the call
sequences are given at the end of this chapter.

- SETLOC initilizes the /LOCATI/ common based on the current
catalogue header block in the /MAPHDR/ common.

- XYPIX determines the pixel location corresponding to a
specified coordinate value.

- XYVAL determines the coordinate value (X,Y,Z) corresponding
to a given pixel location.

- FNDX returns the X axis coordinate value of a point given the
Y axis coordinate value and the X axis pixel position of a
point. Does rotations and non linear axes.

- FNDY returns the Y axis coordinate value of a point given the
X axis coordinate value and the Y axis pixel position of a
point. Does rotations and non linear axes.

5.6.2.2.2 Common /LOCATI/ - This common is used by the position
routines and the plot labeling routines to keep constants needed for
the coordinate transformation. The contents of this common are
described in the following:

RPVAL R*8 (4) Reference pixel values
COND2R R*8 Degrees to radians multiplier = pi/180
AXDENU R*8 delta(nu) / nu(x) when a FELO axis is

present.
RPLOC R*4 (4) Reference pixel locations
AXINC R*4(4) Axis incrementsCTYP R*4(2r 4) Axis types
CPREF R*4 (2) x,y axis prefixes for labelingROT R*4 Rotation angle of position axes
SAXLAB R*4(5,2) Labels for axes 3 and 4 values

(4 characters per floating word)
ZDEPTH 1*2(5) Value of Idepth from SETLOC call
ZAXIS 1*2 1 relative number of z axis
AXTYP 1*2 Position axis codeCORTYP 1*2 Which position is which
LABTYP 1*2 Special x,y label request
SGNROT 1*2 Extra sign to apply to rotation
AXFUNC 1*2(7) Kind of axis code

CATALOGUES
COORDINATE SYSTEMS

Page 5-15
08 May 84

0-rel axis number-longitude axis
0-rel axis number-latitude axis
0-rel axis number-frequency axis
0-rel axis number-stokes axis
0-rel axis number-"primary axis"
0-rel axis number-"primary axis"
Number of characters in SAXLAB

Several of the above values need further explanation:

KLOCL 1*2
KLOCM 1*2
KLOCF 1*2
KLOCS 1*2
KLOCA 1*2
KLOCB 1*2
NCHLAB 1*2(2)

AXTYP value =

CORTYP value =

LABTYP value
code

AXFUNC value =

0
1
2
3
4
0
1
2
3
4
5
6
10
0
1
2
3
4
5
6
-1
0
1
2
3
4
5

no position-axis pair
x-y are position pair
x—z are position pair
y-z are position pair
2 z axes form a pair
linear x,y axes
x is longitude, y

is longitude, x
is longitude, z
is longitude, x
is longitude, z
is longitude, y
ycode + xcode
use CPREF, CTYP
use Ecliptic longitude
use Ecliptic latitude
use Galactic longitude
use Galactic latitude
use Right Ascension
use declination
no axis
linear axis
FELO axis
SIN projection
TAN projection
ARC projection
NCP projection

is latitude
is latitude
is latitude
is latitude
is latitide
is latitude

The KLOCn parameters have a value of -1 if the corresponding axis
does not exist. If AXTYP is 2 or 3, the pointer KLOCA will always
point at the z axis. In this case, SETLOC does not have enough
information to prepare SAXLAB(,1). The string must be computed later
when an appropriate x,y position is specified.

5.6.3 Rotations
The use of one rotation angle as provided in the AIPS catalogue

header is obviously not enough to completely describe an arbitrary
rotation of the coordinate system. In practice, the only rotation
currently used in AIPS is the rotation in the sky plane (projected RA
and dec, galactic latitude and longitude, or ecliptic latitude and
longitude). The rotation angle in this plane of the actual coordinate
system of the image, in the usual astronomical north through east

CATALOGUES
COORDINATE SYSTEMS

Page 5-16
0 8 May 8 4

convention, is given on the axis corresponding to the declination,
galactic latitude, or ecliptic latitude as appropriate*

Another convention followed in AIPS involving rotations is
related to precession. As the earth precesses, the north-south line
in a field will rotate; this causes a rotation in an image made of a
given field on the sky. This "differential precession" will cause
problems determining positions away from the field center and
comparing images made at different epochs. To avoid this problem, the
coordinate system used for the u-v data is rotated to the orientation
as of the mean epoch (1950 or 2000)•

CATALOGUES
TEXT OF INCLUDE FILES

Page 5-17
08 Nay 84

5.7 TEXT OF INCLUDE FILES
There are several types of INCLUDE file which are distinguished

by the first character of their name. Different INCLUDE file types
contain different types of Fortran declaration statments as described
in the following list.

- Dxxx.INC. These INCLUDE files contain Fortran type (with
dimension) declarations.

- Cxxx.INC. These files contain Fortran CONMON statments.
- Exxx.INC. These contain Fortran EQUIVALENCE statments.
- Vxxx.INC. These contain Fortran DATA statments.
- Ixxx.INC. Similar to Dxxx.INC files in that they contain

type declarations but the declaration of some varaible is
omitted. This type of include is used in the main program to
reserve space for the omitted variable in the appropriate
common. The omitted variable must be declared and
dimensioned separately.

- Zxxx.INC. These INCLUDE files contain declarations which may
change from one computer or installation to another.

5.7.1 CHDR.INC

Include CHDR
CONMON /HDRVAL/ K40BJ, K4TEL, K4INS, K40BS, K4DOB, K4DMP,
* K4BUN, K4PTP, K4CTP, K4CIC, K4CRP, K4CRT, K4EPO,
* K4DNX, K4DMN, K4BLK, K4IMN, K4IMC, K4PTY, K4BMJ,
* K4BMN, K4BPA, K4ARP, K4XSH, K4YSH, K4IMNO,
* K4IMCO, K4PTYO,
* K8BSC, K8BZE, K8CRV, K80RA, K80DE, K8RST, K8ARV,
* K2PTPN, K2CTPN, K2EXTN,
* K2GCN, K2PCN, K2DIM, K2NAX, K2BPX, K2INH,
* K2IMS, K2IMU, K2NIT, K2TYP, K2ALTr K2EXTr K2VER,
* I4RAN, I2VOLr I2CNO, I2WIN, I2DEP, I2COR,
* I2TRAf I2PLT, I20TH

End CHDR.

CATALOGUES
TEXT OP INCLUDE FILES

Page 5-18
08 Nay 84

5.7.2 CLOC.INC

C Include CLOC
COMMON /LOCATI/ RPVAL, COND2R, AXDENU, RPLOC, AXINCf CTYP,
* CPREF, ROT, SAXLAB, ZDEPTH, ZAXIS, AXTYP, CORTYP, LABTYPf
* SGNROT, AXFUNC, KLOCL, KLOCM, KLOCF, KLOCS, KLOCA, KLOCB,
* NCHLAB

C End CLOC

5.7.3 CTVC.INC

C Include CTVC
COMMON /TVCHAR/ NGRAY, NGRAPH, NIMAGE, MAXXTV, MAXINT, SCXINC,
* SCYINC* MXZOOM, NTVHDR, CSIZTV, GRPHIC, ALLONE, MAXXTK,
* CSIZTKf TYPSPLf TVALUSf TVXMOD, TVYMOD, TVDUMS, TVZOOM,
* TVSCRX, TVSCRY, TVLIMG, TVSPLT, TVSPLM, TVSPLC, TYPMOV

C End CTVC

5.7.4 DHDR.INC

C Include DHDR
INTEGER*2 K40BJ, K4TEL, K4INS, K40BS, K4D0B, K4DMP,

* K4BUNr K4PTP, K4CTP, K4CIC, K4CRP, K4CRT, K4EP0,
* K4DMX, K4DMN, K4BLK, K4lMNr K4IMC, K4PTY, K4BMJ,
* K4BMN, K4BPA, K4ARP, K4XSH, K4YSH, K4IMNO,
* K4IMCO, K4PTYO
INTEGER*2 K8BSC, K8BZE, K8CRV, K80RA, K80DEr K8RSTr
* K8ARV
INTEGER*2 K2PTPN, K2CTPN, K2EXTN
INTEGER*2 K2GCN, K2PCN, K2DIM, K2NAX, K2BPX, K2INH,

* K2IMS, K2IMU, K2NIT, K2TYP, K2ALT, K2EXT, K2VER
INTEGER*2 I4RAN, I2VOL, I2CNOf I2WIN, I2DEPf I2COR,
* I2TRA, I2PLT, I20TH

c End DHDR.

CATALOGUES
TEXT OF INCLUDE FILES

Page 5-19
08 May 84

5.7.5 DLOC.INC

C Include DLOC
REAL*8 RPVAL(4)r COND2R, AXDENU
REAL*4 RPLOC(4) , AXINC(4)r CTYP(2,4), CPREF(2,2), ROT,
* SAXLAB(5,2)
INTEGER*2 ZDEPTH(5), ZAXIS, AXTYP, CORTYP, LABTYP, SGNROT,
* AXFUNC(7), KLOCL, KLOCMr KLOCFf KLOCS, KLOCA, KLOCB,
* NCHLAB(2)

C End DLOC

5.7.6 DTVC.INC

c Include DTVC
INTEGER*2 NGRAY, NGRAPH, NIMAGE, MAXXTV(2), MAXINT, SCXINC,
* SCYINC, MXZOOM, NTVHDR, CSIZTV(2), GRPHIC, ALLONE, MAXXTK(2),
* CSIZTK(2), TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS(7),
* TVZOOM(3), TVSCRX(16), TVSCRY(16), TVLIMG(4), TVSPLT(2),
* TVSPLM, TVSPLC, TYPMOV(16)

C End DTVC

CATALOGUES
ROUTINES

Page 5-20
0 8 May 84

5.8 ROUTINES
5.8.1 AXEFND - determines the order number of an axis whose name is
in the unpacked character string TYPE. it will work for either
regular or random axes.

AXEFND (NCHC, TYPE, NAXIS, CAT4f IOFF, IERR)
Inputs:

NCHC
TYPE (2)
NAXIS

CAT4(*)

Output:
IOFF
IERR

1*2 Compare only first NCHC characters of axis type
R*4 Unpacked char, axis type.
1*2 the number of axes to search,

for uniform axes use: K2CTPN
for random axes use: K2PTPN

R*4 Catalogue axis name list,
for uniform axes use: CAT4(K4CTP)
for random axes use : CAT4(K4PTP)

1*2 Axis offset (zero relative axis number)
1*2 Return error code, 0=>QK, l=>could not find.

5.8.2 CATDIR - manipulates catalogue directory and will fill
defaults used for NAME, CLASS, SEQ etc. if requested.

in the

CATDIR (OP, IVOL, CNO, NAME, CLASS, SEQ, PTYPE, USID,
* STAT, BUFF, IERR)

Inputs:
OP R*4 specifies the desired operation:

'SRCH' high seq # (if SEQ 0), return defaults
high seq # (if SEQ 0), NOT return defaults
next match, return defaults
next match, NOT return defaults
* create a new slot
* destroy a slot
= return contents of a slot
* modify status of a slot

IVOL 1*2 Disk volume containing catalogue
0 => all on searches, OPEN

CNO 1*2 Slot number to begin: SRCN, SRNN, OPEN
Ignored if IVOL = 0 : searches, OPEN
Slot number to examine (solely): CLOS, INFO, CSTA
File name: searches, OPEN, CLOS (12 packed chars)
File class: searches, OPEN, CLOS (6 packed chars)
File sequence number: searches, OPEN, CLOS
File physical type (2 chars): searches, OPEN, CLOS
User identification #: searches, OPEN, CLOS
Status (OP=CSTA): READ, WRIT, CLRD, or CLWR

'SRNH1
'SRCN*
'SRNN1
'OPEN'
'CLOS1
'INFO1
* CSTA'

NAME R*4(3)
CLASS R*4(2)
SEQ 1*2
PTYPE 1*2
USID 1*2
STAT R*4

Outputs:
CNO 1*2
IVOL 1*2
NAME R*4(3)
CLASS R*4(2)
SEQ 1*2
PTYPE 1*2

Slot number found: searches, OPEN
If 0 on input, value actually used: searches, OPEN
File name: SRCH, SRCN, INFO (12 packed chars)
File type: SRCH, SRCN, INFO (6 packed chars)
File sequence number: SRCH, SRCN, INFO
File physical file type (2 chars): SRCH, SRCN, INFO

CATALOGUES
ROUTINES Page 5-21

08 May 84

USID 1*2 User identification #: SRCH, SRCN, INFO
STAT R*4 Status: INFO
BUFF 1*2(256) Working buffer
IERR 1*2 Error return

1 => can't open cat file
2 => input error
3 => can't read catalogue file
4 => CLOSE blocked by non-REST status
5 => end of catalogue on OPEN or SRCH i.e.

no open slots or slot not found
6 => on INFO requested slot not open
7 ■> can't use WRIT status because now READ
8 => on CLOSE the ID's don't match
9 => Warning: read status added on a file

being written
10 => Clear read/write when didn't exist warning

5.8.3 CATIO - reads or writes blocks in the map catalogue.

'WRIT'
'UPDT'

CATIO (OP, IVOL, CNO, CATBLK, STAT, BUFF, IERR)
Inputs: OP R*4 'READ' => get block into CATBLK

=> put CATBLK onto disk catalogue
=> as WRIT but for use when the

calling program has previously
set the status to WRITE

Disk volume containing catalogue (1 rel)
Slot number of interest
Array to be written on disk: WRIT, UPDT
Status desired for slot after operation
'READ','WRIT','REST' where REST => no
change of status is desired
Array read from disk: READ
Working buffer
Error code: 0 => ok

1 => cannot open catalogue file
=> input parameter error
=> cannot read catalogue file
=> cannot WRIT/UPDT: file is busy
=> did READ/UPDT, cannot add STAT

= WRIT
=> Warning on READ, file writing
=> As 6, also added STAT=READ
=> As 6, STAT inconsistent or wrong
=> Warning: STAT inconsistent/wrong

The requested OP is performed unless IERR = 1 through 4. The
final status requested is not set if IERR = 1 - 5 , 8 - 9 . The
latter are probably unimportant.

IVOL 1*2
CNO 1*2
CATBLK 1*2(256)
STAT R*4

Outputs: CATBLK 1*2(256)
BUFF 1*2(256)
IERR 1*2

2
3
4
5
6
7
8
9

CATALOGUES
ROUTINES

Page 5-22
08 Hay 84

5,8.4 ICINIT - Initialize image catalog for plane IPLANE.
SUBROUTINE ICINIT (IPLANE, BUFF)

Inputs IPLANE 1*2 Image plane to initialize
Outputs BUFF(256) 1*2 Working buffer

5,8.5 ICOVER - checks to see if there are partially replaced images
in any of the TV planes currently visible by quadrant. Currently this
routine is in the AIPSUB: area.

ICOVER (OVER, BUF, IERR)
Outputss OVER L*2(4) T => there are in quadr. I

BUF 1*2(512) scratch
IERR 1*2 Error code: 0 => ok, other catlg 10 error

5.8.6 ICWRIT - Write image catalog block in ICTBL into image catalog.
ICWRIT (IPLANE, IMAWIN, ICTBL, BUFF, IERR)

INPUTS s
IPLANE 1*2 image plane involved
IMAWIN(4) 1*2 Corners of image on screen
ICTBL 1*2(256) Image catalog block

OUTPUTS s
BUFF 1*2(256) working buffer
IERR 1*2 error codes 0 => ok

1 => no room in catalog
2 => 10 problems

5.8.7 ICREAD - Read image catalog block into ICTBL.
ICREAD (IPLANE, IX, IY, ICTBL ,IERR)

INPUTS:
IPLANE 1*2 plane containing image whose block is wanted
IX 1*2 X pixel coordinate of a point within image
IY 1*2 Y pixel coordinate of point within image

OUTPUTS:
ICTBL 1*2(256) Image catalog block
IERR 1*2 error codes: 0 => ok

1 => IX, IY lies outside image
2 => Catalog i/o errors

CATALOGUES
ROUTINES Page 5-23

08 May 84

5.8.8 PNDX - returns the X axis coordinate value of a point given the
Y axis coordinate value and the X axis pixel position of the point.
Needed for rotations and non-linear axes (L-M).

PNDX (XPIX, YVAL, XVAL)
Inputs: XPIX R*4 X pixel position

YVAL R*8 Y coordinate value
Output: XVAL R*8 X coordinate value
Common: /LOCATI/ position parameters must have been set

up by SETLOC

5.8.9 FNDY - returns the Y axis coordinate value of a point given the
X axis coordinate value and the Y axis pixel position of the point.
Needed for rotations and non-linear axes (L-M).

SUBROUTINE FNDY (YPIX, XVAL, YVAL)
Inputs: YPIX R*4 Y pixel position

XVAL R*8 X coordinate value
Output: YVAL R*8 Y coordinate value
Common: /LOCATI/ position parameters must have been set

up by SETLOC

5.8.10 MAPCLS — closes a map file and clears the catalogue status
MAPCLS (OP, IVOL,
* WBUFF, IERR)

Inputs:
CNO, LUN, IND, CATBLK, CATUP,

OP
IVOL
CNO
LUN
IND
CATBLK

CATUP L*2
Outputs:

IERR

R*4 OPcode used by MAPOPN to open this file
1*2 Disk volume containing map file
1*2 Catalogue slot number of file
1*2 Logical unit # used for file
1*2 FTAB pointer for LUN
1*2(256) New catalogue header which can optionally

be written into header if OP=WRIT or INIT
Dummy arguement if OP=READ
If TRUE write CATBLK into catalogue,
ignored if OP = READ

1*2 = O.K.
= CATDIR couldnt access catalogue
* illegal OP code

CATALOGUES
ROUTINES Page 5-24

08 May 84

5*8,11 MAPOPN - opens a map file marking the catalogue entry for
desired type of operation.

MAPOPN (OP, IVOL, NAMEIN, CLASIN, SEQIN, TYPIN, USID,
* LUN, IND, CNO, CATBLK, WBUFF, IERR)

Inputs:
OP R*4 Operation: READ, WRIT, or INIT where INIT is

for known creation processes (it ignores
current file status & leaves it unchanged)
Also: HDWR for use when the header is being
changed but the data are to be read only.

1*2 Logical unit # to use

the

LUN
In/Out:

NAMEIN(3)
CLASIN (2)
SEQ IN
USID
IVOL
TYPIN

Outputs:
IND
CNO

R*4
R*4
1*2
1*2
1*2
1*2

1*2
1*2

CATBLK(256)1*2
IERR 1*2

Buffer:
WBUFF(256)

Image name (name) (12 packed chars)
Image name (class) (6 packed chars)
Image name (seq.#)
User identification #
Input disk unit
Physical type of file (2 packed chars)
FTAB pointer
Catalogue slot containing map
Buffer containing current catalogue block
Error output
0 *= OK
2 = Can't open WRIT because file busy

or can't READ because file marked WRITE
3 = File not found
4 = Catalogue i/o error
5 = Illegal OP code
6 ■ Can't open file

1*2 Working buffer for CATIO and CATDIR

5.8.12 ROTFND - finds the map rotation angle from a given catalogue
block

ROTFND (CAT4, ROT, IERR)
Inputs:

CAT4(*) R*4 File catalogue header
Outputs:

ROT R*4 File rotation angle (degrees)
IERR 1*2 Error code. 0=>QK, l=>couldn't find axis.

CATALOGUES
ROUTINES Page 5-25

08 May 84

5.8*13 SETLOC - uses the catalogue header to build the values of the
position common /LOCATI/ for use by position finding and axis labeling
routines (at least).

SETLOC (DEPTH)
Inputs: DEPTH 1*2(5) Position of map plane axes 3 - 7
Common: /MAPHDR/ catalogue block (not modified)

/LOCATI/ position parms - created here

5.8.14 TVFIND - determines which of the visible TV images the user
wishes to select. If there is more than one visible image, it
requires the user to point at it with the cursor. The TV must already
be open. Currently this routine is in the AIPSUB area (AIPS program).

TVFIND (MAXPL, TYPE, IPL, UNIQUE, CATBLK, SCRTCH,
* IERR)

Inputs: MAXPL 1*2 Highest plane number allowed (i.e. do
graphics count?)TYPE 1*2 2-char image type to restrict searchOutput: IPL 1*2 Plane number found

UNIQUE L*2 T => only one image visible now
(all types)

CATBLK 1*2(256) Image catalog block found
SCRTCH 1*2(256) Scratch bufferIERR 1*2 Error code: 0 => ok

1 => no image
2 => 10 error in image catalog
3 => TV error

5.8.15 UVPGET - The position in the record of the standard random
parameters (u,v,w,t,b) and the order of the regular axes can be
obtained using the routine UVPGET. UVPGET determines pointers and
other information from a UV catalogue header record. These pointers
are placed in a common which is obtained by the DUVH.INC and CUVH.INC
INCLUDES. The address relative to the start of a vis record for the
real part for a given spectral channel (CHAN) and stokes parameter (ICOR) is given by :

NRPARM+(CHAN-1)*INCF+(ICOR-IABS (ICORO))*INCS
SUBROUTINE UVPGET (IERR)

Inputs: From common /MAPHDR/
CATBLK(256) 1*2 Catalogue block
CAT4 R*4 same as CATBLK
CAT8 R*8 same as CATBLK

Output: In common /UVHDR/
SOURCE(2) R*4 Packed source name.
ILOCU 1*2 Offset from beginning of vis record of U

CATALOGUES
ROUTINES

Page 5-26
0 8 May 84

ILOCV 1*2 " V
ILOCW 1*2 " W
ILOCT 1*2 " Time
ILOCB 1*2 " Baseline
JLOCC 1*2 Order in data of complex values
JLOCS 1*2 Order in data of Stokes1 parameters.
JLOCF 1*2 Order in data of Frequency.
JLOCR 1*2 Order in data of RA
JLOCD 1*2 Order in data of dec.
INCS 1*2 Increment in data for stokes (see above)
INCF 1*2 Increment in data for freq. (see above)
ICORO 1*2 Stokes value of first value.
NRPARM 1*2 Number of random parameters
LREC 1*2 Length in values of a vis record.
NVIS(2) P 1*4 Number of visibilities
FREQ R*8 Frequency (Hz)
RA R*8 Right ascension (1950) deg.
DEC R*8 Declination (1950) deg.
NCOR 1*2 Number of Stokes' parameters
ISORT C*2 Sort order
IERR 1*2 Return error code: 0=X)K,

1, 2, 5, 1 : not all normal rand parms
2, 3, 6, 1 : not all normal axes
4, 5, 6, 1 : wrong bytes/value

5.8.16 XYPIX - determines the pixel location corresponding to a
specified coordinate value. The pixel location is not necessarily an
integer. The position parms are provided by the common /LOCATI/ which
requires a previous call to SETLOC.

XYPIX (X, Yr XPIX, YPIX)
Inputs: X R*8 X-coordinate value (header units)

Y R*8 Y-coordinate value (header units)
Output: XPIX R*4 x-coordinate pixel location

YPIX R*4 y-coordinate pixel location

5.8.17 XYVAL - determines the coordinate value (X,Y,Z) corresponding
to the pixel location (XPIX,YPIX). The pixel values need not be
integers. The necessary map header data is passed via common /LOCATI/
requiring a previous call to SETLOC. This program is the inverse of
XYPIX.

XYVAL (XPIX, YPIX, X, Y, Z)
Inputs:

XPIX R*4 Pixel location, x-coordinate
YPIX R*4 Pixel location, y-coordinate

Outputs:
X R*8 X-coordinate value at pixel location

CATALOGUES
ROUTINES

Page 5-27
08 Nay 84

Y R*8 Y-coordinate value at pixel location
Z R*8 Z-coordinate value (if part of a position

pair with either X or Y)
COMMON Inputs:

/LOCATI/ position parms deduced from the map header by
subroutine SETLOC

Units are as in the mapheader: degrees for position coordinates.

CHAPTER 6
DISK FILES

6.1 OVERVIEW
Most images, uv data sets, and other information in the AIPS

system are* kept in disk files. Image and uv data files to be kept
longer than the execution of a single task are stored in catalogued
files, although tasks may use scratch files for temporary storage.
The purpose of this chapter is to describe the general techniques for
accessing data in disk files.

Associated with each image or uv data file may be a number of
auxilliary files known as "extension" files containing information
about the main file. Examples of extension files are the history
file, CLEAN components files and antenna files. Details of the
structure of the various files used in AIPS programs are described in
the AIPS manual Volumn 2. Except for the image and uv data files, the
details of the file structure will not be described here.

The amount of data in the image and uv data files can be rather
large, so it is important that the routines accessing them be
relatively efficient. This efficiency comes at the cost of increased
complexity. There are a number of features of AIPS I/O routines for
handling large amounts of data which are designed for efficiency.

1. Fixed record length. All files internal to AIPS have a fixed
logical record length. This allows the I/O routines to block
disk transfers into a number of logical records.

2. Large double buffered transfers. The upper level I/O
routines automatically make data transfers as large as
possible and when possible double buffer the transfers.

3. Visible I/O buffers. To avoid an incore transfer of all
data, most AIPS routines work directly from the I/O buffer.

Extension files are handled somewhat differently. Since the
amount of data in these files is rather small, friendlier but less
efficient techniques are used. Logical records have a fixed length
but the basic I/O routine (EXTIO) returns the data in an array which
allows easy implementation of data structures.

DISK FILES
OVERVIEW

Page 6-2
08 May 84

This chapter discusses the various aspects of disk files,
creating, destroying, reading, writing etc. The cataloguing of these
files has been covered in a previous chapter. A typical programmer
will not need to understand all of the material in this chapter to
program effectively in AIPS. The detailed descriptions of the major
routines discussed will be given at the end of the chapter.

6.2 TYPES OF FILES
AIPS has two logically different types of files which on some

machines are also physically different. The first type, known as
regular disk files, is used mainly for extension files. This type of
file may be expanded and contracted and physical I/O is always done in
512 byte blocks. The second type of file, known as "map" files, is
used for image and uv data files. This type of file can be contracted
but not expanded and I/O is usually done in the double buffered mode
with large size transfers. (Double buffering is when the program
works out of one half of a buffer while the other half is being read
from, or written to, the external device.)

There are several occasions when the programmer must be aware of
the distinction between these two types of files. The first is in the
setup and initialization of the CDCH.INC commons. This common must be
declared and initialized to handle the largest number of each type of
file which will be open at any given time. A description of this
process is given in the chapter on tasks.

The other places where there is a distinction between the two
types of files are the file creation and opening routines. Many of
the higher level creation and file open routines hide this distinction
from the programmer. These routines will be discussed later in this
chapter.

6.3 FILE MANAGMENT
AIPS has a set of utility routines for creating and managing disk

files. The four functions covered in this section are file creation,
destruction, extension and contraction.

6.3.1 Creating Files
There are several higher level file creation routines, one for

each of several applications. These applications are image files, UV
data files, scratch files, general extension files and history files.
The basic file creation routine is ZCREAT.

DISK FILES
FILE MANAGMENT

Page 6-3
08 May 84

- MCREAT
The routine MCREAT creates and catalogues an image file

using the description of the file contained in a catalogue
header record passed to MCREAT via the common /MAPHDR/, All
information in the header defining the size and name of the
file must be filled in before calling MCREAT. The catalogue
header record is described in detail in another chapter.

- UVCREA
The routine UVCREA creates and catalogues a uv data file

using the description of the file contained in the catalogue
header record passed to UVCREA in the common /MAPHDR/. The
catalogue header record must be sufficiently complete to
determine the name, class, etc and size of the required file.

- SNCRC
The routine SNCRC will create scratch files using the

/CFILES/ common system; thus the scratch files will be
automatically deleted when the task calls the shutdown
routine DIE. Use of SNCRC is described in more detail in the
chapter describing tasks.

- EXTINI
The creation of most extension files is hidden from the

casual programmer in the create/open/initialize routine
EXTINI. EXTINI will be discussed in more detail in the
section in this chapter on I/O to extension files.

- HICREA
The creation of history files is normally hidden in the

upper level routine HISCOP. The use of HISCOP and HICREA are
described in more detail in the chapter on writing tasks.

- Z CREAT
The basic file creation routine is ZCREAT. If none of

the other file creation routines are applicable then use
ZCREAT. ZCREAT needs the physical name of the file and the
size of the file in bytes. ZCREAT does not catalogue the file created.

DISK FILES
FILE MANAGMENT

6.3.2 Example Using ZCREAT
The use of ZCREAT is demonstrated in the followings

INTEGER*2 NBYTE(2), SYM, IRET, NX, NY, NP(2), BP, N2
L0GICAL*2 MAP
REAL * 4 R8TOP4, PHNAME(6)
REAL*8 XSIZE
INCLUDE 'INCSsDDCH.INC'

INCLUDE 'INCS:CDCH.INC'

DATA SYM, /'MA'/, MAP /.TRUE./, N2 /2/
•

C NX, NY are the size of an
C image. Make a file
C big enough for a REAL copy
C of the image.
C
C Compute the size in bytes.
C Notes NWDPFP is from the
C /DCHCOM/ and is the size of
C a REAL word in terms of
C short integers. 1 short
C integer = 2 bytes

BP = 2 * NWDPFP
NP(1) = NX
NP(2) « NY
CALL MAPSIZ (N2, NP, BP, NBYTE)

C Size now in NBYTE
C Make physical name.
C IVOL ■ disk number
C CNO = catalogue slot number
C (arbitrary for
C uncatalogued files).
C IVER = extension file
C version number.
C 1 for main catalogued
C files. Arbitrary
C otherwise.

CALL ZPHFIL (SYM, IVOL, CNO, IVER, PHNAME, IERR)
C filename now in PHNAME.
C (error if IERR not 0)
C Create file of type 'MA'

CALL ZCREAT (IVOL, PHNAME, NBYTE, MAP, IERR)
C Test for errors...

In the example above, a map file was created large enough to hold
a NX by NY floating point image using the routine MAPSIZ to compute
the correct size for the file. If this file is to be catalogued, then
a catalogue header record should be constructed and call made to

Page 6-4
08 May 84

DISK FILES
FILE MANAGMENT

Page 6-5
08 May 84

CATDIR and CATIO before the call to ZCREAT to get the catalogue slot
number needed to form the physical name of the file. A detailed
description of the calling sequence for ZCREAT can be found at the end
of this chapter. (In practice, one would use MCREAT to catalogue and
create the file shown in the example above.)

6.3.3 Destruction Routines
There are a number of special purpose file destruction routines;

the basic file destruction routine is ZDESTR. A brief description is
given here of these utility routines; a description of the call
sequence is given at the end of this chapter.

_ MDESTR will delete a catalogue entry for a file, delete all
extension files for that file, and then delete the file. The
file must be in the REST state. Since catalogue files can be
marked "WRITE - Destroy if task fails" which will cause the
shutdown routine DIE to destroy the file there is seldom a
need to call MDESTR directly. MDESTR will destroy either
catalogued image or uv data files.

_ SNDY will destroy scratch files described in the /CFILES/
common. SNDY is called by the shutdown utility DIE so tasks
do not have to call it separately.

_ ZDESTR is the basic file destruction routine. ZDESTR will
not uncatalogue the file destroyed. CATDIR should be used to
uncatalogue a catalogue file destroyed.

6.3.4 Expansion And Contraction Of Files
Regular (extension) files can be both expanded and compressed.

Map (data) files can be compressed but not expanded. Since most
extension file access is by EXTIO the expansion of extension files is
hidden from the programmer. Expansion of files is done with routine
ZEXPND and compression is done using routine ZCMPRS. Details of the
call sequences of these routines are given at the end of this chapter.

DISK FILES
I/O TO DISK FILES Page 6-6

08 May 84

6.4 I/O TO DISK FILES
There are a number of steps necessary in order to access a disk

file. Normal Fortran I/O hides a number of these steps but they are
all visible in at least some AIPS applications. This increased
complexity of the I/O system gives the programmer a high degree of
control over how the I/O is actually done. One or more of the steps
in accessing a file may be performed with a single call. In general,
access of a disk file is as follows:

1. Forming the physical name of the file. The AIPS utility
ZPHFIL is always used for this purpose. The name is derived
from file type, the disk number, catalogue slot number,
version number and user ID number. The file type of image
files is 'MA* and of uv data files is 'UV'. The disk number
and catalogue slot number for catalogued files may have to be
obtained from the AIPS utility routine CATDIR before calling
ZPHFIL. This step is incorporated in a number of routines
such as SNCRC, EXTINI and MAPOPN.

2. Opening the file. This is done with routine ZOPEN for binary
files and ZTOPEN for text files. In either case, the file
must be given a logical unit number (LUN) and the opening
routine returns a pointer to the AIPS I/O table (FTAB) which,
with the LUN, must be used in all subsequent calls. This
step is incorporated in the routines EXTINI and MAPOPN.

3. Initializing the transfers. The AIPS higher level I/O
routines need to be told a number of parameters about the
data transfers such as whether a read or write is desired,
the size and number of logical records, and the location and
size of the buffer to be used. In several cases the range of
data desired can also be specified. This step is usually
done in one of the specialized routines to be described later.

4. Data transfers. This is when the data is transfered from the
disk to the specified buffer or vice versa. Actual data
transfers are done by Direct Memory Access (DMA) and are
usually in large blocks for "map" files and in 512 byte
blocks for non-map (extension) files. Since the transfers
usually consist of a number of logical records, the
programmer is unaware of when transfers actually take place.
Because the programs frequently work directly from the I/O
buffer, many of the I/O routines return a pointer to the
first word in the buffer of the next logical record.

5. Flushing the buffer (writing only). When all calls to disk
write routines are complete, there may still be data in the
buffer which has not been written. In this case, a call must
be made to the appropriate I/O routine telling it to flush the buffer to disk.

6. Closing the file. When all operations on a file are complete
the file needs to be closed. This is usually done with an
explicit call to the appropriate close routine.

DISK PILES
I/O TO DISK FILES

Page 6-7
0 8 May 84

6.4.1 Upper Level I/O Routines.
There are a number of AIPS upper level I/O routines which do most

of the bookeekping, The following is a short description of the more
commonly used of these; detailed descriptions of the call sequences
are found at the end of the chapter. The use of many of these
routines is discussed later in this chapter.

- EXTINI opens and initializes an extension file, will create
and catalogue the extension file if necessary.
EXTIO does random access mixed reads and writes to extension
files. EXTIO deals with one logical record at a time in an
array which can be used as a data structure. EXTIO takes
care of file expansion and other bookkeeping chores.
Requires initialization by EXTINI.

- MAPOPN finds a catalogued image or uv data file in the
cataloguer opens it and returns
marks the catalogue status.
MINIT initializes I/O for image
subimage for reads,
MDISK does double buffered I/O for
initialization by MINIT.
UVINIT initializes I/O for uv data
starting visibility record number.

- UVDISK does double buffered I/O for
initialization by UVINIT.

- MAPCLS closes a catalogued image or uv data file, updates the
catalogue header block if requested and clears the catalogue status.

the catalogue header and

files; can specify a

image files; requires

files; can specify a

uv data files; requires

6.4.2 Logical Unit Numbers
Many logical unit numbers in AIPS have special meanings which

indicate to the I/O routines what kind of device or file is involved.
The information about which LUN corresponds to which device is
contained in a table (DEVTAB) in the device characteristics common (
INCLUDES DDCH.INC and CDCH.INC). AIPS has 50 defined LUN values, ie.
DEVTAB has 50 entries, and the type of device or file type for each
LUN is given in DEVTAB with the following codes:

DISK FILES
I/O TO DISK FILES

Page 6-8
0 8 Nay 84

DEVTAB(LUN) = 0
DEVTAB(LUN) = 1

DEVTAB(LUN) » 2
DEVTAB(LUN) « 3

DEVTAB(LUN) = 4

LUN is for disk file requiring I/O control area in
FTAB. Multi-record I/O is possible.
Device not requiring I/O control area in FTAB.
I/O done by Fortran (terminals, printer/plotter)•
VAX does Fortran opens, Modcomp allocates these
at task build time.
LUN is for device requiring I/O control area in
FTAB. Multi-record I/O not allowed (e.g. tapes)
Similar to 1. Vax uses this code to defer opens
from ZOPEN to ZTOPEN for text files. Modcomp
does not use this value.
LUN is for TV device requiring special I/O routine
and normal I/O control area in FTAB.

In addition, many LUNs have predefined values as shown in the
following table.

LUN Use
1 Line printer
2 Plotter
3 Reserved
4 Input to batch processors
5 Input CRT
6 Output CRT
7 Graphics CRT
8 Array Processor (roller)
9 TV device

10 POPS "run" files
11 POPS "help" files
12 Log/error file (used by MSGWRT).
13 Task communication file.
14 POPS "memory" file
15 Catalogue files.

16 - 25 Map (image or uv data) files.
26 Graphics files

27 - 30 General (non-map) disk files.
31 - 32 Magnetic tape drives.

6.4.3 Contents Of The Device Characteristics Common
The device Characteristics common, obtained from the INCLUDES

DDCH.INC and CDCH.INC contains a number of useful parameters about the
host system.

NVOL
NBPS
NSPG
NBTB1
NTAB1
NBTB2

1*2
1*2
1*2
1*2
1*2
1*2

Number of disk drives available to AIPS
Number of bytes per disk sector
Number of disk sectors per allocation granule
Number bytes in FTAB / non-FTAB device
Max number of non-FTAB devices open at once
Number bytes in FTAB / slow I/O device

DISK FILES
I/O TO DISK FILES

Page 6-9
08 May 84

NTAB2 1*2
NBTB3 1*2
NTAB3 1*2
NTAPED 1*2
CRTMAX 1*2
PRTMAX 1*2
NBATQS 1*2
MAXXPR 1*2(2)
CSIZPR 1*2(2)
NINTRN 1*2
KAPWRD 1*2
NCHPFP 1*2
NWDPFP 1*2
NWDPDP 1*2
NBITWD 1*2
NWDLIN 1*2
NCHLIN 1*2
NTVDEV 1*2
NTKDEV 1*2
BLANKV 1*2
XPRDMM R*4
XTKDMM R*4
NTVACC 1*2
NTKACC 1*2
UTCSIZ 1*2
BYTFLP 1*2
SYSNAM R*4 (5)
VERNAM R*4
USELIM 1*2
IFILIT 1*2
RLSNAM R*4(2)
DEVTAB 1*2(50)
FTAB I*2(*)

Max number of slow I/O devices open at once
Number bytes in FTAB / fast I/O device
Max number of fast I/O devices open at once
Number of tape drives available to AIPS
Number lines / CRT terminal page
Number lines / printer page
Number batch AIPSs in system
Number of plotter dots / page in X, Y
Number of plotter dots / character in X, Y
Maximum # simultaneous interactive AIPSs
words of array processor memory
characters / floating point
words / floating point
words / double-precision floating point
bits / word
words in a POPS input line
characters in a POPS input line
television display devices available
graphics display devices available
Integer magic value => blanked pixel
Printer points per millimeter
Graphics points per millimeter
Number POPS programs allowed access to TV devices
Number POPS programs allowed access to graphics
Private catalogue size (0=>public)
Byte flip, 0=none, l=bytes, 2=words
System name (20 char)
Version ID (4 char)
Maximum user number
Spare
Release name (8 characters)
Device type code numbers
I/O driving tables

6.4*4 Image Files
A disk image file contains an ordered, binary sequence of pixel values
with logical records consisting of single "rows" of the image. The
pixel values are arranged in the order defined in the catalogue header
block, the first axis going the fastest. The pixels may be one of
several types, but in practice, they are either scaled short integers
or floating point values. Blanking of pixels is allowed by use of a
special value (magic value blanking) specified by the header. For
more information about the catalogue header and the typical axes used
see the chapter on the catalogue.

DISK FILES
I/O TO DISK FILES

Page 6-10
08 May 84

Image files are stored on the disk with each row beginning on a
block boundry. An exception to this is when multiple rows will fit
into a single block in which case multiple rows can be in a given disk
block. In this latter case, rows are not allowed to span block
boundries.

6.4.4.1 Opening Image Files - The simplest way to find, open and
close a catalogued image file is with the routines MAPOPN and MAPCLS.
These routines and the alternate ways to find an image in the
catalogue are discussed in the chapter on the catalogue and details of
the call sequence are found at the end of this chapter.

If the use of MAPOPN and MAPCLS is not appropriate to open and
close the image file then the routines ZPHFIL, ZOPEN and ZCLOSE are to
be used to 1) form the physical name of the file, 2) open the file,
both in the AIPS and system tables and 3) close the file when done.
The details of these routines are given at the end of this chapter.
These operations are demonstrated in the following example.

INTEGER*2 IRET, CNO, IVOL, IVER, MA, LUN, IND
LOGICAL*2 MAP, EXCL, WAIT
REAL*4 PHNAME(6)

•

DATA MAP, EXCL, WAIT /.TRUE.,.TRUE.,.TRUE./
DATA IVER /l/, MA /'MA'/, LUN /16/

C
C
C
C
C
C
C
C
C
C
C

CALL ZPHFIL (MA, IVOL, CNO,
C
C
C

CALL ZOPEN (LUN, IND, IVOL,
C

(I/O to file)

C Close file.
CALL ZCLOSE (LUN, IND, IRET)

Make physical name.
MA = file type
IVOL = disk number
CNO = catalogue slot number

(arbitrary for
uncatalogued files).

IVER = extension file
version number.
1 for main catalogued
files. Arbitrary
otherwise.

IVER, PHNAME, IRET)
filename now in PHNAME.
(error if IRET not 0)
Open file

PHNAME, MAP, EXCL, WAIT, IRET)
Test for errors (IRET not 0)

DISK FILES
I/O TO DISK FILES

Page 6-11
08 Nay 84

6.4.4,2 MINIT And MDISK - Once the image file is opened, I/O is
normally initialized by a call to NINIT, I/O is done by calls to MDISK
with a final call to MDISK to flush the buffer if necessary. MINIT
sets up the bookkeeping for one plane of an image at a time; if
multiple planes are to be read, multiple calls to MINIT must be made.
A rectangular window in a given plane can be specified to MINIT, and
it can be instructed to read or write the rows in reverse order by
reversing the values of WIN(2) and WIN(4). A subimage cannot be
specified for write.

Due to the use of buffer pointers, MDISK must be called for WRITE
before placing data into the buffer. This produces a rather strange
logic flow, but is necessary. Details of the call sequences to MINIT
and MDISK are given at the end of this chapter.

6.4.4.3 Multi-plane Images (COMOFF) - If the image has more than
two dimensions, planes parallel to the first plane can be accessed
using the block offset argument to MINIT. The subroutine COMOFF can
be used to compute the block offset. The block offset is a pseudo 1*4
number whose value for the first plane is (1,0). COMOFF returns a
value which is to be added to the block offset for the first plane.
An example of the use of COMOFF to compute the block offset:

INTEGER*2 CATBLK(256), BP,
* IERR, PLUS
INCLUDE 'DHDR.INC'
INCLUDE 'DDCH.INC'

•

INCLUDE 'CHDR.INC'
INCLUDE 'CDCH.INC'
COMMON /MAPHDR/ CATBLK

•

DATA ONE /1,0/, PLUS /'PL'/

C
C
C
C
C
C

BP = 2 * NWDPFP
C
C
C

PLARR(l) = 2
PLARR (2) = 1
PLARR(3) = 1
PLARR (4) = 1
PLARR (5) = 1

C
C

BLKOF(2), ONE(2), PLARR(5),

Compute bytes / per pixel,
assume REAL format file.
NWDPFP = # short integers
per floating value.
Obtained from DDCH.INC and
CDCH.INC includes.

Get second plane on third
axis, first pixel on
the remaining axes.

PLARR specifies desired plane
Use header block from /MAPHDR/

DISK FILES
I/O TO DISK FILES

Page 6-12
08 May 84

CALL COMOFF (CATBLK(K2DIM), CATBLK(K2NAX), PLARR, BP,
* BLKOF, IERR)

C Add block offset for first
C plane.

CALL ZMATH4 (BLKOF, PLUS, ONE, BLKOF)
C BLKOF now contains the value
C to send to MINIT to get the
C specified plane.

A detailed description of the call sequence for COMOFF is given
at the end of this chapter.

6.4.4.4 Example Of MINIT And MDISK - In the following is an example
in which two files are read, the pixel values are added and a third
file is written.

C-
C
C
C
C
C
C
C
C
C
C
C-

C
C

C
C-

Inputs:
NX, NY 1*2
ISCR1 1*2
ISCR2 1*2
ISCR3 1*2

Output:
IERR 1*2

SUBROUTINE FLADD (NX, NY, ISCR1, ISCR2, ISCR3, IERR)
FLADD adds the values in the scratch files in the /CFILES/ common
number ISCR1 and ISCR2 and writes them in the /CFILES/ scratch
file number ISCR3

Number of pixels per row and number of rows
/CFILES/ scratch file number of first input file
/CFILES/ scratch file number of second input file
/CFILES/ scratch file number of output file
Return code, 0=>QK, otherwise error.

INTEGER*2 Nl, N2, N8
INTEGER*2 FIND1, FIND2, FIND3, BIND1, BIND2, BIND3, B0(2), BP,

WIN(4), NX, NY, BUFSZ1, BUFSZ2, BUFSZ3, LUN1, LUN2, LUN3
LOGICAL*2 T,F
REAL*4 READ, WRITE, FINI
REAL*4 BUFFI(1), BUFF2(1), BUFF3(1)
INCLUDE 'INCS:DMSG.INC'
INCLUDE 'INCS:DDCH.INC1
INCLUDE 1INCS:DFIL.INC1
INCLUDE 'INCS:CMSG.INC'
INCLUDE 'INCS .-CDCH.INC'
INCLUDE 'INCS:CFIL.INC'

Buffer common from rest of
program,

COMMON /BUFRS/ BUFFI, BUFF2, BUFF3, BUFSZ1, BUFSZ2, BUFSZ3
DATA T, F /.TRUE.,.FALSE./, READ, WRITE, FINI

/'READ','WRIT','FINI'/, BO /1,0/, Nl, N2, N8 /l,2,8/,
Use LUNs 16,. 17, 18

WIN /4*0/, LUN1, LUN2, LUN3 /16,17,18/

DISK FILES
I/O TO DISK FILES Page 6-13

08 May 84

c Set bytes per pixel (floating)BP = 2 * NWDPFP
c Open and init ISCR1

CALL ZOPEN (LUN1, FIND1, SCRFIL(ISCR1),
* SCRFIL(1,ISCR), T, F, Tr IERR)

c Check for errorIF (IERR.EQ.0) GO TO 10
ENCODE (80,1000,MSGTXT) IERR, READ, Nl
GO TO 990

10 CALL MINIT (READ, LUN1, FIND1, NX, NY, WIN, BUFFI, BUFSZ1,
* BP, BO, IERR)

C Check for error
IF (IERR.EQ.0) GO TO 20

ENCODE (80,1010,MSGTXT) IERR, READ, Nl
GO TO 990

C Open and init ISCR220 CALL ZOPEN (LUN2, FIND2, SCRVOL(ISCR2), SCRFIL(1,ISCR2),
* T, F, T, IERR)

C Check for error
IF (IERR.EQ.0) GO TO 30

ENCODE (80,1000,MSGTXT) IERR, READ, N2
GO TO 990

30 CALL MINIT (READ, LUN2, FIND2, NX, NY, WIN, BUFF2, BUFSZ2,
* BP, BO, IERR)

C Check for errorIF (IERR.EQ.0) GO TO 40
ENCODE (80,1010,MSGTXT) IERR, READ, N2
GO TO 990

C Open and init ISCR3
40 CALL ZOPEN (LUN3, FIND3, SCRVOL(ISCR3), SCRFIL(1,ISCR3),

* T, F, T, IERR)
C Check for error

IF (IERR.EQ.0) GO TO 50
ENCODE (80,1000,MSGTXT) IERR, WRITE
GO TO 990

50 CALL MINIT (WRITE, LUN3, FIND3, NX, NY, WIN, BUFF3, BUFSZ3,
* BP, BO, IERR)

C Check for errorIF (IERR.EQ.0) GO TO 60
ENCODE (80,1010,MSGTXT) IERR, WRITE
GO TO 990

C Loop, adding rows.
60 DO 110 1=1, NY
C Read ISCRl

CALL MDISK (READ, LUN1, FIND1, BUFFI, BIND1, IERR)
C Check for errorIF (IERR.EQ.0) GO TO 70

ENCODE (80,1060,MSGTXT) IERR, READ, Nl
GO TO 990

C Read ISCR2
70 CALL MDISK (READ, LUN2, FIND2, BUFF2, BIND2, IERR)
C Check for error

IF (IERR.EQ.0) GO TO 80
ENCODE (80,1060,MSGTXT) IERR, READ, N2
GO TO 990

C Write ISCR3

DISK FILES
I/O TO DISK FILES

Page 6-14
0 8 May 84

80

90
C
C
C

100
110
C
C

120

C
C
990
999

CALL MDISK (WRITE, LUN3, FIND3, BUFF3, BIND3, IERR)
Check for error

IF (IERR.EQ.0) GO TO 90
ENCODE (80,1060,MSG TXT) IERR, WRITE
GO TO 990

Add row.
DO 100 J - 1, NX

Note: buffer pointer is to
first element so need zero
relative index for each pixel.

J1 = J - 1
BUFF3(BIND3+J1) - BUFFI(BIND1+J1) + BUFF2(BIND2+J1)
CONTINUE

CONTINUE
Flush buffer.

CALL MDISK (FINI, LUN3, FIND3, BUFF3, BIND3, IERR)
Check for error

IF (IERR.EQ.0) GO TO 120
ENCODE (80,1060,MSGTXT) IERR, FINI
GO TO 990

Close files.
CALL ZCLOSE (LUN1, FIND1, IERR)
CALL ZCLOSE (LUN2, FIND2, IERR)
CALL ZCLOSE (LUN3, FIND3, IERR)
IERR = 0
GO TO 999

CALL MSGWRT (N8)
RETURN

Finished OK.

An error has occured - send
message

1000 FORMAT ('FLADD: ERROR',13,' OPEN FOR ',A4,' FILE',12)
1010 FORMAT ('FLADD: ERROR',13,' INIT FOR ',A4,' FILE',12)
1060 FORMAT ('FLADD: ERROR',13,1X,A4,'ING FILE',12)

END

6.4.4.5 MINSK And MSKIP - There are some operations such as
transposing images in which it is convenient to read every n th row of
an image. The pair of routines MINSK and MSKIP will do this
operation. Descriptions of these routines can be found at the end of
this chapter.

6.4.5 Image File Manipulation Routines
There are a number of AIPS utility routines available to operate

on files. Many of these involve copying data from catalogue files to
scratch files or vice versa with or without various format
conversions. An important member of this class is the FFT routine.
Details of the call sequences to these routines are given at the end
of this chapter.

DISK FILES
I/O TO DISK FILES

Page 6-15
08 May 84

- CONVRT (convert) will convert a R*4 map into an 1*2 map or an
1*2 map into an R*4 map depending upon the type of the input map.

- DSKFFT is a disk based, two dimensional FFT.
- MSCALE will read from a floating point file, rescale the

values to correspond to the maximum and minimum, and write
these scaled values to an integer format map file.

- MSCALF is like MSCALE but will handle blanked pixels.
- MSCALI will copy the values in an integer file to a floating

point map file.
- PLNGET reads a selected portion of a selected plane from a

catalogued file and writes it into a specified scratch file.
The output file will be zero padded and a shift of the center
may be specified.

- PLNPUT writes a subregion of a REAL * 4 scratch file image into
a catalogued image (either 1*2 or R*4).

6.4.6 Uv Data Files
6.4.6.1 Subarrays - Since uv data sets frequently contain data from
physically separate arrays, AIPS uv data sets can contain "sub
arrays". This is necessary so that the physical identity of each
antenna in a visibility record can be uniquely established. Each
subarray has its own antenna file which contains the true frequency
and date of observation and the locations and other information about
each antenna.

When uv data sets are concatenated, the u, v and w terms of each
subsequent data set are converted to wavelengths at the reference
frequency defined by the first data set. The subarray number is
encoded into the baseline number in each visibility record and a five
day offset is added to the time parameter for each subarray to further
distinguish between subarrays.

DISK FILES
I/O TO DISK FILES

Page 6-16
08 May 84

6.4.6.2 Visibility Record Structure - AIPS uv data is organized in
the data file in the same way that similar data is organized of a FITS
format tape. Each logical record consists of all data on a given
baseline for a given integration period; that is all polarizations
and frequencies are contained in a given logical record. The first
portion of a logical record is a list of the "random" parameters such
as u, v, time etc. Following the random parameters comes a regular
array of data which is very similar to a small image file.

The length of the visibility logical record is fixed in a given
data base but may vary from one data base to another. All values are
in floating point format, and records may span disk sector boundaries.

The random parameters can be in any order but the names of only
the first seven are kept in the catalogue header record; this list
defines the order in which the values occur. The labels for the
normal u, v and w random parameters are "UU-L", "W-L", "WW-L"
indicating that the coordinates correspond to the tangent point of the
data and the units are wavelengths at the reference frequency. The
label for the time random parameter is "TIME1" for historical reasons
and the label for the baseline parameter is "BASELINE”.

The regular portion of the array is like an image array in that
the order of the axes is arbitrary. In practice, the first axis
should be the COMPLEX axis (real, imaginary, weight). As in image
files, the RA, Dec and frequency (for continuum data) are dummy axes
which provides a place to store the values for these parameters.

The structure of a typical VLA data record is shown in the
following figure.

I u, v, w, t, bl Rl, II, Wl, R2, 12, W2, R3, 13, W3, R4, 14, W4I
random RR LL RL LR
parameters rectangular data array

The symbols in the above are:
- u = u coordinate in wavelengths at the reference frequency
- v = u coordinate
- w = w coordinate
- t = time in days since reference data given in antenna file

for this subarray. The time is offset by 5 x (subarray no.
- 1)

- b » baseline code; 256 x antenna 1 no. + antenna 2 no. +
0.01 x (subarray no. - 1).

- Rn = the real part of a correlator value in Jy.

DISK FILES
I/O TO DISK FILES

Page 6-17
08 May 84

In ■ the imaginary part of a correlator value,
Wn = the weight assigned to the correlator value. For the
VLA this is usually the integration time in tens of seconds.
In general, it is arbitrary.

AIPS uv data sets may contain data in either true Stokes*
parameters or correlator based values for circularly polarized IFs.
Since Stokes' parameters are not an inherently ordered set we have
adopted the following convention for the values along the Stokes'
axis:

Stokes' (or correlator) parameter Value

The order of the visibility records may be changed in a file;
this is usually done with the task UVSRT. Sorting is done using a two
key sort and the current sort order is described in the catalogue
header record (CATBLK(K2TYP)) as a two character string. The codes
currently defined for the sort order are given in the following table,
the first key in the sort order varies most slowly.

B => baseline number
T => time order
U => u spatial freq. coordinate
V => v spatial freq. coordinate
W => w spatial freq. coordinate
R => baseline length.
P => baseline position angle.
X => descending ABS(u)
Y => descending ABS(v)
Z => ascending ABS(u)
M => ascending ABS(v)
* => not sorted

I
Q
U
V
RR
LL
RL
LR

1
2
3
4 -1

-2
-3
-4

As examples of the use of the sort order, the mapping routines
require 'XY' sorted data (actually they are happy as long as the first
key is 'X'), self calibration tasks require 'TB' order, etc.

DISK PILES
I/O TO DISK FILES

Page 6-18
0 8 Nay 84

6,4.6.3 Data Order, UVPGET - The position in the record of the
standard random parameters (u,v,w,t,b) and the order of the regular
axes can be obtained using the routine UVPGET. UVPGET determines
pointers and other information from a uv data file catalogue header
record in common /MAPHDR/. These pointers are placed in a common
which is obtained by the DUVH.INC and CUVH.INC INCLUDES. The address
relative to the start of a vis record for the real part for a given
spectral channel (CHAN) and stokes parameter (ICOR) is given by :

NRPARN + (CHAN-1) * INCF + (ICOR-IABS (ICORO)) * INCS

6.4.6.4 Data Reformatting Routines - The variety of different uv data
formats, especially different polarization types, allowed in AIPS uv
data bases complicates handling of uv data. If a routine is to read
and write uv data it must be prepared to handle any allowed data type.
If the routine is only reading the data, reformatting the data to a
standard form is practical. There are a number of reformatting
routines available.

Efficient reformatting requires two routines, one to setup arrays
of pointers and factors and the second to reformat each record. The
following list describes several such pairs; detailed descriptions of
the call sequence to the routines can be found at the end of this
chapter•

- SET1VS, GET1VS return a single visibility value in true
stokes* parameter (I, Q, U, V) or circular polarizarion (RCP,
LCP). They may be requested to work on multiple frequency
channels.

- SETVIS, GETVIS return several visibility values in the form
of true stokes' parameter (I, Q, U, V) or circular
polarization (RCP, LCP). They may be requested to work on
multiple frequency channels.

6.4.6.5 UVINIT And UVDISK - UV data files may be located and opened
using routine MAPOPN and read or written using UVINIT and UVDISK in
much the same manner in which image files are read with MINIT and
MDISK. One signifigant difference between UVDISK and MDISK is that
UVDISK can be requested to process multiple logical records in a
single call. This is useful when large amounts of data are to be sent
to a sorting routine or to the array processor or to reduce the
overhead of many subroutine calls. Another difference is that, unlike
MINIT, UVINIT returns the buffer pointer for the first call so the
output buffer can be written into before the first call to UVDISK.

UVINIT sets up the bookkeeping for UVDISK which does double
buffered (if possible) quick return I/O. UVDISK will run much more
efficiently if on disk the requested transfers (logical record length
x the number of records per call) is an integral number of disk
blocks. Otherwise partial writes or oversize reads will have to be

DISK FILES
I/O TO DISK FILES

Page 6-19
08 May 84

done. Minimum disk I/O is one block.
The buffer size for UVDISK should include an extra NBPS bytes for

each buffer for non-tape reads if NPIO records does not correspond to
an integral number of disk sectors (NBPS bytes). 2*NBPS extra bytes
required for each (single or double) buffer for writes. More details
about the call sequence to UVINIT and the use of the FTAB are given at
the end of this chapter.

UVDISK reads and writes records of arbitrary length especially uv
visibility data. There are three operations which can be invoked:
READ, WRITE and FLUSH (OPcodes 'READ', 'WRIT' and 1FLSH').

If the requested transfers are too large to double buffer with
the given buffer size, then UVDISK will single buffer the I/O. If it
is possible to do double buffered physical transfers of some multiple
of the requested number of records, then this is done.

OPcode =1 READ1 reads the next sequential block of data as
specified to UVINIT and returns the actual number of visibilities,
NIO, and the pointer, BIND, to the first word of this data in the
buffer.

0Pcode='WRIT' collects data in a buffer half until it is full.
Then, as many full blocks as possible are written to the disk with the
remainder left for the next disk write. For tape I/O, data is always
written with the block size specified to UVINIT one I/O operation per
call. For disk writes, left-over data is transferred to the beginning
of the next buffer half to be filled. The value of NIO in the call is
the number of visibility records to be added to the buffer and may be
fewer than the number specified to UVINIT. On return NIO is the
maximum number which may be sent next time. On return BIND is the
pointer in BUFFER to begin filling new data.

0Pcode='FLSH1 writes integral numbers of blocks and moves any
data left over to the beginning of buffer 1. One exception to this is
when NIO => -NIO or 0, in which case the entire remaining data in the
buffer is written. After the call, BIND is the pointer in BUFFER for
new data. The principal difference between FLSH and WRIT is that FLSH
always forces an I/O transfer. This may cause trouble if a transfer
of less than 1 block is requested. A call with a nonpositive value of
NIO should be the last call and corresponds to a call to MDISK with
opcode 'FINI'.

The input/output argument to UVDISK, NIO, can be very useful for
controling the loop reading and/or writing uv data. The value of NIO
for reads is the number of values in the buffer that are available.
When the file has been completely read, the value of NIO returned by
UVDISK on the next call is 0; this value can be used to determine
when all of the data has been read. This avoids having a counter for
the visibilities (remember that 1*2 variables can only count to
32767). The example in the following section uses this feature in
UVDISK. More details about the call sequence can be found at the end
of this chapter.

no
n

DISK FILES Page 6-20
I/O TO DISK FILES 08 May 84

6.4.6.6 Example Using UVINIT And UVDISK -

C-
C
C
C
C
C

C
C
C
C
C
C-

SUBROUTINE UVCONJ (ISCR1, ISCR2, LUN1, LUN2, BUFFI, BUFF2,
* BUFSZ1, BUFSZ2, IERR)

UVCONJ takes the complex conjugate of the values in a uv data set
in a scratch file in the /CFILES/ common number ISCRl and
writes them in the /CFILES/ scratch file number ISCR2.
The current values in the /UVHDR/ common are assumed to describe
the uv data files.

/CFILES/ scratch file number of input file
/CFILES/ scratch file number of output file
Logical unit number to use for file 1
Logical unit number to use for file 2
I/O buffer to use for file 1
I/O buffer to use for file 2
Size of BUFFI in bytes
Size of BUFF2 in bytes

»mmon /UVHDR/
Number of visibility records
logical record length,
number of random parameters.
(signed) value of first Stokes' parameter,
zero relative order of the frequency axis in the
data array,
relative order of the Stokes' axis,
word increment in the data array between
successive frequencies at the same location on all
other axes.
word increment in the data array between
successive Stokes' values.

Inputs from common /MAPHDR/
CATBLK(256) 1*2 Catalogue header record
Output:
IERR 1*2 Return code, 0=>OK, otherwise error.
INTEGER*2 Nl, N2, N8
INTEGER*2 FIND1, FIND2, BIND1, BIND2, BO(2), BP, NFREQ, NSTOKE,
* WIN(4), NX, NY, BUFSZ1, BUFSZ2, LUN1, LUN2, I, IV, IFQ, 1ST,
* VO(2), NIOIN, NIOUT, CATBLK(256), INDEX, JCORO
L0GICAL*2 T,F

c Inputs:
c ISCRl 1*2
c ISCR2 1*2
c LUN1 1*2
c LUN2 1*2
c BUFFI(*) R*4
c BUFF2(*) R*4
c BUFSZ1 1*2
c BUFSZ2 1*2
c Inputs from c<
c NVIS P 1*4
c LREC 1*2
c NRPARM 1*2
c I CORO 1*2
c JLOCF 1*2
c
c JLOCS 1*2
c INCF 1*2
c
c
c INCS 1*2

REAL*4 READ, WRITE, FLUSH
REAL*4 BUFFI(1), BUFF2(1)

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

INCS:DMSG.INC'
INCS:DDCH.INC1
INCS:DUVH.INC'
INCS:DHDR.INC'
INCS:CMSG.INC'
INCS:CDCH.INC*
INCS:CUVH.INC'
INCS:CHDR.INC'

Listings of the standard
INCLUDE files are at the end
of the chapter on tasks.

Catalogue header block common

DISK FILES
I/O TO DISK FILES Page 6-21

0 8 May 8 4

COMMON /MAPHDR/ CATBLK
DATA T, F /.TRUE.,.FALSE./, READ, WRITE, FLUSH, VO /0,0/,
* /'READ','WRIT','FLSH1/, BO /1,0/, Nl, N2, N8 /l,2,8/,
* WIN /4*0/

c Set bytes per pixel (floating)BP =* 2 * NWDPFP
C Take absolute value of first
c Stokes1 value.JCORO = IABS (ICORO)
c Find dimension of freq
C and stokes axes.NFREQ = CATBLK(K2NAX+JLOCF)

NSTOKE = CATBLK(K2NAX+JLOCS)
C Open and init ISCR1

CALL ZOPEN (LUN1, FIND1, SCRFIL(ISCR1),
* SCRFIL(1,ISCR), T, F, T, IERR)

c Check for error
IF (IERR.EQ.0) GO TO 10

ENCODE (80,1000,MSGTXT) IERR, READ, Nl
GO TO 990

C Read 8 record at a call.10 NIOIN = 8
CALL UVINIT (READ, LUN1, FIND1, NVIS, VO, LREC, NIOIN,
* BUFSZ1, BUFFI, BO, BP, BIND1, IERR)

C Check for errorIF (IERR.EQ.0) GO TO 20
ENCODE (80,1010,MSGTXT) IERR, READ, Nl
GO TO 990

c Open and init ISCR2
20 CALL ZOPEN (LUN2, FIND2, SCRVOL(ISCR2), SCRFIL(1,ISCR2),

* T, F, T, IERR)
C Check for errorIF (IERR.EQ.0) GO TO 30

ENCODE (80,1000,MSGTXT) IERR, READ, N2
GO TO 990

30 NIOUT = 8
CALL UVINIT (WRITE, LUN2, FIND2, NVIS, VO, LREC, NIOUT,
* BUFSZ2, BUFF2, BO, BP, BIND2, IERR)
* BP, BO, IERR)

c Check for errorIF (IERR.EQ.0) GO TO 60
ENCODE (80,1010,MSGTXT) IERR, WRITE, N2 GO TO 990

c Loop thru data file.
c Read input file60 CALL UVDISK (READ, LUN1, FIND1, BUFFI, NIOIN, BIND1, IERR)
C Check for errorIF (IERR.EQ.0) GO TO 70

ENCODE (80,1060,MSGTXT) IERR, READ, Nl
GO TO 990

 ̂ Check if data all read.70 IF (NIOIN.LE.0) GO TO 120
C Loop thru records

DO 100 IV = 1,NIOIN
C Loop through frequency

DISK FILES
I/O TO DISK FILES

Page 6-22
0 8 Nay 84

DO 90 IFQ = 1,NFREQ
C Loop through stokes1 axes

DO 80 1ST * l,NSTOKE
C Compute pointer in the
C buffer to imag. part

INDEX ■ NRPARM + (IFQ-1) * INCF +
* (IST-JCORO) * INCS + 1 + (BIND1 - 1)

C Conjugate visibility
BUFFI(INDEX) = - BUFFI(INDEX)

80 CONTINUE
90 CONTINUE

C Copy record to output buffer
CALL RCOPY (LREC, BUFFI(BIND1), BUFF2(BIND2))

C Update buffer pointers
BIND1 = BIND1 + LREC
BIND2 = BIND2 + LREC

100 CONTINUE
C Write output

CALL UVDISK (WRITE, LUN2, FIND2, BUFF2, BIND2, NIOUT, IERR)
C Check for error

IF (IERR.EQ.0) GO TO 110
ENCODE (80 ,106 0,NSGTXT) IERR, WRITE
GO TO 990

C Loop back for more data
110 GO TO 60
C Finished, flush buffer.
C No more output records.
120 NIOUT - 0

CALL UVDISK (FLUSH, LUN2, FIND2, BUFF2, BIND2, NIOUT, IERR)
C Check for error

IF (IERR.EQ.0) GO TO 130
ENCODE (80,1060,MSGTXT) IERR, FINI
GO TO 990

C Close files.
130 CALL ZCLOSE (LUN1, FIND1, IERR)

CALL ZCLOSE (LUN2, FIND2, IERR)
IERR = 0
GO TO 999

C Error.
990 CALL MSGWRT (N8)
999 RETURN

1000 FORMAT CUVCONJ: ERROR1,13,' OPEN FOR ',A4,' FILE', 12)
1010 FORMAT CUVCONJ: ERROR',13,' INIT FOR ' ,A4, ' FILE',12)
1060 FORMAT ('UVCONJ: ERROR',13,IX,A4,'ING FILE',12)

END

6.4.7 Extension Files
Extension files contain a great variety of different types of

data but usually are small compared to the data files. Thus, for
extension file I/O, the routines are friendlier but less efficient.
In many cases the data stored in extension files consist of logical

DISK FILES
I/O TO DISK FILES

Page 6-23
08 May 84

records which contain different data types and are in fact data
structures. The details of the extension file structure are described
in the AIPS manual volumn 2 for most types of extension files.

The routines EXTINI and EXTIO make I/O to extension files much
simpler than the image and uv data routines. A single call to EXTINI
will create an extension file if necessary, catalogue it, open the
file, and initialize the I/O. EXTIO then allows random access, with
mixed reads and write allowed, to the extension file. EXTIO copies
the data into a specified array so that a data structure can be formed
by means of a Fortran equivalence, either an explicit EQUIVALENCE
statment or through the use of a common. EXTIO will automatically
expand the file when necessary in increments of the number of records
specified to EXTINI.

The structure of the extension file is a header record of 512
bytes, some of which are used by EXTINI and EXTIO for bookkeeping, but
many of which are available for use. Following the header record come
the fixed length logical records which are physically blocked in 512
byte blocks. A single logical record may use several physical blocks
or several logical records may be in a given 512 byte block. Details
of the call sequences for EXTINI and EXTIO and a description of the
file header record are given at the end of this chapter.

Simple copies of any and/or all EXTINI-EXTIO files of a given
type may be copied with a single call to EXTCOP. A description of the
call sequence for EXTCOP is given at the end of the chapter on tasks.

An example of the use of EXTINI and EXTIO is demonstrated in the
following example. In this example an antenna file (type 'AN') is
read and an offset (XOFF, YOFF, znd ZOFF) is added to the coordinates
for each antenna. This example uses the INCLUDES DANT.INC and
CANT.INC which use a common to form a data structure to hold the
antenna records. Details of the structure of the antenna file records
are found in the AIPS manual volumn 2.

INTEGER*2 AN, VOL, CNO, IANT, CATBLK, LUN, FIND, LRECL, BP, NREC,
* BUFFER (512), VER, NANT
REAL*4 READ, WRITE, CLOSE
REAL*8 XOFF, YOFF, ZOFF
INCLUDE 'INCS:DANT.INC'

C INCLUDE filled in for this
C example
C Include DANTINTEGER*2 NOSTA,MNTSTA

REAL*4 STANAM(2),STAXOF,ANTSP1(18),POLTYA,POLAA,
* AMPA,POLA1,POLA2,POLA3,ANTSP2(7),POLTYB,POLAB,AMPB,POLB1,
* POLB2,POLB3,ANTSP3(7),BPFRA,BPFRB
REAL*8 STABX,STABY,STABZ,CLKIFA,LOIFA,CLKIFB,LOIFBC End DANT

INCLUDE 'INCS:CANT.INC'
C
C
C

INCLUDE filled in for this
example

Include CANT

n
n
n

n
no

o
oo

DISK PILES
I/O TO DISK FILES

Page 6-24
08 May 84

COMMON /ANTCOM/ STANAM, STABX, STABY, STABZ, NOSTA, MNTSTA,
* STAXOF, ANTSPI# CLKIFA, LOIFA, BPFRA, POLTYA, POLAA, AMPA,
* POLA1, POLA2, POLA3, ANTSP2, CLKIFB, LOIFB, BPFRB, POLTYB,
* POLAB, AMPB, POLB1, POLB2, POLB3, ANTSP3

C End CANT
COMMON /MAPHDR/ CATBLK
DATA AN /'AN'/, READ, WRITE, CLOSE /1 READ1 ,' WRIT' , ' CLOS ' /

C Setup for EXTINI
NREC « 1

EXTINI will fill in LRECL
and BP if initially 0.

LRECL = 0
BP = 0

Use first AN file.
VER = 1

Open 'WRIT* for mixed reads
and writes.

CALL EXTINI (WRITE, AN, VOL, CNO, VER, CATBLK, LUN, FIND,
* LRECL, BP, NREC, BUFFER, IERR)

Check for error
IF (IERR.NE.0) GO TO 999

Get number of records from
word 4 of the file header,
(this is the no. of antennas)

NANT = BUFFER(4)
C Loop through records.

DO 100 IANT « 1,NANT
C read record.

CALL EXTIO (READ, LUN, FIND, IANT, STANAM, BUFFER, IERR)
C Check for error

IF (IERR.NE.0) GO TO 999
C Offset antenna positions.STABX « STABX + XOFF

STABY = STABY + YOFF
STABZ = STABZ + ZOFF

C Write record back
CALL EXTIO (WRITE, LUN, FIND, IANT, STANAM, BUFFER, IERR)

C Check for errorIF (IERR.NE.0) GO TO 999
100 CONTINUE

C Close file.
CALL EXTIO (CLOSE, LUN, FIND, IANT, STANAM, BUFFER, IERR)

C Check for error
IF (IERR.NE.0) GO TO 999

DISK FILES
I/O TO DISK FILES

Page 6-25
08 Nay 84

6.4.8 Text Files
AIPS uses a number of text files such as the HELP and RUN files.

At the moment the text file capability is read only. There are
several routines which allow access to text files: ZTOPEN, ZTREAD,
ZTCLOS, and KEYIN.

- ZTOPEN opens a text file. It is similar to ZOPEN except that
it has an additional input argument (MNAME) which gives the
name of the desired file or member.

- ZTREAD returns one 80 character line of text.
- ZTCLOS closes the text file.
- KEYIN is the AIPS version of the Cal Tech VLBI parsing

routine. This a very flexible routine for obtaining values
from external text files.

AIPS I/O routines have a number of standard places that they can
find text files. These include the RUN file area, the HELP file area,
and various source code areas. If a programmer wishes to read an
arbitrary text file, the best thing to do is to put the file in the
RUN area. A file name (PNANE) should be constructed with ZPHFIL with
type 'RU'; other inputs are dummy. ZTOPEN should then be called with
LUN=10 and this value of PNAME. An example of the use of ZTREAD to
read a file named "INDATA" from the RUN area follows:

INTEGER*2 LUN, FIND, LINE(70), IERR, RU, Nl, N8, N24
LOGICAL*2 WAIT
REAL*4 PNANE(6), HNAME(2), XNANE(6), YNANE(2)
INCLUDE 'INCS:DDCH.INC'

INCLUDE 'INCS:CDCH.INC'
DATA WAIT /.TRUE./, YNAME /'INDA','TA '/, LUN /10/
DATA RU /'RU'/
DATA Nl, N8, N24 /l,8,24/

C Pack NNANE
CALL CHPACK (N8, YNANE, Nl, MNANE)

C Make file name
CALL ZPHFIL (RU, Nl, Nl, Nl, PNANE, IERR)

C Open file
C VERNAN is from the common
C in INCLUDE CDCH.INC

CALL ZTOPEN (LUN, FIND, Nl, PNANE, MNANE, VERNAN, WAIT, IERR)
C Error if IERR .NE. 0

•

C Read line from file.
CALL ZTREAD (LUN, FIND, LINE, IERR)

C Error if IERR .NE. 0
C Next line of test from file

DISK FILES
I/O TO DISK FILES

C is now in array LINE

C Close file.
CALL ZTCLOS (LUN, FIND, IERR)

In the example above, calls to KEYIN could have replaced the
calls to ZTREAD.

6.5 BOTTOM LEVEL I/O ROUTINES
The routines described so far in this chapter have been

relatively high level routines which have hidden a great deal of
bookkeeping. In addition, the image and uv data I/O routines work
basically sequentially with some data selection ability. Beneath the
higher level routines there are, of course, lower level routines.
These routines have a great deal more flexibility that the higher
level routines but usually at a cost of a great deal of bookkeeping.

The basic AIPS I/O routines are intrinsically random access;
although a data transfer must start on a disk block boundary. "Map"
type files (image and uv data) are read with a pair of routines ZMIO
and ZWAIT. Non-map (extension) files are read with ZFIO. These
routines can access both disk and tape drives.

6.5.1 ZMIO And ZWAIT
ZMIO initiates a data transfer to or from one of two possible

buffers and returns without waiting for the operation to complete.
ZWAIT is a timing routine which suspends the task until the specified
I/O operation is complete. In this manner, I/O and computation can be
overlapped.

The I/O common (INCLUDES DDCH.INC and CDCH.INC) contains an
array, FTAB, which contains AIPS and host system I/O tables. ZOPEN
returns a pointer in FTAB to the area to use for a given file. The
first 16 short integers of this area are available for AIPS program
use, the remainder of an FTAB entry is used for the host system I/O
tables. These 16 words are normally used for bookeeping
information(the first always contains the value of the LUN). Examples
of the use of the FTAB are found in MINIT, MDISK, MINSK, MSKIP, UVINIT
and UVDISK which use ZMIO and ZWAIT. Descriptions of the way these
routines use the FTAB are to be found at the end of this chapter. A
description of the call arguments to ZMIO and ZFIO are also found at
the end of this chapter.

Page 6-26
08 May 84

DISK FILES
BOTTOM LEVEL I/O ROUTINES

Page 6-27
08 May 84

6.5.2 ZFIO
Extension file I/O and single buffer non-disk I/O is usually done

with the routine ZFIO. For disk files, ZFIO reads a 512 byte block
from a specified offset in the file. This block size is independent
of the true physical block size on the disks being used. The I/O
transfer is complete when ZFIO returns. ZFIO can be used on "map"
(image and uv data files) but it is much less efficient than ZMIO and
ZWAIT. Routines using ZFIO can use the 16 words in the FTAB allocated
to the file as was described for routines using ZMIO.

For non-disk transfers, the number of bytes transfered by ZFIO is
arbitrary. Details of the call sequence for ZFIO are found at the end
of this chapter. An example of the use of ZFIO may be found in the
source code for EXTINI and EXTIO.

DISK FILES
ROUTINES

Page 6-28
08 May 84

6.6 ROUTINES
6.6.1 COMOFF - Computes the block offset BLKOF of a 2-D map plane in
a NAX-dimensional map from the beginning of the map.

COMOFF (NAX, SAXf PLARR, BYTPIX, BLKOF, IERR)
Inputs:

NAX 1*2 Number of axes in map
SAX(7) 1*2 Number of pixels on each axis
PLARR(5) 1*2 Depth of required plane along other axes
BYTPIX 1*2 Bytes per pixel in map

Outputs:
BLKOF(2) 1*2 Pseudo 14 block offset
IERR 1*2 Error return 0 = OK, 1= error in NAX

6.6.2 CONVRT - Changes an 1*2 file into a R*4 file or vice versa.
CONVRT (ILUN, ILUN2, ISLOT, IVOL, IOSIZ, IOBLK, ROSIZ,
* ROBLK, IERR)

Inputs:
1*2 LUN for closed map file.
1*2 LUN for a scratch map file.
1*2 Catalogue slot number for map.
1*2 Disk volume number of map.

ILUN
ILUN2
ISLOT
IVOL

In/Out:
IOSIZ
IOBLK
ROSIZ
ROBLK
COMMON

Output:
IERR

1*2 Size in 'bytes' (one half integer words) of IOBLK.
1*2(IOSIZ/2) Scratch integer I/O buffer.
1*2 Size of output buffer in 'bytes'
R*4(ROSIZE/(2*NWDPFP)) Scratch I/O buffer.
/MAPHDR/ Current map header. The header is updated to

reflect changes made by this program.
1*2 Error code. l=warning, could not destroy old map.

2=error converting map. 3=map left uncatalogued.
4=map not real or integer. Map unchanged.

6.6.3 DSKFFT - a disk based, two dimensional FFT. The data are
stored by rows. To save an extra transposition, the input array is
assumed to have been written in transposed order and in the "center at
the corners" convention for the uv to sky transform.

DSKFFT (NR, NC, IDIR, HERM, LI, LW, LO, LENBUF, NBUF,
* APSIZ, SMAX, SMIN, IERR)

Inputs:
NR 1*2 The number of rows in input array (# columns in

output). When HERM is TRUE and IDIR=-1, NR is twice
the number of complex rows in the input file.

NC 1*2 The number of columns in input array

DISK FILES
ROUTINES

Page 6-29
08 Nay 84

IDIR

HERM

LI
LW
LO
LENBUF 1*2

NBUF
APSIZ

Output s
SMAX
SNIN
IERR

(# rows in output)•
1*2 1 for forward (+i) transform, -1 for inverse (-i)

transform, (forward = sky=>uv, reverse ■ uv=>sky)
If HERN ■ .TRUE, the following are recognized:
IDIR=1 keep real part only,
IDIR=2 keep amplitudes only.
IDIR=3 keep full complex (half plane)

L*2 When HERN = .FALSE., this routine does a complex to
complex transform.
When HERN * .TRUE, and IDIR = -1, it does a
complex to real transform. When HERN ■ .TRUE, and
IDIR ,ge, 1, it does real to complex.

1*2 File number in /CFILES/ of input.
1*2 File number in /CFILES/ of work file (may equal LI).
1*2 File number in /CFILES/ of output, (may be LI if

LW isn't, may NOT be LW)
Buffer length in bytes. LENBUF must be a power of
two, and the buffer must be long enough to hold a
row of the input array and to hold a row of the
output array.
The buffers are passed in COMNON /BUFRS/BUF(*).

1*2 Number of buffers: either 1 or 2.
R*4 Size of AP main data memory in words.
R*4 For HERM=.TRUE. the maximum value in the output file.
R*4 For HERN=.TRUE. the minimum value in the output file.
1*2 Return error code, Q=>OK, otherwise error.

NOTE: DSKFFT also uses Commons /BUFRS/ and /CFILES/

6,6,4 EXTINI - creates/opens an extension file. If a file is created
it is catalogued by a call to CATIO which saves the updated CATBLK.

EXTINI
* IND,

Input:

BUFFER(
Output:

(OPCODE, PTYP, VOL, CNO, VER, CATBLK, LUN,
LREC, BP, NREC, BUFFER, IERR)

Operation code, 'READ' => read only,
'WRIT1 => read/write

Physical extension type (eg. 'CC')
Volumn number
Catalogue slot number
Version number: (<= 0 => write a new one,
read the latest one)
Catalogue block of catalogued file.
Logical unit number to use.
Record length in units of BP (write new)
Bytes per value. 0=> Use existing value
(used for 'WRIT' only) Number of logical
records to create in the initial file and/or
the number of records by which to extent
the file when it fills up.
Work buffer, at least 1024 bytes in size,
more if logical record longer than 512 bytes

OPCODE R*4
PTYP 1*2
VOL 1*2
CNO 1*2
VER 1*2
CATBLK(256) 1*2
LUN 1*2
LREC 1*2
BP 1*2
NREC 1*2

*) 1*2

DISK FILES
ROUTINES

Page 6-30
08 May 84

LREC 1*2 Logical record length (in units of BP) for
read/write old files

BP 1*2 BP if input value = 0 and a file exists.
VER 1*2 Version number used.
CATBLK(256) 1*2 Catalogue block updated if necessary.
IND 1*2 FTAB pointer.
BUFFER(*) 1*2 Header info.
IERR 1*2 Return error code. 0 => OK

1 => bad input.
2 => could not find or open
3 => create/I/O problem.

Useage notes:
For sequential access, EXTINI leaves pointers for EXTIO such that
if IRNO .le. 0 reads will begin at the start of the file and writes
will begin after the last previous record.
File should be marked 'WRIT1 in the catalogue if the file is
to be created.
Header record:
Each extension file using this system must have the first physical
(512 bytes) record containing necessary information. In addition
space in this first record not reserved can be used for other
purposes. The header record contains the following:
1*2 word(s) description

1 # 512-byte records in the existing file
2 # logical records to extend the file when req.
3 max. # of logical records
4 current number of logical records
5 # bytes per value
6 # values per logical record.
7 # of logical records per physical record, if neg then

the # of physical records per logical record.
8 - 1 0 Creation task name (2 char per word)

11 - 16 Creation date, time
17 - 28 File name (packed character string)

29 Volumn number on which file resides.
30 - 32 Last write-access task (2 char per word)
33 - 38 Last write-access time,date
39 - 56 reserved. (53-56 used by EXTIO:

53 = # 1*2 words per logical record.
54 = IOP sent to EXTINI
55 = current physical record no.

(doesn't include header rec.)
56 = current logical rec. no.

57 -256 Available for use.

DISK FILES
ROUTINES

Page 6-31
08 May 84

6.6.5 EXTIO - does random access I/O to an extension files,
reads and writes are allowed if EXTINI was called 'WRIT' Mixed

EXTIO (OPCODE, LUN,
Inputs:

IND, IRNO, RECORD, BUFFER, IERR)
OPCODE
LUN
IND
IRNO
RECORD(
BUFFER(

Outputs
RECORD(
BUFFER(
IERR

R*4
1*2
1*2
1*2
1*2
1*2

'READ','WRIT1,'CLOS'Opcode
Logical unit number
FTAB pointer
Logical record no. 0=> next.
Array containing record to be written
Work buffer * 512 bytes + enough 512 byte
blocks for at least one full logical record.

) 1*2 Array containing record read.
) 1*2 buffer.

1*2 Return error code 0 => OK
1 => file not open
2 => input error
3 => I/O error
4 => attempt to read past end of data

or write past log. or phys.
record 32766.

IMPORTANT NOTE: the contents of BUFFER should not be changed except
by EXTIO between the time EXTINI is called until the file is closed.
The exception is that the user portion of the header record is
available. EXTINI MUST be called before EXTIO.

6.6.6 GETVIS - gets and reformats uv data,
stokes types. Requires setup by SETVIS.

May return multiple

GETVIS (MODE, MVIS, JADR, SFACT, ALLWT, DATA, WT,
* VIS, IERR)

Inputss
MODE

MVIS
JADR(2,MVIS)
SFACT(2,MVIS)
ALLWT
DATA(3,*)

Outputss
WT
VIS(MVIS)
IERR

1*2

1*2
1*2
R*4
L*2
R*4

Operation number (see SETVIS).
When MODE = 2 or 3 and RL and LR are given
the U visibility is multiplied by i.
Number of visibilities wanted.
Pointers set by SETVIS.
Factors set by SETVIS.
Flag set by SETVIS, if .TRUE, all relevant
weights must be positive.
Visibility portion of input data.

R*4 Average weight.
CMPX Visibilities.
1*2 Error codef 0=>OK,

1 => bad weights.(data flagged)
2 = bad input.

DISK FILES
ROUTINES

Page 6-32
08 May 84

6,6.7 GET1VS - gets and reformats uv data. Returns one stokes' type
per frequency channel. Requires setup by SET1VS.

GET1VS (MODE, MVIS, JADR, JINC, SFACT, ALLWT, STOKES,
* DATA, WT, VIS, IRET)

Inputs:
MODE

MVIS
JADR(2)
JINC
SFACT(2)
ALLWT
STOKES
DATA(3,*)

Outputs:
WT
VIS(MVIS)
IRET

1*2

1*2
1*2
1*2
R*4
L*2
L*2
R*4

Operation number (see SET1VS).
When MODE = 3 and RL and LR are given,
the U visibility is multiplied by i.
Number of visibilities wanted.
Pointers set by SET1VS.
Increment between vis.
Factors set by SET1VS.
If true all vis are required.
True if input data true Stokes'.
Used for UPOL only.
Visibility portion of input data.

R*4 Average weight.
CMPX Visibilities.
1*2 Error code, 0*=>OK,

1 => bad weights.(data flagged)

6.6.8 KEYIN - Standard Fortran version of the CIT VLBI KEYIN
subroutines. This subroutine reads keyed parameters on cards images.
The text file should be opened via a call to ZTOPEN before the first
call to KEYIN and closed via a call to ZTCLOS after the last call.
(HINT: use LUN = 10 for the RUN area.)

KEYIN (KEYS, VALUES, N, ENDMRK, MODE, LUN,
* FIND, IERR)

Inputs:
KEYS(N) R*8
VALUES(N) R*8
N 1*2
ENDMRK R*8
MODE 1*2

LUN 1*2
FIND 1*2

Outputs:
N 1*2
IERR 1*2

array of parameter names (packed characters)
array to receive values or defaults
number of parameters (dimension of keys and values)
special keyword to indicate end of input
1 = turn on reflection, 0 = turn off
2 = interactive mode (prompts for input,

no reflection, no limit on errors)
3 = Pass values until ENDMARK, ignore any

keywords.
LUN to read from (used in call to ZTOPEN)
FTAB pointer for input, (from ZTOPEN)
(MODE=3 only) number of values found
error code, 0=>QK, 1=>E0F found, 2=>Error

DISK FILES
ROUTINES

Page 6-33
08 May 84

6.6*9 MAPSIZ - computes the correct number of bytes to request from
ZCREAT for a file using map I/O methods.

MAPSIZ (NAX, NPr NB, ISIZE)
Inputs: NAX 1*2 # axes

NP 1*2(NAX) # pixels on each axis.
NB 1*2 # bytes / pixel

Output: ISIZE 1*2(2) Pseudo-I*4 file size in bytes

6.6*10 MAPCLS - closes a map file and clears the catalogue status
MAPCLS (OP, IVOL,
* WBUFF, IERR)

Inputs:
CNO, LUN, IND, CATBLK, CATUP,

OP R*4 OPcode used by MAPOPN to open this file
IVOL 1*2 Disk volume containing map file
CNO 1*2 Catalogue slot number of file
LUN 1*2 Logical unit # used for file
IND 1*2 FTAB pointer for LUN
CATBLK 1*2(256) New catalogue header which can optionally

be written into header if OP=WRIT or INIT
Dummy arguement if OP=READ
If TRUE write CATBLK into catalogue,
ignored if OP = READ

CATUP L*2
Outputs:

IERR 1*2 0 = O.K.
1 = CATDIR couldn't access catalogue
5 = illegal OP code

6.6.11 MAPOPN - opens a map file marking the catalogue entry for the
desired type of operation.

OP R*4

MAPOPN (OP, IVOL, NAMEIN, CLASIN, SEQIN, TYPIN, USID,
* LUN, IND, CNO, CATBLK, WBUFF, IERR)

Inputs:
Operation: READ, WRIT, or INIT where INIT is
for known creation processes (it ignores
current file status & leaves it unchanged)
Also: HDWR for use when the header is being
changed but the data are to be read only.
Logical unit # to use1*2LUN

In/Out:
NAMEIN(3) R*4
CLASIN(2) R*4
SEQIN 1*2
USID 1*2
IVOL 1*2

Image name (name) (12 packed chars)
Image name (class) (6 packed chars)
Image name (seq.#)
User identification #
Input disk unit

DISK FILES
ROUTINES

Page 6-34
08 Nay 84

TYPIN 1*2
Outputs:

IND 1*2
CNO 1*2
CATBLK (256) 1*2
IERR 1*2

Buffer i
WBUFF(256)

Physical type of file (2 packed chars)
FTAB pointer
Catalogue slot containing map
Buffer containing current catalogue block
Error output
0
2
3
4
5
6

= OK
Can't open WRIT because file busy
or can't READ because file marked WRITE
File not found
Catalogue I/O error
Illegal OP code
Can't open file

1*2 Working buffer for CATIO and CATDIR

6.6.12 MCREAT - creates and catalogues an image data file based on a
catalogue header block in common /MAPHDR/.

MCREAT (IVOL, CNO, WBUFF, IERR)
In/Outs:

IVOL 1*2 Volume # on which to put file: 0 => ALL
on output has volume used

WBUFF 1*2(256) Working buffer
Outputs:

CNO 1*2 Catalogue slot number
IERR 1*2 Error code? 0 => o.k.

1 => couldnt create,no room
2 => no create, duplicate name
3 => no room in catalogue
4 => I/O problem on catalogue
5 => Other Create errors

Common: (in/out)
CATBLK 1*2(256) Catalogue block (via common MAPHDR)
CATB4 R*4(128) Catalogue block (equivalenced to CATBLK)

The file created will be catalogued and marked with WRITE status.
The image name parameters incl. physical type must be filled in.
A blank physical type is converted to 'MA'. The OUTSEQ default
is applied (0 => lowest unique). The extension file areas of the
CATBLK are cleared and the "DATE-MAP" string is filled in.

6.6.13 MDESTR - will delete a catalogue entry for a file, delete all
extension files for that file, and then delete the file. The file
must be in the REST state.

MDESTR (IVOL, ISLOT, IHDBLK, IWBLK, INDEST, IERR)
Inputs: IVOL 1*2 disk volume number of the file.

ISLOT 1*2 catalogue slot number.

DISK FILES
ROUTINES

Page 6-35
0 8 May 8 4

IWBLK 1*2(256) work buffer.
In/Outs INDEST 1*2 number of extension files destroyed.

(if = -32000 on inr suppress normal msg)
Output: IHDBLK 1*2(256) the header block for this file.

IERR 1*2 error code: 0 no error
1 * disk error
2 = map too busy
3 * destroy failed somehow

6.6.14 MDISK - reads or writes image data
devices. to/from disks and other

MDISK (OP, LUN, FIND, BUFF, BIND, IERR)
Inputs:
OP 1*4 Op code char string 'WRIT1, 'READ','
LUN 1*2 logical unit number
FIND 1*2 Pointer to FTAB returned by ZOPEN

Input and/or output:
BUFF ?? Buffer holding data, you better know

Output:BIND

FINI

specification
1*2 Pointer to position in buffer of first pixel in window

in the present line
IERR 1*2 Error return: 0 => ok

1 -> file not open
2 => input error
3 => I/O error
4 => end of file
5 => beginning of medium
6 => end of medium

MDISK sets array index to the start of the next line wanted.
NOTE: the line sequence is set by the WIN parameter in MINIT,
if the vaules of WIN(2) and Win(4) are switched then the file
will be accessed backwards.
A call with OP = 'FINI' flushes the buffer when writing.
MINIT MUST be called before MDISK.

6.6.15 MINIT - initialized the I/O tables for MDISK.

Operation code character string: 'READ','WRIT'
logical unit number
pointer to FTAB, returned by ZOPEN when file is opened
Number of pixels per line in X-direction for whole
plane
Number of lines in whole plane.
\) Xmin,Ymin,Xmax,Ymax defining desired subrectangle i
the plane. A subimage may NOT be specified for 'WRIT'.

* BLKOF
Inputs •

•

OP R*4
LUN 1*2IND 1*2
LX 1*2
LY 1*2
WIN 1*2 (

DISK FILES
ROUTINES

Page 6-36
08 May 84

BFSZ 1*2 Size of total available buffer in bytesf should be even
Special case: BUFSZ=32767 is treated as though
BUFSZ=3 2768 to allow double buffering of 16Kbyte
records,

BYTPIX 1*2 Number of bytes per pixel in stored map
BLKOF 1*2(2) Pseudo 1*4 block number, 1 relative, of first map

pixel in the desired plane. Use COMOFF + ZMATH4
to set.Outputs:

IERR 1*2 Error return: 0 => ok
1 -> file not open
2 => input error
7 => Buffer too small
3 => I/O error on initialize
4 => end of file
5 => beginning of medium
6 => end of medium

MINIT sets up special section of FTAB for quick return, double
buffered I/O. N.B. This routine is designed to read/write images
one plane at a time. One can run the planes together iff the rows
are not blocked: i.e. iff NBPS / (LX * BYTPIX) < 2.
Usage notes: For map I/O the first 16 words in each FTAB entry
contain a user table to handle double buffer I/O, the rest
contain system-dependent I/O tables. A "major line" is 1 row or
1 sector if more than 1 line fits in a sector. FTAB user table
entries, with offsets from the FIND pointer are:

FTAB + 0 => LUN using this entry
1 => No. of major lines transfered per I/O op
2 => No. of major times a buffer has been acessed
3 => No. of major lines remaining on disk
4 => Output index for first pixel in window
5 => No. pixels to increment for next major line
6 => Which buffer to use for I/O? -1 => single buffer
7 => Block offset in file for next operation (lsb 1*4)
8 => msb of pseudo 1*4 block offset
9 => Block increment in file for each operation

10 => No. of bytes transferred
11 => I/O op code 1=> read, 2 => write.
12 => BYTPIX
13 => # rows / major line (>= 1)
14 => # times this major line has been accessed
15 => # pixels to increment for next row (= LX)

6.6.16 MINSK - initializes the I/O tables for the "scatter read" I/O
routine MSKIP.

SUBROUTINE MINSK (LUN, FIND, LROW, NROW, ISTRT, NSKIP, BUFF,
* BUFSZ, BP, BO, NBUF, IERR)Input:
LUN 1*2 = Logical unit number.
FIND 1*2 s* pointer to FTAB returned by ZOPEN.
LROW 1*2 = Length of a row pixels.

DISK FILES
ROUTINES

Page 6-37
08 May 84

NROW 1*2 = Total number of rows.
ISTRT 1*2 = First row for read.
NSKIP 1*2 * Number of rows to skip.
BUFF(1)
BUFSZ
BP
BO (2)
NBUF

Output:
NBUF

IERR

1*2
1*2
1*2
1*2
1*2

1*2 =

1*2 =

Output buffer.
Buffer size in bytes,
bytes/pixel.
Block offset, pseudo 1*4.
factor times which LROW (
normally = 1.

if LROW .GE. 32768)

FTAB assigments:

number of buffer fulls to complete read of row.
MSKIP must be called this number of times to c
the read.
Error code: 0 = OK
1 = file not open
2 = input error
4 = tried to read past end of map.
10+ = 10 + ZMIO or ZWAIT error.

0 = LUN
1 * BP bytes/pixel
2 = BO(1) block offset
3 = BO(2)
4 = length of row / [5] in bytes
5 = multiplier of [4]
6 = next record number.
7 *» record increment+1 (total increment)
8 = # calls per record.
9 = record call # (when MSKIP is called)

10 = bytes / call
11 « buffer flag, -1= single, lss>current buffer is 1

2=>current buffer=2 (buffer already read)
12 = buffer size in pixels (1/2 for double buffering)
13 * NROW (the number of rows to read)
14 ■ BTYOFF the byte offset when double buffering.

6.6.17 MSCALE - will read from a floating point file, rescale the
values to correspond to a max and min and write these scaled values to
an integer format map file. The two files must be open before this
routine is called.

MSCALE (XMIN, XMAX, NAX, INP, IBLC, ITRC, ISLUN, ISIND,
* ISBSIZ, XBLK, IDLUN, IDIND, IDBSIZ, IDBLK, SCALEF, OFFSET,
* IERR)

In/out:

Inputs:

XMIN
XMAX

NAX
INP
IBLC

R*4 actual minimum value of floating pt values.
R*4 actual maximum value.

Input: used to determine scaling & must
encompass full data range. If subimaging
is done, output will be actual in subim.

1*2 the number of axes
1*2(7) # points on each axis (input file)
1*2(7) start point for input axes:

IBLC(1) =0 => use full array

DISK FILES
ROUTINES

Page 6-38
0 8 Nay 8 4

Outputs:

ITRC 1*2(7) end point on each axis of input array
ISLUN 1*2 the logical unit number of the source file.
ISIND 1*2 the FTAB pointer for the source file.
ISBSIZ 1*2 the buffer size in bytes for the source file
XBLK R*4(ISBSIZ/4) the source file I/O buffer.
IDLUN 1*2 the logical unit number for the 1*2

destination file.
IDIND 1*2 the FTAB pointer for the destination file.
IDBSIZ 1*2 buffer size in bytes for the destination fil
IDBLK 1*2(IDBSIZ/2) destination file I/O buffer.
SCALEF R*8 the scale factor used to scale the dest file
OFFSET R*8 offset used in scaling destination file.
IERR 1*2 error indicator.

0 = no error.

6.6.18 MSCALF - will read from a floating point file, rescale the
values to correspond to a max and min and write these scaled values to
an integer format map file. The two files must be open before this
routine is called. MSCALF is similar to NSCALE except that blanking
capability is included. FBLANK is the value of the undefined pixel in
the floating point scratch array. This pixel is set to -32768 in the
integer format file.

MSCALF (XNIN, XNAX, NAX, INP, IBLC, ITRC, ISLUN, ISIND,
* ISBSIZ, XBLK, IDLUN, IDIND, IDBSIZ, IDBLK, FBLANK, SCALEF,
* OFFSET, IERR)

In/Out: XMIN R*4 actual minimum value of floating pt values.
XMAX R*4 actual maximum value.

Input: used to determine scaling & must
encompass full data range. If subimaging
is done, output will be actual in subim. Inputs: NAX 1*2 the number of axes

INP 1*2(7) # points on each axis (input file)
IBLC 1*2(7) start point for input axes:

IBLC(l) =0 => use full array
ITRC 1*2(7) end point on each axis of input array
ISLUN 1*2 the logical unit number of the source file.
ISIND 1*2 the FTAB pointer for the source file.
ISBSIZ 1*2 the buffer size in bytes for the source file
XBLK R*4(ISBSIZ/4) the source file I/O buffer.
IDLUN 1*2 the logical unit number for the 1*2

destination file.
IDIND 1*2 the FTAB pointer for the destination file.
IDBSIZ 1*2 buffer size in bytes for the destination fil
IDBLK 1*2(IDBSIZ/2) destination file I/O buffer.
FBLANK R*4 the value of the floating point blank pixel

Outputs: SCALEF R*8 the scale factor used to scale the dest file
OFFSET R*8 offset used in scaling destination file.
IERR 1*2 error indicator.

0 = no error.

DISK FILES
ROUTINES

Page 6-3 9
08 May 84

6.6.19 MSCALI - will read from an
values to a floating point map
before this routine is called.

integer file, and write these
file. The two files must be open

MSCALI (SCALEF, OFFSET, NAX, INP, IBLC, ITRC, ISLUN,
* ISIND, ISBSIZ, ISBLK, IDLUN, IDIND, IDBSIZ, XBLK, FBLANK,
* XMIN, XMAX, IERR)

R*4 SCALEF * Pixel value + OFFSET = actual
pixel value.
R*4 See OFFSET.
1*2 the number of axes
1*2(7) # points on each axis (input file)
1*2(7) start point for input axes:

IBLC(l) =0 => use full array
1*2(7) end point on each axis of input array
1*2 the logical unit number of the source file.
1*2 the FTAB pointer for the source file.
1*2 the buffer size in bytes for the source file
1*2(ISBSIZ/2) the source file I/O buffer.
1*2 the logical unit number for the 1*2
destination file.
1*2 the FTAB pointer for the destination file.
1*2 buffer size in bytes for the destination fil
R*4(IDBSIZ/4) destination file I/O buffer.
R*4 the value of the floating point blank pixel
R*4 Min map value: output changed only if do

subarray
R*4 Max map value: ditto
1*2 error indicator.

0 = no error.

Inputs: SCALEF
OFFSET
NAX
INP
IBLC
ITRC
ISLUN
ISIND
ISBSIZ
ISBLK
IDLUN
IDIND
IDBSIZ
XBLK
FBLANK
XMINIn/Out:

Outputs:
XMAX
IERR

6.6.20 MSKIP - reads rows in a map file which are evenly spaced. The
reads are double, single buffered or partial buffers if the row size
1) is .LE. BUFSZ/2, 2) between BUFSZ/2 and BUFSZ or 3).GT.BUFSZ. For
case 3) multiple calls (NBUF from MINSK) are required to read each
row. Each call returns LROW*BP/NBUF bytes and I/O is single buffered.
IFIN = 0 indicates a row is completed. See MINSK for more details.

SUBROUTINE MSKIP (LUN, FIND, BUFF, BIND, IFIN, IERR)
Input:
LUN 1*2 = Logical unit number.
FIND 1*2 = pointer for FTAB
BUFF(1)1*2 = Buffer

Output:
BIND 1*2 = Pointer for BUFF
IFIN 1*2 = 0 if row complete, 1
IERR 1*2 ss error code: 0 = OK

1 = file not open
2 = attempt to read past end of map.
10+= I/O error = 10 + ZWAIT error.

MINSK MUST be called before MSKIP.

DISK FILES
ROUTINES

Page 6-40
0 8 May 84

6.6.21 PLNGET - reads a selected portion of a selected plane from a
catalogued file parallel to the front and writes it into a specified
scratch file. The output file will be zero padded and a shift of the
center may be specified. Output file is REAL*4 but the input may be
either INTEGER*2 of REAL*4. If the input window is unspecified (O's)
and the output file is smaller than the input file, the NX x NY region
about position (MX/2+1-OFFX, MY/2+1-OFFY) in the input map will be
used where MX, MY is the size of the input map. NOTE: If both XOFF
and/or YOFF and a window (JWIN) which does not contain the whole map,
XOFF and YOFF will still be used to end-around rotate the region
inside the window.

PLNGET (IDISK, ICNO, CORN, JWIN, XOFF, YOFF,
* NOSCRr NX, NY, BUFFI, IBUFF1, BUFF2, BUFSZ1, BUFSZ2,
* LUNl, LUN2, IRET)

Inputs:
IDISK 1*2 Input image disk number.
I CNO 1*2 Input image catalogue slot number.
CORN(7) 1*2 BLC in input image (1 & 2 ignored)
JWIN(4) 1*2 Window in plane.
XOFF 1*2 offset in cells in first dimension of the
YOFF 1*2

center from MX/2+1 (MX 1st dim. of input win.)
offset in cells in second dimension of the

NOSCR 1*2
center from MY/2+1 (MY 2nd dim. of input win.)
Scratch file number in common /CFILES/ for

NX, NY 1*2
output.
Dimensions of output file.

BUFFI(*) R*4 Work buffer
IBUFF1(*) 1*2 Work buffer (should be the same as BUFFI)
BUFF2(*) R*4 Work buffer.
BUFSZ1 1*2 Size in bytes of BUFF1/IBUFF1
BUFSZ2 1*2 Size in bytes of BUFF2
LUNl, LUN2 1*2 Log. unit numbers to use.

Output:
IRET 1*2 Return error code, 0 => OK,

1 = couldn't copy input CATBLK
2 = wrong number of bits/pixel in input map.
3 = input map has inhibit bits.
4 * couldn't open output map file.
5 = couldn't init input map.
6 = couldn't init output map.
7 = read error input map.
8 = write error output map.
9 = error computing block offset
10 = output file too small.

Useage notes:
CATBLK in COMMON /MAPHDR/ is set to the input file CATBLK.

DISK FILES
ROUTINES Page 6-41

0 8 May 84

6.6.22 PLNPUT - writes a subregion of a REALM scratch file image
into a catalogued image (either 1*2 or R*4)•

PLNPUT (IDISK, I CNO, CORN, JWIN, NOSCR, NX, NY,
* BUFFI, BUFF2, IBUFF2, BUFSZ1, BUFSZ2, LUN1, LUN2, IRET)Input:

IDISK
I CNO
CORN(7)
JWIN(4)
NOSCR
NX, NY
BUFFI(*)
BUFF2(*)
IBUFF2(*)
BUFSZ1
BUFSZ2
LUN1, LUN2
Output:

IRET

COMMONS:
CATBLK in /MAPHDR/ is used as the map header and the scaling

and offset parameters are set. Of particular importance is
the data max/min values which must apply to the real*4 map.
As this is read from the catalogue it must be updated
by a call to CATIO etc. before calling this routine.

6.6.23 SETVIS - setup the arrays JADR, SFACT and the flag ALLWT for
reformatting uv data as specified by MODE. There is also a check to
make sure the desired data is available. Calls to GETVIS will
reformat the data. Needs values set by UVPGET and VHDRIN.

SETVIS (MODE, NCH, MVIS, JADR, SFACT, ALLWT, IERR)
Inputs:

MODE i*2 Desired output data format:1 => I
2 => IQU
3 => IQUV
4 => IV
5 => R (right hand circular)
6 => L

1*2 Output image disk number.
1*2 Output image catalogue slot number.
1*2 BLC in Output image (1 & 2 ignored)
1*2 Window in plane in input image.
1*2 Scratch file number in common /CFILES/ for

input scratch file.
1*2 Dimensions of input file.
R*4 Work buffer
R*4 Work buffer.
1*2 Work buffer (should be the same as BUFF2)
1*2 Size in bytes of BUFFI.
1*2 Size in bytes of BUFF2/IBUFF2
1*2 Log. unit numbers to use.
1*2 Return error code: 0 => OK

1 = couldn't read output CATBLK.
2 = Output bits/pixel not allowed.
3 = Output and input windows not same.
4 = couldn't open input map file.
5 = couldn't init output map.
6 = couldn't init input map.
7 = read error input map.
8 = write error output map.
9 = error writing header to catalogue
10 = error computing block offset.

DISK FILES
ROUTINES

Page 6-42
08 May 84

NCH
Output:

MVIS
JADR(2,*)
SFACT(2,*)
ALLWT
IERR

7 => RL
8 => straight correlators (used in UVFND)
10+n => n I pol. line maps, (n .le. 8)
20+n => n R pol. line maps.
30+n => n L pol. line maps.

1*2 First line channel desired.
1*2 Number of visibilities in requested output

format.
1*2 Pointers to the first and second visibility

input records to be used in the output record.
R*4 Factors to be multiplied by the first and

second input vis's to make the output vis.
L*2 Flag, = .TRUE, if all visibilities must have

positive weight.
1*2 Error flag. 0 =>OK, otherwise data unavailable.

6.6.24 SET1VS - setup the arrays JADRr SFACT and the flag ALLWT for
reformatting uv data as specified by MODE. One visibility per
frequency channel will be returned by GET1VS. There is also a check
to make sure the desired data is available. Calls to GET1VS will
reformat the data. Needs values set by UVPGET.

SET1VS (MODE, NCH, JADR, SFACT, ALLWT, JINC, IRET)
Inputs:

MODE

NCH
Output:

JADR(2)
SFACT(2)
ALLWT
JINC
IRET

1*2 Desired output data format:1 => I
2 => Q
3 => U
4 => V
5 => RCP
6 => LCP

1*2 First line channel desired.
1*2 Pointers to the first and second visibility

input records to be used in the output record.
R*4 Factors to be multiplied by the first and

second input vis's to make the output vis.
L*2 If true no flagged data is allowed.
1*2 Visibility increment.
1*2 Error flag. 0 =>0K, otherwise data unavailable.

6.6.25 UVCREA - creates and catalogues a uv data file using the
catalogue header record in the common /MAPHDR/.

DISK FILES
ROUTINES

Page 6-43
0 8 Nay 84

UVCREA (IVOL, CNO, WBUFF, IERR)
In/Outss

IVOL
Outputs:

WBUFF
CNO
IERR

1*2 Volume # on which to put file,
on output is volume used (IERR

1*2(256) Working buffer
1*2 Catalogue slot number

0 => any
» 0)

1*2 Error code; 0 => o.k.
1 => couldnt create,no room
2 => no create, duplicate name
3 => no room in catalogue
4 => I/O problem on catalogue
5 => Other Create errors

COMMON: /MAPHDR/ catalogue block used a lot, final seq # on output

6.6.26 UVDISK - reads and writes records of arbitrary length,
especially uv visibility data. Operation is faster if blocks of data
are integral numbers of disk blocks. There are three operations which
can be invoked: READ, WRITE and FLUSH (OPcodes READ, WRIT and FLSH).

READ reads the next sequential block of data as specified to
UVINIT and returns the number of visibilities in NIO and the pointer
in BUFFER to the first word of this data.

WRIT arranges data in a buffer until it is full. Then as many
full blocks as possible are written to the disk with the remainder
left for the next disk write. For tape I/O data is always written
with the block size specified to UVINIT; one I/O operation per call.
For disk writes, left-over data is transferred to the beginning of
buffer 1 if that is the next buffer to be filled. Value of NIO in the
call is the number of vis. rec. to be added to the buffer and may be
fewer than the number specified to UVINIT. On return NIO is the
maximum number which may be sent next time. On return BIND is the
pointer in BUFFER to begin filling new data.

FLSH writes integral numbers of blocks and moves any data left
over to the beginning of buffer half 1. One exception to this is when
NIO => -NIO or 0, in which case the entire remaining data in the
buffer is written. After the call BIND is the pointer in BUFFER for
new data. The principal difference between FLSH and WRIT is that FLSH
always forces an I/O transfer. This may cause trouble if a transfer
of less than 1 block is requested. A call with a nonpositive value of
NIO should be the last call and corresponds to a call to MDISK with
opcode 1FINI'.

NOTE: A call to UVINIT is REQUIRED prior to calling UVDISK.

DISK PILES
ROUTINES

Page 6-44
08 May 84

UVDISK (OP,
Inputs:
OP R*4
LUN 1*2
FIND 1*2
BUFFFERO 1*2
NIO

Output:
NIO

BIND

IERR

1*2

1*2

1*2

1*2

LUN, FIND, BUFFER, NIO, BIND, IERR)
Opcode 1 READ1,1 WRIT*,1FLSH1 are legal
Logical unit number
FTAB pointer returned by ZOPEN
Buffer for I/O
For writes, the number of visibilites added to the
buffer; not used for reads.
For reads, the number of visibilities ready in the
buffer;
For writes, the maximum number which can be added to
the buffer. If zero for read or write then the file
is completely read or written.
The pointer in the buffer to the first word of the
next record for reads, or the first word of the next
record to be copied into the buffer for writes.
Return error code.
0 => OK
1 => file not open in FTAB
2 => input error
3 => I/O error
4 => end of file
7 => attempt to write more vis than specified

to UVINIT or will fit in buffer.

6.6.27 UVINIT - sets up bookkeeping for the UV data I/O routine
UVDISK. I/O for these routines is double buffered (if possible) quick
return I/O. UVDISK will run much more efficiently if on disk
LREC*NPIO*BP is an integral number of blocks. Otherwise partial
writes or oversize reads will have to be done. Minimum disk I/O is
one block. The buffer size should include an extra NBPS bytes for
each buffer for non tape read if NPIO records does not correspond to
an integral number of disk sectors (NBPS bytes). 2*NBPS extra bytes
required for each buffer for write.

UVINIT (OP, LUN, FIND, NVIS, VISOFF, LREC, NPIO,
* BUFSZ, BUFFER, BO, BP, BIND, IERR)

Inputs:
OP
LUN
FIND
NVIS

VISOFF
LREC
NPIO
BUFSZ

R*4 OP code, 'READ' or 'WRIT' for desired operation.
1*2 Logical unit number of file.
1*2 FTAB pointer for file returned by ZOPEN.

P 1*4 Total number of visibilities to read. NVIS+VISOFF
must be no greater than the total number in the
file.

P 1*4 Offset in vis. rec. of first vis. rec. from BO.
1*2 Number of values in a visibility record.
1*2 Number of visibilities per call to UVDISK.

Determines block size for tape I/O
1*2 Size in bytes of the buffer.

If 32767 given, 32768 is assumed.

DISK FILES
ROUTINES Page 6-45

08 May 84

Buffer
Block offset to begin transfer from (1-relative)
Bytes per value in the vis, record.
For WRITE, the max. number of visibilities
which can be accepted.
Pointer in BUFFER for WRITE operations.
Return error code:

0 => OK
1 => file not open in FTAB
2 => invalid input parameter.
3 => I/O error
4 => End of file.
7 => buffer too small

Note: VISOFF and BO are additive.
UVINIT sets and UVDISK uses values in the FTAB:
FTAB(FIND+0) = LUN

1 = # Bytes per I/O
2-3 # vis. records left to transfer.

For double buffer read, 1 more I/O will have
been done than indicated.

4-5 = Block offset for next I/O.6 = byte offset of next I/O
7 = bytes per value
8 = Current buffer #, -1 => single buffering
9 = OPcode 1 = read, 2 = write.

10 = Values per visibility record.
11 = # vis. records per UVDISK call
12 = max. # vis. per buffer.
13 = # vis. processed in this buffer.
14 Buffer pointer for start of current buffer.(values)

Used for WRIT only; includes any data carried over
from the last write.

15 = Buffer pointer for call (values)

6.6.28 UVPGET - The position in the record of the standard random
parameters (u,v,w,t,b) and the order of the regular axes can be
obtained using the routine UVPGET. UVPGET determines pointers and
other information from a UV catalogue header record. These pointers
are placed in a common which is obtained by the DUVH.INC and CUVH.INC
INCLUDES. The address relative to the start of a vis record for the
real part for a given spectral channel (CHAN) and stokes parameter
(ICOR) is given by :

NRPARM+(CHAN-1)*INCF+(ICOR-IABS (ICORO))*INCS
SUBROUTINE UVPGET (IERR)

Inputs: From common /MAPHDR/
CATBLK(256) 1*2 Catalogue block
CAT4 R*4 same as CATBLK
CAT8 R*8 same as CATBLK

Output: In common /UVHDR/
SOURCE(2) R*4 Packed source name.

BUFFER() 1*2
BO P 1*4
BP 1*2
Output:
NPIO 1*2
BIND 1*2
IERR 1*2

DISK FILES
ROUTINES

Page 6-46
08 May 84

ILOCU 1*2 Offset from beginning of vis record of U
ILOCV 1*2 ■ V
ILOCW 1*2 " W
ILOCT 1*2 " Time
ILOCB 1*2 " Baseline
JLOCC 1*2 Order in data of complex values
JLOCS 1*2 Order in data of Stokes' parameters,
JLOCF 1*2 Order in data of Frequency.
JLOCR 1*2 Order in data of RA
JLOCD 1*2 Order in data of dec.
INCS 1*2 Increment in data for stokes (see above)
INCF 1*2 Increment in data for freq. (see above)
ICORO 1*2 Stokes value of first value.
NRPARM 1*2 Number of random parameters
LREC 1*2 Length in values of a vis record.
NVIS(2) P 1*4 Number of visibilities
FREQ R*8 Frequency (Hz)
RA R*8 Right ascension (1950) deg.
DEC R*8 Declination (1950) deg.
NCOR 1*2 Number of correlators
ISORT C*2 Sort order
IERR 1*2 Return error codes 0=M)K,

1, 2, 5, 1 s not all normal rand parms
2, 3, 6, 7 s not all normal axes
4, 5, 6, 1 s wrong bytes/value

6.6.29 ZCLOSE - closes file associated with LUN removing any
EXCLusive use state and clears up the FTAB.

ZCLOSE (LUN, FIND, IERR)
Inputss LUN logical unit number

FIND FTAB pointer from ZOPEN
Outputs IERR error codes 0 -> no error

1 -> Deaccess or Deassign error
2 -> file already closed in FTAB
3 -> both errors
4 -> erroneous LUN

DISK FILES
ROUTINES Page 6-47

08 May 84

6,6.30 ZCMPRS - All types of AIPS data files may be compressed by the
subroutine ZCMPRS. The file must be open before the call to ZCMPRS.
Note: it is dangerous to compress files written by EXTIO unless the
bookkeeping information kept in the first record of the file is
changed to reflect the new size of the file. See the description of
EXTINI in the section on extension file I/O in this chapter.

ZCMPRS (IVOL, PNAME, ISIZE, LSIZE, LUN, IERR)
Inputs: IVOL

PNAME
ISIZE
LSIZE
LUN

Outputs: IERR 1*2

1*2 volume number
1*2(12) physical file name
1*2(2) original size bytes pseudo 1*4

desired final size bytes pseudo 1*4
logical unit number under which file is
open
error code: 0 => ok

1 => input data error
2 => compress error FMGR

1*2(2)
1*2

ZCMPRS releases unused disk space from a non-map file. Will also
allow "map" files. File must be open. "Byte" defined as 1/2 of a
small integer.

6.6.31 ZCREAT - creates a disk file for reading/writing

IVOL
PHNAME

1*2
R*4 (6)

ZCREAT (IVOL, PHNAME, NBYTE, MAP, IERR)
Inputs:

Disk drive unit number.
Physical file name given by ZPHFIL.(char.)
left justified, padded with blanks.
Size of the file in bytes. Will be rounded to
next higher 512 byte block boundary.
NOTE: this is a "Pseudo 1*4".
.TRUE, if map file* .FALSE, otherwise.

NBYTE P 1*4

MAP
Outputs:

IERR
L*2
1*2 Error return code. 1*2. The values mean

0 - success.
1 - file already exists.
2 - volume is not available.
3 - space is not available.
4 - Other.

6.6.32 ZDESTR - destroys the file associated with PNAME. The file
must already be closed.

ZDESTR (IVOL, PNAME, IERR)
Input:

IVOL 1*2 Volume number of disk.
PNAME R*4(6) Physical file name. 24 characters max.Output:

DISK PILES
ROUTINES

Page 6-48
08 May 84

IERR 1*2 Completion code, 0=good.
l=file not found
2=failed

6,6,33
file.

ZEXPND - expands the space allocated to a regular (non-map)

ZEXPND (LUN, IVOL, PHNAME, NREC, IERR)
Inputs: LUN 1*2

IVOL 1*2
PHNAME R*4(6)

In/Out: NREC 1*2
Outputs IERR 1*2

LUN of file (already open)
disk volume number of file
physical file name of file
256-integer records requested/received
error code 0 => ok

1 »> input error
2 => FMGR error

6,6,34 ZFIO - reads or writes one logical record between core and
device LUN. For disk devices, the record length is always 512 bytes
(a byte being defined as half of a short integer). NREC gives the
random access record number (in units of 512 bytes)• For non-disk
devices, NREC contains the number of bytes.

(OPER, LUN, FIND, NREC, BUF, IERR)
Operation = 1READ1 or 'WRIT'
logical unit number
pointer to file area in FTAB
record number in files starts with 1 (DISKS)
number of bytes (Sequential DEVICES)
(256) array to hold record

1*2 error codes 0 => ok
1 -> file not open
2 => input error
3 -> I/O error
4 -> end of file
5 -> begin of medium
6 -> end of medium

ZFIO (OPER
Inputs:

OPER R*4
LUN 1*2
FIND 1*2
NREC 1*2
BUF 1*2

Outputs IERR

DISK FILES
ROUTINES

Page 6-49
0 8 May 84

6.6.35 ZMIO - a low level random access, large record, double
buffered device I/O.

ZMIO (OP, LUN, FIND, BLKNO, NBYTES, BUFF, IBUFF, IERR)
Inputs:

OP R*4 Operation - 'READ', 'WRIT', ASCII - 4 characters.
LUN 1*2 Logical unit number of a previously opened map.
FIND 1*2 Pointer to FTAB returned by ZOPEN.
BLKNO P 1*2 One relative beginning block number. The size of a

block is given by NBPS in COMMON/DCHCOM/.
NBYTES 1*2 Number of bytes to transfer.
BUFF R*4 The I/O buffer.
IBUFF 1*2 Buffer number to be used - 1 or 2.

Outputs:
IERR 1*2 Error return code:

0 = Success.
1 « File not open.
2 = Operation incorrectly specified.
3 = I/O error.
4 = end of file (no messages)

6.6.36 ZOPEN - opens logical files, performing full open on disk
files for which LUN > NDEVT. Tape units are assigned an I/O channel
and given an FTAB entry for double buffering.

ZOPEN (LUN, IND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)
Inputs:

LUN
IVOL
PNAME
MAP
EXCL
WAIT

Output:
IND
IERR

0 = no error
1 = LUN already in use
2 = file not found
3 = volume not found
4 = excl requested but not available
5 = no room for lun
6 « other open errors

1*2 Logical unit number.
1*2 Disk volume containing file, 1,2,3,...
R*4(6) 24-character physical file name,left justified,

packed, and padded with blanks.
L*2 is this a map file ?
L*2 desire exclusive use?
L*2 I will wait?
1*2 Index into FTAB for the file control block,
1*2 Error return code:

DISK FILES
ROUTINES

Page 6-50
08 May 84

6.6.37 ZPHFIL - construct a physical file name in PNAM from ITYPE,
IVOL, NSEQ, and IVER. New version designed either for public data
files or user specific files. This routine contains the logical
assignment list for Graphics devices and is thus site dependent as
well as machine dependent.

EXAMPLE: If ITYPE='MA', IVOL=8, NSEQ=321, IVER=99, NLUSER=762 then
PNAME=*DA07:MA832199;1' for public data or
PNAME=*DA07:MA832199.762;1' for private data

ITYPE = 'MT' leads to special name for tapes
ITYPE « 'TK* leads to special name for TEK4012 plotter CRT
ITYPE = 'TV1 leads to special name for TV device
ITYPE = 'ME1 leads to special logical for POPS memory files

ZPHFIL (ITYPE, IVOL, NSEQ, IVER, PNAM, IERR)
Inputs:

ITYPE 1*2 Two characters denoting type of file. For example,
'MA' for map file.

IVOL 1*2 Number of the disk volume to be used.
NSEQ 1*2 User supplied sequence number. 000-999.

This is the catalogue slot number for catalogued
files.

IVER 1*2 User suppplied version number. 00-255.
Always 1 for map or uv data files.

Outputs:
PNAM R*4(6) >= 24-byte field to receive the physical file name,

left justified (packed) and padded with blanks.
IERR 1*2 Error return code.

0 = good return. 1 = error.

6.6.38 ZTCLOS - closes a text file.
ZTCLOS(LUN,FIND,IERR)

Inputs: LUN 1*2 logical unit number.
FIND 1*2 Not used with this routine.

Output: IERR 1*2 Error code.
0 => no error.
1 => RMS error.
2 => file not open.

DISK FILES
ROUTINES

Page 6-51
0 8 May 84

6.6.39 ZTOPEN - opens a text file.
ZTOPEN (LUN, FINDf IVOL, PNAME, MNAME, VERSON, WAIT,
* IERR)

Inputs: LUN 1*2 logical unit number.
IVOL 1*2 disk drive number (NOT USED ON VAX).
PNAME R*4(6) disk-file type. Only type ('HE' ect)

used. Should be generated by ZPHFIL.
MNAME R*4(2) file name.
VERSON R*4(5) Version (determines in which dir/subdir

to look for the file).
WAIT L*2 T => wait until file is available.

Output: IERR 1*2 error code:
0 => No error.
1 => LUN already in use.
2 => File not found.
3 => Volume not found.
4 => File locked.
5 => No room for LUN
6 => Other open errors.

FIND 1*2 pointer to FTAB location.

6.6.40
file.

ZTREAD - reads the next sequential card image from a text

ZTREAD (LUN, FIND, BUF, IERR)
Inputs:
Output:

LUN
FIND
BUF
IERR

1*2 logical unit number
1*2 not used with VAX.
1*2 array card image.(>
1*2 Error code:

* 80 chars packed)
0 => No error
1 => File not open.
2 => End of file.
4 => Other.

6.6.41 ZWAIT - waits until I/O operation is complete
ZWAIT (LUN, IND, IBUF, IERR)

Inputs:
LUN 1*2 logical unit number
IND 1*2 Pointer to FTAB
IBUF 1*2 Wait for 1st or 2nd buffer in double buffered I/O

DISK PILES
ROUTINES

Page 6-52
08 May 84

Outputs
IERR 1*2 Error return 0

1
3
4
7

> ok
> LUN not open
> I/O error
> end of file
> wait service error

CHAPTER 7
DEVICES

7*1 OVERVIEW
Programs in the AIPS system occasionally need to talk to

peripheral devices. This chapter discusses such devices other than
disk drives, TV displays, array processors, and plotters which are
covered elsewhere. Many of the same routines used for disk I/O are
also used for I/O to other devices but their use may be modified to
suit the physical properties of the particular device. The details of
the call sequence for the relevant routines discussed in this chapter
are given at the end of the chapter.

7.2 TAPE DRIVES
Tapes are used in AIPS primarily for long term storage of data,

images or text files. The principle differences in the AIPS system
between use of tape and disk is that tapes, by their physical nature,
are sequential access devices and the physical block size of data
depends on the program writting the tape. In addition, AIPS batch
jobs are forbidden to talk to tape drives.

The usual problems of Fortran I/O apply to tapes, i.e. it is not
predictable from one machine and/or operating system to another. For
this reason standard AIPS programs do not use Fortran I/O for tapes.
Also, some versions of Fortran cannot read or write some file
structures such as those containing variable length, blocked, unspanned records.

Since AIPS tasks work directly from I/O buffers a program using
tape must take account of the details of the way data is written on
tape. One exception to this is writing variable length, blocked, but
unspanned records? such records may be assembled and written usinq the AIPS utility routine VBOUT.

DEVICES
TAPE DRIVES

Page 7-2
08 May 84

7.2.1 Opening Tape Files
Tape files are opened using ZOPEN in a way similar to disk files.

Details about ZOPEN and examples of its use can be found in the
chapter on disk I/O. However, to tell the AIPS routines that the file
is on a tape drive and to specify which tape drive, the LUN and file
name are different from those used for disk files. The LUN for tape
files must be 31 or 32. When constructing the name of the file using
ZPFIL use 'MT' as the file type and the (one relative) tape drive
number as the volumn number, the rest of the values sent to ZPHFIL are
ignored by ZOPEN and are arbitrary.

7.2.2 Positioning Tapes
Once the file has been opened in AIPS the tape may be positioned,

mounted or dismounted, or EOFs may be written using ZTAPE. NOTE:
mounting and dismounting are generally done only by the AIPS program
itself. Details of the call sequence to ZTAPE are given at the end of
this chapter. The following list gives the opcodes recognized by
ZTAPE.

1. 1ADVF' = advance file marks
2. 'ADVR' = advance records
3. 'BAKF' = backspace file marks.
4. 'BAKR' = backspace records.
5. 'DMNT' = dismount tape.
6. 1 MONT' = mount tape.
7. 'REWI1 = rewind the tape on unit LUN
8. 'WEOF* = write end of file on unit LUN:

positions tape after first one
9. 1MEOF' = write 4 EOF marks on tape, position

writes 4 EOFs,

DEVICES
TAPE DRIVES

Page 7-3
08 May 84

The same routines to write to disk files can be used to talk to tape
files although several call arguments have altered meanings for tape files.

7,2.3 I/O To Tape Files

7.2.3.1 MINIT/MDISK And UVINIT/UVDISK - Double buffered I/O can be
done using MINIT/MDISK and UVINIT/UVDISK. For these pairs of routines
the primary difference between their use on disk and tape is that the
physical blocks on the tape are; 1) a single logical record of an
image (a row, or the first dimension) if written using MINIT/MDISK or
2) the number of logical records (visibilities) requested in a single
call (NPIO) to UVINIT. Since these routines know or care little about
the internal structure of the data read or written, in practice, any
format records can be processed.

7.2.3.2 ZFIO - Single buffered I/O can be done using ZFIO but the
input variable used for to block number becomes the byte count for the
transfer.

7.2,3.3 VBOUT - The utility routine VBOUT will collect variable
length records and block them, unspanned, into IBM format physical
blocks up to 4008 bytes long. The tape must be opened with ZOPEN as a
non-map file. The principle use of this routine is to write VLA
"EXPORT" format tapes. Details of the call sequence as well as other
important useage notes are found at teh end of this chapter.

7.2.4 Tape Data Structure
In order to make efficient use of tape storage a number of logical
records may be grouped into a single physical record. In general
these logical records may be fixed or variable length and may or may
not span physical blocks. In addition, logical records may be
formatted (text, usually ASCII) or binary. Such details need to be
determined before attempting to read or write such files.

Fixed length logical records are packed into physical records as
defined by the record size and block length. Since the order and size
of these records is well defined there is no need for additional
control information.

For variable length logical records, control bytes are added to
the record to determine the boundaries of logical records.
Unfortunately, the details of the of variable length record structure
varies from computer to computer and from operating system to
operating system. If you wish to read or write one of these tapes you
have to find the details of the formats for the machines in question.

DEVICES
GRAPHICS DISPLAYS

Page 7-4
08 May 84

7.3 GRAPHICS DISPLAYS
The graphics devices currently supported in AIPS fall into three

categories: TV display devices such as the IIS, hardcopy devices such
as the Versatec printer/plotter, and interactive graphics terminals
such as the Tektronix 4012, This section deals with the Tektronics
type graphics terminals. The other devices are discussed in the
chapter on plotting.

A graphics terminal can be used in two major modes: as a
temporary display device, or as an interactive graphics device. When
used as a temporary display device, a task will read graphics commands
from a plot file, convert these device independent commands to the
form needed by the device, and finally write to the device. The AIPS
task that does this is TKPL. A programmer wishing to write a task to
intepret a plot file for another type of graphics terminal, would
start with TKPL and convert the routines TKDVEC, TKCHAR, and TKCLR to
send the proper commands to the device.

When using a graphics terminal in the interactive mode, the
programmer probably will go straight from the data file to the
graphics terminal without going through a plot file. In general, an
interactive t̂ ask or verb will open the display device, display the
data, activate the cursor, read the cursor position in the absolute
device coordinates, convert these coordinates into more useful units,
and then perform some useful function with the converted units, such
as display them.

7.3.1 Opening The Graphics Terminal.
The graphics terminal is opened as a non map file using ZOPEN.

AIPS logical unit 7 is reserved for this device type, and should be
used in the call to ZOPEN. When constructing the device name with
ZPHFIL, a device type of 'TK* must be used. A volume number of 1 and
zero values for the other auguments should be used to remain
consistent with other tasks. On the VAX, each AIPS is assigned a
graphics terminal on start up according to a set of logical names.
Thus, ZOPEN on the VAX ignores everything in the name except TK.

7.3.2 Writing To The Graphics Terminal
Before writing to the graphics terminal, the programmer must set

some values in common. Common INCS:CTVC.INC can be initialized by calling routine YTVCIN. Most values in this common are for the TV
display, but array MAXXTK contains the maximum X and Y values in
device units (for the Tektronix 4012, these values range from 1 to
1024 for X and 1 to 780 for Y). In common INCS:CTKS.INC, the graphics
buffer size, TKSIZE, should be set to 20. The current position in use
in the buffer, TKPOS, should be set to zero. Scale factors SCALEX and
SCALEY and offsets RX0 and RY0 must be calculated and assigned. If a
subroutine is told to scale a value then the X value in absolute
device units will be equal to

DEVICES
GRAPHICS DISPLAYS

Page 7-5
08 Nay 84

SCALEX * value_input_for_X + RXO.
Usually the first thing a programmer will want to do when writing

to the terminal is to clear the screen. This can be done with
subroutine TKCLR,

Setting the beginning of the line (sometimes called drawing a
dark vector) and drawing lines from the current position to a new
position (a bright vector) are done with routine TEKVEC. TEKVEC is
given an X and Y position and a control code which tells it if it
should draw a dark vector or a bright vector, and if it should
consider X and Y to be in absolute device units or if the values
should be scaled. TEKVEC will automatically truncate vectors that run
off the plot and write the buffer when it fills up.

Characters can be written to a Tectronix terminal by calling
routine TKCHAR. TKCHAR allows the programmer to write characters
either horizontally or vertically. TKCHAR uses the hardware character
generator in the Tektronics, so the characters only come in one size.
Choosing the starting position of the characters involves a
combination of TEKVEC and TKCHAR. First, a vector position on the
plot is chosen by calling TEKVEC with the 'dark vector' option. Then
an offset from the vector position in character sizes is chosen by use
of the DCX hnd DCY parameters in TKCHAR. Programmers who need a
character generator can find one in task PRTPL that can be adapted to
a graphics terminal.

Before closing the graphics terminal, the programmer should write
any remaining buffers to the graphics device by calling TEKFLS.

7.3,3 Activating And Reading The Cursor.
Subroutine TKCURS will activate the cursor on the Tektronix 4012

and wait for a response from the 4012 keyboard. After the user
positions the cursor and presses any key, the cursor will disappear
and TKCURS will return the last coordinate position in absolute
Tektronix units. The programmer will probably have to convert this
position into plot coordinates by using information in the image catalog.

7.3.4 Updating The Image Catalog
The image catalog should be updated when an image is written to

the graphics terminal. This is essential when one task (or verb)
writes an image to the device, and another task (or verb) needs
information, about the plot on the screen. For example, task TKPL can
be used to display a contour map on the terminal, and verb TKPOS can
be used to print map coordinate values at selected positions on the
plot. The TKPOS uses information in the image header to convert an
absolute Tectronix cursor position into the map axis units such as RA
and DEC, The routines ICINIT and ICWRIT can be used to set up the
image catalog for the graphics terminal. See the chapter on

DEVICES
GRAPHICS DISPLAYS

Page 7-6
08 Nay 84

catalogues for a detailed description of the image catalog
example below for making a minimum image catalog entry.

and the

7.3.5 An Example
This example code shows how to open the graphics terminal, clear

the screen, draw a box, and write some text in the center of the box.
Opening the map, getting parameters from AIPS, etc., are not shown.
In a non-trivial example, calculating the scaling parameters and
updating the image catalog would be much more involved.

INTEGER*2 TK, NO, Nl, ITKLUN, ITKIND, IERR, TKSIZE, TKPOS,
* IPOS, IDRAW, NCHAR, IHORZ, IPLANE, BUFFER(256), VOL, CNO,
* CATBLK(256), LINE(40)
LOGICAL*2 T, F
REAL*4 DEVNAM(6), BLCX, BLCY, TRCX, TRCY, CENTER, DCX, DCY
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

' INCS
•INCS
'INCS
'INCS
'INCS
'INCS
' INCS
'INCS

DHDR.
DDCH.
DTVC.
DTKS.
CHDR.
CDCH.
CTVC.
CTKS.

INC'
INC'
INC'
INC'
INC'
INC'
INC'
INC'

C
ITKLUN = 7
CALL ZPHFIL (TK, Nl, NO, NO,
IF (IERR.NE.0) GO TO 900
CALL ZOPEN (ITKLUN, ITKIND,
IF (IERR.NE.0) GO TO 900

C
CALL YTVCIN
TKSIZE = 20
TKPOS = 0

C
c

SCALEX = NAXXTK(1) / 100.0
SCALEY = NAXXTK(2) / 100.0
RX0 =0.0
RY0 =0.0

C
CALL TKCLR (ITKIND, IERR)
IF (IERR.NE.0) GO TO 900

C
BLCX = 25.0
BLCY =25.0
TRCX = 75.0
TRCY = 75.0

C

Open the Tektronix device.
DEVNAN, IERR)
Nl, DEVNAN, F, T, T, IERR)

Set variables in common.

Nake screen be 100 by 100
units.

Clear screen.

Set corners

1 is the code for scale

no

o
o

o
o

o
o

oo

o

oo

o
oo

o

o
o

DEVICES
GRAPHICS DISPLAYS

Page 7-7
0 8 May 84

X and Y and position vector.IPOS = 1
2 is the code for scale X and
Y and draw vector.IDRAW = 2
Draw a box.

CALL TEKVEC (BLCX, BLCY, IPOS, ITKIND, IERR)
CALL TEKVEC (BLCX, TRCY, IDRAW, ITKIND, IERR)
CALL TEKVEC (TRCX, TRCY, IDRAW, ITKIND, IERR)
CALL TEKVEC (TRCX, BLCY, IDRAW, ITKIND, IERR)
CALL TEKVEC (BLCX, BLCY, IDRAW, ITKIND, IERR)
IP (IERR.NE.0) GO TO 900

Write some characters in
the center of the box.

NCHAR =14
ENCODE (NCHAR, 1000, LINE)

Position at center.CENTER =50.0
CALL TEKVEC (CENTER, CENTER, IPOS, ITKIND, IERR)
IP (IERR.NE.0) GO TO 900

Compute offset to start
writing characters.DCX = - NCHAR / 2.0

DCY = - 0.5
IHORZ = 0

Write message
CALL TKCHAR (NCHAR, IHORZ, DCX, DCY, LINE, ITKIND, IERR)
IF (IERR.NE.0) GO TO 900

Write any remaining buffer to
screen.
Update image catalog although
for this example plot has no
relation to map.
Calculate image plane. These
values are found in common
set up in CDCH.INC.

CALL TEKFLS (ITKIND, IERR)

IPLANE = NGRAY + NGRAPH + NTKDEV
CALL ICINIT (IPLANE, BUFFER)

CATBLK, VOL and CNO were
found when map was opened.CATBLK(I2VOL) = VOL

CATBLK(I2CNO) = CNO
C Set plot type to MISCCATBLK(I2PLT) = 1

CALL ICWRIT (IPLANE, NO, CATBLK, BUFFER, IERR)
C Close graphics terminal.CALL ZCLOSE (ITKLUN, ITKIND, IERR)

1000 FORMAT ('This is a test')

DEVICES
INCLUDES

Page 7-8
08 May 84

7.4 INCLUDES
7.4.1 CTKS.INC

C Include CTKS
COMMON /TKSPCL/ TKBUFF, SCALEX, SCALEY, RXO, RYO, RXL, RYL,
* TKPOSr TKSIZE

C End CTKS

7.4.2 CTVC.INC

C Include CTVC
COMMON /TVCHAR/ NGRAY, NGRAPHr NIMAGE, MAXXTV, MAXINT, SCXINC,
* SCYINC, MXZOOM, NTVHDR, CSIZTV, GRPHIC, ALLONE, MAXXTK,
* CSIZTK, TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMSf TVZOOM,
* TVSCRX, TVSCRY, TVLIMG, TVSPLT, TVSPLM, TVSPLC, TYPMOV,
* YBUFF

C End CTVC

7.4.3 DTKS.INC

C Include DTKS
REAL*4 TKBUFF(20), SCALEXr SCALEYf RXO, RYO, RXL, RYL
INTEGER*2 TKPOS, TKSIZE

C End DTKS

7.4.4 DTVC.INC

Include DTVC
INTEGER*2 NGRAY, NGRAPH, NIMAGE, MAXXTV<2), MAXINT, SCXINC,
* SCYINC, MXZOOM, NTVHDR, CSIZTV(2), GRPHIC, ALLONE, MAXXTK(2),
* CSIZTK(2), TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS(7),
* TVZOOM(3), TVSCRX(16), TVSCRY(16), TVLIMG(4), TVSPLT(2),
* TVSPLM, TVSPLC, TYPMOVU6) , YBUFF(168)

End DTVC

DEVICES Page 7—9
ROUTINES 0 8 May 84

7.5 ROUTINES
7.5.1 ICINIT - Initializes image catalog for plane IPLANE

ICINIT (IPLANE, BUFF)
Input:
IPLANE 1*2 Image plane to initialize

Output:
BUFF(256) 1*2 Working buffer

7.5.2 ICWRIT - writes image catalog block in ICTBL into
catalog.

ICWRIT (IPLANE, IMAWIN, ICTBL, BUFF, IERR)

image

Inputs:
IPLANE
IMAWIN (4)
ICTBL

Outputs:
BUFF
IERR

1*2 image plane involved
1*2 Corners of image on screen
1*2(256) Image catalog block
1*2(256) working buffer
1*2 error code: 0 => ok

1 => no room in catalog
2 => 10 problems

7.5.3 MDISK - reads or writes image data to/from disks and other
devices.

MDISK (OP, LUN, FIND, BUFF, BIND, IERR)
Inputs:
OP 1*4 Op code char string 'WRIT', 'READ',1FINI1
LUN 1*2 logical unit number
FIND 1*2 Pointer to FTAB returned by ZOPEN

Input and/or output:
BUFF ?? Buffer holding data, you better know specification

Output:
BIND 1*2 Pointer to position in buffer of first pixel in window

in the present line
IERR 1*2 Error return: 0 => ok

1 -> file not open
2 => input error
3 => I/O error
4 => end of file
5 => beginning of medium
6 => end of medium

MDISK sets array index to the start of the next line wanted.
NOTE: the line sequence is set by the WIN parameter in MINIT,
if the vaules of WIN(2) and Win(4) are switched then the file
will be accessed backwards.
A call with OP ® 'FINI1 flushes the buffer when writing.

DEVICES
ROUTINES

Page 7-10
0 8 May 84

MINIT MUST be called before MDISK.

Inputs •
•

OP R*4
LUN 1*2
IND 1*2
LX 1*2
LY 1*2
WIN 1*2
BFSZ 1*2

7.5.4 MINIT - initialized the I/O tables for MDISK.
MINIT (OP, LUN, IND, LXr LY, WINr BUFF, BFSZ, BYTPIX,
* BLKOF, IERR)

Operation code character string: 'READ','WRIT'
logical unit number
pointer to FTAB, returned by ZOPEN when file is opened
Number of pixels per line in X-direction for whole
plane
Number of lines in whole plane.
I) Xmin,Ymin,Xmax,Ymax defining desired subrectangle in
the plane. A subimage may NOT be specified for 'WRIT1.
Size of total available buffer in bytes, should be even

Special case: BUFSZ=32767 is treated as though
BUFSZ=32768 to allow double buffering of 16Kbyte
records.

BYTPIX 1*2 Number of bytes per pixel in stored map
BLKOF 1*2(2) Pseudo 1*4 block number, 1 relative, of first map

pixel in the desired plane. Use COMOFF + ZMATH4
to set.

Outputs:
IERR 1*2 Error return: 0 => ok

1 -> file not open
2 => input error
7 => Buffer too small
3 => I/O error on initialize
4 => end of file
5 => beginning of medium
6 => end of medium

MINIT sets up special section of FTAB for quick return, double
buffered I/O. N.B. This routine is designed to read/write images
one plane at a time. One can run the planes together iff the rows
are not blocked: i.e. iff NBPS / (LX * BYTPIX) < 2.
Usage notes: For map I/O the first 16 words in each FTAB entry
contain a user table to handle double buffer I/O, the rest
contain system-dependent I/O tables. A "major line" is 1 row or
1 sector if more than 1 line fits in a sector. FTAB user table
entries, with offsets from the FIND pointer are:

FTAB + 0 => LUN using this entry
1 => No. of major lines transfered per I/O op
2 => No. of major times a buffer has been acessed
3 => No. of major lines remaining on disk
4 => Output index for first pixel in window
5 => No. pixels to increment for next major line
6 => Which buffer to use for I/O; -1 => single buffer
7 => Block offset in file for next operation (lsb 1*4)
8 => msb of pseudo 1*4 block offset
9 => Block increment in file for each operation

10 => No. of bytes transferred

DEVICES
ROUTINES Page 7-11

08 Nay 84

11 “> I/O op code 1=> read, 2 => write.12 => BYTPIX
13 => # rows / major line (>= 1)
14 => # times this major line has been accessed
15 => # pixels to increment for next row (= LX)

7.5.5 TEKPLS - writes the output buffer TKBUFF to the TEKTRONIX 4012.
TEKFLS (FIND,IERR)

Inputs:
FIND 1*2 FTAB position assigned to TEK 4012.

Outputs:
IERR 1*2 error flag. 0=ok, .GT. l=write error from ZFIO

7.5.6 TEKVEC - puts control characters, and X and Y coordinates into
the TEKTRONIX output buffer.

TEKVEC (XX, YY, IN, FIND, IERR)
Inputs:
XX 1*2 X coordinate value.
YY 1*2 Y coordinate value.
IN 1*2 control value:

1 = Scale XX and YY and precede coordinates
by 'write dark vector' control character

2 * Scale XX and YY, put in buffer; will write
bright vector.

3 = XX and YY are not scaled, 'write dark
vector' control character is put into
the buffer.

4 = no scale, write bright vector.
FIND 1*2 FTAB position of TEKTRONIX device.Output:
IERR 1*2 error code, 0=ok, l=write error.

Common variables modified:TKBUFF
TKPOS
RXL, RYL

DEVICES
ROUTINES

Page 7-12
08 May 84

7.5,7 TKCHAR - writes characters to a TEKTRONIX 4012.
TKCHAR (INCHAR, IANGL, DCX, DCY, TEXT, ITFIND, IERR)

Inputs:
INCHAR 1*2 number of characters.
IANGL 1*2 0=horizontal, other - vertical.
DCX R*4 X distance in characters from current position.
DCY R*4 Y distance in characters from current position.
TEXT R*4(??) packed characters.
ITFIND R*4 FTAB index of open TEK.

Outputs:
IERR 1*2 error indicator. 0 = ok.

7.5.8 TKCLR - will clear the screen for a Tektronix 401n.
TKCLR (DEVFND, IERR)

Inputs:
DEVFND 1*2 FTAB index of an open device.

Output:
IERR 1*2 Error code from the last I/O routine. 0=ok.

7.5.9 TKCURS - activates the cursor on the TEKTRONIX 4012 and waits
for a response from the 4012 keyboard. After the response the cursor
will disappear and TEKCUR will return the coordinate positions. The
TEKTRONIX must have opened (by ZOPEN) before this routine is called.

TKCURS (IFIND, IOBLK, IX, IY, IERR)
Inputs:
IFIND 1*2 index into FTAB for open TEKTRONIX device
IOBLK 1*2(256) I/O block for TEKTRONIX device.

Outputs:
IX 1*2 x cursor position.
IY 1*2 y cursor position.
IERR 1*2 0=ok, 1=TEK write error. 2=TEK read error
WARNING: This routine assumes a normal interface to a TEK 401n.

Thus it may not work on all CPUs.

7.5.10 TKDVEC - converts TEK4012 vectors to actual commands to the TK
buffer. Positions are assumed to be in bounds.

TKDVEC (IN, X, Y, FIND, IERR)
Inputs:
IN 1*2 1 => dark vector, 2 => bright vector
X 1*2 X coordinate value.
Y 1*2 Y coordinate value.
FIND 1*2 FTAB position of TEKTRONIX device.

DEVICES
ROUTINES Page 7-13

08 May 84

Outputs:
IERR 1*2 error code, 0=ok, l=write error. Common variables modified:
TKBUFF
TKPOS

7.5.11 UVDISK - reads and writes records of arbitrary length,
especially uv visibility data. Operation is faster if blocks of data
are integral numbers of disk blocks. There are three operations which
can be invoked: READ, WRITE and FLUSH (OPcodes READ, WRIT and FLSH).

READ reads the next sequential block of data as specified to
UVINIT and returns the number of visibilities in NIO and the pointer
in BUFFER to the first word of this data.

WRIT arranges data in a buffer until it is full. Then as many
full blocks as possible are written to the disk with the remainder
left for the next disk write. For tape I/O data is always written
with the block size specified to UVINIT; one I/O operation per call.
For disk writes, left-over data is transferred to the beginning of
buffer 1 if that is the next buffer to be filled. Value of NIO in the
call is the number of vis. rec. to be added to the buffer and may be
fewer than the number specified to UVINIT. On return NIO is the
maximum number which may be sent next time. On return BIND is the
pointer in BUFFER to begin filling new data.

FLSH writes integral numbers of blocks and moves any data left
over to the beginning of buffer half 1. One exception to this is when
NIO => -NIO or 0, in which case the entire remaining data in the
buffer is written. After the call BIND is the pointer in BUFFER for
new data. The principal difference between FLSH and WRIT is that FLSH
always forces an I/O transfer. This may cause trouble if a transfer
of less than 1 block is requested. A call with a nonpositive value of
NIO should be the last call and corresponds to a call to MDISK with
opcode 'FINI*.

NOTE: A call to UVINIT is REQUIRED prior to calling UVDISK.
UVDISK (OP, LUN, FIND, BUFFER, NIO, BIND, IERR)

' are legal
Inputs:
OP R*4
LUN 1*2
FIND 1*2
BUFFFERO 1*2
NIO 1*2

Output:
NIO 1*2

BIND 1*2

Opcode 'READ',1WRIT','FLSH
Logical unit number
FTAB pointer returned by ZOPEN
Buffer for I/O
For writes, the number of visibilites added to the
buffer; not used for reads.
For reads, the number of visibilities ready in the
buffer;
For writes, the maximum number which can be added to
the buffer. If zero for read or write then the file
is completely read or written.
The pointer in the buffer to the first word of the

DEVICES
ROUTINES

Page 7-14
08 May 84

next record for reads, or the first word of the next
record to be copied into the buffer for writes.

IERR i*2 Return error code.
0 => OK
1 => file not open in FTAB
2 => input error
3 => I/O error
4 => end of file
7 => attempt to write more vis than specified

to UVINIT or will fit in buffer.

7.5.12 UVINIT - sets up bookkeeping for the UV data I/O routine
UVDISK. I/O for these routines is double buffered (if possible) quick
return I/O. UVDISK will run much more efficiently if on disk
LREC*NPIO*BP is an integral number of blocks. Otherwise partial
writes or oversize reads will have to be done. Minimum disk I/O is
one block. The buffer size should include an extra NBPS bytes for
each buffer for non tape read if NPIO records does not correspond to
an integral number of disk sectors (NBPS bytes). 2*NBPS extra bytes
required for each buffer for write.

UVINIT (OP, LUN, FIND, NVIS, VISOFF, LREC, NPIO,
* BUFSZ, BUFFER, BO, BP, BIND, IERR)

Inputss
OP R*4
LUN 1*2
FIND 1*2
NVIS P 1*4

VISOFF P 1*4
LREC 1*2
NPIO 1*2
BUFSZ 1*2
BUFFER() 1*2
BO P 1*4
BP 1*2
Output s
NPIO 1*2
BIND 1*2
IERR 1*2

OP code, 'READ* or 'WRIT' for desired operation.
Logical unit number of file.
FTAB pointer for file returned by ZOPEN.
Total number of visibilities to read. NVIS+VISOFF
must be no greater than the total number in the
file.
Offset in vis. rec. of first vis. rec. from BO.
Number of values in a visibility record.
Number of visibilities per call to UVDISK.
Determines block size for tape I/O
Size in bytes of the buffer.
If 32767 given, 32768 is assumed.
Buffer
Block offset to begin transfer from (1-relative)
Bytes per value in the vis. record.
For WRITE, the max. number of visibilities
which can be accepted.
Pointer in BUFFER for WRITE operations.
Return error codes

0 => OK
1 => file not open in FTAB
2 => invalid input parameter.
3 => I/O error
4 => End of file.
7 => buffer too small

Notes VISOFF and BO are additive.
UVINIT sets and UVDISK uses values in the FTABs

DEVICES
ROUTINES

Page 7-15
0 8 May 84

FTAB(FIND+0) = LUN
1 = # Bytes per I/O

2-3 = # vis, records left to transfer.
For double buffer read, 1 more I/O will have
been done than indicated,

4-5 = Block offset for next I/O,
6 = byte offset of next I/O
7 = bytes per value
8 = Current buffer #, -1 => single buffering
9 = OPcode 1 = read, 2 = write.

10 = Values per visibility record.
11 = # vis. records per UVDISK call
12 = max. # vis. per buffer.
13 = # vis. processed in this buffer.
14 = Buffer pointer for start of current buffer.(values)

Used for WRIT only? includes any data carried over
from the last write.

15 = Buffer pointer for call (values)

7.5.13 VBOUT - VBOUT writes variable blocked records of 1*2 data to
tape. Maximum block size on the tape is 400 8 bytes. Tape must be
opened (non-map) before first call. For overlaid programs COMMON
/VBCOM/ should be kept in a segment which is core-resident from the
first call to the last call to VBOUT. A call with N = 0 will cause
all data remaining in the buffer to be written. Character data must
be in ASCII two characters per integer as local integers: ie call
ZCLC8 followed by ZI16IL on such data before calling VBOUT.

VBOUT (N, IDATA, LUN, NUM, IERR)
Inputs:

N 1*2 Number of 1*2 words in array IDATA
If N = 0 the buffer is flushed.

IDATA 1*2 Array containing data to be written.
LUN 1*2 LUN of tape to be written on.
NUM 1*2 The record number to be written, must be 1 on

the first and only the first record in a file.
Output:

IERR 1*2 Return error code 0 => OK
1 => LSERCH error (tape not open)
2 => ZFIO error.

7.5.14 YTVCIN - initializes the common which describes the
characteristics of the interactive display devices and the common
which has t̂ he current status parameters of the TV.

DEVICES
ROUTINES

Page 7-16
08 May 84

7,5.15 ZOPEN - opens logical files, performing full open on disk
files for which LUN > NDEVT. Tape units are assigned an I/O channel
and given an FTAB entry for double buffering.

ZOPEN
Inputs:

LUN
IVOL
PNAME
MAP
EXCL
WAIT

Output:
IND
IERR

(LUN, IND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)
1*2 Logical unit number.
1*2 Disk volume containing file, 1,2,3,...
R*4(6) 24-character physical file name,left justified,

packed, and padded with blanks.
L*2 is this a map file ?
L*2 desire exclusive use?
L*2 I will wait?
1*2 Index into FTAB for the file control block.
1*2 Error return code:

0 = no error
1 = LUN already in use
2 = file not found
3 = volume not found
4 = excl requested but not available
5 = no room for lun
6 = other open errors

7.5.16 ZPHFIL - construct a physical file name in PNAM from ITYPE,
IVOL, NSEQ, and IVER. New version designed either for public data
files or user specific files. This routine contains the logical
assignment list for Graphics devices and is thus site dependent as
well as machine dependent.

EXAMPLE: If ITYPE=1MA', IVOL=8, NSEQ=321, IVER=99, NLUSER=762 then
PNAME='DA07:MA832199;11 for public data or
PNAME=fDA07:MA832199.762;11 for private data

' MT' leads to special name for tapes
'TK' leads to special name for TEK4012 plotter CRT
'TV1 leads to special name for TV device
'ME' leads to special logical for POPS memory files

ITYPE
ITYPE
ITYPE
ITYPE

ZPHFIL (ITYPE, IVOL, NSEQ, IVER, PNAM, IERR)
Inputs:

1*2 Two characters denoting type of file. For example,
'MA' for map file.

1*2 Number of the disk volume to be used.
1*2 User supplied sequence number. 000-999.

This is the catalogue slot number for catalogued
files.

1*2 User suppplied version number. 00-255.
Always 1 for map or uv data files.

Outputs:
PNAM R*4(6) >= 24-byte field to receive the physical file name,

left justified (packed) and padded with blanks.
IERR 1*2 Error return code.

ITYPE
IVOL
NSEQ

IVER

0 « good return. 1 = error.

DEVICES Page 7-17
ROUTINES 0 8 May 84

7.5.17 ZTAPE - Perforins standard tape manipulating functions.
ZTAPE (OP, LUN, FIND, COUNT, IERR)

Inputs:
OP R*4 Operation to be performed. 4 characters ASCII.

'ADVF' = advance file marks
'ADVR' = advance records
1BAKF1 = backspace file marks.
•BAKR' = backspace records.
1DMNT' ss dismount tape. Works for VMS 3.0 & later
'MONT' = mount tape. Works for VMS 3.0 and later.
'REWI' = rewind the tape on unit LUN
1WEOF1 = write end of file on unit LUN: writes 4

EOFs, positions tape after first one
'MEOF* = write 4 EOF marks on tape, position tape

before the first one
LUN 1*2 logical unit number
FIND 1*2 FTAB pointer. Drive number for MOUNT/DISMOUNT.
COUNT 1*2 Number of records or file marks to skip. On MOUNT

this value is the density.
Outputs:

IERR 1*2 Error return: 0 => ok
1 = File not open
2 = Input specification error.
3 = I/O error.
4 = End Of File
5 = Beginning Of Medium
6 « End Of Medium

CHAPTER 8
WAWA ("EASY") I/O

8.1 OVERVIEW
We have created a fairly coherent set of routines which attempt

to hide most of the nasty details mentioned in the previous sections.
They perform most catalog file operations for the programmer and hide
the details of calls to COMOFF, MINIT, MDISK, ZCREAT, et al. In many
cases these cost core space and/or speed, but for computation-bound
algorithms these are probably not important.

8.2 SALIENT FEATURES OF THE WAWA I/O PACKAGE

1. Each main task calls a single setup routine whose name
reflects the number of simultaneous map type file the
programmer wants open.

2. All the parameters needed to specify a catalogued file are
gathered into a single array, called a namestring.

3. The Wawa package hides the interface between the parameter
passing subroutines (e.g., GTPARM) and the I/O routines so
that fewer format conversions are needed.

4. Many subroutine calls are combined so that e.g., ZPHFIL,
CATDIR, CATIO, and MINIT, more or less disappear from sight.

5. Scratch files are catalogued along with regular maps, which
makes destroying them easier, either within the task or externally.

6. A general clean-up subroutine for closing files and
destroying scratch files is provided.

7. "Hidden" buffers large enough to hold a 2048-point Real*4 map
row are provided. These make double buffered I/O look more
like FORTRAN I/O on the large mainframes.

8. I/O to "map" type files is always in R*4 format as seen by
the user. On input automatic scaling from 1*2 occurs. A
separate routine can be used to find the min/max of an output
file, but it may be more convenient for the programmer to
accumulate these as his algorithm progresses. A separate
subroutine may be called to convert output R*4 maps to 1*2.

WAWA ("EASY") I/O Page 8-2
SALIENT FEATURES OF THE WAWA I/O PACKAGE 08 May 84

8.3 NAMESTRINGS
In order to reduce the many arguments required for the

fundamental AIPS I/O routines needed to specify the desired file the
WaWa package uses a namestring. With a namestring it is possible to
refer to any catalogued file by a real array of length 9, e.g.,

REAL*4 NAMS (9)
where NAMS(1:3) contain the file NAME as 12 packed characters

NAMS(4:5) contain the file CLASS as 6 packed characters
NAMS(6) contains SEQ as a real number
NAMS(7) contains the disk volume as a real number
NAMS(8) contains the file physical type as A2 1
NAMS(9) contains the file USID number as a real number

The formats match those provided by GTPARM. If you specify an
[INPUTS] file with INNAME, INCLASS, INSEQ, INDISK, INTYPE and USERID
the parameters will be inserted into your input array such that it
forms a valid namestring.

Some null values are allowed that cause defaults to be invoked.
1. A leading double blank in NAMS(l) means "any NAME".
2. A leading double blank in NAMS(4) means "any CLASS".
3. A 0.0 in NAMS(6) means "any SEQ".
4. A 0.0 in NAMS(7) means "any DISK".
5. A leading double blank in NAMS(8) means a physical type of

"MA".
6. A 0.0 in NAMS(9) means USID of NLUSER i.e. the task user. A

32,000.0 in NAMS(9) means "any USID"

A value of "SC" for the leading characters in NAMS(8) means
"scratch". In this case all the package subroutines substitute
internally (they do not alter the calling namestring) a NAME, CLASS,
and USID unique to the main task and AIPS initiator (i.e. interactive

WAWA ("EASY") I/O
NAMESTRINGS

Page 8-3
08 Nay 84

AIPS 1, 2 or BATCH AIPS 6, 7, . .*) s NANE = TSKNAMINPOPS CLASS »
'SCRTCH* USID ■ NLUSER

8.4 SUBROUTINES
The following is a list of the Wawa package of routines with a

short description of each* Detailed descriptions of the function and
call sequence of these routines can be found at the end of this
chapter.

1. IOSETn - Setup I/O for n simultaneous map files.
2. FILOPN - Open a file, particularly associated files.
3. OPENCF - Open a catalogued file.
4. FILIO - Do I/O to a non-map file.
5. MAPWIN - Set a multi-dimensional window on an open map.
6. MAPXY - Set a 2-dim window on top plane of a map.
7. MAPIO - Read or write to a map.
8. FILCLS - Close a map or non-map file.
9. FILCR - Create a non-map file.

10. MAPCR - Create a map file.
11. FILDES - Destroy either a map or non-map file.
12. UNSCR - Destroy all scratch files.
13. CLENUP - Call UNSCR and close any still open files.
14. NAPFIX

map.
- Convert a catalogued R*4 map to a catalogued 1*2

15. MAPMAX - Find MAX & MIN of an R*4 map and enter into catalog.
16. GETHDR - Retrieve catalog header for an open catalogued file.
17. HDRINF - Retrieve specified items from map header.
18. TSKBEn - Combination of IOSETn and some task startup chores.
19. TSKEND - Some task cleanup chores.

WAWA ("EASY") I/O
THINGS WAWA CAN'T DO WELL OR AT ALL

Page 8-4
0 8 Nay 84

8.5 THINGS WAWA CAN'T DO WELL OR AT ALL
There are several applications for which the wawa routines are

inadequate. The non-map I/O routines are much inferior to the
standard AIPS non-map I/O routines. Other applications such as uv
data handling and plotting are not provided for at all. History files
may be written in tasks using wawa I/O but it required digging in the
the wawa commons. The following sections suggest possible courses of
action.

8.5,1 Non-map Files.
The wawa package is not overly useful for non-map I/O at the

moment. The user will want to consult the chapter on disk I/O and the
routines EXTINI and EXTIO for more useful software.

8.5.2 UV Data Files.
No help here. See the chapter on disk I/O.

8.5.3 Plotting
The wawa package has no plotting capability. See the chapter in

this manual on plotting.

8.5.4 History
The wawa package has no capacity to copy or write into history

files. See the chapter on tasks and in particular the routines HISCOP
and HIADD. In addition, you will need to determine the catalogue slot
numbers of the relevant files from the /WAWAIO/ common variable
FILTAB(POCAT,) (file must be open to do so).

8.5.5 Nore Than 5 I/O Streams At A Time.
If a task may need to have more than 5 map or non-map I/O streams

open at the same time then serious restructuring of the wawa commons is needed. You are better off ignoring wawa I/O and using the
standard I/O described in the chapter on disk I/O.

WAWA ("EASY") I/O
THINGS WAWA CAN'T DO WELL OR AT ALL Page 8-5

08 May 84

8.5.6 I/O To Tapes.
No help here. See the chapters of disk and device I/O.

8.6 ADDITIONAL GOODIES AND "HELPFUL" HINTS
A number of features have been added to the Wawa package to

increase it usefulness. These will be discussed in the following
sections. Also on occasion the programmer will have to find some of
the things the Wawa package has hidden; a discussion of where Wawa
hides useful information is also given in the following sections.

8.6.1 Use Of LUNs
The LUN used does convey meaning. Legal values range from 9

through 30. However, values 16 through 25 convey an implication that
the file is a map file, value 9 is reserved for the TV, and values 10
through 15 may get you into trouble. Use 26 - 30 for non-maps.

8.6.2 WaWa Commons
The Wawa package hides many things in several commons.

Frequently the programmer needs to know the contents of these commons.
The following sections describe the contents of the commons.

8.6.2.1 Information Common - The primary common in the WaWa package
is obtained by the includes DITB.INC and CITB.INC. The text of these
and other relevant includes are shown at the end of this chapter. The
name of the primary Wawa I/O common is /WAWAIO/ and its contents are as follows:

WRIT R*4 'WRIT
REED R*4 'READ
CLWR R*4 'CLWR
CLRD R*4 'CLRDREST R* 4 'REST
OPEN R*4 'OPENCLOS R*4 'CLOSSRCH R*4 •SRCH
INFO R*4 'INFO
UPDT R*4 'UPDT
FINI R*4 'FINI
CSTA R*4 'CSTA
INDEF R*4 'INDE
SUBNAM(3,8) 1*2 Subroi

I/O control strings
Catalogue control strings

I/O control string
Catalogue control string
Blanked floating point pixel

MDISK, ZCLOSE, ZCREAT, ZDESTR, ZOPEN in the

WAWA ("EASY") I/O
ADDITIONAL GOODIES AND "HELPFUL" HINTS

Page 8-6
0 8 May 84

form of 2 char/word for error messages
LINT 1*2 Number integer values in one 10 buffer
LREAL 1*2 Number real values ine one 10 bufferNFIL 1*2 Number simultaneous open map files
EFIL 1*2 Size of FILTAB (5 + NFIL) - number of

simultaneous files of all types
QUACK 1*2 0 => restart AIPS at end, 1 => already done
POLUN 1*2 FILTAB pointer for LUN value (1)
POFIN 1*2 FILTAB pointer for I/O table pointer value

(2)
POVOL 1*2 FILTAB pointer for disk number value (3)
POCAT 1*2 FILTAB pointer for cat location value (4)
POIOP 1*2 FILTAB pointer for opcode number (5):

values 1 => write, 2=> read, <0 => new winPOASS 1*2 FILTAB pointer for is it associated file
(6): 1 => assoc, 0 => main file

POBPX 1*2 FILTAB pointer for bytes/pixel code (7)
PODIM 1*2 FILTAB pointer for # axes (8)
PONAX 1*2 FILTAB pointer for # points on each of 7

axes (9)
POBLC 1*2 FILTAB pointer for Bottom left corner (16)
POTRC 1*2 FILTAB pointer for Top right corner (23)
PODEP 1*2 FILTAB pointer for current depth in I/O on

axes 2 - 7 (30), Area (36) used for integer
map (input) blanking code.

POBL 1*2 FILTAB pointer for block offset start I/O
in the current plane (37)

FILTAB(3 8,EFIL) 1*2 Table to hold all the values pointed
at by the PO... pointers above: (e.g.,
the cat number is = FILTAB (POCAT, n)
where n is found by finding that
FILTAB (POLUN, n) which = desired LUN
(Only for open files!!)

8.6.2.2 Catalogue And Buffer Commons. - There are 2 other commons
which are used heavily. They are /MAPHDR/ which is a work area for
map headers containing the equivalenced arrays CAT2, CAT4, and CAT8.
The contents of this common are changed frequently by the basic WaWa
I/O routines, but it can be used, for example, to get the catalogue
header record after a call to FILOPN or OPENCF. This common may be
obtained by the includes DCAT.INC, CCAT.INC, and ECAT.INC. The other
common, called /WAWABU/, contains:

WAWA ("EASY") I/O Page 8-7
ADDITIONAL GOODIES AND "HELPFUL" HINTS 08 May 84

RMAX(IO) R*4 1-5 used by MAPIO for scale factor
RMIN(IO) R*4 1-5 used by MAPIO for offset
WBUFF(256) 1*2 scratch buffer for catalogue access
RBUF(n*2048) R*4 I/O buffers for map I/O.

The areas RMAX and RMIN for subscripts 6 through 10 could be used by a
programmer, for example, to keep track of max/min. If no map file is
currently open, RBUF is a large and useful scratch area of core.

8.6.2.3 Declaration Of Commons. - If a WaWa I/O task (or any other
task for that matter) is to be overlayed on some computers, then all
commons must be declared in the main program. For the WaWa system,
this may be done by the following list of includes:

Declarations:
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

Commons:
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

Equivalences:
INCLUDE
INCLUDE

1ZFT5.
'IBUn.
'IITB.
1IDCH.
1DHDR.
1DMSG.
1 DCAT.

INC1
INC'
INC'
INC'
INC1
INC'
INC*

'CBUF.INC1
1CITB.INC*
'CDCH.INC'
1CHDR.INC'
'CMSG.INC'
'CCAT.INC'
'EBUF.INC'
'ECAT.INC'

File table space
WaWa buffer/table sizes
WaWa I/O common
System parms
Header pointers
Messages, POPS #, ...
Catalogue header

8.6.3 Error Return Codes.
A uniform system of error code numbers has been adopted in the

WaWa I/O package. These code are consistent with the error codes used
by many I/O routines, but not with the other error codes in the
multitudinous collection of AIPS routines. They are:

WAWA ("EASY") I/O
ADDITIONAL GOODIES AND "HELPFUL" HINTS

1 => File not open
2 => Input parameter error
3 => I/O error ("other")
4 => End of file (hardware generated, see 9)
5 => Beginning of medium
6 => End of medium
7 => buffer too small
8 => Illegal data type
9 => Logical end of file (software generated, not hardware)

10 => Catalogue operation error
11 => Catalogue status error
12 => Map not in catalogue
13 => EXT file not in catalogue
14 => No room in header/catalogue
16 => Illegal window specification
17 => Illegal window specification for writing a file
21 => Create: file already exists
22 => Create: volume unavailable
23 => Create: space unavailable
24 => Create: "other"
25 => Destroy: "other"
26 => Open: "other"

Page 8-8
08 May 84

8.7 INCLUDES
There are several types of INCLUDE file which are distinguished

by the first character of their name. Different INCLUDE file types
contain different types of Fortran declaration statments as described
in the following list.

- Dxxx.INC. These INCLUDE files contain Fortran type (with
dimension) declarations.

- Cxxx.INC. These files contain Fortran COMMON statments.
- Exxx.INC. These contain Fortran EQUIVALENCE statments.
- Vxxx.INC. These contain Fortran DATA statments.
- Ixxx.INC. Similar to Dxxx.INC files in that they contain

type declarations but the declaration of some varaible is
omitted. This type of include is used in the main program to
reserve space for the omitted variable in the appropriate
common. The omitted variable must be declared and
dimensioned separately.

- Zxxx.lNC. These INCLUDE files contain declarations which may
change from one computer or installation to another.

8.7.1 IBU1.INC

WAWA ("EASY") I/O page 8-9
INCLUDES 08 May 84

c Include IBU1
REAL*4 RMAX(10)r RMIN(IO) , RBUF(2048)
INTEGER*2 WBUFF(256), IBUF(l)
INTEGER*2 FILTAB(38f6)

C End IBU1

8.7.2 IBU2.INC

C Include IBU2
REAL*4 RMAX(IO), RMIN(IO) , RBUF(4096)
INTEGER*2 WBUFF(256), IBUF(l)
INTEGER*2 FILTAB(38,7)

C End IBU2

8.7.3 IBU3.INC

c Include IBU3
REAL*4 RMAX(IO), RMIN(IO) , RBUF(6144)
INTEGER*2 WBUFF(256) f IBUF(l)
INTEGER*2 FILTAB(3 8,8)

C End IBU3

8.7.4 IBU4.INC

Include IBU4REAL*4 RMAX(IO), RMIN(IO), RBUF (8192)
INTEGER*2 WBUFF(256), IBUF(l)
INTEGER*2 FILTAB(38, 9)

End IBU4

8.7.5 IBU5.INC

Include IBU5
REAL*4 RMAX(10)r RMIN(IO) f RBUF(10240)
INTEGER*2 WBUFF(256), IBUF(l)
INTEGER*2 FILTAB(38f10)

End IBU5

WAWA ("EASY") I/O Page 8-10
INCLUDES 08 May 84

8.7.6 IITB.INC

Include IITB
REAL*4 WRIT, REED, CLWR, CLRD, REST, OPEN, CLOS, SRCH,
* INFO, UPDT, FINI, CSTA, INDEF
INTEGER*2 SUBNAM(3,8), LINT, LREAL, NFIL, EFIL, QUACK,
* POLUN, POFIN, POVOL, POCAT, POIOP, POASS, POBPX,
* PODIM, PONAX, POBLC, POTRC, PODEP, POBL

End IITB.

8.7.7 DCAT.INC

C Include DCAT
INTEGER*2 CAT2(256)
REAL*4 CAT4(128)
REAL* 8 CAT8 (6 4)

C End DCAT.

8.7.8 CBUF.INC

C Include CBUF
COMMON /WAWABU/ RMAX, RMIN, WBUFF, RBUF

C End CBUF.

8.7,9 CITB.INC

Include CITBCOMMON /WAWAIO/ WRIT, REED, CLWR, CLRD, REST, OPEN, CLOS,
* SRCH, INFO, UPDT, FINI, CSTA, INDEF, SUBNAM,
* LINT, LREAL, NFIL, EFIL, QUACK,
* POLUN, POFIN, POVOL, POCAT, POIOP, POASS, POBPX,
* PODIM, PONAX, POBLC, POTRC, PODEP, POBL, FILTAB

End CITB.

WAWA ("EASY") I/O
INCLUDES Page 8-11

08 May 84

8.7.10 CCAT.INC

COMMON /MAPHDR/ CAT2 Include CCAT
End CCAT.

8.7.11 EBUF.INC

EQUIVALENCE (RBUF(l) r IBUF(l)) Include EBUF
End EBUF.

8.7.12 ECAT.INC

EQUIVALENCE (CAT2(1), CAT4(1), CAT8(1)) Include ECAT
End ECAT.

8.7.13 ZFT5.INC

INTEGER*2 FTAB(310) Include ZFT5
End ZFT5.

WAWA ("EASY") I/O
DETAILED DESCRIPTIONS OF THE SUBROUTINES

Page 8-12
0 8 Nay 84

8.8 DETAILED DESCRIPTIONS OF THE SUBROUTINES.
8.8.1 CLENUP - Close all files opened with FILOPN. Destroy scratch
files.

CLENUP
no arguements

8.8.2 FILCLS - Close a file and clean up any I/O pending to it.
FILCLS (LUN)
Inputs:

LUN 1*2 Logical unit number

8.8.3 FILCR - Create a non-map of "file" type file associated
the catalogued file NANS, and modify catalog block accordingly.

with

FILCR (NANS, TYPE,
Inputs:

NAMS (9) R*4
TYPE R*4
NBLOCK 1*2
VER R*4

NBLOCK, VER, ERROR)
Specifies catalog slot
Extension file type (2 characters)
Number of 512-byte blocks requested
Version of newly created file

8.8.4 FILDES - Destroy a catalogued or extension file and modify
catalog appropriately.

FILDES (NANS, EXT, TYPE, VER, ERROR)
Inputs:

NAMS(9) R*4 Specifies catalog entry
EXT L*2 Is file an extension file?
TYPE R*4 IF(EXT) what is extension type? (2 char)
VER R*4 IF(EXT) what is extension version?

8.8.5 FILIO - Transfer a specified 512 byte record between an open
file associated with LUN, and the array DATA.

FILIO (OP, LUN, NREC, DATA, ERROR)
Inputs:

OP R*4 "READ" or "WRIT"
LUN 1*2 Logical unit number
NREC 1*2 record number

Inputs/Output:
DATA(256) 1*2 data area

WAWA ("EASY") I/O
DETAILED DESCRIPTIONS OP THE SUBROUTINES. Page 8-13

08 May 84

8.8.6 PILOPN - Find a catalogued or extension file in catalogue, open
file and associate it with the LUN.

FILOPN (LUN, NAMS, EXT, TYPE, VER, ERROR)
logical unit number
namestring specifying catalogue
Desired file is an extension of a catalogued
file?
if EXT is true, EXT file TYPE
if EXT is true, EXT file version number
(VER *0.0 => latest version)

Inputs:
LUN 1*2
NAMS(9) R*4
EXT L*2
TYPE C*2
VER R*4

8.8.7 GETHDR - Fetch the header block of a catalogued, open file.
GETHDR (LUN, HDR, ERROR)
Inputs:

LUN 1*2 Logical Unit. No. of an open map
Outputs:

HDR(256) 1*2 Map header of that map

8.8.8 HDRINF - Fetch a NUMBER of consecutive
header of an open map. entries from the map

HDRINF (LUN, TYPE, START, NUMBER, DATA, ERROR)
Inputs:

Logical Unit. No. of an open map
type of header information wanted
1=> 1*2? 2=> R*4? 3=> R*8 6=> Ch*8
Index of 1st item requested, in the system
specified by TYPE
Number of items requested

LUN
TYPE
START
NUMBER

Outputs:
DATA(*)

1*2
1*2
1*2
1*2
★ Receiving array; type specified by TYPE

8.8.9 IOSET1, I0SET2, IOSET3, IOSET4, And IOSET5 - These routines
initialize the I/O tables? call ZDCHIN? allocate buffer space for
map I/O to n files adequate for 2048 real or 1024 complex pixels per
line where n is the last character of the name.

IOSETn

WAWA ("EASY") I/O
DETAILED DESCRIPTIONS OF THE SUBROUTINES

Page 8-14
08 May 84

no calling arguments

8.8.10 MAPCR - Create and catalog a map-type file. Only R*4 and
complex*8 maps will be created.

MAPCR (NAMS, HDR, ERROR)
Inputs:

NAMS(9) R*4 Specified catalog entry
HDR(256) 1*2 Catalog block specifying enough

information to determine file size:
specifically # of axes and # of pixels
on each axis.

8.8.11 MAPFIX - Convert a catalogued (including scratch) R*4 map to a
catlogued 1*2 map. If MAX & MIN are filled in in the R*4 header, they
they will be used to determine scaling. If not, or if they are
incorrect and cause an overflow, a new Max and Min will be determined
and entered in header.

MAPFIX (NAMIN, NAMOUT, ERROR)
Inputs:

NAMIN(9) R*4 Input catalog string
NAMEOUT(9) R*4 Output catalog string

8.8.12 MAPIO - Transfer one line of data between core area DATA and a
disk map-type file. On READ, data are converted from 1*2 to R*4 if
necessary and are scaled using the header scaling and offset factors.
Integer "blanked" values are replaced with the R*4 value numerically
equivalent to the string "INDE".

On WRIT data output is unsealed R*4, only. When you start
writing MAX and MIN in the header will be marked as "INDE" or
indefinite. If you want an 1*2 map, you should make an R*4 scratch
map and then call MAPFIX. If Max and Min are still indefinite at this
time MAPFIX will figure them out with an extra pass through the map.
You can also set them yourself in the map (catalogued on disk) header
and save some time. You can switch from "READ" to "WRIT" at any time.

MAPIO (OP, LUN, DATA, ERROR)
Inputs:

OP R* 4 "READ" "WRIT"
LUN 1*2 Logical unit number
DATA(*) R*4 data area

WAWA ("EASY") I/O
DETAILED DESCRIPTIONS OF THE SUBROUTINES, Page 8-15

08 May 84

8.8.13 MAPMAX - Determine the maximum and minimum values of an R*4
map and enter values into map header.

MAPMAX (LUN, MAX, MIN, ERROR)
Inputs:

LUN 1*2 Logical Unit No. of an open map
Outputs:

MAX R*4 Map maximum value
MIN R*4 Map minimum value

8.8.14 MAPWIN - Select a subarray of the (up to) 7-dimensional map
array hypercube so that MAPIO (cf. above) only reads a subset of the
hypercube. If MAPWIN is not called the entire map will be delivered,
line by line, by MAPIO. If it is, the lines in the subarray will be
delivered line by line.

When WRlTing you cannot window in the x-direction (fastest
varying coordinate) because of disk addressing problems, but you can
window in the other dimensions,

MAPWIN can be called any number of times after opening a file*
even if a previous WIN has not been completely transferred,

MAPWIN (LUN, BLC, TRC, ERROR)
Inputs:

LUN 1*2 Logical unit number
BLC(7) R*4 Bottom left corner of subarray
TRC(7) R*4 Top Right Corner of subarray

8,8.15 MAPXY - Does the same as MAPWIN but assumes you only want to
talk ̂ to part or all of the top 2-dimensional plane of a possibly
multidimensional map. If WIN(l) = 0.0, you get the entire top plane.

MAPXY (LUN, WIN, ERROR)
Inputs:

LUN 1*2 Logical unit number
WIN(4) R*4 A 2-dimensional window

8,8.16 OPENCF - Same as FILOPN but restricted to catalogued files
(i.e. no associated files) to simplify call sequence.

OPENCF (LUN, NAMS, ERROR)
Inputs:

LUN 1*2 Logical unit number
NAMS(9) R*4 File namestring

WAWA ("EASY") I/O
DETAILED DESCRIPTIONS OF THE SUBROUTINES

Page 8-16
08 Hay 84

8.8.17 TSKBE1, TSKBE2, TSKBE3, TSKBE4, And TSKBE5 - For n » 1,...5
this subroutine does several task startup chores:

1. Calls IOSETn to initialize I/O
2. Calls GTPARM to get parameters
3. If DOWAIT is false , calls RELPOP

TSKBEn (PRGNAM, NPARM, RPARM, ERROR)
Inputs:

PRGNAM(3) 1*2 Name of task we are starting up
NPARM 1*2 Number of R*4 parameters we expect initiator

to pass
RPARM(*) R*4 Array to receive passed parameters

8.8.18 TSKEND - Combines some task ending chores:
1. Calls CLENUP to destroy scratch files & close other files
2. If DOWAIT was true, calls RELPOP with return code IRET

TSKEND (IRET)
Inputs:

IRET 1*2 return code back to initiator if DOWAIT is true
0 => ok, > 0 => troubles

8.8.19 UNSCR - Destroy all scratch files created by this task.
UNSCR

no arguments

CHAPTER 9
USING THE TV DISPLAY

The most useful implementations of the AIPS system include one or
more computer peripheral devices capable of displaying images with
multiple levels of gray and/or color. We refer to such devices as
TV displays since most are implemented via large binary memories and
standard television monitors. The main program AIPS and some tasks
(e.g. BLANK) use the TV display as an interactive input, as well as
display, device. Other tasks (e.g. UVMAP, MX, APCLN) use the TV
display simply to show the stages of the data processing. All use of
the TV is optional and the AIPS system will run without such a device.
The number of TV displays in the local system is parameterized (under
control of the stand alone program SETPAR) and all programs are told
which TV display (if any) is assigned to the current user.

9.1 OVERVIEW

9.1.1 Why Use (or Not Use) The TV Display?
There are numerous reasons to use the TV display in writing AIPS

routines. Gray scale images provide a more realistic view of image
data allowing the eye to integrate over noisy regions and to separate
closely spaced features. Contour images require much more elaborate
software to generate and they make unreasonably definitive assertions
about the intensity levels. The TV may be used to display
intermediate results which are never stored on disk. And the TV may
be used to interact with the user in a very wide variety of ways.
Current interactive usages include modification of the black and white
transfer function, modification of pseudo coloring, selection of
features of interest, selection of subimage corners, dynamic,
multi-image displays, and communication to the task of simple
information. The last is used primarily to tell iterative tasks that
they may stop at the current iteration.

Despite these desirable features, an AIPS programmer should not
put the TV in a task unless it is truly useful. A TV option requires
some, potentially considerable extra coding effort and, during
execution, some significant extra real and CPU time. Many TV devices
also require a high rate of I/O in order to load an image and,
especially, to interact with the user. If an algorithm is based on
the TV display, then it will not be available at those AIPS sites
which do not have one. Although TV displays can function as graphics

USING THE TV DISPLAY
OVERVIEW

Page 9-2
0 8 Nay 84

devices, many of them are very slow in that mode. Finally, tasks
which use the TV will interfere with the interactive AIPS user's other
uses of the display by replacing current images in the TV memory or
modifying the zoom, scroll, transfer functions, et al.

9.1.2 The AIPS Model Of A TV Display Device.
As AIPS was being designed, it was realized that there was

already a wide variety of TV display devices on the market and that
the market would not hold still. The NRAO initially purchased two
International Imaging Systems (IIS) Nodel 70/E displays. However,
that company changed rapidly to Nodel 70/F and now sells only a Nodel
75. Our initial choice undoubtedly colors our image of what a TV
display device does and how it does it. Nonetheless, we have
attempted to design the code to be very general and to account for the
range of options available on individual models of display and for the
range of different manufacturers.

We regard the TV display as being a computer peripheral device
which accepts the basic I/O operations of open, close, initialize,
read, and write. Special Z routines are provided in AIPS since we do
not assume that these I/O operations are identical, for all TVs and
host operating systems, to those for disks, tapes, or Fortran devices.
We assume that the TV display may be subdivided logically into a
variety of sub-units which control the various functions of the
display. Special libraries of subroutines, subdivided by model of TV
display, are provided for communicating to these sub-units. These
subroutines are called "Y routines" because all of them have names
beginning with the letter Y. The NRAO has, at this time, developed
the Y routines for IIS Nodels 70/E and 70/F. In addition, we store,
distribute, and attempt to maintain sets of Y routines developed by
other institutions for other models of displays. At the moment, we
have Y routines for DeAnza, developed by Walter Jaffe at the STScI,
and for IIS Model 75, developed by IIS.

AIPS also uses, at both the Y and non-Y programming levels, a TV
device parameter common. This common is initialized by a Y routine
(YTVCIN) and is maintained via a disk file and a stand alone program
(SETTVP). The common contains both fundamental parameters (i.e.
number of memories, display size, maximum intensity, maximum zoom,
etc.) and parameters describing the current state of the TV (i.e.
which planes are on, current zoom and scroll, etc.).

In order to provide the full functionality of the basic AIPS
verbs and tasks, a TV display device needs to contain the following
sub-units. Note, these subunits are logical devices. They may be
implemented as control registers in the device or in numerous other
fashions. It is only necessary that the Y routines impose on the
device a control that forces it to this general structure.
1. IMAGE MEMORIES: These are one or more memories n bits deep which

hold the gray-scale images to be displayed. All n bits of the
image contribute to the display. The memory is assumed to have a
fixed number of pixels on each axis and to be addressable at the

USING THE TV DISPLAY
OVERVIEW

Page 9-3
0 8 May 84

individual pixel level. The addresses are assumed to be
one-relative and to begin at the lower left of the display. The
number of bits, the dimensions of each axisr and the number of
memories are parameters inside AIPS. It is also assumed that
each memory may be turned on and off in each of the three colors
individually.

2. GRAPHICS MEMORIES: These are one or more memories each 1 bit
deep used to display graphical information such as axis labels or
line drawings on top of the gray-scale images. It is assumed
that the overlay planes have the same number of pixels on each
axis as the image memories and that each overlay plane may be
enabled or disabled individually. It is nice to be able to
assign unique colors to each of the overlay planes. AIPS will
want to use four overlay planes, but all standard programs will
work more or less normally with only one. The number of graphics
memories is a parameter.

3. CURSOR AND BUTTONS: The cursor is some form of marker which may
be enabled or disabled and which is under the positional control
of some mechanical device (e.g. trackball, joy stick, thumb
wheels). The position of the cursor on the TV screen may be read
at any time it is enabled. The "buttons" are some device to
signal conditions to the programs such as "this is the desired
position" or "time to quit". AIPS assumes that there are four
such buttons returning to the program a value between 0 and 15.
Simultaneity of more than one button is never used, however.

4. LOOK UP TABLES: These are tables of numbers which convert the
stored n-bit image intensities to the desired display
intensities. AIPS assumes that there is one n-bit in, n-bit out
look up table ("LUT") for each color of each image memory. AIPS
also assumes that there is a second set of three look-up tables,
called the output function memory ("OFM"), which converts the
sums of all enabled memories to the final displayed intensities.
In practise, AIPS uses the individual channel LUTs for black and
white enhancement (most of the time) and the OFM for pseudo-color
enhancement. There are algorithms, such as TVHUEINT, which
utilize the full capability of the two sets of look-up tables.
Arrays inside AIPS are likely to be dimensioned for 8-bit image
planes and a 10-bit OFM. (These assumptions probably should be
generalized in time.)

5. SCROLL: It is assumed that each image memory may be displayed on
the TV screen shifted along both axes by varying amounts. AIPS
assumes that each memory may be scrolled independently and that
the graphics memories may be scrolled together independent of the
image memories. The minimum increments of scroll along each axis
are parameters. Note that AIPS does not make heavy use of scroll
except for the TVROAM display and, of course, TVSCROLL.

6. SPLIT SCREEN: It is assumed that the screen may be divided into
quadrants and different image channels enabled in each quadrant.
There is a control parameter specifying the degree to which the
local TV display has this capability. AIPS currently uses split
screen primarily in the TVROAM display, but also uses it during

USING THE TV DISPLAY
OVERVIEW

Page 9-4
08 May 84

image enhancement in the channel blink routines.
7. ZOOM: AIPS assumes that the display of an image may be blown up

about any pixel by automatic pixel replication by integer powers
of two without affect on the images stored in the image memories.
The highest power of two available is a parameter. Zoom is
important to the TVMOVIE algorithm and is used in many of the
image enhancement routines.

The most important TV operations of AIPS could be implemented on
a TV device having one image memory, appropriate LUTs, and a cursor
with buttons. Additional image memories, graphics memories, an OFM,
scroll, split screen, and zoom are needed primarily for less important
aspects of the basic operations and for some interesting, but esoteric
operations.

There are several other sub-units in the IIS Model 70 which are
supported by the Y routines in that sub-library. They include an
input function memory (translates input to the TV from the host and
from the ALU), a histogram generator, a feedback arithmetic logic
unit, shift and min/max registers, and the like. Although there are
no standard routines in AIPS which use these units, there are two new
nonstandard tasks for histogram equilization which make some use of
them. The special Y routines used by these two tasks will be
described below, but they should not (yet) be required for other kinds
of TV devices - if they are even possible on them.

9.2 FUNDAMENTALS OF THE CODING
9.2.1 The Parameter Commons And Their Maintenance

All application routines must open the TV device via a call to
TVOPEN and close it via a call to TVCLOS. TVOPEN opens a disk file
called IDlOOOOn with exclusive use requested, where n is the number of
the assigned TV device. From the first record of this file, it reads
a 256-word record containing parameters which describe the structure
and current status of the assigned TV device. The parameters are
stored in a common called /TVCHAR/ which is obtained by including
DTVC.INC and CTVC.INC. TVCLOS puts back to the disk the time variable
portions of this common and then closes the file. In this way,
several users/programs may share the TV in sequence and all will know
the current status information. The disk file may be initialized and
the individual parameters set by using the stand alone program SETTVP.
The parameters are important to the correct functioning of the local
TV device and must be set and maintained carefully.

The fixed portion of /TVCHAR/, namely that portion not written by
TVCLOS, includes the parameters:

NGRAY The number of n-bit image memories.
NGRAPH The number of 1-bit graphics overlay memories.
NIMAGE The number of images which may be stored

simultaneously in a gray-scale image plane (affects
the image catalogue mostly).

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING

Page 9-5
08 May 84

MAXXTV(2)
MAXINT
SCXINC
SCYINC
MXZOOM
NTVHDR
CSIZTV(2)
GRPHIC
ALLONE
MAXXTK(2)
CSIZTK (2)
TYPSPL
TVALUS
TVXMOD
TVYMOD
TVDUMS(7)

The number of pixels in the X and Y directions*
The highest gray-scale intensity ** 2 ** n - 1.
The minimum increment in scroll in the X direction.
The minimum increment in scroll in the Y direction.
The highest power of two for zooming.
The number of integer words in the TV I/O header
(probably no longer used).
The size of characters in pixels in the X, Y
directions.
The bit pattern representing the set of graphics
overlay memories (normally -32768).
The bit pattern representing all bits on (-1) .
The number of pixels in the X, Y directions on the
TEK graphics device.
The size of characters on the TEK graphics device in
pixels in the X, Y directions.
Type of split screen: 0 none, 1 vertical division
only, 2 horizontal division only, 3 either, 4 both.
Number of TV arithmetic logic units.
Mode for loading TV in X direction: 0 none, 1 ok in

2 ok in reverse direction.
Y direction: 0 none, 1 ok in
ok in reverse direction.

AIPS order (to right),
Mode for loading TV in
AIPS order (to top), 2
Spare room

The time variable portion of the /TVCHAR/ common is:
TVZOOM(3)
TVSCRX(16)
TVSCRY(16)
TVLIMG (4)

TVSPLT (2)
TVSPLM
TVSPLC
TYPMOV(16)

YBUFF (16 8)
There is a

used elsewhere,
contains:

TVLUN
TVIND
TVLUN2
TVIND2
TVBFNO
TV MAP

Current zoom: power of two, X, Y zoom center
Current X scroll for 15 image planes and graphics.
Current Y scroll for 15 image planes and graphics.
Bit pattern for which images are on by quadrant:
quadrants are numbered CCW from top right and the
lsb is for gray plane one and NGRAY+NGRAPH bits are
used.
Current split screen position in X, Y.
10 * (number planes in X) + (number planes in Y) in
Roam mode.
Roam mode: digits imply which channels in which
order.
Movie loop code: 2 * (magnification power of two) +
8 * (number frames remaining). Add 1 if this is the
first plane of the movie.
Machine dependent parameters.
second TV include which controls I/O, but is little
It is obtained by including DTVD.INC and CTVD.INC and
LUN of open TV device.
Position of TV device in FTAB for I/O.
LUN of open TV parameter disk.
Position of parameter disk in FTAB.
Not used (map style I/O no longer supported).
Not used.

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING

Page 9-6
08 May 84

9*2.2 The I/O Routines
Four basic I/O operations for TV devices are supported: open,

close, I/O reset ("master clear"), and data transfer (read/write).
The actual Z subroutines which perform these operations are both TV
device and host operating system specific. The subroutines are stored
in the subdirectory appropriate for the host operating system with
names reflecting the TV device type. To insure that the correct Z
routines are link edited, a layer of Y routines is interposed between
these Z routines and all other non-Y AIPS routines. No non-Y
subroutine or program should call these Z routines* These Z
subroutines have names of the form ZMMMOO, where MMM is the TV model
(i.e. M70 for IIS Models 70 and 75, DEA for DeAnza) and 00 is the
type of operation (OP for open, CL for close, MC for I/O reset, and XF
for data transfer).

Note that the four Z routines may have TV device specific call
sequences. The current implementations are
Z...0P :

ZM700P (LUN, IND, IERR)
ZDEAOP (LUN, IND, IERR)

Performs the needed channel assignment and opens a
non-map entry in the FTAB. The DeAnza version also
calls ZDEAXF (*DAT ',...) to initialize the I/O.

Z...CL :
ZM70CL (LUN, IND, IERR),
ZDEACL (LUN, IND, IERR),

Performs a simple close (deassign) via a call to
ZCLOSE and clears the FTAB entry. The DeAnza version
calls ZDEAXF CDET ',...) to perform a deallocation
before calling ZCLOSE.

Z...MC :
ZM70MC (FTAB(channel)) - Vax version

Performs a "rewind" QIO operation causing the IIS to
reset its I/O status.

ZM70MC - Modcomp version
Performs a "home" I/O operation causing the IIS to
reset its I/O status.ZDEAMC
Null subroutine.

Z...XF :
ZM70XF (OPER, NBYTES, HEADER, BUFFER, IERR)

Writes an eight-word command HEADER to the IIS after
preparing the checksum word of the header. Then
reads from or writes to the IIS NBYTES of BUFFER.
Issues a master clear on error.

ZDEAXF (OPER, BUFFER, NBYTES, EP1, EP2, WAIT, IERR)
"Calls to ZDEAXF map one to one to calls to IP8 routines
in the DeAnza IP8500 level 0 software package." Does
requested I/O operation using opcode definitions
contained in IP8I0F.MAR (supplied by DeAnza, not NRAO) *

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING

Page 9-7
08 May 84

9.2.3 The Y Routines:
The Y routines may be divided into three groups which we call

levels 0 through 2. Level 0 routines do not perform I/O to the TV
device. Instead, they prepare data to be fed to lower level Y
routines and/or handle common parameters and various conversions. It
has been found that this level of Y routine often needs little
alteration from one model of TV to the next. Level 1 routines do call
Z...XF to perform I/O to the TV device. They may be called by both Y
and non-Y routines and hence must be implemented for all TV devices.
Level 2 routines also perform I/O in general, but are only called by Y
routines. Hence, these do not have to be implemented for all TV
devices. The reader should note that the division of Y routines into
these three levels is not quite so clear as the above description
would indicate. For one, some level 2 routines may have to graduate
to level 1 as new application code is developed. For another, some of
the level 0 routines are actually TV independent as coded for the IIS
Models 70 and 75. They are called Y routines simply to allow more
efficient, level 0 or 1 implementations for other TV devices.

On normal AIPS systems, the Y subroutines are stored in
subdirectories separated by type of TV device. On our Vax, the
subdirectories are [AIPS.reldate.APL.YSUB.xxx] with logical names
APLxxx: where xxx is IIS for IIS Model 70, M75 for IIS Model 7 5, and
DEA for DeAnza and where reldate is the date of the current AIPS
release. The compile procedures select the value of xxx appropriate
to the local TV device and write the object code into the link editor
library in the [AIPS.reldate.APL] area. This library is then used for
link editing all programs and tasks. The careful reader will note
that this method does not allow for more than one kind of TV device on
a given host computer. To date, we have been able to get away with
this deficiency. In the future, we may have to improve the AIPS
start-up procedure and the task activation subroutine (ZACTV8) so that
the number of the assigned TV device is used to determine from which
library the executable modules are taken.

The following sections provide a brief overview of the current Y
routines. The precursor comments of most of the Y routines are
reproduced near the end of this chapter.

9.2.3.1 Level 0

YCHRW writes characters into an image or graphics plane. The
M70 version is TV independent and uses a 7 x 9 pixel area per
character. The backround intensity is set to 1 for multi-bit
channels and 0 for graphics.
YCNECT writes a line segment in an image or graphics plane at
a specified intensity. The M70 version is TV independent.
YCUCOR converts cursor positions and obtains the
corresponding image header. It is a specialized version of
YCURSE to avoid any TV I/O and to do the image catalog work.

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING

Page 9-8
08 May 84

M70 and DeAnza versions are identical.
- YCURSE enables/disables cursor and cursor blink and reads

cursor position and buttons value. The main complications
come from corrections for zoom and scroll. The IIS Model
70/E is tricky, the Model 70/F and DeAnza are easier.

- YGRAPH enables/disables graphics overlay planes by altering
the graphics color look up tables. A non-essential nicety is
the use of complimentary colors when two or more graphics
planes are enabled at the same pixel.

- YLNCLR computes a piecewise linear OFM with gamma correction.
Called a Y routine solely because of the use of a 10-bit OFM.

- YSLECT enables/disables gray and graphics channels setting
the proper values into TVLIMG.

- YTVCIN provides initial values for the TV characteristics
commons.

- YZERO clears a gray or graphics memory by the fastest
possible method.

- YTVCLS close the TV device. Actually is just an interface to
the appropriate Z...CL subroutine.

- YTVMC reset the TV I/O status. Actually is just an interface
to the appropriate Z...MC subroutine.

- YTVOPN Open the TV device. Actually is just an interface to
the appropriate Z...OP subroutine.

9.2.3.2 Level 1

- YCRCTL reads/writes the cursor/trackball control register
including position, enable/disable on each axis, blink control.

- YIMGIO reads/writes a line of image data from/to a gary-scale
or graphics plane. It will perform buffer swaps if needed to
get the desired angle and bit-level corrections when graphics
planes are read. This is the most heavily used Y routine.

- YINIT initializes all subunits of the TV, clears the TV
memories, resets the image catalog, and resets status
parameters in common.
YLUT reads/writes the full channel-level lookup table for one
or more image channels and colors.

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING

Page 9-9
08 May 84

- YOFM reads/writes the full OFM lookup table for one or more
colors.

- YSCROL writes the scroll control registers for one or more
channels.

- YSPLIT reads/writes the split screen control registers. This
is the actual control of the split screen center and of which
channel(s) are enabled/disabled in each quadrant.

- YZOOMC writes the zoom control registers giving magnification
and zoom center.

9.2.3.3 Level 2
9.2.3.3.1 IIS Models 70 And 75

- YALUCT reads/writes the IIS arithmetic logic unit control
registers. No actual function is performed until a feedback
operation is done via YFDBCK. This routine is very IIS
specific and we doubt that its functions can be implemented
on other TVs.

- YCONST reads/writes the constant "biases" which are added to
the sums of the individual enabled channels before the
signals are sent to the OFM.

- YFDBCK causes a feedback operation to occur. The ALU does
its thing with one or more channels and returns an 8 or 16
bit result to one or two channels. A magic bit causes the
function to be a simple zeroing of a channel.

- YGGRAM reads/writes the lookup table used for graphics
planes.

- YGRAFE reads/writes the graphics control register which
assigns a graphics plane as the "blotch" plane and another as
the "status" plane. No use is made of this.

- YGYHDR prepares a basic I/O control header for
writing/reading image data to/from the IIS.

- YIFM reads/writes a portion of the input function memory.
This lookup table can be used in writing data to the TV
memory and in the feedback operation. AIPS does not do the
former and only one non-standard task does the latter.

- YMAGIC (Model 75 only) initializes graphics, zoom, and scroll
subunits (called by YINIT only).

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING

Page 9-10
0 8 May 84

- YMKHDR prepares a basic I/O control header for the IIS.
- YMNMAX reads the min and max output from the sum of all

enabled gray-scale planes for each color.
- YRHIST reads a portion of the histogram of the output of the

OFM for a selected color. The IIS can do this on the fly if
properly equipped.

- YSHIFT reads/writes the shift registers which shift the
13-bit output of the sum of all enabled channels before the
data get to the OFM.

- YSTCUR reads/writes the IIS cursor array. This 64 x 64 bit
array provides a wide choice of patterns for the display
"cursor". AIPS uses only a simple plus sign with a blank
pixel at the center.

9.2.3.3.2 DeAnza

YGGRAM reads/writes the lookup table used for the graphics
planes.
YLOWON finds lowest channel number in a channel mask.
YMKCUR creates and loads the cursor pattern memory with a
specified shape. Only the AIPS plus sign is implemented.
YTCOMP performs logical tests on parameter values. It is
used to minimize I/O to the DeAnza control registers.
YDEA.INC Include file giving parameter definitions to specify
positions in YBUFF which correspond to the various registers
in a DeAnza TV device.

USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 9-11
08 May 84

9.3 CURRENT APPLICATIONS
This section is devoted to a generally brief overview of the

current application code. Primarily it will be used simply to point
out which routines do what, with some comment on the methods. This
should suffice as an introductory guide to the code for applications
programmers wishing to include the TV display in their programs. In a
couple of cases, some of the actual code will be reproduced in order
to clarify the use of the various service routines. The precursor
remarks for some of the most commonly used, non-Y service routines are
reproduced at the end of this chapter.

9.3.1 Status Setting
By "status setting", we mean initializing the TV device, clearing

memory channels, enabling and disabling portions of the display, and
the like. Many of the applications which involve loading images to
the TV display will zero the relevant memories (via YZERO) and clear
the corresponding portions of the image catalog (via ICINIT) before
carrying out their primary functions. However, the simplest examples
of status setting are those performed by various AIPS verbs. The
subroutine AU5 performs the verbs TVINIT (via YINIT), TVCLEAR (as
follows), GRCLEAR (like TVCLEAR without the MOVIST call), TVON, TVOFF,
GRON, GROFF (via calls to YSLECT), TV3COLOR (use YSLECT to turn off
all channels, then YSLECT to turn on channels 1 through 3 in red,
green, blue, resp.), and CURBLINK (via YCURSE).

The verb TVCLEAR is coded as follows. The channel number is
picked up as an integer, the decimal code is converted to a bit
pattern (via DECBIT), the movie status parameters are reset (via
MOVIST), and then a loop over all selected gray planes is done to zero
the memory (via YZERO) and clear the image catalogue (via ICINIT).
C Open TV device

CALL TVOPEN (CATBLK, JERR)
IF (JERR.EQ.O) GO TO 50

POTERR =101
GO TO 980

ICHAN = ABS(TVCHAN) + EPS
convert to channel bit mask CALL DECBIT (NGRAY, ICHAN, ICHAN, ITEMP)
clear movie parameters

CALL MOVIST (ONCODE(2), ICHAN, NO, NO, NO, IERR)
DO 210 IP = 1,NGRAY

is plane requested
IF (IAND(ICHAN,N2**(IP-1)).EQ.0) GO TO 210

• • • •200
C

C
C

210

CALL ICINIT (IP, INBUF)
CALL YZERO (IP, JERR)
IF (JERR.NE.0) GO TO 975

CONTINUE

clear image catalogue
clear TV memory

USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 9-12
08 May 84

GO TO 900
C normal TV close
900 CALL TVCLOS (CATBLK, JERR)

GO TO 999

9.3.2 Load Images, Label
Images are loaded to the TV by a wide variety of tasks (e.g.

APCLN, TVPL, BLANK) and by several verbs (TVLOD, TVROAM, TVMOVIE)•
TVLOD will be illustrated in this subsection and the others mentioned
in later subsections.

The full code from subroutine AU5A for TVLOD, except the
declarations, formats, error branches, and the like, is reproduced
below. It begins by opening the TV control file and device (via
TVOPEN). It moves the user adverbs to local variables to avoid
changing their (global) values and opens the map file (via MAPOPN).
It converts the user's PIXRANGE adverb using standard defaults (via
RNGSET) and fills in some of the image catalogue parameters in the
header. It sets the window parameters (via TVWIND), selects a single
gray scale memory plane (via DECBIT), and clears the movie parameters
(via MOVIST). Finally, it finishes up the image catalogue parameters,
puts the header in the image catalogue, and reads, scales, and loads
the image to the TV memory (all via TVLOAD). Afterwards, it closes
the map file (via MAPCLS) and the TV device and disk file (via
TVCLOS).

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

INTEGER*2 NO, Nl, N6, N7, N12, N6176, MA
INCLUDE 'INCS:DHDR.INC'
INCLUDE 'INCS:CHDR.INC'
DATA MA /'MA'/, NO, Nl, N6
CALL TVOPEN (INBUF, IERR)
IF (IERR.NE.0) GO TO 980
IF (BRANCH.GT.2) GO TO 20

ICHAN = IROUND(TVCHAN)
IVOL = INDSK + EPS

, N7, Nl2, N6176 /0,1,6,7,12,6176/
open TV

Map open junk: TVLOD, TVROAM
adverbs -> local variables
Adverbs used:
TVCHAN = tv channel
INNAM = File name
INCLS = File class
INSEQ * File sequence number
INDSK = Disk number
USERID = User ID number
TVBLCO = TV bottom left corner
TVTRCO « TV top right corner
TVXINC = TV x pixel increment
TVYINX = TV y pixel increment
PXRANG = Range of pixel values
TVCORN = BLC on TV screen for

image

USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 9-13
08 May 84

USID = ABS(USERID) + EPS
SEQNO = INSEQ + EPS
IF (USID.EQ.O) USID = NLUSER
IF (USID.EQ.MAGIC) USID - 0
CALL CHCOPY (N12, Nl, INNAM, Nl, SNAME)
CALL CHCOPY (N6, Nl, INCLS, Nl, SCLAS)
CALL RCOPY (N7, TVBLCO, LBLC)
CALL RCOPY (N7, TVTRCO, LTRC)
INC(1) - TVXINC + EPS
INC(2) = TVYINC + EPS
IMA = MA

C open map file
CALL MAPOPN (READ, IVOL, SNAME, SCLAS, SEQNO, IMA, USID,

* DLUN, DIND, CNO, CATBLK, INBUF, IERR)
POTERR =33
IF (IERR.GT.l) GO TO 975

C CATBLK, CT4, CT8 equivalenced
C Image cat: fill in some
C set image scaling too

CALL RNGSET (PXRANG, CT4(K4DMX), CT4(K4DMN), CT8(K8BSC),
* CT8(K8BZE), CT4(I4RAN))

CATBLK(I2VOL) = IVOL
CATBLK(I2CNO) = CNO
CALL CHCOPY (N2, Nl, FUNTYP, Nl, CATBLK(I2TRA))
ITVC(l) = TVCORN(l) + EPS
ITVC(2) = TVCORN(2) + EPS
POTERR =49

C TVLOD
C load one image plane
C set windows100 TYPE = -1

CALL TVWIND (TYPE, INC, LBLC, LTRC, ICHAN, ITVC, IWIN, IERR)
IF (IERR.NE.0) GO TO 970

C convert channel number110 CALL DECBIT (NGRAY, ICHAN, ICHAN, I)
ICHAN = I
CALL DECBIT (NGRAY, ICHAN, ICHAN, I)

C clear movie parametersCALL MOVIST (OFF, ICHAN, NO, NO, NO, IERR)
C do the TV load, img catlg

CALL TVLOAD (DLUN, DIND, I, INC, ITVC, IWIN, N6176, IERR)
IF (IERR.EQ.0) POTERR = 0
GO TO 970

• • •

C Close down ops
970 CALL MAPCLS (READ, IVOL, CNO, DLUN, DIND, CATBLK, F, INBUF#* IERR)

C
97 5 CALL TVCLOS (INBUF, IERR)

The verbs TVWEDGE, IMWEDGE, and IMERASE load step wedge or pure
zero images to the TV. They occur in subroutine AU5C. This routine
calls TVFIND and possibly TVWHER to determine which image is desired.
It then computes a buffer of appropriate values calling ISCALE (as
TVLOAD does). AU5C then does a lot to set an appropriate image

USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 9-14
0 8 May 84

catalogue header and writes that to the catalogue via ICWRIT. Finally
it loads the TV rows via calls to YIMGIO.

The image labeling verbs TVLABEL and TVWLABEL are implemented
from subroutine AU5B. This routine calls TVFIND to determine which
image is to be labeled and IAXIS1 to do the labeling. Subroutines
IAXIS1 and ITICS are very similar to the standard axis labeling
routines used to make plot files and to write directly to the TEK
graphics device. Characters are written to a graphics memory with a
black background by calls to IMANOT and lines are written to the
graphics memory by calls to IMVECT. (See the precursor comments of
these routines at the end of this chapter.)

9.3.3 UVMAP
UVMAP uses the TV display for a fairly simple purpose -- to show

the pattern of sampled uv cells (after convolution of the data to the
grid). In principle, the algorithm is simple: associate uv cells
with TV pixels and display 0 on the TV when the uv cell is unsampled
(0.00) and display MAXINT on the TV when the cell is sampled (not
0.0). Unfortunately, the uv grid may be larger than the TV display
and the disk file contains the grid in transposed, quadrant-swapped
order. The first problem is solved by decimation (examine only every
n'th cell in X and m'th cell in Y. The quadrant swapping is solved by
addressing the TV beginning in the middle and by starting in the
middle of the buffer which is written to the TV. The transposition is
solved by writing the rows of the file as columns on the TV. The
subroutine in UVMAP which does this (UVDISP) uses the image writing
mode parameters (TVYMOD and TVXMOD) to handle this correctly when
possible and to leave the display in transposed order when not (i.e.
TVYMOD = 0).

9.3.4 APCLN, VM, MX, EJfc. Al.
Iterative map analysis programs can make good use of the TV

display. The user may, for example, request that the CLEAN task
(APCLN) display the residual map after each major cycle. APCLN does
this, then turns on the cursor and waits up to 15 seconds for the user
to push Button D to signify that sufficient iterations have been
performed. Several tasks (currently MX, VM, APGS, REGLR) use code
similar to that in APCLN for loading the image to the TV and
requesting the user input. Given below is the TV subroutine from
APCLN. Note that it uses the array processor to scale the data for
YIMGIO. This is reasonable, but only for tasks which are already
using the array processor for more important computations. The costs
of opening and closing the AP device and performing the I/O to it make
any improvement in computational speed marginal for computations such
as these. Note also the scaling parameters used here. The lowest
displayed intensity gets TV value 1.01 and the highest gets
MAXINT+0.99 (after the 0.5 for rounding is added and before the
integers are truncated by routine VFIX). This scaling is assumed
(primarily by CURVALUE) for all linear transfer functions. TV value

USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 9-15
08 May 84

zero is reserved for "blanked" (indefinite) pixels and should
be given zero intensity on the display (by the LUTs and OFMs)•

always

C-
C
C
C
C
C
C

SUBROUTINE DISPTV (TVPASS)

10

DISPTV displays the current residual map on the TV, showing
the region centered on BOX(l)•
Inputs: TVPASS 1*2 code: 0 ®> clear screen, else don’t

0,1 => don't question the user about
quitting

Output: TVPASS 1*2 code: 32700 => user wants to quit cleaning
INTEGER*2 TVPASS, JROW(l), WIN(4), MX(2), MY, FIND, BIND, IERR,
* ICH, CATBLK(256), S2H(256), IQ, IB, IBLANK, ZERO(2),
* ONE(2), TWO(2), THREE(2), I, FOUR(2)
INTEGER*2 IWIN(4), OIND, IY
INTEGER*2 NO, Nl, N2, N3, N4, N5, N6, N256
REAL*4 XN(4), XBUFF(l), REED, S4H(128), TD, RPOS(2), ON, OFF
REAL*4 WRIT, FINI, XFLUX, PREFIX(2), TVLMAX, TVLMIN
LOGICAL*2 MAP, EXCL, WAIT, LERR, F
REAL*8
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

S8H(64)
'INCS
'INCS
'INCS
'INCS
'INCS
'INCS
'INCS
'INCS
'INCS
'INCS
'INCS
'INCS

DCLN.INC'
DFIL.INC'
DTVC.INC*
DMSG.INC'
DHDR.INC'
DTVD.INC'
CMSG.INC'
CCLN.INC'
CFIL.INC'
CTVC.INC'
CHDR.INC'
CTVD.INC'

COMMON /MAPHDR/ CATBLK
EQUIVALENCE (JROW(l), BUFF2(1)), (BUFFl(l), XBUFF(1))
EQUIVALENCE (S2H, S4H, S8H, BUFFI(513))
DATA MAP, EXCL, WAIT / .TRUE., 2*.TRUE./
DATA WRIT, REED, FINI, ON, OFF /'WRIT','READ','FINI','ONNN',

'OFFF'/
DATA NO, Nl, N2, N3, N4, N5, N6, N256 /0,1,2,3,4,5,6,256/
DATA F, IBLANK /.FALSE., ' '/
DATA ZERO, ONE, TWO, THREE, FOUR /0,0, 1,0, 2,0, 3,0, 4,0/

ICH * 1
CALL TVOPEN (BUFFI, IERR)
IF (IERR.EQ.0) GO TO 10

ENCODE (80,1000,MSGTXT)
CALL MSGWRT (N6)
GO TO 999

open TV

IERR

IF (TVPASS.NE.0) GO TO 20
CALL YZERO (ICH, IERR)
IF (IERR.EQ.0) GO TO 15

ENCODE (80,1010,MSGTXT)
CALL MSGWRT (N6)

clear TV on 1st iteration

IERR

o n

no
no

n
USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 9-16
08 Hay 84

GO TO 998
15 CALL ICINIT (ICH, XBUFF)

set scaling parameters
try to keep previous scaling
unless real changed a lot

20 IF (TVFMAX.GT.TVFMIN) GO TO 25
TVFMAX = TVREMX
TVFMIN = TVREMN

25 IF (TVREMX.GT.TVFMAX) TVFMAX « TVREMX
IF (TVREMN.LT.TVFMIN) TVFMIN = TVREMN

Change scaling if a factor of
10 needed.

TVLMAX = TVFMAX - TVFMIN
IF (0.1*TVLMAX.LE.TVREMX-TVREMN) GO TO 30

TVFMIN * AMIN1 (0.1*TVFMIN, TVREMN)
TVFMAX = AMAX1 (TVFMIN+0.1*TVLMAX, TVREMX)
TVLMAX = TVFMAX - TVFMIN

scale from 0.51 to
MAXINT +0.49

30 XN(1) = TVFMIN
XN(2) = TVFMAX
XN(3) = (MAXINT - 0.02) / TVLMAX
XN(4) - 0.51 - TVFMIN * XN(3)
CALL APPUT (XN, ZERO, FOUR, N2)

C Write scaling info
XFLUX » TVLMAX
CALL METSCA (XFLUX, PREFIX, LERR)
TVLMIN = TVFMIN * XFLUX / TVLMAX
TVLMAX = TVFMAX * XFLUX / TVLMAX
ENCODE (80,1020,MSGTXT) TVLMIN, TVLMAX, PREFIX
CALL MSGWRT (Nl)

C center window on box 1
WIN (1) s (WINM(3,1) + WINM(1,1)) / 2 - MAXXTV(1) / 2 + 1
WIN(l) as MAX0 (Nl, WIN(l))
WIN (2) = (WINM(4,1) + WINM(2,1)) / 2 - MAXXTV(2) / 2 + 1
WIN (2) = MAX0 (Nl, WIN(2))
WIN(3) SB (WINM(3,1) + WINM(1,1)) / 2 + MAXXTV(1) / 2
WIN(3) = MIN0 (NX, WIN(3))
WIN (4) = (WINM(3,1) + WINM(1,1)) / 2 + MAXXTV(2) / 2
WIN (4) as MIN0 (NY, WIN(4))
DO 70 I = 1,2

IWIN(I) - (MAXXTV(I) - WIN(1+2) + WIN(I) + l)/2
IF (IWIN(I).GE.l) GO TO 50

IWIN (I) « 1
WIN(I) » (WIN(1+2) + WIN(I) - MAXXTV(I) + l)/2
GO TO 60

50 IWIN(1+2) = IWIN(I) + WIN(1+2) - WIN(I)
IF (IWIN(1+2).LE.MAXXTV(I)) GO TO 70

60 IWIN(1+2) = MAXXTV(I)
WIN (1+2) = WIN(I) + IWIN(1+2) - IWIN (I)

70 CONTINUE
C Prepare to read map.

CALL ZOPEN (LUNRES, FIND, RESVOL, RESFIL, MAP, EXCL, WAIT, IERR)
CALL MINIT (REED, LUNRES, FIND, NX, NY, WIN, XBUFF, BUFSZ1,
* BPRES, BORES, IERR)
MX(1) = WIN(3) - WIN(1) + 1

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 9-17

08 May 84

MX (2) - 0
MY = WIN (4) - WIN (2) + 1

c loopr passing map to TV.DO 100 I = 1,MY
IY = I + IWIN (2) - 1
CALL MDISK (REEDr LUNRES, FIND, XBUFF, BIND, IERR)
IF (IERR.NE.0) GO TO 110

C row to AP
CALL APPUT (XBUFF(BIND), FOUR, MX, N2)
CALL APWD

C clip at max, min
CALL VCLIP (FOUR, Nl, ZERO, ONE, FOUR, Nl, MX)

C scale, add constant
CALL VSMSA (FOUR, Nl, TWO, THREE, FOUR, Nl, MX)

C to integer (rounded)
CALL VFIX (FOUR, Nl, FOUR, Nl, MX)
CALL APWR

C row back to core
CALL APGET (JROW, FOUR, MX, Nl)
CALL APWD

C Send row to TV.
CALL YIMGIO (WRIT, ICH, IWIN, IY, NO, MX, JROW, IERR)
IF (IERR.NE.0) GO TO 110

100 CONTINUE
110 CALL ZCLOSE (LUNRES, FIND, IERR)
C Release the APCALL BPRLSE
C Image catalogCALL COPY (N256, CATBLK, S2H)
C depth = 1 for 2-D image

CALL FILL (N5, Nl, S2H(I2DEP))
C TV corners

CALL COPY (N4, IWIN, S2H(I2COR))
C image cornersCALL COPY (N4, WIN, S2H(I2WIN))
C scalingS2H(I2TRA) = IBLANK

S8H(K8BSC) = 1.0D0
S8H(K8BZE) = 0.0D0
S4H(I4RAN) = TVFMIN
S4H(I4RAN+1) = TVFMAX
S4H(K4DMN) = TVREMN
S4H(K4DMX) = TVREMX

C => not disk file mapS2H(I2VOL) =0
S2H(I2CNO) = 0

C write to image catalogCALL ICWRIT (ICH, IWIN, S2H, XBUFF, IERR)
IF (IERR.EQ.0) GO TO 120

ENCODE (80,1110,MSGTXT)
CALL MSGWRT (N6)

c Ask user to quit?120 IF (TVPASS.LT.2) GO TO 998
ENCODE (80,1120,MSGTXT)
CALL MSGWRT (Nl)
ENCODE (80,1121,MSGTXT)

USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 9-18
08 May 84

CALL MSGWRT (Nl)
RPOS(l) = MAXXTV(l)/2.0
RPOS(2) = MAXXTV(2)/2.0
TD = 0.2
CALL YCURSE (ONf F, F, RPOS, IQ, IB, IERR)
IF (IERR.NE.0) GO TO 998
DO 130 I = 1,75

CALL ZDELAY (TD, IERR)
CALL YCURSE (REED, F, F, RPOS, IQ, IB, IERR)
IF (IB.GT.7) GO TO 140
IF (IB.GT.O) GO TO 135
IF (IERR.NE.0) GO TO 135

130 CONTINUE
135 ENCODE (80,1135,MSGTXT)

CALL MSGWRT (Nl)
GO TO 150

140

150
998

TVPASS = 32700
ENCODE (80,1140,MSGTXT)
CALL MSGWRT (N3)
CALL YCURSE (OFF, F, F, RPOS,

CALL TVCLOS (BUFFI, IERR)

Wants to quit

Off cursor
IQ, IB, IERR)

999 RETURN
1000
1010
1020
1110
1120
1121
1135
1140

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

'CANT OPEN TV IER=',I6)
1IMCLEAR ERROR =',I6)
'TVDISP: DISPLAY RANGE =',2F8.3,IX,A4,A1,'JY')
'CAN''T UPDATE IMAGE CATALOG IER=',I6)
'HIT BUTTON D WITHIN 15 SECONDS TO STOP CLEANING NOW')
'HIT BUTTONS A, B, OR C TO CONTINUE SOONER')
'CONTINUING')
'TV BUTTON D HIT: HAVE DONE ENOUGH I GUESS')

9.3.5 Plot Files (TVPL)
Plots in AIPS are usually produced as device independent plot

files (see the chapter on plotting). The task which interprets such
files and writes on the TV display is called TVPL. It will scale line
drawings to fill the TV screen or, at the user's option, plot them at
the original pixel scaling (converted to TV pixels). Grey-scale plot
files are always done at pixel scaling. The character and vector
portions of the plot are written to one of the graphics planes (chosen
by the user) via subroutines IMVECT and IMCHAR. Grey-scale records,
if any, are written via YIMGIO to the user-specified grey-scale
memory. TVPL also updates the image catalogue as needed.

USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 9-19
08 Nay 84

9,3.6 Transfer Function Nodificationf Zooming
Subroutine AU6A carries out the verbs OFFTRAN, TVTRAN, TVLUT, and

TVNLUT which perform modifications on the black and white (or single
color) LUTs of the specified gray-scale memories, OFFTRAN simply
writes a linear, 0 through MAXINT array to the LUTs via YLUT. TVTRAN
is implemented by the subroutine IENHNS which is also used by other
verbs and tasks (e.g. TVFIDDLE, BLANK, TVMOVIE, TVBLINK)• IENHNS
allows a linear LUT with the cursor position controlling the slope and
intercept and buttons allowing a switch in the sign of the slope and a
continually updated plot of the LUT. TVLUT and TVNLUT allow the user
to plot his own LUT function on a graphics plane with the cursor and
the buttons. They both use the subroutine GRLUTS.

Subroutine AU6 implements the verbs OFFPSEUD, OFFZOOH, and
OFFSCROL to clear the OFN, the zoom setting, and the scroll(s). It
also implements interactive setting of the zoom factor and center
(verb TVZOON), of individual channel scrolls (TVSCROLL), and of the
pseudo-color OFN (TVPSEUDO). OFFPSEUD simply sends a linear OFN to
all colors via YOFM; OFFZOON sends a 0 zoom factor via YZOONC, and
OFFSCROL sends a 0 scroll via YSCROL. TVZOON makes considerable use
of YCURSE and YZOONC, while TVPSEUDO uses YCURSE and alternately
IMLCLR (RGB color triangle), INPCLR (circle in hue), and INCCLR (color
contours). AU6 also implements a much more complicated enhancement
algorithm in which one gray-scale channel is used to set the intensity
and another to set the hue. This algorithm requires the TV to have
both LUTs for each channel and an OFN for the sum of the enabled
channels. A log function is put in the LUTs and an exponential in the
OFN which carries out the required multiplication of the two signals.
Subroutines HIENH and HILUT actually carry out most of the algorithm
including interactive enhancements (via an algorithm similar to
IENHNS) and switching of the roles of the two channels.

One of the most commonly used image enhancement routines is
TVFIDL. It is called by the verb TVFIDDLE via subroutine AU6C and
task BLANK. It is a deliberately limited interactive routine designed
to provide easy to use enhancement in black and white (via IENHNS) or
pseudocolor (via INCCLR with a single type of color contour). A
simple zoom procedure is also provided. During image enhancement the
cursor position controls slope and intercept and during zoom the
cursor position controls zoom center. Button A (value 1) alternately
selects color and black and white enhancement, button B/C
increments/decrements the zoom and selects zoom mode. As in all
interactive algorithms, button D (values >= 8) terminates the
function.

The algorithm for TVSCROLL is a good example to present in detail
since the action required when the cursor moves is quite simple. The
most important thing to notice below is the routine DLINTR. This
routine tests the output of YCURSE to see if anything has changed. If
not, it delays the program by some period of time which increases
slowly as the time since the last change increases. Without this
algorithm, the tight loop on reading the TV cursor is capable of
jamming the CPU and I/O channels especially when the user does not
move the cursor.

USING THE TV DISPLAY Page 9-20
CURRENT APPLICATIONS 0 8 May 84

C open TV device
CALL TVOPEN (BUFFER, IERR)

C get start time
CALL ZTIME (ITW)
IF (IERR.EQ.0) GO TO 10

POTERR =101
GO TO 980

C TVSCROL
C user instructions
500 ENCODE (80,1500,MSGTXT)

CALL MSGWRT (Nl)
ENCODE (80,1505,MSGTXT)
CALL MSGWRT (Nl)

C find channel(s) to scroll
C scroll graphics too ?

IC = ABS(TVCHAN) + EPS
CALL DECBIT (NGRAY, IC, IC, J)
IF (ABS(GRCHAN).GT.EPS) IC = IOR (IC, GRPHIC)
IF (IC.NE.0) GO TO 505

IC = MOD (TVLIMG(1), N2**NGRAY)
IF (IC.NE.TVLIMG(1)) IC = IOR (IC, GRPHIC)

505 IX = 0
IY = 0
RPOS(l) = MAXXTV(1)/2
RPOS(2) = MAXXTV(2)/2

C turn on cursor
CALL YCURSE (ON, F, F, RPOS, QUAD, IBUT, IERR)
IF (IERR.NE.0) GO TO 900

C force scroll
510 CALL YSCROL (IC, IX, IY, T, IERR)

IF (IERR.NE.0) GO TO 900
PPOS(l) = RPOS(1)
PPOS (2) = RPOS (2)

C read until cursor moves
520 CALL YCURSE (READ, F, F, RPOS, QUAD, IBUT, IERR)

IF (IERR.NE.0) GO TO 900
C test for change

CALL DLINTR (RPOS, IBUT, F, QUAD, PPOS, ITW, DOIT)
IF (.NOT.DOIT) GO TO 520

C cursor moved, change scrollIX = RPOS(1) - MAXXTV(1)/2
IY = RPOS(2) - MAXXTV(2)/2

C any button => done
IF (IBUT.EQ.0) GO TO 510

POTERR = 0
GO TO 900

C close down
C cursor off, TV closed
900 IF (BRANCH.GE.4) CALL YCURSE (OFF, F, F, RPOS, QUAD, IBUT, JERR)
910 CALL TVCLOS (BUFFER, JERR)

USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 9-21
08 May 84

9.3.7 Object Location, Window Setting
Subroutine AU5 performs the verbs TVPOS, IMXY, IMPOS (see below),

and TVNAME (via TVFIND) as well as a variety of status setting verbs.
IMPOS is implemented as follows. It calls TVWHER to find the cursor
position indicated by the user. Then it checks all enabled memories
via ICREAD to see if there is an image displayed at that pixel
position. Finally, it calls MP2SKY to set up the coordinate commons
and get the primary positions and goes through some other messy stuff
to display the results to the user.

CALL TVOPEN (CATBLK, JERR)
IF (JERR.EQ.0) GO TO 50

POTERR =101
GO TO 980

C IMPOS
C read cursor to get position
600 CALL TVWHER (IQUAD, RPOS, IBUT, JERR)

IF (JERR.NE.0) GO TO 97 5
C image pix -> map pixel pos
625 IX = RPOS(1) + EPS

IY = RPOS(2) + EPS
C Find lowest plane with x,y

IN2 = NGRAY + NGRAPH
DO 630 IP = 1,IN2

C skip off channels
IF (IAND (TVLIMG(IQUAD), N2**(IP - N1)).EQ.0) GO TO 630

C get img cat block
CALL ICREAD (IP, IX, IY, CATBLK, IERR)

C loop if x,y not in image
IF (IERR.EQ.N1) GO TO 630
IF (IERR.EQ.0) GO TO 650
GO TO 975

630 CONTINUE
C x,y not in on image

ENCODE (80,1630,MSGTXT) IX, IY
CALL MSGWRT (N6)
GO TO 900

C image -> map positions
650 CALL IMA2MP (RPOS, RPOS)

ENCODE (80,1650,MSGTXT) RPOS
CALL MSGWRT (N5)

C map -> sky positions
66 0 CONTINUE

CALL MP2SKY (RPOS, SKYPOS)
C 3rd axis pairs w 1st or 2nd

IF ((AXTYP.EQ.2) .OR. (AXTYP.EQ.3)) CALL AXSTRN (CTYP(1,3),
* SKYPOS(3), KLOCA, NCHLAB(l), SAXLAB(1,1))

C Primary axes
C Tell user results via MSGWRT.

ENCODE (80,1660,MSGTXT)
ICH = 8
DO 665 I = 1,2

CALL AXSTRN (CTYP(1,I), SKYPOS(I), I-Nl, ILEN, RSTR)
CALL CHPACK (ILEN, RSTR, ICH, MSGTXT)

USING THE TV DISPLAY
CURRENT APPLICATIONS

ICH « ICH + ILEN
CALL CHFILL (N2r RBLANK, ICHr MSGTXT)
ICH = ICH + 2

665 CONTINUE
ILEN - 81 - ICH
CALL CHFILL (ILEN, RBLANK, ICH, MSGTXT)
CALL MSGWRT (N5)

! Secondary axes valuesIF ((NCHLAB(l).LE.O) .AND. (NCHLAB(2).LE.0)) GO TO 900
ICH = 8
DO 670 1-1,2

IF (NCHLAB(I).LE.O) GO TO 670
CALL CHPACK (NCHLAB(I), SAXLAB(1,I), ICH, MSGTXT)
ICH - ICH + NCHLAB(I)
CALL CHFILL (N2, RBLANK, ICH, MSGTXT)
ICH ■ ICH + 2

670 CONTINUE
ILEN = 81 - ICH
CALL CHFILL (ILEN, RBLANK, ICH, MSGTXT)
CALL MSGWRT (N5)
GO TO 900

C normal TV close
900 CALL TVCLOS (CATBLK, JERR)

GO TO 999
The interactive window setting verbs TVWIN, TVBOX, TVSLICE, and

REBOX are initiated from subroutine AU5C and performed primarily by
subroutine GRBOXS. This routine is another instance of interactivity
via YCURSE and line drawing via IMVECT. It uses YCUCOR at the end to
obtain the image catalogue header and thence, to correct the cursor
positions to map pixel locations.

CURVALUE is an interactive verb which displays on a TV graphics
channel the position and image value of the pixel currently under the
TV cursor. It is implemented by subroutine AU6B. The image values
are read from the original map files on disk, if possible, using
MAPOPN, MINIT, and MDISK. However, the intensities of step wedges and
temporary images (i.e. intermediate residual maps displayed by APCLN)
are read from the TV memory via YIMGIO. The routine makes extensive
use of IMCHAR and, although too long to reproduce here, is an
interesting example of AIPS image plus TV coding.

Page 9-22
08 May 84

USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 9-23
08 Nay 84

9,3.8 Blotch Setting, Use
A "blotch" is a region within an image over which some action is

to be performed. Pixels outside the blotch are ignored or have some
alternative action performed on them. At present, AIPS has two
functions which generate and use blotches: the verb TVSTAT which
returns image statistics within the blotch area and the task BLANK
which blanks out all pixels outside the blotch. In both, the user
uses the TV cursor to set the vertices of one or more polygonal areas
and the routines draw lines on a graphics plane between the vertices.
When the user is done, the routines fill in the blotch areas on the TV
graphics and then read and act on the map file. Subroutine AU6D
implements TVSTAT for whatever image is visible on the TV, obtaining
the polygons through subroutine GRPOLY. AU6D itself does the data
reading, determination of whether a pixel is inside or outside the
blotch, and the computation and display of the image statistics. Task
BLANK uses internal subroutines BLNKTV and BLKTVF to display the image
(via TVLOAD), allow transfer modification (via TVFIDL), to obtain the
polygons (BLKTVF), and to use them to blank the output image (BLNKTV).
The subroutine BLTFIL does the filling of the polygons on the TV
graphics screen for both TVSTAT and BLANK.

9.3.9 Roam
Roam is mode of display which requires multiple gray-scale

memories and the capability to do split screen and scroll. Adjacent
portions of the image are loaded into separate image memories. Then
the screen is split horizontally and/or vertically and the appropriate
memories are enabled in each quadrant each with scroll. This allows
the user to view a screen-size portion of a rather larger image. By
shifting the scroll and split point interactively, the user may select
which portion is viewed. Roam is implemented in AIPS from the
subroutine AU5A. This routine loads the image to the TV memories in a
manner similar to TVLOD (above). However, it uses TVWIND to determine
a much more complicated window and must itself play with windows
further before calling TVLOAD. The interactive portion of the Roam is
carried out by AU5A calling subroutine TVROAN. That routine can
handle images of up to 1 x 4, 4 x 1, or 2 x 2 planes and uses YCURSE
for interactive input, YSCROL to set the scroll (identical for all
planes), and YSPLIT to set the split point and enable the appropriate
channels. A zoom option is also available.

USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 9-24
0 8 May 8 4

9.3.10 Movie, Blink
The verb TVMOVIE is a very interesting algorithm implemented via

subroutines AU5D and TVMOVI. A movie is a method of displaying a
3-dimensional image as a time sequence of 2-dimensional planes. Each
gray-scale TV memory is subdivided into a 2 x 2, 4x4, or 8 x 8
matrix of images of consecutive planes of the cube. During the
display phase, the zoom factor is set to 2, 4, or 8, respectively, so
that only one plane is visible at a time. The zoom center is moved
from frame to frame at a user controlled rate to simulate a movie.
Subroutine AU5D determines which zoom factor and windows to use, zeros
the gray-scale memories, loads the planes to the TV (via TVLOAD),
transfers the LUT of the first TV memory to the other TV memories,
draws border lines around each plane (via IMVECT), annotates each
plane with the 3rd coordinate axis value, and puts a small pointer in
the image as well. TVMOVI executes an interactive alogorithm in which
the cursor controls the frame rate and the buttons allow a single
frame at a time mode and interactive enhancement of the LUTs (via
IENHNS) or the OFM (via IMCCLR)• The verb REMOVIE is also done by
AU5D and TVMOVI using the stored parameters which describe how the
movie was loaded to the TV memories (parameter TYPMOV in the /TVCHAR/
common).

The subroutines AU6A and TVBLNK implement the verbs TVBLINK and
TVMBLINK. Blinking is simply enabling one gray-scale memory for a
while, then disabling it and enabling another for a second period of
time, then disabling the second channel and re-enabling the first, and
so on. These two verbs allow manual as well as timed switching
between the two planes and transfer function modification via the
subroutine IENHNS (see above)•

9.3.11 Non-standard Tasks
There are a number of tasks in AIPS which are seriously

non-standard in their coding and in their use of various devices.
Among these are several which use the TV display. We will list them
here briefly. Programmers should not use these tasks as models of how
to code in AIPS and should not assume that they can even be made to
run on non-VMS, non-IIS systems.

- IMLHS uses up to 3 maps to create a false color image on the
TV. It uses the first map to modulate the brightness of the
image, the 2nd to modulate the hue and the 3rd to modulate
the saturation. If any of the images are omitted the
corresponding parameter is set to a constant. (Notes verb
TVHUEINT is standard and does a similar function with two
images.)
TVHLD loads up to 13-bit image to two TV memories and
performs an interactive histogram equilization of the
display. Can feed the result back to a 3rd TV memory. This
task uses YRHIST, YALUCT, YFDBCK, YIFM, and the dual-channel
mode of the IIS and will be hard to implement on TV display
devices other than the IIS.

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 9-25

08 May 84

TVHXF does an interactive histogram eguilization of the image
which is currently displayed. This task uses YRHIST which is
currently IIS specific. However, a TV-independent (but SLOW)
YRHIST can be coded is someone wishes to do the work.
TVSLV loads an image, prepared by tasks TVCUB and TVSLD, to
the TV. The image is a 3-dimensional representation of a data cube.
UVDIS attempts to take an FFT of an image and display the
complex results on the TV as intensity and color-encoded
phase.

9.4 INCLUDES
9.4.1 DTVC.INC

Include DTVC
INTEGER*2 NGRAY, NGRAPH, NIMAGE, MAXXTV(2), MAXINT, SCXINC,

SCYINC, MXZOOM, NTVHDR, CSIZTV(2), GRPHIC, ALLONE, MAXXTK(2),
CSIZTK(2), TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS(7),
TVZOOM(3) , TVSCRX(16), TVSCRYU6) , TVLIMG(4), TVSPLT(2) ,
TVSPLM, TVSPLC, TYPMOV(16), YBUFF(168)

End DTVC

9.4.2 CTVC.INC

Include CTVC
COMMON /TVCHAR/ NGRAY, NGRAPH, NIMAGE, MAXXTV, MAXINT, SCXINC,

SCYINC, MXZOOM, NTVHDR, CSIZTV, GRPHIC, ALLONE, MAXXTK,
CSIZTK, TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS, TVZOOM,
TVSCRX, TVSCRY, TVLIMG, TVSPLT, TVSPLM, TVSPLC, TYPMOV, YBUFF

End CTVC

9.4.3 DTVD.INC

INTEGER*2 TVLUN, TVIND, TVLUN2, TVIND2, TVBFNO
LOGICAL *2 TV MAP

Include DTVD

End DTVD

USING THE TV DISPLAY
INCLUDES

Page 9-26
08 May 84

9.4.4 CTVD.INC

Include CTVD
COMMON /TVDEV/ TVLUN, TVINDf TVLUN2, TVIND2, TVBFNO, TVMAP

End CTVD

9.5 Y-ROUTINE PRECURSOR REMARKS:
9.5.1 Level 0
9.5.1.1 YCHRW - writes characters into image planes of the TV. The
format is 5 by 7 with one blank all around: net 7 in X by 9 in Y This
version will work on all TVs which allow horizontal writing to the
right. It is a Y routine to allow for hardware character generators
on some TVs.

YCHRW (CHAN, X, Y, COUNT, STRING, SCRTCH, IERR)
channel select (1 to NGRAY + NGRAPH)
X position lower left corner first char.
Y position lower left corner first char,
number of characters in STRING
character string
scratch buffer (dim = 14*count+8 < 1031)
error code of Z...XF:0 - ok

2 - input error

Inputs: CHAN 1*2
X 1*2
Y 1*2
COUNT 1*2
STRING R*4

Output: SCRTCH 1*20)
IERR 1*2

9.5.1.2 YCNECT - writes a line segment on the TV. This version will
work on all TVs. It is called a Y routine to allow the use of
hardware vector generators on those TVs equiped with them.

YCNECT (XI, Yl, X2, Y2, IC, BUFFER, IERR)
Inputs: XI

Yl
X2
Y2
IC
BUFFER

1*2
1*2
1*2
1*2
1*2
1*2(512)

Output: IERR 1*2

start X position
start Y position
end X position
end Y position
Channel (1 to NGRAY+NGRAPH)
BUFFER(1 - 512) contains desired
intensity (size here for I2S)
error code : 0 => ok

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 9-27

08 May 84

9,5.1,3 YCUCOR - takes a cursor position (corrected for zoom, but not
scroll) corrects it for scroll, determines the quadrant of the TV, and
gets the corresponding image header in common /MAPHDR/ and returns the
image coordinates,

YCUCOR (RPOS, QUAD, CORN, IERR)
Inputs: RPOS R*4(2)
Output: QUAD 1*2

CORN R*4(7)
IERR 1*2

X,Y screen pos before zoom & scroll
TV quadrant to use for scrolls
Out: if in=-l, no scroll, else find
quadrant (needs real TV pos)
Image coordinates (pixels)
error code of Z..,XF : 0 - ok

2 - input error

9,5.1,4 YCURSE - reads cursor positions and controls
visibility of the TV cursor.

YCURSE (OP, WAIT, CORR, RPOS, QUAD, EVTMOD, IERR)

the blink and

Inputs: OP

WAIT
CORR

In/Out: RPOS
QUAD

Output: EVTMOD 1*2
IERR

R*4 'READ' read cursor position
*ONNN1 place cursor at RPOS & leave on
'OFFF' turn cursor off
1BLNK1 reverse sense of cursor blink

L*2 wait for event & return RPOS & EVTMOD
(done on all OPs)

L*2 T => correct RPOS for zoom & scroll
R*4(2) X,Y screen pos before zoom & scroll
1*2 TV quadrant to use for scrolls

In: if <1 >4, no scroll
Out: if in=-l, no scroll, else find
quadrant (needs real TV pos)
event # (0 none, 1-7 low buttons,
8-15 the "quit" button)

1*2 error code of Z,.,XF : 0 - ok
2 - input error

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 9-28
08 May 84

9.5.1,5 YGRAPH - is used to turn graphics overlay planes on and off
by altering the graphics color look up table. The color pattern is:

CHAN = 1 insert yellow drawing plots
2 insert green+.05 red axis labels
3 insert blue +0.6 green

+ red
blotch

4 insert black label backgrounds
5-7 add nothing null channels
8 insert purple cursor

YGRAPH (OP, CHAN, SCRTCH, IERR)
Inputs: OP

CHAN
Output: SCRTCH

IERR

R*4 'ONNN' or 'OFFF1
1*2 channel number (1 - 8)
1*2(256) scratch buffer
1*2 error code of Z...XF: 0 => ok

2 => input error

9.5.1.6 YLNCLR - computes a piecewise linear OFM and writes it to the
TV. If NEND(NPOINT) is 256 (512) then the OFM is repeated 4 (2)
times.

YLNCLR (COLOR, NPOINT, NEND, SLOPE, OFFSET, GAMMA, BUFFER, IERR)
Inputs: COLOR 1*2 color bit mask: RGB = 421

NPOINT 1*2 # of segments
NEND 1*2 end points of segments
SLOPE R*4(NPOINT) slopes of segments
OFFSET R*4(NPOINT) offsets of segments
GAMMA R*4 power applied to colors (1 /gamma)

Output: BUFFER 1*2(1024) scratch buffer
IERR 1*2 error code of Z...XF : 0 - ok

Form is C = (i-l)*SLOPE + OFFSET with 0 <= C <= 1.0.

9.5.1.7 YSLECT - enables and disables gray and graphics planes.
YSLECT (OP, CHAN, COLOR, BUFFER, IERR)

Inputs: OP R*4 'ONNN' or 'OFFF'
CHAN 1*2 channel number (1 to NGRAY+NGRAPH)
COLOR 1*2 0 - all, 1,2,3 « R,G,B, resp.

Output: BUFFER 1*2(256) scratch buffer (for graphics only)
IERR 1*2 error code of Z...XF: 0 - ok

2 - input err
YSLECT sets TVLIMG in the TV device parms common /TVDEV/

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 9-29

08 May 84

9,5,1.8 YTVCIN - initializes the common which describes the
characteristics of the interactive display devices and the common
which has the current status parameters of the TV.
NOTE: These are default values only. They are reset to the current
true values by a call to TVOPEN.
NOTE: YTVCIN resets the common values of TVZOOM and TVscroll, but
does not call the TV routines to force these to be true. A separate
call to YINIT or YZOOMC and YSCROL is needed.

YTVCIN
(no arguments)

9.5.1.9 YZERO - fills an TV memory plane with zeros the fast way.
Note: this is equivalent to YINIT, but avoids linking with all the
routines called by the main parts of YINIT.

YZERO (CHAN, IERR)
Inputs: CHAN 1*2 channel # (1 - NGRAY+NGRAPH), 0 => all
Outputs: IERR 1*2 error code of Z...XF: 0 - ok

2 - input error

9.5.1.10 YTVCLS - closes TV device associated with LUN removing any
EXCLusive use state and clears up the FTAB.

YTVCLS (LUN, IND, IERR)
Inputs: LUN logical unit number

IND pointer into FTAB
Output: IERR error code: 0 -> no error

1 -> Deaccess or Deassign error
2 -> file already closed in FTAB
3 -> both errors
4 -> erroneous LUN

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 9-30
08 May 84

9.5.1.11 YTVMC - issues a "master clear" to the TV. This resets the
TV I/O system (if necessary) to expect a command record next. YTVMC
gets all needed parameters from the TV device common. The TV must
already be open.

YTVMC
(no arguments)

9.5.1.12 YTVOPN - performs a system "OPEN" on the TV device.
Y routine in order to call the appropriate Z routine only.

YTVOPN (LUN, IND, IERR)

It is a

Inputs: LUN 1*2
Output: IND 1*2

IERR 1*2
Logical unit number to use
Pointer to FTAB entry for open device
Error code: 0 => ok
1 = LUN already in use
2 = file not found
3 * volume not found
4 = excl requested but not available
5 ■ no room for lun
6 = other open errors

9.5.2 Level 1
9.5.2.1 YCRCTL - reads/writes the cursor/trackball control register
of TV.

YCRCTL (OPf ON, X, Y, LINKX, LINKY, RBLINK, BUTTON,
* VRTRTC, IERR)

Inputs: OP R*4
VRTRTC L*2

In/Out: ON L*2
X 1*2
Y 1*2
LINKX L*2
LINKY L*2
RBLINK 1*2

Output: BUTTON 1*2
IERR 1*2

2 => input error

•READ' from TV or 'WRIT' to TV
T => do on vertical retrace only
T => cursor visible, F => off
X position cursor center (1-512, 1 => LHS)
Y position cursor center (1-512, 1 => bot)
T => trackball moves cursor in X
T => trackball moves cursor in Y
rate of cursor blink: 0-3 no-fast blink
button value (0 - 15)
error code of Z...XF : 0 «> ok

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 9-31

08 May 84

9.5.2.2 YIMGIO - reads/writes a line of image data to the TV screen.
For graphics overlay planes, the data are solely 0's and l's in the
least significant bit of IMAGE after a READ. For WRIT, all bits of
each word should be equal (i.e. all l's or all O's for graphics).
note***** on WRIT, the buffer may be altered by this routine for some IANGLs.

YIMGIO (OP, CHAN, X, Y, IANGL, NPIX, IMAGE, IERR)
Inputs: OP

CHAN
X
Y
IANGL

NPIX
In/Out: IMAGE
Output: IERR

R*4
1*2
1*2
1*2
1*2

1*2
1*2(NPIX)
1*2

'READ' from TV or 'WRIT' to TV
channel number (1 to NGRAY+NGRAPH)
start pixel position
end pixel position
■ 0 => horizontal (to right)
= 1 => vertical (up the screen)
= 2 => horizontal (to left)
= 3 => vertical (down the screen)
number of pixels
data (only no header)
error code of Z...XF - 0 => ok

2 => input err

9.5.2.3 YINIT - initializes the TV subunits: doing everything.
YINIT (SCRTCH, IERR)

Output: SCRTCH 1*2(1024) scratch buffer (can be 256 for CHAN &
1 for ZERO & REST)

IERR 1*2 error code of Z...XF - 0 => ok
2 => input error

9.5.2.4 YLUT - reads/writes full channel look up tables to TV.
YLUT (OP, CHANNL, COLOR, VRTRTC, LUT, IERR)

Inputs:

In/Out:
Out:

OP R*4 'READ' from TV, 'WRIT' to TV
CHANNL 1*2 channel select bit mask
COLOR 1*2 color select bit mask (RGB <-> 421)
VRTRTC L*2 T => do it only during vertical retrace
LUT 1*2(256) look up table (Is 9 bits used)
IERR 1*2 error code of Z...XF : 0 => ok

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 9-32
0 8 May 84

9.5.2.5 YOFM - reads/writes full OFM look up tables to TV.
YOFM (OP, COLOR, VRTRTC, OFM, IERR)

Inputs: OP
COLOR
VRTRTC

In/Out: OFM
Out: IERR

R*4
1*2
L*2
1*2(1024)
1*2

' READ' from TV, 'WRIT1 to TV
color select bit mask (RGB <-> 421)
T => do it only during vertical retrace
look up table (Is 10 bits used)

error code of Z...XF : 0 => ok

9.5.2.6 YSCROL - writes the scroll registers on the TV.
YSCROL (CHANNL, SCROLX, SCROLY, VRTRTC, IERR)

Inputs: CHANNL 1*2 bit map channel select
VRTRTC L*2 T => do it on vertical retrace only

In/Out: SCROLX 1*2 amount of X scroll (>0 to right)
SCROLY 1*2 amount of Y scroll (>0 upwards)

Output: IERR 1*2 error from Z...XF : 0 => ok
YSCROL updates the scroll variables in /TVDEV/ common

9.5.2.7 YSPLIT - reads/writes the look up table/ split screen control
registers of the TV.
Quadrants are numbered CCW from top right.

YSPLIT (OP, XSPLT ,
* VRTRTC, IERR)

Inputs: OP R*4
VRTRTC L*2

In/Out: XSPLT 1*2
YSPLT 1*2
RCHANS 1*2(4)
GCHANS 1*2(4)
BCHANS 1*2(4)

Output: IERR 1*2

'READ' from TV, 'WRIT' to TV
T => do on vertical retrace only
X position of split (1-512, 1 =>
Y position of split (1-512, 1 =>
chan select bit mask 4 quadrants
chan select bit mask 4 quadrants
chan select bit mask 4 quadrants
error code of Z...XF: 0 => ok

LHS)
bot)
: red
: green
: blue

2 => input error

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 9-33
08 May 84

9.5*2.8 YZOOMC - writes (ONLY!) the zoom control registers of the TV,
YZOOMC (MAG, XZOOM, YZOOM, VRTRTC, IERR)

Inputs: MAG
XZOOM
YZOOM

Output: IERR

1*2 0-3 for magnification 1,2,4,8 times, resp.
1*2 X center of expansion (1-512, 1 => LHS)
1*2 Y center of expansion (1-512, 1 «> bot)
1*2 error code of Z...XF: 0 -> ok

2 -> input error
YZOOMC updates the /TVDEV/ common TVZOOM parameter

9.5.3 Level 2 (Used As Level 1 In Non-standard Tasks)
9.5.3.1 YALUCT - reads / writes the TV arithmetic logic unit control
registers. The actual feedback-ALU computation is performed only upon
a call to YFDBCK.

YALUCT (OP, ARMODE, BFUNC, NFUNC, CONSTS, OUTSEL,
* EXTOFM, ESHIFT, SHIFT, CARYIN, CARRY, EQUAL, IERR)

Inputs: OP
In/Out: ARMODE

BFUNC
NFUNC
CONSTS
OUTSEL

EXTOFM
ESHIFT
SHIFT
CARYIN

Output: CARRY
EQUAL
IERR

R*4
L*2
1*2
1*2
1*2(8)1*2(8)

L*2
L*2
L*2
L*2
L*2
L*2
1*2

I READ1 from TV or 'WRIT' to TV
T => arithmetic mode F => logic mode
function number (1-16) in blotch
function number (1-16) outside blotch
constant array (may select as ALU output)
lookup table selects output based on carry
(lsb), equal, ROI (msb) input, values -
0 - 7 : constants 1 - 8
8 : accumulator channel pair
9 : selected OFM
10 : ALU
II : external
T => extend sign of OFM on input to ALU
T => extend sign of ALU output if SHIFT
T => right shift ALU output
T => add one to arithmetic results
T => carry condition occurred in frame
T => equal condition occurred in frame

0 - ok
2 - input error

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 9-34
08 May 84

9.5.3.2 YFDBCK - sends a feedback command to the TV.
YFDBCK (COLOR, CHANNL, BITPL, PIXOFF, BYPIFM, EXTERN,
* ZERO, ACCUM, ADDWRT, IERR)

Inputs: COLOR 1*2 bit map of color to be fedback (RGB = 4,2,1)
CHANNL 1*2 bit map of channels to receive feedback
BITPL 1*2 bit map of bit planes to receive feedback
PIXOFF 1*2 offset fedback image to left by 0 - 1 pixels

NOTE: I2S literature claims only 1 bit here not the three
that their software (NOT this routine) uses.
BYPIFM L*2 F => image goes thru IFM lookup before store

L*2 T => image from external input (iedigitizer)
L*2 T => feed back all zeros
L*2 T => use 16-bit accumulator mode

then CHANNL must give even-odd pair lsbyte
goes to even (lower) # channel

L*2 T => additive write F => replace old data
1*2 error code of Z...XF: 0 -> ok

2 -> input error

EXTERN
ZERO
ACCUM

ADDWRT
Outputs: IERR

9.5.3.3 YGYHDR - builds an TV header to write image data.
I/O must be done by calls to Z...XF.

The actual

YGYHDR (OP, NPIXEL, XINIT, YINIT, IANGLE, CHANNL,
* PLANES, PACKED, BYPIFM, BYTE, ADDWRT, ACCUM, VRTRTC, HEADER,
* IERR)

OP R*4
NPIXEL 1*2
XINIT 1*2
YINIT 1*2
IANGLE 1*2
CHANNL 1*2
PLANES 1*2
PACKED L*2
BYPIFM L*2
BYTE L*2
ADDWRT L*2
ACCUM L*2
VRTRTC L*2
HEADER 1*2(8)IERR 1*2

'READ* from TV or 'WRIT' to TV
number of pixel values to I/O
first pixel X coordinate (1-512, 1 -> LHS)
first pixel Y coordinate (1-512, 1 -> bot)
(0 => data I/O horizontal to right, 1 =>
up, 2 => to left, 3 => down)
channel select bit mask
bit plane select bit mask
T => 2 values/word, F => 1 value/word
F => IFM lookup applied to data (write)
T => 8 values/byte (needs XINIT = 8*n+l)
T => OR data with present memory contents
T => use 16-bit accumulator mode
T => do it only during vertical retrace
header to be sent to TV
error code of 0 => ok

2 => input error

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 9-35
08 May 84

9,5.3.4 YIFM - reads/writes a section of TV input function
This look up table takes 13 bits in and gives 8 bits out.

YIFM (OPr START, COUNT, PACK, VRTRTC, IFM, IERR)
'READ* from TV or 1WRIT' to TV
start address of IFM (1 - 8192)
elements of IFM to transfer (1-8192)
T => 2 values/word, F => 1 value/word

----- _ _ T => do it only on vertical retrace
In/Out: IFM 1*2 0) function values (0-255)

error code of Z...XF: 0 - ok
2 - input error

memory,

OP R*4
START 1*2
COUNT 1*2
PACK L*2
VRTRTC L*2
IFM 1*20)
IERR 1*2

9.5.3.5 YRHIST - reads the histogram of the output of a selected OFM
of the TV.
**** Warning: the results are 18-bit integers stored in a standard
AIPS pseudo 1*4 order (Is 16 bits in first word).

YRHIST (MODE, COLOR, INITI, NINT, HISTOG, IERR)
Inputs: MODE 1*2 selects area to histogram: 0 blotch,

1 not blotch, 2 all, 3 external bitch
COLOR 1*2 bit map of single color (RGB - 4,2,1)
INITI 1*2 first intensity to histo (1 - 1024)
NINT 1*2 # values to get

Output: HISTOG 1*2(2*NINT) histogram
IERR 1*2 error code of Z...XF : 0 => ok

2 => input err

9.5.4 Selected Applications Subroutines
9.5.4.1 TVOPEN - opens the TV, passing pointers through common
/TVDEV/.

TVOPEN (BUF, IERR)
OUTPUTS: BUF 1*2(256) Scratch buffer

IERR 1*2 Error return from ZOPEN
= 10 TV unavailable to this version

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 9-36
08 May 84

9.5.4.2 TVCLOS - closes the TV device and the TV status disk file,
updating the information on the disk.

TVCLOS (BUF, IERR)
Outputs: BUF 1*2(256) Scratch buffer

IERR 1*2 Error code : 0 => ok
else as returned by ZFIO

9.5.4.3 TVFIND - determines which of the visible TV images the user
wishes to select. If there is more than one visible image, it
requires the user to point at it with the cursor. The TV must already
be open.

TVFIND (MAXPL, TYPE, IPL, UNIQUE, CATBLK, SCRTCH,
* IERR)

Inputs: MAXPL 1*2

Output:
TYPE
IPL
UNIQUE
CATBLK
SCRTCH
IERR

1*2
1*2
L*2
1*2(256)
1*2(256)
1*2

Highest plane number allowed (i.e. do
graphics count?)
2-char image type to restrict search
Plane number found
T => only one image visible now
(all types)
Image catalog block found
Scratch buffer
Error code: 0 => ok

1 => no image
2 => I/O error in image catalog
3 => TV error

9.5.4.4 TVWIND - sets windows for normal and split screen TV loads.
TVWIND (TYPE, PXINC, BLC, TRC, ICHAN, ITVC, IWIN,
* IERR)

In/out : TYPE 1*2 In: <0 -> 1 plane, other -> split method
Out: 0 -> 1 plane, other « 10 * (#planes

in X) + (# planes in Y)
X, Y increments
User requested bot left corner
User requested top right corner
User requested TV chan (decimal form)
IN: first 2 user req. TVCORN
Out: full "pseudo-TV" corners
Window into map
error code: 0 -> ok, else fatal

Common: /MAPHDR/ CATBLK image header used extensively, the
depth array is set here

Output:

PXINC 1*2(2)
BLC R*4(7)
TRC R*4(7)
ICHAN 1*2
ITVC 1*2(4)
IWIN 1*2(4)
IERR 1*2

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 9-37
08 May 84

9.5.4.5 TVLOAD - loads a map from an already opened map file to one
TV memory plane. TVLOAD puts TV and map windows in the image header
and writes it in the image catalog. It assumes that the other parts
of the image header are already filled in (and uses them) and that the
windows are all computed.

TVLOAD (LUN, IND, IPL, PXINC, IMAWIN, WIN, BUFSZ,
* IERR)

Inputs:
LUN 1*2 Logical unit # of map fileIND 1*2 FTAB pointer for map file
IPL 1*2 Channel to load
PXINC 1*2(2) Increment in x,y between included
IMAWIN 1*2(4) TV corners: BLC x,y TRC x,y
WIN 1*2(4) Map window: ""
BUFSZ 1*2 Buffer size in bytes

Outputs
IERR 1*2 Error code: 0 => ok

Commons: /MAPHDR/ CATBLK
/IMBUF / BUFF

1 => input errors
2 => MINIT errors
3 => MDISK errors

image header
work space for I/O

9.5.4.6 TVFIDL - does an interactive run with button A selecting
alternately TVTRANSF and TVPSEUDO (color contour type 2 only), button
B incrementing the zoom and C decrementing the zoom.

TVFIDL (ICHAN, NLEVS, IERR)
Inputs: ICHAN 1*2 Selected gray-scale channel

NLEVS 1*2 Number of gray levels (usually MAXINT+1)
OUTPUT: IERR 1*2 Error code: 0 -> ok

else set by Z...XF

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS;

Page 9-38
08 May 84

9.5,4.7 IMANOT - is used to annotate an image by writing the string
into the lettering plane (usually graphics plane 2) and, if possible
writing a block of ones NEDGE pixels wider than the string into
graphics plane 4 to force a black background.

IMANOT (OP, X, Y, IANGL, CENTER, COUNT, STRING,
* SCRTCH, IERR)

Inputs: OP R*4

X 1*2
Y 1*2
IANGL 1*2
CENTER 1*2

COUNT 1*2
STRING R*4 ()

Output: SCRTCH 1*20)
IERR 1*2

9.5.4.8 IMCHAR - causes
IMCHRW.

IMCHAR (CHAN, X, Y,
* SCRTCH, :IERR)

Inputs: CHAN 1*2
X 1*2
Y 1*2
IANGL 1*2
CENTER 1*2

COUNT 1*2
STRING R*4 ()

Output: SCRTCH 1*20)IERR 1*2

1ONNN1
'OFFF'

enables the 2 graphics planes
disables the 2 planes

'INIT1 zeros and enables the 2 planes
'WRIT' writes strings to the planes
X position of string
Y position of string
0 - horizontal, 3 - vertical (DOWN)
0 - XY are lower left first character
1 - XY are center of string
2 - XY are top right of last character
number of characters in STRING
character string
scratch buffer 0256, 14*count)
error code of Z...XF ; 0 - ok

2 - input error

TV by calling

channel number (1 - NGRAY+NGRAPH)
X position of string
Y position of string
0 - horizontal (to right), 3 - vertical

(down) ONLY ones supported.
0 - XY are lower left of first character
1 - XY are center of string
2 - XY are upper right of last character
number of characters in STRING
character string to go to TV
scratch buffer (l4*count)
error code of Z...XF: 0 - ok

2 - input error

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 9-39
08 May 84

9,5.4.9 IMVECT - writes a connected sequence of line segments on a TV
channel calling YCNECT

IMVECT (OP, CHAN, COUNT, XDATA, YDATA, SCRTCH, IERR)
Inputs: OP

Output:

CHAN
COUNT
XDATA
YDATA
SCRTCH
IERR

R*4 'ONNN* line of ones (max intensity)
'OPFF1 line of zeros (min intensity)

1*2 channel number (1 to NGRAY+NGRAPH)
1*2 number of X,Y pairs (> 1)
1*2(COUNT)
1*2(COUNT)
1*2(512)
1*2 error

X coordinates XI,X2,...
Y coordinates Y1,Y2,...
scratch buffer
code of Z...XF - 0 => ok

2 => input error

9.5.4.10 IENHNS - performs an interactive linear enhancement of TV
LUTs. X cursor => intercept, Y cursor => slope, high button => quit

IENHNS (ICHAN, ICOLOR, ITYPE, RPOS, BUFFER, IERR)
Inputs:
In/Out:

ICHAN
ICOLOR
ITYPE

Output:
RPOS
BUFFER
IERR

1*2
1*2
1*2

R*4(2)
1*20768)
1*2

channel select bit mask
color select bit mask
on in: 1 => do plot, A, B switch plot

C switch sign of slope
2 => no plot, A, B returnC switch sign of slope
3 => no plot, return any button

on out - button value
Cursor position: initial -> final
scratch buffer
error code of Z...XF: 0 => ok

9.5.4.11 DLINTR - is called by interactive routines to delay the task
when nothing is happening (i.e. the user is thinking or out to
lunch.) It also prevents cursor wrap around.

DLINTR (RP, IEV, DOCOR, QUAD, PP, IT, DOIT)
Inputs: IEV 1*2 not = 0 => event has occurred

DOCOR L*2 Scroll correction parameter for YCURSE
QUAD 1*2 quadrant parameter for YCURSE

In/out: RP R*4(2) cursor position read (fixed on wraps)
PP R*4(2) previous cursor position
IT 1*2(3) time of last action

Output: DOIT L*2 T => something has happened.

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 9-40
08 May 84

9.5.4.12 RNGSET - calculates range parameters for displaying a map
using the IRANGE adverb supplied by POPS plus scaling information
derived from the map header.

RNGSET <IR, MMAX, MMIN, BSC, BZE, RANG)
INPUTS:

IR(2) R*4
MMAX R*4
MMIN R*4
BSC R*8
BZE R*8

OUTPUTS:
RANG(2) R*4

Range values specified by user
Map maximum value from header
Map minimum value
Map scaling factor from header
Map zero offset from header
Output range values calculated using

defaults and map scaling

9.5.4.13 DECBIT - translates a decimal based channel number into a
binary channel no. e.g. 1453 => 2**0 + 2**3 + 2**4 + 2**2 A maximum
of nine channels are addressable (6 at a time)

DECBIT (NMAX, ICHAN, IPL, LOW)
INPUTS:

NMAX 1*2
ICHAN 1*2

OUTPUTS:
IPL 1*2
LOW 1*2

Maximum allowed channel number
Input channel decimal number
Binary channel # pattern
Lowest of specified channels

9.5.4.14 MOVIST - sets and resets the movie status parameters in the
TV common.

MOVIST (OP, ICHAN, NPR, NFRPCH, MAG, IERR)
Inputs: OP R*4

ICHAN 1*2
NFR 1*2
NFRPCH 1*2
MAG 1*2

Output: IERR 1*2

'ONNN1 when turning on a movie
'OFFF1 when clearing channel(s)
Bit pattern of channels involved (OFFF)
Actual first channel number (1-NGRAY, ONNN)
Number of frames in movie total (ONNN)
Number of frames per TV channel (ONNN)
Magnification number (0-3, ONNN)
Error = 2 => bad input, else ok

CHAPTER 10
PLOTTING

10.1 OVERVIEW
Plotting in AIPS is usually a two step process. First a task or

a verb creates an AIPS "plot file" which consists of plot device
independant "commands" that tell a device how to draw the plot. As of
the time this chapter was written, this file is always an extension
file associated with a cataloged file. However, the plot file could
itself be a cataloged file. The second step in obtaining a plot is to
run a task to read the plot file and write it to a specific device,
such as a TV, or a hardcopy plotter. This two step method greatly
reduces the number of plot programs that must be written and
maintained. For instance, if a new graphics device is added to the
system then only one new program that reads the plot file and writes
to the new device is needed. All the other plotting programs work
with no modification. Another advantage is that a plot file may exist
for an extended period of time, thus allowing plots to be written to
different devices, and copies to be generated at later times without
duplicating the calculations needed in making the plot.

There are exceptions to the two step process. For example,
slices of map files can be plotted directly on the Tektronics 4012.
This is done to simplify matters in interactive situations such as
gaussian fitting of slices.

AIPS contains some very powerful routines for plotting in an
variety of coordinate systems in use in astronomy. The complexity of
these routines is commensuate to their power. Fortunately, a set of
plot program templates exist to provide a starting point. These
routines are described in a latter section in this chapter.

PLOTTING
PLOT PILES

Page 10-2
0 8 May 84

10.2 PLOT FILES
10.2.1 General Comments.

Plot files are a generalized representation of a graphics
display. They contain scaling information and commands for drawing
lines, pixels, and characters, and a command for putting miscellaneous
information in the image catalog. The image catalog is used by
programs that must know details about an image currently displayed on
the graphics device in order to allow user interaction with the
device. For example a program may want to read a cursor position and
translate it to the coordinate system of the image displayed on the
graphics device.

The records in plot files do not include a record length value.
This means that it is inconvenient to invent new types of records
(i.e. new opcodes) or to add new values on to the end of records of
existing types because all of the programs must be changed. On the
other hand, the rigid format definitions aided in debugging the code
several years ago and continue to assure the integrity of I/O systems
(AIPS device plotting programs refuse to proceed if they encounter an
unknown opcode). So far, the increased flexibility supplied by length
values seems not to have been absolutely required in AIPS.

The character drawing record includes neither a size value nor an
angle value. This is because character plotting capabilities are
device dependent. Orientations are either vertical or horizontal (and
not backwards) and the position offsets for plotting character strings
are specified in units of the device character size, permitting the
device plotting program to position strings nicely no matter what size
it chooses to use. It also follows that most plots produced by AIPS
have only one size of character. One AIPS application program (PROFL)
draws its own characters by using the line drawing commands in order
to plot characters with arbitrary size, orientation, and even
perspective.

10.2.2 Structure Of A Plot File
The first physical record (256 words) in the plot file contains

information about the task which created the file. It is not
logically part of the "plot file", but is there to provide
documentation of the file's origins. This record is ignored by the
programs that actually do the plotting. The primary use of this
information is by the the verb EXTLIST that lists all the plot files
associated with a cataloged file. When new types of plots are added
to AIPS, an experienced programmer should update the verb EXTLIST
(found in subroutine AU8A) to list useful things about the plot.
Otherwise the verb will print a line telling the user that he has a
plot file of type UNKNOWN. A novice AIPS programmer should leave this
code alone.

The contents of the first physical record are task-dependent and
have the form:

PLOTTING
PLOT FILES Page 10-308 May 84

FIELD TYPE DESCRIPTION
1. 1*2(3) Task name (2 chars / word)
2. 1*2(6) Date/time of file creation YYYY,MM,DDrHH,MMrSS
3. 1*2 Number of words of task parameter data
4. R*4(*) Task parameter block as transmitted from AIPS

(preferably with defaults replaced by the values used)•
The rest of the plot file contains a generalized representation

of a graphics display. This representation is in the form of scaling
information and commands for drawing lines? pixels, and characters and
a command for putting miscellaneous information in the image catalog.

The lowest level plot file I/O routines read and write 256 word
blocks. The applications programmer will be concerned with routines
that read and write logical records.

The logical records are of 6 types and vary in length. With the
exception of the 'draw pixels' record, logical records do not cross
the block boundaries. Unused space at the end of a block consists of
integer zeros. All values in the plot file are 1*2 variables or ASCII
characters. This aids in exporting plot files to other computers via
tape. Unfortunately, this also limits the values that can be stored
in the plot file, thus forcing us to use a scaling factor and offset
for some plots to prevent integer overflow. The scaling factor and
offset are not in the plot file. This causes problems for interactive
tasks that read positions from a graphics device and then try to
convert them to the original coordinates. These interactive tasks
must make do with information from the map header and data from the
"miscellaneous information" record.

Plot files have names of the format PLdsssvv, where d is the disk
volume number, sss is the Catalog slot number of the associated map,
and vv is the version number.

10.2.3 Types Of Plot File Logical Records
10.2.3.1 Initialize Plot Record. - The first logical record in a plot
file must be of this type.
FIELD TYPE DESCRIPTION
1. 1*2 Opcode (equal to 1 for this record type).
2. 1*2 User number.
3. 1*2(3) Date: yyyy, mm, dd
4. 1*2 TyP© of plot: 1 = miscellaneous

2 = contour
3 = grey scale
4 « 3D profile
5 = slice
6 = contour plus polarization lines
7 = histogram

PLOTTING
PLOT FILES

Page 10-4
08 May 84

10.2.3.2 Initialize For Line Drawing Record. - This record provides
scaling information needed for a plot. The plot consists of a 'plot
window' in which all lines are drawn and a border (defined in terms of
character size) in which labeling may be written. The second record
in a plot file must be of this type.
FIELD TYPE DESCRIPTION
1. 1*2 Opcode (equal to 2 for this record type).
2. 1*2 X Y ratio * 100. The Ratio between units on the X

axis and units on the Y axis (X / Y). For example
if the decrement between pixels in the X direction
on a map is twice the decrement in the Y direction
the X Y ratio can be set to 2 to provide proper
scaling. Some programs may ignore this field. For
example IISPL when writing grey scale plots to the
IIS.

3. 1*2 Scale factor (currently 16383 in most applications).
This number is used in scaling graph positions before
they are written to disk. BLC values in field 4 are
represented on disk by zero and TRC values are
represented by integers equal to the scale factor).

4. 1*2(4) The bottom left hand corner X and Y values and the top
right hand X and Y values respectively in the plot
window (in pixels).

5. 1*2(4) 1000 * the fractional part of a pixel allowed to occur
outside the (integer) range of BLC and TRC (field 4
above) in line drawing commands

6. 1*2(4) 10 * the number of character positions outside the
plot window on the left, bottom, right, and top
respectively

7. 1*2(5) Location of the X Y plane on axes 3,4,5,6,7. This
field is valid only for plots associated with a map.

10.2.3.3 Initialize For Grey Scale Record. - This record if needed
must follow the 'init for line drawing' record. This record allows
proper interpretation of pixels for raster type display devices.
Programs that write to line drawing type devices (e.g. the TEKTRONIX
4012) ignore this record.
FIELD TYPE DESCRIPTION
1* 1*2 Opcode (equals 3 for this record type)
2. 1*2 Lowest allowed pixel intensity.
3. 1*2 Highest allowed pixel intensity.
4. 1*2 Number of pixels on the X axis.
5. 1*2 Number of pixels on the Y axis.

10.2.3.4 Position Record. - This record tells a device where to start
drawing a line, row/column of pixels or character string.
FIELD TYPE DESCRIPTION
1* 1*2 Opcode (equals 4 for this record type).
2. 1*2 scaled x position i.e. a value of 0 represents the

PLOTTING
PLOT FILES Page 10-5

08 May 84

BLC values defined in the 'init for line drawing'
record, and a value equal to the scale factor
represents the TRC value.

3. 1*2 Scaled Y position.

10.2.3.5 Draw Vector Record. - This record tells a device to draw a
line from the current position to the final position specified by this
record.
FIELD TYPE
1 . 1*2
2. 1*2
3. 1*2

DESCRIPTION
Opcode (equals 5 for this record type)
Scaled final X position.
Scaled final Y position.

10.2.3.6 Write Character String Record. - This record tells a device
to write a character string starting at the current position.
FIELD TYPE DESCRIPTION
1. 1*2 Opcode (equals 6 for this record type).
2. 1*2 Number of characters.
3. 1*2 Angle codes 0 = write characters horizontally.

1 = write characters vertically.
4. 1*2 X offset from current position in characters * 100
5. 1*2 Y offset from current position in characters * 100

(net position refers to lower left corner of 1st char)
6. 1*2(n) ASCII characters (n = INT((field2 + 1) / 2))

10.2.3.7 Write Pixels Record. - This record tells a raster type
device to write an n-tuple of pixel values starting at the current
position. Programs that write to line drawing type devices ignore
records of this type.
FIELD TYPE DESCRIPTION
1. 1*2 Opcode (equals 7 for this record type).
2. 1*2 Number of pixel values.
3. 1*2 Angle codes 0 = write pixels horizontally.

1 = write pixels vertically (up).
4. 1*2 X offset in characters * 100.
5. 1*2 Y offset in characters * 100.
6. I*2(n) n (equal to field 2) pixel values.

10.2.3.8 Write Misc. Info To Image Catalog Record. - This record
tells the programs that write to interactive devices (TEKPL, IISPL) to
put up to 20 words of miscellaneous information in the image catalog
starting at word I2TRA + 2. This information is interpreted by
routines such as AU9A (TKSKYPOS, TKMAPPOS, ect.). Routines that
write to non-interactive graphics devices (PRTPL) ignore this record.

PLOTTING
PLOT FILES

Page 10-6
08 May 84

1. 1*2 Opcode (equals 8 for this record type).
2. 1*2 Number of words of information.
3. 1*2(n) Miscellaneous info (n=value of field 2)•

FIELD TYPE DESCRIPTION

10.2.3.9 End Of Plot Record. - This record marks the end of a plot
file.
FIELD TYPE DESCRIPTION
1. 1*2 Opcode (equals 32767 for this record type).

10.3 PLOT PARAFORM TASKS
10.3.1 Introduction

Three paraform tasks (PFPL1, PFPL2 and PFPL3) are available in
AIPS for developing plot tasks that read a map and create a plot file
to be associated with the map. These tasks use the standard AIPS
defaults for adverb values such as IMNAMEr BLC, TRC, XYRATIO,
PIXRANGE, etc., and work for both integer and floating point maps.
The programs are heavily commented and modular.

The three tasks correspond to the three types of plots that can
be found in AIPS. The first type is a plot of an X Y plane of the map
or a subimage of the map. In this case the X and Y axis of the plot
are the same as the X and Y axis of the map. Examples of this type
are produced by tasks CNTR and GREYS. A second type of plot is when
the X axis of the plot is a slice of the X and Y axis of the map and
the Y axis of the plot is some other value such as intensity. Task
SL2PL will create a plot of this type from a slice of a map. The
third type of plot is when the axis of the plot has no real relation
to the map axis. An example of this type of plot is the histogram
produced by task IMEAN.

The structure of all three paraform tasks are very similar. The
major differences are in subroutine PLINIT (the subroutine that
initializes the commons used in labeling the plot), PLLABL (this
routine does the actual labeling), and in the example plots in
subroutine PLTTOR. The adverbs received from AIPS also differ
slightly. The tasks will be discussed individually in a following
section, but first we will describe the general structure of all three
programs. The tasks perform the following steps:

1. Open a map file corresponding to the users inputs from AIPS.
2. Create an extension file of type PL (plot) to be associated

with the map file. The header of the map file will be
updated to include this new extension file.

3. Write the plot file records to draw the borders and labels of
the plot. The programmer can customize this section of the
program by changing data statements and assignment statements

PLOTTING
PLOT PARAFORM TASKS

Page 10-7
08 May 84

in the main program.
4. Write the rest of the plot file records to the plot file.

This is done by subroutine PLTTOR. The programmer will have
to modify the code in PLTTOR for his needs.

5. Do the necessary clean up functions, write end of plot
records, close all files, etc.

10.3.2 Getting Started
The first step is choosing a new name and making copies, using

the new name, of the source code file and the help file. On the Vax,
one should copy files NOTFGM:PFPLn.FOR, and HLPFILsPFPLn.HLP ("n"
stands for 1, 2 or 3) to a user directory and work with the program
there. Useful information on running a task from a user's directory,
and on compiling and linking tasks and on modifying skeleton tasks can
be found in other chapters of this manual.

When a task is renamed, some source code must be changed. The
first line of the program

PROGRAM PFPLn
and the data statement

DATA PRGNAM /'PF','PL','n '/
should be changed to use the new name. The name in the HELP file
should also be changed.

Next, the programmer should compile and link the task in his
directory and try running it from AIPS by using adverb VERSION. This
will assure the programmer that the task does work, and also
demonstrate the current output of the task.

10.3.3 Labeling The Plot
The labeling of the plot takes place in two subroutines called by

subroutine PLTTOR. PLINIT will set a number of variables in common
that give the labeling routines and the plot drawing routines
information about the corners of the plot, the types of the axes, the
type of labeling, the size of the plot borders in characters, and
other details.

Subroutine PLLABL uses the information provided by PLINIT to
actually write the commands in the plot file to draw the labels,
borders, and tic marks.

PLOTTING
PLOT PARAFORM TASKS

Page 10-8
08 May 84

The programmer can customize the labeling somewhat without
changing either PLINIT or PLLABL by setting values in an array PCODE,
and changing data statements in the main program.

Optional text can be printed at the bottom of a plot by setting
values NTEXT (number of lines of text), and TEXT (an array containing
the actual text lines)• These values are currently set in data
statements in the main program. The programmer can choose to set
NTEXT to zero to suppress all of the lines. If the programmer wishes
to use more than two lines, then the second dimension of array TEXT
must be changed in all the routines in which TEXT is declared.

See the section on the individual programs for details on setting
PCODES.

10.3.4 Plotting
Plotting consists of reading the map, collecting the data, and

then drawing lines or writing grey scale pixels. All of these steps
are usually done in subroutine PLTTOR. Reading a map is usually done
with routine GETROW (see below). Setting a starting point of a line
is usually done with routine PLPOS. Setting the end point of a line
is done with PLVEC. Grey scale pixels are written with subroutine
PLGRY.

10.3.5 Map I/O
This program does not use the Easy I/O (WaWa) package, but

instead uses the standard AIPS I/O package grouped into a few
subroutines. This approach attempts to make life a little easier by
hiding a few of the messy details, but not to eliminate the
flexibility of the standard I/O by hiding it under a complex system.
These routines use the "copy mode" approach to I/O in that data is
read into a large buffer and then copied with scaling from the large
I/O buffer to a smaller buffer when a row is needed. This is less
efficient than using the bare AIPS I/O routines but frees the
programmer from having to deal with indexes into the large array, and
handling both floating and integer maps in the upper level program.

There are four I/O routines in this program, MAKNAM (fills in a
real array with all the data items that go into specifying a map),
INTMIO (initializes the I/O routines to read or write a cataloged
map), REIMIO (initializes counters for reading a different subimage or
making another pass through a map opened by INTMIO) and GETROW (reads
a row of a map, and converts the values to floating point numbers, if
necessary). MAKNAM and INTMIO are used in straight forward ways to
open the map. The programmer can usually ignore these two routines
unless a second map must be opened. If the program must make more
than one pass through the data REIMIO can be used to reset all of the
counters. REIMIO assumes that the map is already opened in INTMIO and
that a second pass is being made through the data. This routine can
NOT be used to read different subimages from the same map at the same

PLOTTING
PLOT PARAFORM TASKS

Page 10-9
08 May 84

time. GETROW must be used (usually in subroutine PLTTOR) to read data
from the map, one row at a time.

The I/O routines in this program use a common named MAPHDR. This
name was chosen to interface with several of the plotting routines
which expect this common to have the map header as the first 256
words. Besides the map header, this common contains an array, IMSTUF,
which has several data items of interest. IMSTUF(9) is of particular
interest since it contains the number of data values (pixels) in each
row of the map. This number is usually the upper limit of a loop
which operates on each element in the map row. A description of all
the elements of IMSTUF are listed in the following table:

1. AIPS I/O Logical unit number
2. FTAB index
3. Integer (1) or real (2) flag.
4. Blanked value for integers 0=no blanking
5. Catalog slot of image.
6. Size of I/O buffer in bytes.
7. Disk volume number of image.
8. Number of dimensions in image.
9. Number of values read per row of image.
10-16. Number of values along all 7 axes
17-30. Window in BLC TRC pairs along all 7 axes.
31-36. Current position on last six axes.
37 1 if read forward -1 if backward read on 2nd axis.
Minor modifications in the I/O routines could be made to produce

routines for reading UV data, but this has not yet been done.

10.3.6 Cleaning Up
Some of the adverbs passed from AIPS may not be used for some

types of plots. The programmer can make things easier for the AIPS
user by removing them from the help file. The programmer must then
remove them from the common /INPARM/, which can be found in the main
program and in several of the subroutines. The variable NPARMS is
initialized in an assignment statement in the main program. This must
be changed to correspond to the new number of floating point numbers
received from AIPS.

PLOTTING
PLOT PARAFORM TASKS

Page 10-10
08 May 84

10,3.7 The Three Paraform Plot Tasks
10.3.7.1 PFPL1 - This task should be used when developing a plotting
task in which the X and Y axis of the plot are the same as the X and Y
axis of the map.

Much of the labeling is controlled by values of array PCODE. The
values for the elements of PCODE are summarized in the following
table.
If PCODES(1) equals

1 then the plot axis consists of an unlabeled
rectangular border.

2 then draw a rectangular border plus
the title and text at the bottom.

3 then draw a rectangular border, labels,
and border tick marks
indicating absolute coordinates (r.a., decl., etc.).

4 then draw a rectangular border, labels, and border tick marks
indicating coordinates relative to the coordinates
of the image reference pixel (units usually in
arc seconds).

5 draw border, labels, and border tick marks
indicating coordinates relative to the center of
the subimage plotted (units usually in arc seconds).

6 draw border, labels, and border tick marks
indicating image pixel numbers.

If PCODES(2) equals
0 then label the X axis with the X axis value found in the

map header.
other then label the X axis using variable XUNIT which is set in

a data statement in the main program.
If PCODES(3) equals

0 then label the Y axis with the Y axis value found in the
map header.

other then label the Y axis using variable YUNIT which is set in
a data statement in the main program.

If PCODES(4) equals
0 then use the "standard" title consisting of map name,

source name, and frequency.

PLOTTING
PLOT PARAFORM TASKS

Page 10-11
08 May 84

other then use the title given in data statement for
variable TITLE in the main program.

If PCODES(5) equals
0 then no grey scale pixels are to be written for the

plot.
other then grey scale pixels with a range given by PIXRNG

(these values are usually passed from AIPS in adverb
PIXRANGE) can be written to the plot. This code value
causes an 'init for grey scale' record to be written
to the plot file.

Usually a task will let the AIPS user choose the value of
PCODES(1) by setting adverb LTYPEr e.g., PCODES(l) is set to LTYPE
after the task gets this adverb value from AIPS.

When using PLPOS and PLVEC the positions for this type of plot
are given in pixels.

The unmodified version of PFPL1 contains code in PLTTOR to read
the map, and draw a grey scale plot. The user should remove this
example found between comment lines "** Plot specific code" and "**
End plot specific code" and insert the code for his own application.

10.3.7.2 PFPL2 - This task should be used when developing a plotting
task in which the X axis of the plot is a slice of some plane of the
map, and the Y axis is some other value such as intensity. The PCODE
usage is described below.
PCODES(1) equals

The label type of the X axis. The codes are the same
as for PFPLl.

If PCODES(2) equals
0 then label the X axis with the units determined by the

"standard" slice labeling algorithm.
other then label the X axis using variable XUNIT which is set in

a data statement in the main program.
If PCODES(3) equals

0 then label the Y axis with the units found in the
map header for the map intensity.

other then label the Y axis using variable YUNIT which is set in
a data statement in the main program.

PLOTTING
PLOT PARAFORM TASKS

Page 10-12
08 May 84

If PCODES(4) equals
0 then use the "standard" title consisting of map namer

source name, and frequency.
other then use the title given in data statement for

variable TITLE in the main program.
If PCODES(5) equals

0 then use the "standard" slice message at the bottom of
the plot. This message will give the center of the slice.
This message occurs above the message found in TEXT
as described above.

other then do not print the "standard slice message"

The example program in PFPL2 will plot a slice of the X Y plane.
The user should remove the example found between comment lines "**
Plot specific code" and "** End plot specific code" and insert the
code for his own application. This example uses no interpolation (it
uses the value of the nearest pixel) and is NOT adequate for a
production program. See the code in task SLICE for a good set of
interpolation routines and a "rolling buffer" scheme.

10.3.7.3 PFPL3 - This task should be used when developing a plotting
task in which the X and Y axis have no relation to the map X and Y
axis. The plot could be of a function, a histogram of some values, or
a table.

The only PCODES value used are PCODES(4) and PCODES(5). If
PCODES(4) is 0 then the program plots the "standard" title line.
Otherwise, it uses whatever string is in variable TITLE. If PCODES(5)
is not zero then this signals the existence of grey scale pixels. The
program automatically uses whatever strings are in variables XUNIT and
YUNIT to label the units for X and Y. Thus, the programmer will have
to edit the data statements for these variables in the main program,
or fill them in by some other means.

The example program in the unmodified version of PFPL3 will plot
a simple histogram of map intensities. The subroutine PLTTOR reads
the map to determine the histogram values and the range of the Y axis
(number of pixels). Then the standard initializing routine (PLINIT)
and labeling routine (PLLABL) are called. Finally the histogram is
plotted. The programmer must remove the two sections of example code
found between two sets of comment lines "** Plot specific code" and
"** End plot specific code" and insert the code for his own
application.

PLOTTING
PLOT PARAFORM TASKS Page 10-1308 May 84

10.3.8 Routines
10.3.8.1 PLEND - Do some plotting cleanup functions. Write "end of
plot" record, close plot file, check for vectors that were off the
plot.

PLEND (IOBLK, ISTAT)
In/Outs
IOBLK 1*2(256) Work I/O buffer
ISTAT 1*2 0=successful completion, other=dies unnaturally.

10.3.8.2 PLPOS - This routine will put a 'position vector' command in
an AIPS plot file.

PLPOS (X, Y, IERR)
Inputs:
X R*4 X value.
Y R*4 Y value.
COMMON /PLTCOM/

Output:
IERR 1*2 Error code. 0 means OK.

10.3.8.3 PLVEC - This routine will put a 'draw vector' command in an
AIPS plot file.

PLVEC (X, Y, IERR)
Inputs:
X R*4 X value.
Y R*4 Y value.
COMMON /PLTCOM/

Output:
IERR 1*2 Error code. 0 means OK.

10.3.8.4 PLMAKE - This routine will create and open a plot file, put
it in the map header and write the first record into the plot file.

PLMAKE (NP, RPARM, IERR)
Inputs:
NP 1*2 Number of floating point words in parameter list

received from AIPS.
RPARM R*4(NP) AIPS parameters.

Output:
IERR 1*2 Error code, two digit, first digit indi

cates subroutine: 1: MAPOPN, 2: MADDEX,
3: ZPHFIL, 4: GINIT, second digit indi
cates error code of that subroutine.

PLOTTING
PLOT PARAFORM TASKS

Page 10-14
0 8 May 8 4

10.3.8.5 PLGRY - This routine will put draw grey scale commands
the plot file.

PLGRY (IANGLE, NVAL, VALUES, IERR)
Inputs:

m

IANGLE 1*2 Angle code. 0 = horizontal, 1 = vertical.
NVAL 1*2 The number of grey scale pixel values.
VALUES R*4(?) Grey scale values.

Output:
IERR 1*2 Error code. 0=ok.

10.3.8.6 MAKNAM - This routine will construct a WaWa I/O name
given the values that make up the thing.

MAKNAM (INAME, INCLAS, SEQ, VOL, TYPE, USER, NAMSTR)
Inputs:
INAME R*4 (3) file name
INCLAS R* 4(2) file class
SEQ R*4 file sequence number.
VOL R*4 file disk volume.
TYPE R*4 file type.
USER R*4 file user number.

Output:
NAMSTR R*4(9) "Name string" in the tradition of WaWa I/O.

NAME(1:3) name, NAME(4:5) class, NAME(6) seq,
NAME(7) volume, NAME(8) type, NAME(9) user.

10.3.8.7 INTMIO - This routine will open a map file, set values in
common for use with close down routine DIE and set up two arrays
containing all the values and counters needed by reading and writing
routines compatible with this one.

INTMIO (ILUN, ACCESS, NAME, BLC, TRC, IBSIZE, IHD, IMSTUF, DSCAL, IERR)
Inputs:
ILUN
ACCESS
NAME

1*2
R*4
R*4(9)

Logical unit number to use for the map file.
READ' or 'WRITE' status to mark catalog.
"Name string" in the tradition of WaWa I/O.
NAME(1:3) name, NAME(4:5) class, NAME(6) seq,
NAME(7) volume, NAME(8) type, NAME(9) user.
Bottom left corner of map.
Top right corner of map
Size of I/O buffer in INTEGER*2 values.

BLC R* 4(7)
TRC R*4(7)
IBSIZE 1*2

Outputs:
COMMON /CFILES/ Values updated so that subroutine DIE will

close this file.
IHD 1*2(256) Map header.
IMSTUF 1*2(37) I/O pointers and stuff that are needed by other

I/O routines compatible with this one. They are:
1. LUN
2. FTAB index
3. integer (1) or real (2) flag.
4. Blanked value for integers 0=no blanking.

PLOTTING
PLOT PARAFORM TASKS Page 10-15

08 May 84

5. Catalog slot of image.
6. Size of I/O buffer in bytes of all things.
7. Volume number of image.
8. Number of dimensions in image.
9. Number of values read per row of image.
10-16. Number of values along all 7 axis
17-30. Window in BLC TRC pairs along all 7 axis.
31-36. Current position on last six axis.
37 1 if read fwd -1 is backwrd read on 2nd axis.

DSCAL R*8(2) Scale factors to use with this image.
IERR 1*2 Error code. 0=ok.

10.3.8.8 REIMIO - This routine will reinitialize the counters in
IMSTUF for reading another subimage of a map opened and set up with
INTMIO. All IMSTUF values that can be found in the header are
re-initialized even if they are not changed by the standard routines.

REIMIO (BLC, TRC, IBSIZE, IHD, IMSTUF, DSCAL, IERR)
Inputs:

R*4(7) Bottom left corner of map.
R*4(7) Top right corner of map
1*2 Size of I/O buffer in INTEGER*2 values.
I*2(256)Map header.

BLC
TRC
IBSIZE
IHD
IMSTUF(1) 1*2
IMSTUF(2) 1*2
IMSTUF(7) 1*2
IMSTUF(5) 1*2
IMSTUF(6) 1*2

Outputs:
IMSTUF(3) 1*2
IMSTUF(4) 1*2
IMSTUF (8) 1*2
IMSTUF(9) 1*2
IMSTUF(10-16)
IMSTUF(17-30)
IMSTUF(31-36)
IMSTUF(37) 1*2
DSCAL R*8(2)
IERR 1*2

LUN
FTAB index
Volume number of image.
Catalog slot of image.
Size of I/O buffer in bytes of all things.
Integer (1) or real (2) flag.
Blanked value for integers 0=no blanking.
Number of dimensions in image.
Number of values read per row of image.
Number of values along all 7 axis
Window in BLC TRC pairs along all 7 axis.
Current position on last six axis.
1 if read fwd -1 is bckwrd read on 2nd axis.
Scale factors to use with this image.
Error code. 0=ok.

10.3.8.9 GETROW - This routine will read a row of an image file that
has been opened with and initialized with INTMIO. The routine will
copy the row from the I/O buffer to the user buffer, converting
integer values to floating point, if necessary.

GETROW (IMSTUF, DSCAL, IOBLK, ROW, EOF, IERR)
Inputs:
IMSTUF 1*2(37) I/O pointers, LUNs, counters and such. They are

set in INTMIO.
DSCAL R*8(2) Actual value = DSCAL(1) * disk value + DSCAL(2)

In/Out:
IOBLK 1*2 (?) I/O buffer.

PLOTTING
PLOT PARAFORM TASKS

Page 10-16
08 May 84

Outputs:
ROW R*4(?)
EOF L*2
IERR 1*2

Scaled output row of image.
TRUE means last row specified in INTMIO by the
BLC, TRC arguments has been read.
Error code, 0=ok, others from MDISK.

CHAPTER 11
USING THE ARRAY PROCESSORS

11.1 OVERVIEW
Many of the more important of the AIPS tasks do a great deal of

computation while the cpu of the host computer of most AIPS systems is
rather slow. In order to make AIPS tasks on these computers run at
intresting speeds we use hardware arithmetic units called Array
Processors. These array processors (or APs) have their own memory and
high speed, pipelined arithmetic hardware enabling them to run much
faster than the host for certain specialized operations. Since not
all computers running AIPS will have array processors attached there
is a library of Fortran routines which emulate the functions of the
array processor; these routines and a common in the host memory
constitute the "pseudo-array processor". This chapter will describe
the use AIPS makes of array processors and explain how to use APs. At
the end of this chapter is a list of the major AP routines with
detailed comments on the call sequence.

11.1.1 Why Use The Array Processor?
The principle reason for using an array processor is speed. The

design of most array processors optimizes its performance for
repetitive arithmetic operations making it mush faster at vector
arithmetic than the host CPU. Since most APs operate asynchronously
from the host CPU they constitute a co-processor which increases the
capacity of the system.

A second advantage of using an array processor is that it
contains its local memory. On systems with limited physical memory or
address space this can be an important consideration. It will be
possible in the near future to get array processors with many
megawords of local memory. Such large memories will allow the use of
more efficient methods of processing data.

USING THE ARRAY PROCESSORS Page 11-2OVERVIEW 08 May 84

11,1.2 When To Use And Not To Use The AP.
The array processor is most efficient at very repetitive

operations such as doing FFTs and multiplying large vectors. Its
efficiency is greatly degraded for non-repetitive operations or
operations requiring a great number of decisions based on the results
of computations. In fact, some array processors have very limited
capability to make decisions based on the results of computations.

Since the APs have their own program and data memory, the AP
instructions and the data must be transfered to and the results
transfered from the AP. These I/O operations may cost more cpu time
than the amount saved by using the array processor.

As a general rule, use of the AP is more efficient than the CPU
when multiple or complex (such as FFTs) operations which are highly
reptitious are going to be done on relatively large amounts of data
(thousands of words or more). In other cases using the AP will
probably not help much and will keep other processes from using this
valuable resource.

11.2 THE AIPS MODEL OF AN ARRAY PROCESSOR
The model of an array processor used is colored strongly by our

use of Floating Point Systems FPS AP-120B array processors. However,
expressed in general terms, this model can be emulated on other real
or virtual (pseudo) array processors. It should be noted that use of
the APs requires vectorized programming, hence, implementation on
super computers or other vector machines should be relatively
efficient. The following describes the fundamental features of the
AIPS model of array processors.

- AIPS currently uses APs essentially as vector arithmetic
units. That is, data is sent into the AP, some (usually
vector) operation is done, and the reults is returned to the
host CPU. The principle difficulty in the implementation of
AIPS on other array or vector processors is that our concept
of a vector operation is rather more general than that of
most computing hardware manufactures. Many of the more
complex of the AIPS operations are better described as
pipelined scalar operations. In the AIPS useage, most high
level control and use of disk storage is done in the host CPU
and only arithmetic operations are done in the AP.

- AIPS considers the AP to be a device which can be assigned
via BPINIT and deassigned via BPRLSE. Basically, this means
that data will not dissappear from the task’s assigned AP
data memory.

- An AP should have a relatively large local data memory. The
size of the AP data memory is obtained from a common set by
ZDCHIN which reads it from a disk file. The value in this
disk file can be modified by the AIPS utility program SETPAR.
In the case of pseudo (virtual) AP's, this memory is

USING THE ARRAY PROCESSORS
THE AIPS MODEL OF AN ARRAY PROCESSOR

Page 11-3
08 Nay 84

physically in the host CPU. A similar implementation could
be done for an AP with significantly less capacity than an
FPS AP-120B.
In addition to data memory, the AP is assumed to have an
array of 16 integer registers (SPAD) which can be read from
the host CPU. These are used to communicate the addresses of
maxima, minima, etc. This capability is not extensively
used.

- AIPS assums that the array processor is programmable in that
functions are used which are not now or likely ever to be in
a standard library. If the AP is not programmable or is
otherwise incapable of emulating one of the AIPS functions,
then these functions must be performed in the host CPU and
hidden from the AIPS routines.

- Communication with the AP by AIPS is via Fortran call
statements which specify the data in the AP memory and other
control information, transfer data between the AP and host
CPU, or synchronize the operation of the AP and host CPU.

- Data in the AP memory is specified by a base address and an
increment. In current implementations these addresses are
absolute but this is not assumed. The calling process is
assumed to have absolute control over an address space
beginning at address 0 and extending to the address indicated
in the device characteristic common (include CDCH.INC) as
(1024KAPWRD). Word addressing only is used.

- Many of the most crucial functions used by AIPS routines
depend on data dependent address generation and logic flow.
As mentioned above, implementation of AIPS on an array
processor without this capability is possible but much of its
speed will be lost.

- AIPS assumes that the AP can handle either integer or real
data values (with the same word size)• Complex values
consist of a pair of real values in adjacent locations, the
first being the real part and the second being the imaginary
part.

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR Page 11-408 Nay 84

11.3 HOW TO USE THE ARRAY PROCESSOR
Since the array processors used by AIPS have their own program

and data memories the instructions must be loaded in to the AP and
data sent to, and results returned from the AP, Since the AP runs
asynchronously from the host cpu there most also be ways to
synchronize the operations. Then general operations are given in the
following list with the name of the subroutine AIPS uses for the given
operation (we use the Floating Point Systems conventions):

1. Assign / Initialize the AP. (BPINIT)
2. Transfer data to the AP. (APPUT)
3. Wait for transfer to complete. (APWD, APWAIT)
4. Load and execute the AP program. (many)
5. Wait for computations to finish. (APWR, APWAIT)
6. Transfer data back to host cpu. (APGET)
7. Wait for transfer to complete. (APWD, APWAIT)
8. Release AP, (BPRLSE)

11.3.1 AP Data Addresses
The AIPS convention for specifying data in the AP memory, which

follows the Floating Point Systems (FPS) conventions, is to specify
data by the zero relative memory address of the first element in an
array, the memory address increment between the elements of an array,
and the number of elements in the array. On FPS APs the memory
address is an absolute address but in implementations on other APs the
address may be a relative address but this should be hidden from the
programmer.

11.3.1.1 Pseudo 1*4 Addresses - The FPS array processors require
unsigned 16 bit addresses and the address space is limited to 64
kwords. To accomodate both the FPS requirements and to allow for
future implementation of APs with larger memory size all arguments to
AP routines (except BPINIT and the host array names in APPUT and
APGET) are pseudo 1*4. Thus, addresses up to 31 bits are allowed and
the first integer of the pseudo 1*4 array is an unsigned short
integer. The AIPS utility routines for pseudo 1*4 numbers are ZR8P4
which converts between REAL*8 and pseudo 1*4 and ZNATH4 which does
pseudo 1*4 arithmetic. The call sequences for these routines are
given at the end of this chapter.

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR

Page 11-5
08 May 84

11.3.1.2 Array Processor Memory Size - Since different array
processors will have different memory sizes the memory size of the AP
is carried in the Device Characteristics Common which is obtained by
the includes DDCH.INC and CDCH.INC. The size of the AP is in the 1*2
value KAPWRD as the multiple of 1024 words of AP data memory. Any
operation with the AP should check that enough data memory is
available and if possible scale the operation to make full use of the
available memory.

11.3.2 Assigning The AP
The array processor is assigned to the calling task using the

AIPS routine BPINIT. BPINIT incorporates the AIPS priority system and
provides for smooth use of the AP for batch tasks. The AIPS AP
priority scheme is to give tasks with lower Pops numbers (the number
at the end of the task name when it is running) higher priority. This
is done by keeping a list of AP tasks in BPINIT. When a task asks for
an AP, BPINIT then checks to see if any AP tasks with a lower pops
number are running; if so then BPINIT suspends the task for a short
period and then checks again. The number of times a task goes through
the check - suspend loop before asking for the AP at the next
opportunity is proportional to its Pops number.

BPINIT also sets values in common /BPROLC/ (includes DBPR.INC and
CBPR.INC) which control the AP roller subroutine BPROLL. The text of
these includes is shown at the end of this chapter and the use of the
values are described in the detailed description of BPROLL given at
the end of this chapter.

On some systems batch AIPS tasks present more of a problem. AIPS
batch tasks are usually run at lower priority than interactive tasks
so they may grab the AP and then not get enough cpu cycles to finish
that AP operation for a very long time. To avoid this problem, BPINIT
increases the priority of the batch task to that of an interactive
task while it has the AP.

BPRLSE is used to deassign the AP. BPRLSE also lowers the
priority of batch tasks after the AP is released.

In the interests of a smooth and friendly system for users it is
important not to hog the AP for long periods of time. The priority
system should then work to give lower Pops numbered AIPS users a
larger fraction of the time if they need the AP. A task should in
general not keep the AP tied up for more than 5 to 10 minutes at a
time, less if that is practical. For tasks which may need to keep the
same data in the AP for long periods of time, such as tasks which
compute models based on CLEAN components, there is an AP roller
subroutine BPROLL.

BPROLL determines if it is time to roll out the AP based on
values set by BPINIT, will create a scratch file (using the /CFILES/
system), copy the specified contents of the AP memory to a scratch
file, release the AP, wait a short period of time, re-assign the AP
and load the previous contents back into the AP memory. Details of

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR Page 11-6

0 8 Nay 84

the call sequence to BPROLL are found at the end of this chapter.
INPORTANT NOTE: BPROLL (and APROLL) work properly only for floating
point data. Integer values rolled will not be restored correctly.

11.3.3 Data Transfers To And From The AP.
The fundamental routines for getting data to and from the Array

Processor memory are APPUT and APGET; details of the call sequences
can be found at the end of this chapter. In addition, for image-like
data there is the routine APIO.

APIO transfers image-like data between disk files and the array
processor. The file open and close and initialization logic are all
contained in this routine. Information about the file and the the
desired properties of the I/O are passed to APIO in the array FLIST.
APIO can access either catalogued 'NA' type files or scratch files
using the /CFILES/ common system. APIO can handle arbitrary row
lengths. This is done by breaking up the logical records if they are
larger than 16384 bytes or the buffer size.

NOTE: it is important that data read with APIO either have a
logical record length of 16384 bytes or less or have been written by
APIO with the same buffer size; this may be a problem for catalogued
files if the row length is greater that 4096 for real format data or
8192 for scaled integers. The problem is that APIO will break up
logical records if they are longer than 16384 bytes or the buffer size
and NDISK may leave blank space on the disk if the shorter logical
record does not fill a disk sector. For this reason it is good to use
a buffer size of 16384 bytes or greater when reading or writing
catalogued files with APIO. It is INPORTANT to always use the same
size buffer when accessing a given file.

Useage notes for APIO:
1 . Opening the. f i l e .

If APIO determines that the file is not open it will do
so. The file can be either a catalogued file or a scratch
file using the /CFILES/ common system. If the catalogue slot
number given in FLIST is 0 or less the file is assumed to be
a scratch file. File open assumes that the file type is 'NA*
(if catalogued), file is opened patiently without exclusive use.

2. Initialization.
APIO initializes the I/O using the values in FLIST when

it opens the file. It may be initialized again at any time
using OPCODE 'INIT'. Also switching between 'READ' and
|WRIT' will force flushing the buffer ('WRIT*) and
initialization. Any initialization when the current
operation is 'WRIT1 will cause the buffer to be flushed.

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR

Page 11-7
08 May 84

3. C loging the.

The file may be closed with a call with opcode 'CLOS1*
If the file is being written and a 'CLOS1 call is issued,
APIO will flush the buffer. This means that if APIO is being
used to write to a disk it MUST be called with
OPCODE='CLOS','READ', or 'INIT' to flush the buffer. NOTE:
All pending AP operations MUST be complete before calling
APIO with opcode 'CLOS'.

4. &£ Lim ing c a lls ..

APIO calls APWD before getting data from or sending data
to the AP but does not call APWR. The calling routine should
call APWR as appropriate.

More details about the call arguments are found at the end of this
chapter and an example of the use of APIO is given in a later section.

11.3.4 Loading And Executing AP Programs.
Loading and executing AP programs is done in a single call to the

relevant routine. The call argument also includes the specification
of the data, location of the output array, and any processing flags.
A list of the AP routines currently supported in AIPS is found at the
end of this chapter. If the function desired is not available then it
is possible to write it for the AP.

11.3.5 Timing Calls
Since array processors normally run asynchronously from the host

CPU timing calls are necessary. The subroutine calls basically
suspend the operation of the calling program until the specified AP
operation is completed. FPS claims that data transfers and
computations (not involving the same AP memory) may be overlapped;
however, the results of doing this are erratic and this practice
should be avoided. On occasion there appear to be timing problems
whose symptoms are erratic and very wrong results which go away when
apparently unnecessary timing calls are added; such as calls to APWR
between calls to computation routines.

We use three (FPS) timing calls:
- APWD suspends the calling program until data transfers to or

from the AP are complete.
- APWR suspends the calling program until the AP completes all

computations.
- APWAIT suspends the calling program until all data transfers

and computations are complete.

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR Page 11-808 May 84

11.3.6 Writing AP Routines.
If the current library of AP routines does not contain the

desired function there are two possibilities for coding the function:
1) microcoding the routine or 2) using the Vector Functor Chainer (or
equivalent on non-FPS APs) to combine existing functions to create the
desired function. If either of these is chosen the programmer should
also write the corresponding pseudo-AP routines if the task is likely
to have general use.

In order to use microcode or Vector Function Chainer (VFC)
routines the following steps must be performed:

1. Compile VFC (or other high level language routines) to
assembly (microcode) language. For FPS code this is done by
the FPS routine VFC.

2. Assemble microcode into machine code. For FPS code this is
done using APAL.

3. Link edit microcode routines together to make an executable
module. For FPS code this is done using APLINK. APLINK
creates a Fortran or host assembly language routine with the
executable module in a data statment.

4. Compile/assemble the Fortran/assembly language module and put
in the appropriate subroutine link edit library.

It is beyond the scope of this manual to describe the use of the FPS
or other AP software, the reader is referred to the appropriate manual
provided by the AP vendor.

11.3.6.1 Microcoding Routines. - It is beyond the scope of this
manual to give details about microcoding for array processors, see the
AP manuals for these details. The general principles of efficient
microcoding are that several of the hardware units, address
computation, floating add, floating multiply, and memory access, may
be given instructions in a given cycle. In addition, the floating
point hardware is pipelined. That is, even though it takes several
cycles for an operation, it is broken up into several, single cycle
steps and a new operation can be initiated each cycle.

This architecture allows for very efficient loops. The loop may
be broken into several sections and one section from each of several
passes through the loop may be processed in parallel. Efficient
coding of loops may become very complicated but careful coding may
speed up the process by a factor of several. The source code for NRAO
written microcode is kept in the file FPSSUB:WDC.AP.

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR

Page 11-9
08 Nay 84

11.3.6.2 Vector Function Chainer. - The principle purpose of the
Vector Function Chainer is to combine a number of microcoded routines
into a single AP call. This can greatly reduce the overhead of the
host cpu talking to the AP; and, if the individual AP operations are
relatively numerous and short chaining routines can make a dramatic
improvement in the speed of the overall process.

The Vector Function Chainer uses source code that looks vaguely
like Fortran but has very limited capabilities and essentially no
access to the data memory. Hopefully, in the future there will be
efficient Fortran compilers for APs. (FPS has such a compiler for the
120B but NRAO doesn't have a copy).

11.3.7 FFTs
One of the more common operations using the array processor is

the Fast Fourier Transform (FFT). We have adopted the FPS convention
for real-to-complex FFTs in packing the imaginary part of the last
complex value into the real part of the first value in the array.
This is allowed because the imaginary part of the first value and the
real part of the last value are always zero. This convention allows
the use of the same AP memory or disk space for the input and output
arrays from a real-to-complex FFT.

We also adopt the convention for FFTs that the second half of a
one dimensional array come first and that the center is N/2+1 where N
is the number of elements in the array (always a power of two). In
two dimensions this means basically that the center of the array is at
the corners with the first element of an NX x NY array being
(NX/2+1,NY/2+1). An exception to this is that the AIPS two
dimensional FFT routine DSKFFT expects the normal order when
transforming from the sky plane to the aperature plane (reverse transform).

The AIPS utility routine DSKFFT will FFT a two dimensional array
kept in a /CFILES/ system scratch file. Real-to-complex,
complex-to-real, or full complex transforms can be done in either
direction. For real-to-complex or complex-to-real transforms the
maximum and minimum values in the output array and real-to-complex
transforms can return either complex, the real part of the result, or
the amplitude of the result. Details of the call sequence for DSKFFT
are given at the end of this chapter.

The FFT routines require REAL format data without blanking in an
array which is a power of two on a side. In addition, the center of
an image in a catalogued file may not be in the required
(NX/2+1,NY/2+1) position which will produce a phase ramp in the
transformed array. Two AIPS utility routines are useful in this case
1) PEAKFN which finds the location of the peak of an image near the
center (say of a dirty beam) and 2) PLNGET which will subimage a
catalogued file, float scaled integer input, zero fill the excess, and
rotate the center of the image. Detailed descriptions of these
routines are given at the end of this chapter.

USING THE ARRAY PROCESSORS
PSEUDO-ARRAY PROCESSOR Page 11-100 8 May 84

11.4 PSEUDO-ARRAY PROCESSOR
Since not all systems have array processors and many AIPS systems

are running on VAXes which have very large address spaces and virtual
memory, there is a set of Fortran and assembly language routines which
emulate the functions of an array processor, ie. the "pseudo-array
processor". The pseudo-AP consists of a Common, obtained by the
INCLUDES DAPC.INC, CAPC.INC, and EAPC.INC, which serves as the AP data
memory and a set of routines which operate on data in this common.
There are pseudo-AP routines duplicating all of the functions of the
true array processor so that a task is simple linked with the
appropriate library to use either a true or the pseudo-AP. Listings
of the pseudo-AP includes appear at the end of this chapter.

Since pseudo-AP routines need to address "memory" locations with
addresses larger than 32767 true INTEGER*4 values are used in the
pseudo-AP routines. The AIPS conversion routine ZP4I4 converts from
pseudo 1*4 to true 1*4; details of the call sequence to ZP4I4 are
given at the end of this chapter. In addition, since Fortran required
one relative indexing whereas the AP addressing is zero relative,
pseudo AP routines must add 1 to addresses.

11.5 EXAMPLE OF THE USE OF THE AP
In the following example of the use of the array processor, the

elements of two scratch files containing arrays N x M using the
/CFILES/ system (numbers ISCRA and ISCRB) are added and returned to
the file ISCRC. This makes very inefficient use of the AP but
illustrates the basic features. This example also illustrates use of
APIO

c_—

•

SUBROUTINE FILADD (ISCRA
C FILADD adds two REAL N x M
C ISCRA and ISCRB and writes
C Inputs:
c ISCRA 1*2 /CFILES/ i
c ISCRB 1*2 /CFILES/ i
c ISCRC 1*2 /CFILES/ i
c N 1*2 Length of
c M 1*2 Number of
c Output:
c IRET 1*2 Return er:
c code.

INTEGER*2 N, M, APLOCA(2), APLOCB(2), APLOCC(2), INCR,
* FLIST(22,3), TWO(2), LEN(2), PLUS, KAP, LOOP, IRET,
* ISCRA, ISCRB, ISCRC,
* NO, N22
REAL * 4 BUFFI(4096), BUFF2(4096), BUFF3(4096), READ, WRITE, CLOSE
INCLUDE 'INCS:DDCH.INC'
INCLUDE 1INCS:CDCH.INC'
DATA READ, WRITE, CLOSE, PLUS /'READ','WRIT',1C L O S P L 1/
DATA NO, N22 /0,22/, TWO /2,0/

u
u

USING THE ARRAY PROCESSORS
EXAMPLE OF THE USE OF THE AP

Page 11-11
08 May 84

Setup for APIOCALL FILL (N22, NO, FLIST)
C Pixel type ■ floating

FLIST(4,1) = 0
C Size of array

FLIST(5,1) = N
FLIST(6,1) - M

C Buffer size (4096 reals)
FLIST(13,1) = 4096 * 2 * NWDPFP

C Copy for other files
CALL COPY (N22, FLIST(1,1), FLIST(1,2))
CALL COPY (N22, FLIST(1,1), FLIST(1,3))

C Set LUNs
FLIST (1,1) = 16
FLIST (1,2) = 17
FLIST(1,3) - 18
FLIST(2,1) = ISCRA
FLIST(2,2) - ISCRB
FLIST(2,3) - ISCRC

Set /CFILES/ file numbers

Set AP pointers,
APLOCA(l) = 0
APLOCA (2) - 0
LEN(l) - N
LEN (2) = 0

C Address for B file
CALL ZMATH4 (APLOCA, PLUS, LEN, APLOCB)

C Address for C file
CALL ZMATH4 (APLOCB, PLUS, LEN, APLOCC)

C Increment = 1
INCR(l) = 1
INCR (2) = 0

C Grab AP
CALL BPINIT (NO, NO, KAP)

C Start loop.
DO 100 LOOP = 1, M

C File A to AP
CALL APIO (READ, FLIST(1,1), APLOCA, BUFFI, IRET)

C Check for error
IF (IRET.NE.0) GO TO 999

C File B to AP
CALL APIO (READ, FLIST(1,2), APLOCB, BUFF2, IRET)

C Check for error
IF (IRET.NE.0) GO TO 999

C Wait for data transfer CALL APWD
C Add

CALL VADD (APLOCA, INCR, APLOCB, INCR, APLOCC, INCR, LEN)
C Wait for opertaion to finish CALL APWR
C Write result to disk,

CALL APIO (WRITE, FLIST(1,3), APLOCC, BUFF3, IRET)
C Check for error

IF (IRET.NE.0) GO TO 999

USING THE ARRAY PROCESSORS Paqe 11-12EXAMPLE OF THE USE OF THE AP 08 May 84

100 CONTINUE
C Release the AP

CALL BPRLSE
C Close files,

CALL APIO (CLOSE, FLISTd,1), APLOCA, BUFFI, IRET)
C Check for error

IF (IRET.NE.0) GO TO 999
CALL APIO (CLOSE, FLIST(1,2), APLOCB, BUFF2, IRET)

C Check for error
IF (IRET.NE.O) GO TO 999
CALL APIO (CLOSE, FLISTd,3) , APLOCC, BUFF3, IRET)

999 RETURN
END

USING THE ARRAY PROCESSORS
INCLUDES Page 11-13

08 May 84

11.6 INCLUDES
There are several types of INCLUDE file which are distinguished

by the first character of their name. Different INCLUDE file types
contain different types of Fortran declaration statments as described
in the following list.

- Dxxx.INC. These INCLUDE files contain Fortran type (with
dimension) declarations.

- Cxxx.INC. These files contain Fortran COMMON statments.
- Exxx.INC. These contain Fortran EQUIVALENCE statments.
- Vxxx.INC. These contain Fortran DATA statments.

Ixxx.INC. Similar to Dxxx.INC files in that they contain
type declarations but the declaration of some varaible is
omitted. This type of include is used in the main program to
reserve space for the omitted variable in the appropriate
common. The omitted variable must be declared and
dimensioned separately.
Zxxx.INC. These INCLUDE files contain declarations which may
change from one computer or installation to another.

11.6.1 CAPC.INC

Include CAPCCOMMON /APFAKE/ RWORK, APCORE
COMMON /SPF/ SPAD

End CAPC

11.6.2 CBPR.INC

c Include CBPRCOMMON /BPROLC/ XTLAST, DELTIM, DELAY, TRUEAP
c End CBPR

USING THE ARRAY PROCESSORSINCLUDES

11.6.3 CDCD.INC

C Include CDCH
COMMON /DCHCOM/ NVOL, MBPS, NSPG, NBTB1, NTAB1, NBTB2r NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAXr PRTMAX, NBATQS, MAXXPR,
* CSIZPR, NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP, NBITWD,
* NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, XPRDMM, XTKDMM,
* NTVACC, NTKACCr UCTSIZ, BYTFLP, SYSNAM, VERNAMr USELIM,
* IFILITr RLSNAM
COMMON /FTABCM/ DEVTABr FTAB

C End CDCH.

11.6.4 DAPC.INC

C Include DAPC
REAL* 4 APCORE(1), RWORK(40 96)
INTEGER*4 APCORI(l) , IWORK(4069), SPAD(16)
COMPLEX CWORK(2048)

C End DAPC

11.6.5 DBPR.INC

C Include DBPR
REAL*4 DELAY
REAL*8 XTLAST, DELTIM
LOGICAL*2 TRUEAP

C End DBPR

11.6.6 DDCH.INC

REAL*4 XPRDMM, XTKDMM, SYSNAM(5)r VERNAM, FLSNAM(2)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
* CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP,
* NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC,
* NTKACC, UCTSIZ, BYTFLP, USELIM, IFILIT,
* DEVTAB(50), FTAB(1)

C Include DDCH

C End DDCH

USING THE ARRAY PROCESSORS
INCLUDES

Page 11-15
08 May 84

11.6.7 EAPC.INC

C Include EAPC
EQUIVALENCE (APCORE, APCORI)f (RWORK, IWORK, CWORK)

C End EAPC

11.6.8 IDCH.INC

C Include IDCH
REAL*4 XPRDMM, XTKDMM, SYSNAM(5), VERNAM, RLSNAM(2)
INTEGER*2 NVOL, NBPSr NSPG, NBTB1, NTAB1, NBTB2, NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
* CSIZPR(2)i NINTRN, KAPWRD, NCHPFPr NWDPFP, NWDPDP,
* NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC,
* NTKACC, UCTSIZ, BYTFLP, IFILIT,
* USELIM, DEVTAB(50)

C End IDCH.

USING THE ARRAY PROCESSORSROUTINES Page 11-16
0 8 May 84

11.7 ROUTINES
11.7.1 Utility Routines
11.7.1.1 APIO - transfers image-like data between disk files and the
array processor. The file open and close and initialization logic are
all contained in this routine. Information about the file and the the
desired properties of the I/O are contained in the array FLIST. APIO
can access either catalogued 'MA1 type files or scratch files using
the /CFILES/ common system.

APIO (OPCODE, FLIST, APLOC, BUFFER, IRET)
Inputs:

OPCODE R*4 Code for the desired operation.
1INIT' forces the initialization of the I/O.
'READ* reads a logical record from the disk and

sends it to the specified AP location.
'WRIT' Gets data from the AP and writes it to

disk.
'CLOS1 Closes the file and flushes the buffer if

necessary.
FLIST(22) 1*2 An array containing information about the file

and the I/O. Parts are to be filled in by the
calling routine and are for use by APIO.
1 = LUN, must be filled in,
2 = disk number for catalogues files or

/CFILES/ number for scratch files.
3 = catalogue slot number for catalogued files,

•LE. 0 indicates that the file is a scratch
file.

4 = pixel type. 0=>floating, l=scaled integer.
5 = Length of a logical record (row) in pixels.
6 = Number of rows in a plane.
7,8 = P 1*4 value to be added to (1,0) for the

block offset.
9-12 * the window desired in the image, 0's=>

all of image. The logical records must fit
in the buffer and be smaller than 16384
bytes to subimage rows. Reversing the
order of FLIST(IO) and FLISTU2) will
cause the rows to be accessed in the
reverse order.

13 = Buffer size in bytes. 32767 => 32768.
Used by APIO:

14= FTAB pointer
15 = Number of MDISK calls per logical record.
16 = Current OPCODE,

0 = none, INIT on next call
1 = READ
2 = WRITE

17-18 = actual length of logical row as
Pseudo 1*4

19-22 = Spare.
APLOC P 1*4 Base address in AP for data.
BUFFER(*) R*4 Working buffer.

USING THE ARRAY PROCESSORS
ROUTINES

Page 11-17
08 May 84

Output:
IRET 1*2 Return code? 0 => OK or

1 = Bad OPCODE,
2 = Attempt to window too large

a file.
3 * Buffer too small (<NBPS bytes)
MDISK error codes +10, or
MINIT error codes +20, or
ZOPEN error codes + 30.

11.7.1.2 BPROLL - checks if it is time to roll the AP as determined
by values bet by BPINIT, copies the first NWORDs of AP main data
memory to a scratch file, gives up the AP, does a task delay for
DELAY, goes back into the AP queue and loads the scratch file back
into the AP. If NWORD .le. 0 then the AP is not rolled but the AP is
given up and the task goes back into the AP queue.
NOTE: APROLL is called by BPROLL and uses common /CFILES/ for the
scratch file. A scratch file of "type" 'AR' created by APROLL and
then destroyed by BPROLL after use.
NOTE: LUN 8 is used for I/O and a AIPS "map" I/O slot is opened if
the AP memory is actually rolled.
IMPORTANT NOTE: BPROLL (and APROLL) work properly only for floating
point data. Integer values rolled will not be restored correctly.

BPROLL (NWORD, BUFFER, BUFSZ, IRET)
Inputs:
NWORD P 1*4

BUFFER(*) R*4
BUFSZ 1*2
Inputs from COMM(
TRUEAP L*2
XTLAST R*8
DELTIM R*8
DELAY R*4

Outputs:
IRET 1*2

Number of words of AP memory to save.
If .le. 0 the contents of the AP memory are not
saved.
Work buffer.
Size of BUFFER in bytes.
J /BPROLC/ (set by BPINIT)
True if a real AP (to be rolled)
Real time AP assigned (min).
Time interval between rolls (min).
Time to delay task (seconds).
Return error code, 0=>OK

2 => couldn't reload AP.

11.7.1.3 DSKFFT - a disk based, two dimensional FFT. The data are
stored by rows. To save an extra transposition, the input array is
assumed to have been written in transposed order and in the "center at
the corners" convention for the uv to sky transform.

DSKFFT (NR, NC, IDIR, HERM, LI, LW, LO, LENBUF, NBUF,
* APSIZ, SMAX, SMIN, IERR)

Inputs:

USING THE ARRAY PROCESSORS Page 11-18ROUTINES 08 May 84

NR

NC
IDIR

HERM

LI
LW
LO
LENBUF 1*2

NBUF
APSIZ
Output:
SMAX
SMIN
IERR

1*2 The number of rows in input array (# columns in
output). When HERM is TRUE and IDIR=-1, NR is twice
the number of complex rows in the input file.

1*2 The number of columns in input array
(# rows in output).

1*2 1 for forward (+i) transform, -1 for inverse (-i)
transform, (forward = sky=>uv, reverse = uv->sky)
If HERM = .TRUE, the following are recognized:
IDIR=1 keep real part only.
IDIR=2 keep amplitudes only.
IDIR=3 keep full complex (half plane)

L*2 When HERM = .FALSE., this routine does a complex to
complex transform.
When HERM = .TRUE, and IDIR - -1, it does a
complex to real transform. When HERM = .TRUE, and
IDIR .ge. 1, it does real to complex.

1*2 File number in /CFILES/ of input.
1*2 File number in /CFILES/ of work file (may equal LI).
1*2 File number in /CFILES/ of output, (may be LI if

LW isn't, may NOT be LW)
Buffer length in bytes. LENBUF must be a power of
two, and the buffer must be long enough to hold a
row of the input array and to hold a row of the
output array.
The buffers are passed in COMMON /BUFRS/BUF(*).

1*2 Number of buffers: either 1 or 2.
R*4 Size of AP main data memory in words.
R*4 For HERM=.TRUE. the maximum value in the output file.
R*4 For HERM=.TRUE. the minimum value in the output file.
1*2 Return error code, Q=>OK, otherwise error.

NOTE: DSKFFT also uses Commons /BUFRS/ and /CFILES/

11.7.1.4 PEAKFN - searches a region around the center of an image to
locate the pixel location of the maximum. Will handle data cubes and
either integer or floating images.

PEAKFN (LUN, VOL, CNO, IDEPTH, CATBLK, IBUFF,
* BUFFER, JBUFSZ, PEAKX, PEAKY, IRET)

Inputs:
LUN 1*2
VOL 1*2
CNO 1*2
IDEPTH(5) 1*2
CATBLK(256) 1*2
IBUFF(*) 1*2
BUFFER(*) R*4
JBUFSZ 1*2
Output:
PEAKX R*4
PEAKY R*4

Logical unit number to use.
Disk on which image resides.
Catalog slot number of image.
Depth in image of desired plane.
Catalog header block for image.
Integer work buffer.
Real work buffer should be physically the same as
IBUFF.
Size of the IBUFF/BUFFER in bytes
X coordinate of peak pixel location.
Y coordinate of peak pixel location.

USING THE ARRAY PROCESSORS
ROUTINES Page 11-19

08 May 84

IRET 1*2 Return code? 0=> OK, otherwise error.

11.7.1.5 PLNGET - reads a selected portion of a selected plane
parallel to the front and writes it into a specified scratch file.
The output file will be zero padded and a shift of the center may be
specified. Output file is REAL*4 but the input may be either
INTEGER*2 of REAL*4. If the input window is unspecified (0's) and the
output file is smaller than the input file, the NX x NY region about
position (MX/2+1-OFFX, MY/2+1-OFFY) in the input map will be used
where MX,MY is the size of the input map. NOTE: If both XOFF and/or
YOFF and a window (JWIN) which does not contain the whole map are
given, XOFF and YOFF will still be used to end-around rotate the
region inside the window.

PLNGET (IDISK? ICNO, CORN, JWIN, XOFF, YOFF,
* NOSCR, NX, NY, BUFFI, IBUFF1, BUPF2, BUPSZ1, BUFSZ2,
* LUNl, LUN2, IRET)

Inputs:
IDISK 1*2 Input image disk number.
I CNO 1*2 Input image catalogue slot number.
CORN(7) 1*2 BLC in input image (1 & 2 ignored)
JWIN (4) 1*2 Window in plane.
XOFF 1*2 offset in cells in first dimension of the
YOFF 1*2 center from MX/2+1 (MX 1st dim. of input win.)

offset in cells in second dimension of the
NOSCR 1*2

center from MY/2+1 (MY 2nd dim. of input win.)
Scratch file number in common /CFILES/ for

NX, NY 1*2
output.
Dimensions of output file.BUFFI(*) R*4 Work buffer

IBUFF1(*) 1*2 Work buffer (should be the same as BUFFI)
BUFF2(*) R*4 Work buffer.
BUFSZ1 1*2 Size in bytes of BUFF1/IBUFF1
BUFSZ2 1*2 Size in bytes of BUFF2
LUNl, LUN2 1*2 Log. unit numbers to use.
Output:
IRET 1*2 Return error code, 0 => OK,

1 = couldn't copy input CATBLK
2 = wrong number of bits/pixel in input map.
3 = input map has inhibit bits.
4 = couldn't open output map file.
5 = couldn't init input map.
6 = couldn't init output map.
7 = read error input map.
8 = write error output map.
9 = error computing block offset
10 = output file too small.

Useage notes:
CATBLK in COMMON /MAPHDR/ is set to the input file CATBLK.

USING THE ARRAY PROCESSORS
ROUTINES

Page 11-20
08 May 84

11.7.1.6 ZP4I4 - Converts Pseudo 1*4 integer to true 1*4. (Currently
only converts first unsigned 16 bits to 1*4)

ZP4I4 (P4, 14)
Input:
P4 1*2(2) pseudo 1*4 value

Output:
14 1*4 1*4 value

11.7.2 Array Processor Routines
The names and functions of the general purpose AP routines are given
in the following brief list. A number of specialized routines for
CLEANing, gridding uv data and model computations have been omitted.

- APGET (HOST, AP, N, TYPE) Transfer data from AP to host
- APGSP (I, NREG) Reads the value of an SPAD register (FPS and

pseudo)
- APPUT (HOST, AP, N, TYPE) Transfer data from host to AP.
- APRFT (UDATA, UFT, UPHO, NFT, NDATA) Computes real, inverse

Fourier transform from arbitrarily spaced data.
- APWAIT (no arguments) Suspends host until all transfers and

computations are complete.
- APWD (no arguments) Suspends host until all transfers of data

are complete.
- APWR (no arguments) Suspends host until all computations are

complete.
- BOXSUM (A, I, NB, C, J, N) Does a boxcar sum on a vector.
- BPINIT (il, 12, 13) Assigns and initializes AP.
- BPRLSE (no arguments) Releases the AP
- CFFT (C, N, F) Complex FFT.
- CRVMUL (A, I, B, J, C, K, N) Complex - real vector multiply.
- CSQTRN (CORNER, SIZE, ROW) In-place transpose of square

complex matrix.
- CVCMUL (A, I, B, C, J, N) Multiplies a complex scalar times

the complex conjugate of a complex vector producing a real vector.

USING THE ARRAY PROCESSORS Page 11-21
ROUTINES 08 May 84

- CVCONJ (A, If Cf K, N) Take complex conjugate of complex
vector.

- CVEXP (A, I, C, K, N) Complex vector exponentiation.
- CVJADD (A, I, B, J, C, K, N) Adds a complex vector to the

complex conjugate of another complex vector.
- CVMAGS (Ar I, C, K, N) Complex vector magnitude squared.
- CVMMAX (A, I, C, N) Finds the maximum square modulus of a

complex vector.
- CVMOV (A, I, C, K, N) Copy one complex vector to another.
- CVMUL (A, I, B, J, Cr K, N, F) Multiply two complex vectors.
- CVSDIV (A, I, B, C, J, N) Divide a weighted complex vector by

a complex scalar, weight is multiplied by the amplitude of
the scalar.

- CVSMS (A, I, B, C, J, D, K, N ,FLAG) Subtract a real vecrot
tiems a complex scalar from a complex vector.

- DIRADD (A, IAf B, N) Complex directed add.
- HIST (Af I, C, Nf NB, AMAXr AMIN) Compute histogram of a

vector.
- LVGT (A, I, B, Jf Cr Kr N) Logical vector greater than.
- MAXMIN (Ar I, MAX, MIN, N) Find maximum and minimum values in

a vector.
- MAXV (A, Ir C, N) Find maximum in an array.
- MINV (A, Ir C, N) Find minimum in an array.
- MTRANS (Af 1, Cf Kr MC, NC) Matrix transpose.
- PHSROT (Af If Bf Jf PHASO, DELPHS, N) Imposes a phase

gradient on a complex vector.
POLAR (A, I, Cf Kf N) Rectangular to polar conversion.

- RECT (A, I, Cf Kf N) Polar to rectangular conversion.
- RFFT (Cf Nf F) Real to complex or vice versa fast Fourier

transform.
- SVE (Af I, C, N) Sum of vector elements.
- SVESQ (Af I, C ,N) Sum of the square of the elements of a

vector.

- VABS (A, I, C, K, N) Vector absolute value.
- VADD (A, I, B, Jf C, K, N) Vector add.
- VCLIP (A, I, Bf C, Dr L, N) Vector clip.
- VCLR (C, K, N) Vector clear.
- VCOS (A, I, C, K, N) Vector cosine.
- VDIV (A, I, B, J, Cf K, N) Vector division.
- VEXP (Ar I, C, K, N) Vector exponentiation.
- VFILL (A, C, K, N) Vector fill.
- VFIX (A, lf C, Kr N) Vector real to integer.
- VFLT (A, I, C, K, n) Vector integer to real.
- VIDIV (A, I, D1, D2, Bf J, N) Divide a vector by the product

of two scalar integers.
- VLN (A, If Cf K, N) Vector natural logarithm.
- VMA (A, lr B, J, C, K, Df L, N) Vector multiply and add.
- VMOV (A, I, Cf K, N) Copy one vector to another.
- VMUL (A, I, Bf Jf C, K, N) Vector multiply.
- VNEG (A, I, C, K, N) Take negative of a vector.
- VRVRS (C, K, N) Reverse a vector.
- VSADD (A, I, B, C, Kf N) Vector scalar add.
- VSIN (A, I, Cf K, N) Vector sine.
- VSMA (Af l, B, C, K, Dr L, N) Vector scalar multiply and add.
- VSMAFX (A, If B, Cf D, L, N) Vector scalar multiplyf add and

fix.
- VSMSA (Af If Bf Cf Df h, N) Vector scalar multiply, scalar

add.
- VSMUL (A, I, Bf Cf K, N) Vector scalar multiply.
- VSQ (A, I, Cf Kf N) Vector square.
- VSQRT (Af I, Cf Kf N) Vector square root.
- VSUB (A, I, Bf J, Cf Kf N) Subtract two vectors.

USING THE ARRAY PROCESSORS Page 11-22ROUTINES 08 May 84

USING THE ARRAY PROCESSORS
ROUTINES Page 11-23

08 May 84

VSWAP (A, I, C, K, N) Swap two vectors.
- VTRANS (M, N, IAD, LV) Transpose a row stored M x N array of

row vectors of length LV.

11.7.3 AP Routine Call Sequences
A note should be made about the conventions used in the

description of the routines. Data addresses are normally denoted by
A, B, C, or D and their increments (stride) by I, J, K, L and an
element count by N. In the descriptions of the routines, many of the
values in AP memory are referred by the name given to the variable
giving the address, e.g., A(ml) is used to denote the value in memory
location A + m*I. All input variables are pseudo 1*4 unless otherwise
marked.

11.7.3.1 APGET - Transfer data from AP memory to host core.
APGET (HOST, AP, N, TYPE)

Inputs:
AP P 1*4 Target area in AP? 0-relative, increment=l
N 1*2 Number of elements
TYPE 1*2 Data type:

0 data is 1*4 in host
1 data is 1*2 in host
2 data is R*4 in host

Output:
H0ST(*) R*4/I*2 Data array in "host"

11.7.3.2 APGSP - Read contents of SPAD register. FPS and Pseudo AP only.
APGSP (I, NREG)

Inputs:
NREG 1*2 SPAD register number desired

Outputs:
I 1*2 Contents of the SPAD register.

USING THE ARRAY PROCESSORSROUTINES Page 11-24
08 May 84

11,7.3,3 APPUT - Transfer data from host memory to AP memory*
APPUT (HOST, AP, N, TYPE)

Inputs:
AP
N
TYPE

P 1*4
1*2
1*2

Output:
HOST(*) R*4/

Target area in AP; 0 - relative, incremental.
Number of elements
Data type:
0 data is 1*4 in host
1 data is 1*2 in host
2 data is R*4 in host
Data array in "host"

11.7.3*4 APRFT - Computes a real, inverse fourier transform from
arbitarily but uniformly spaced data.

APRFT (UDATA, UFT, UPHO, NFT, NDATA)
Inputs:
DATA AP base address of input data.
FT AP base address of output F. T*
PHO AP base address of phase information for F. T.

0=COS((TWOPI/(NG*NFT))*(1-ICENT)(1-BIAS))
1=SIN((TWOPI/(NG*NFT))*(1-ICENT)(1-BIAS))
2=COS((TWOPI/(NG*NFT))*(1-ICENT))
3=SIN((TWOPI/(NG*NFT))*(1-ICENT))
4=COS((TWOPI/(NG*NFT))*(1-BIAS))
5=SIN((TWOPI/(NG *NFT))*(1-BIAS))
6=COS((TWOPI/(NG*NFT)))
7 =SIN((TWOPI/(NG*NFT)))
ICENT = center pixel of grid
BIAS = center of data array (1 rel)
NG = No. tabulated points per cell.

NFT Number of FT points
NDATA Number of data points.

11.7.3.5 APWAIT - Suspend host task until all AP I/O and computations are complete.
APWAIT

USING THE ARRAY PROCESSORS
ROUTINES

Page 11-25
08 May 84

11.7.3.6 APWD - Suspend host task until all AP I/O is complete.
APWD

11.7.3.7 APWR - Suspend host task until all AP computations are
complete.

APWR

11.7.3.8 BOXSUM - Do a boxcar sum on a vector; values at the ends of
the vector are the sum of the values within one boxcar length of the
ends.

BOXSUM (Ar I, NB, Cf J, N)
Inputs:

A input vector address
I input vector increment
NB boxcar width
C output vector address; output vector

should not overlap input
J output increment
N number of elements

11.7.3.9 BPINIT - Implements AIPS AP priority for true AP, increases
the task priority for AIPS batch tasks using a true AP and assigns an AP.

BPINIT (II, 12, 13)
Inputs:
11 1*2 Dummy
12 1*2 Dummy
Outputs:
13 1*2 AP number (Neg. to indicate virtual AP, ie. not

to be rolled.

11.7.3.10 BPRLSE - Releases the AP, lowers task priority for AIPS
batch tasks using a true AP.

BPRLSE

USING THE ARRAY PROCESSORS
ROUTINES Page 11-2608 May 84

11.7.3.11 CPFT - Do an in-place complex fast Fourier tasnsform.
CFFT (C, N, F)

Inputs:
C Base address (0-rel) of complex array

to transform
N Number of points in array (must be power

of two.
F Transform direction; 1 -> Forward

-1 -> Backward

11.7.3.12 CRVMUL - Multiply the elements of a complex vector by the
elements of a real vector.

C(mK)+iC(mK+l) = (A(ml)*B(mJ)) + i(A(ml+l)*B(mJ))
m=0 to N-l

CRVMUL (A, I, B, J, C, K, N)
Inputs:

A Source complex vector base address
I Increment of A
B Source real vector base address
J Increment of B
C Destination vector base address
K Increment of C
N Element count

11.7.3.13 CSQTRN - Do an inplace transpose of square matrices of
complex values.

CSQTRN (CORNER,SIZE,ROW)
Inputs:
CORNER AP location of first corner of matrix encountered.
SIZE Size (number of reals) of a row or column.
ROW Number of locations in AP between beginnings

of the rows.

11.7.3.14 CVCMUL - Multiply a scalar complex value times the complex
conjugate of a vector producing a real vector.

C(K) = REAL(6)*A(K)+IMAG(B)*A(K+1) K = 1,N
CVCMUL (Ar I,BfC, JfN)

Inputs:
A Source complex vector base address.
I Increment of A
B Address of scalar (real part)
C Destination real vector base address.
J Increment of C
N Element count (reals)

USING THE ARRAY PROCESSORS Page 11-27
ROUTINES 08 May 84

11.7.3.15 CVCONJ - Take complex conjugate of a vector.
C(k) = Re(A(k)) - i * Im(A(k)

for k = 0 fN-l
CVCONJ (A, I, C, Kf N)

Inputs:
A Source vector base address.
I Increment of A
C Destination vector base address
K Increment of C
N Element count

11.7.3.16 CVEXP - Exponentiate a complex vector.
C(mK) + iC(mK+1) ■ COS (A(ml)) + i SIN (A(ml))

m = 0 to N-l
CVEXP (A, I, Cf Kf N)

Inputs:
A Source vector base address.
I Increment of A
C Destination vector base address
K Increment of C
N Element count

USING THE ARRAY PROCESSORSROUTINES Page 11-2808 May 84

11*7.3.17 CVJADD - Add the elements of one complex vector to the
complex conjugate of the elements of another complex vector.

C(k) = Re(A(k))+Re(B(k))+i (Im(ACk))-Im(B(k)))
for k = 0 r N-l

CVJADD (Af If B, Jf Cf Kf N)
Inputs:
A
I
B
J
C
K
N

11.7.3.18
vector.

C(mK) = A(ml)**2+A(ml+1)**2 for m - 0,N-1
CVMAGS (A, I, Cf Kf N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.19 CVMMAX - Find the maximum of the square modulus of a
complex vector.

CVMMAX (A, I, Cf N)

Inputs:
A Source vector base address
I Increment of A
C Destination vector.

0 = MAX (A ** 2) (real)
1 ■ location of max

(integer)
SPAD(15) = index of max.

Source vector base address.
Increment of A
Source vector base address (conjugate)
Increment of B
Destination vector base address
Increment of C
Element count

CVMAGS - Square the magnitude of the elements of a complex

USING THE ARRAY PROCESSORS
ROUTINES

Page 11-29
08 May 84

11*7.3.20 CVMOV - Copy one complex vector to another.
CVMOV (A, Ir C, Kf N)

A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.21 CVMUL - Multiply the elements of two complex vectors.
(C(mK)+iC(mK+1)) » (B(mJ)+iB(mJ+1)*(A(ml)+iA(mI+l)) if F=1
(C(mK)+iC(mK+l)) - (B(mJ)+iB(mJ+l)*(A(ml)-iA(mI+l)) if F=-l
CVMUL (A, I, B, J, C, Kf Nr F)

A Source vector base address
I A address increment
B Source vector base address
J B address increment
C Destination vector base address
K C address increment
N Element count
F Conjugate flagr 1 => normal complex multiply

11.7.3.22 CVSDIV - Divide the elements of a complex vector with
weights by a complex scalar. The complex vector is expected to have
data in the order real, imaginary, weight. The weight is multiplied
by the amplitude of the complex scalar. This is used for AIPS uv data.

C(mJ) = (l./(B(l)**2+B(2)**2))*(A(mI)*B(l)+A(mI+l)*B<2))
C(mJ+1) = (1./B(l)**2+B(2)**2))*(A(ml+1)*B(1)-A(ml)*B(2))
C(mJ+2) - A(mI+2) * SQRT(B(1)**2+B(2)**2) for m ■ 0, N-l
CVSDIV (A, I, Bf C, J, N)

Inputs

Inputs

1 => multiply with conj of A

Inputs
AI
B
C
J
N

Source vector base address.
Increment of A
Source scalar address.
Destination vector base address
Increment of C
Element count

USING THE ARRAY PROCESSORSROUTINES Page 11-3008 Nay 84

11.7.3.23 CVSMS - Subtract the elements of a real vector times the
elements of a complex scalar from a complex vector, alternately i
(SQRT(-l)) times the real vector times the complex scalar is
subtracted from the complex vector. Since the element count is
expected to be small the looping is not very efficient.

If FLAG > 0
D(mK) = A(ml) - B(l) * C(mJ)
D(mK+1) = A(ml+1) - B(2) * C(mJ) for m=0, N-l
If FLAG < 0
D(mK) - A(ml) - i * B(l) * C(mJ)
D(mK+1) = A(ml+1) - i * B(2) * C(mJ)
CVSMS (Af I, Bf Cf J, Df Kf N , FLAG)

for m=0 f N-l

Inputs:
A Source complex vector base address,
I Increment of A
B Source complex scalar address,
C Source real vector base address
J Increment of C
D Destination complex vector base address
K Increment of D
N Element count
FLAG Flagf if < 0 multiply complex scalar by i

11.7,3,24 DIRADD - Do a complex directed add,
B(A(IA*J)) - B(A(IA*J))+A(IA*J+1) for J * OfN-l
B(A(IA*J)+1) = B(A(IA*J)+1)+A(IA*J+2)
DIRADD (AflAfBfN)
Inputs:

A Source vector base address
0 => address (integer) to be added to

(address is zero relative)
If2 => complex value (reals)

IA Increment for A
B Destination vector base address
N Element count

11,7,3,25 HIST - Compute the histogram of a vector. Histogram
element (NB-1)*(DATA-NIN)/(NAX-NIN) where DATA is the data value is incremented.

HIST (A, If Cf Nf NB, ANAXf ANIN)
Inputs:

USING THE ARRAY PROCESSORS
ROUTINES

Page 11-31
08 May 84

A Source vector base address,
I A address increment,
C Histogram base address

Histogram must be cleared before first call,
N Element count for A
NB Number of bins in histogram
AMAX Address of histogram maximum.
AMIN Address of histogram minimum.

11.7.3.26 LVGT - Logical vector greater than.
C(mK) = 1.0 if A(ml)>B(mJ)
C(mK) » 0.0 if A(mI)=<B(mJ) for m = 0fN-l
LVGT (A, I, Bf J, Cr K, N)

Inputs:
A Source vector base address
I A address increment
B Source vector base address
J B address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.27 MAXMIN - Search the given vector for maximum and minimum
values.

MAXMIN (A, I, MAX, MIN, N)
Inputs:
A
I
MAX
MIN
N

11,7,3.28
maximum,

MAXV (A, I, C, N)
Inputs:

A Source vector base address
I A address increment
C Destination base address

Source vector base address
Increment of A
Location for maximum.
Location for minimum.
Element count.

MAXV - Find maximum value of a vector and address of the

USING THE ARRAY PROCESSORS
ROUTINES

C(0) = Max (A(ml)) in = 0 to N-l
C (1) = address, also in SPAD 15.

N Element count

11.7.3.29 MINV - Find minimum value of a vector and address of the
minimum.

MINV (A, If C, N)
Inputs:

A Source vector base address
I A address increment
C Destination base address

C(0) - Max (A(ml)) m = 0 to N-l
C(1) = address, also in SPAD 15

N Element count

11.7.3.30 MTRANS - Transpose a matrix.
C((p+qMC)K) = A ((q+pNC)I)

p = 0 to MC-1
q = 0 to NC-1

MTRANS (A, I, C, K, MC, NC)
Inputs:

A Source matrix base address
I A address increment
C Destination matrix base address
K C address increment
MC Number of columns of A
NC Numbers of rows of A

11.7.3.31 PHSROT - Add a phase gradient to a complex array.
B(j) = A(j)*EXP(-i*(PHASO+j *DELPHS)) for j » 0,N-1

PHSROT (A, I, B, J, PHASO, DELPHS, N)
Inputs:
A Source vector base address.
I Increment of A
B Destination base address.
J Increment of B
PHASO Address of complex unit vector with
DELPHS

phase PHASO
Address of complex unit vector with

Page 11-32
0 8 May 84

USING THE ARRAY PROCESSORS
ROUTINES

Page 11-33
08 May 84

phase DELPHS
N Element count

11.7.3.32 POLAR - Rectangular to polar conversion.
C(mK) - SQRT (A(ml)**2 + A(ml+1)**2)
C(mK+l) = ARCTAN (A(ml+1) / A(ml)) for m = 0 to N-l
POLAR (A, I, C, K, N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.33 RECT - Polar to rectangular vector conversion.
C(mK) = A(ml) * COS (A(ml+1))
C(mK+l) ■ A(ml) * SIN (A(ml+1)) for m = 0 to N-l
RECT (A, I, C, Kr N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.34 RFFT - Does an in-place real to complex forward of
to rear inverse FFT.

RFFT(C, Nr F)
Inputs:

C Base address of source and destiantion vector
N Real element count (power of 2)
F flag, l=>forward FFTf -1=> reverse FFT.

complex

USING THE ARRAY PROCESSORSROUTINES Page 11-34
0 8 Nay 84

11.7.3.35 SVE - Sum the elements of a vector
C = SUN (A(ml)) m ■ 0 to N-l
SVE (A, I, C, N)

Inputs:
A Source vector base address.
I Increment of A
C Destination scalar address
N Element count

11.7.3.36 SVESQ - Sum the squares of the elements of a vector
C = SUM (A(ml) * A(ml)) for m=0 to N-l
SVESQ (A, I, C fN)

Inputs:
A Source vector base address.
I Increment of A
C Destination scalar address
N Element count

11.7.3.37 VABS - Take the absolute value of the elements of a
C(mK) = ABS (A(mD) for m = 0 to N-l
VABS (A, I, Cf Kf N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.38 VADD - Add the elements of two vectors.
C(mK) = A(ml) + B(mJ) for m = 0 to N-l
VADD (Af If Bf J, Cf Kf N)

Inputs:
A First source vector base address
I A address increment
B Second source vector base address
J B address increment

vector.

USING THE ARRAY PROCESSORS
ROUTINES

C Destination vector base address
K C address increment
N Element count

11.7.3.39 VCLIP - Limits the values in a vector to a specified range*
D(mL) = B if A(ml) < B

= A(ml) if B <= A(ml) < C
= C if C <= A(ml) for m ■ 0 to N-l

VCLIP (Af I, Br Cf Dr Lf N)
Inputs:

A Source vector base address
I A address increment
B Address of lower limit
C Address of upper limit
D Destination vector base address
L D address increment
N Element count

11.7.3.40 VCLR - Pill a vector with zeroes*
C(mK) = 0 for m = 0 to N-l
VCLR (Cf Kf N)

Inputs:
C Destination vector base address
K C address increment
N Element count

11.7.3.41 VCOS - Take the cosine of elements in a vector.
C(mK) = COS (A(mD) for m * 0 to N-l
VCOS (Af If Cr Kf N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

Page 11-3 5
08 May 84

USING THE ARRAY PROCESSORSROUTINES Page 11-3608 May 84

11.7.3.42 VDIV - Divide the elements of two vectors
C(mK) = B(mJ) / A(mJ) for m ■ 0 to N-l
VDIV (A, I, B, J, C, K, N)

Inputs:
A First source vector base address
I A address increment
B Second source vector base address
J B address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.43 VEXP - Exponentiate the elements of a vector.
C(mK) = EXP (A(ml)) for m * 0 to N-l
VEXP (A, I, C, K, N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.44 VFILL - Fill a vector with a constant.
C(mK) = A for m = 0 , N-l
VFILL (A, C, K, N)

Inputs:
A Source scalar base address
C Destination vector base address
K C address increment
N Element count

11.7.3.45 VFIX - Convert the elements of a vector from real to
integer.

C(mK) = FIX (A(mD) for m - 0 to N-l
VFIX (A, I, C, Kr N)

USING THE ARRAY PROCESSORS
ROUTINES

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.46 VFLT - Convert the elements of a vector from integer to
real.

C(mK) = FLOAT (A(ml)) for m = 0 to N-l
VFLT (A, I, C, Kf N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.47 VIDIV - Divide the given vector by the product of two
integers.

B(mJ) - A(ml)/(D1*D2) for m - G,N-1
VIDIV (Af I, Dlf D2r Br J, N)

Inputs:
A
I
D1
D2
B
J
N

11.7.3.48
vector.

C(mK) = LOGe (A(ml)) for m=0 to N-l
VLN (Af I, Cf Kf N)

Inputs:
A Source vector base address.

Source vector base address.
Increment for A
first dividend. Actual valuer not an address.
Second dividend. Actual valuer not an address.
Destination vector base address.
Increment for B
Element count.

VLN - Take the natural logrithm of the elements of a

Page 11-37
08 May 84

USING THE ARRAY PROCESSORS Page 11-38
ROUTINES 0 8 May 84

I Increment of A
C Destination vector base address
K Increment of C
N Element count

11.7.3.49 VMA - Multiply two vectors and adds a third.
D(mL) = (A(ml) * B(mJ)) + C(mK) for m = 0, N-l
VMA (A, I, B, J, C, K, D, L, N)

Inputs:
A First source vector base address
I A address increment
B Second source vector base address
J B address increment
C Third source vector base address
K C address increment
D Destination vector base address
L D address increment
N Element count

11.7.3.50 VMOV - Copy the elements of one vector to another.
C(mK) = A(ml) for m = 0, N-l
VMOV (A, I, C, Kf N)

Inputs:
A Source vector base address.
I Increment of A
C Destination vector base address
K Increment of C
N Element count

11.7.3.51 VMUL - Multiply the elements of two vectors.
C(mK) = A(mJ) * B(mJ) for m * 0 to N-l
VMUL (Af I, Bf J, Cf Kf N)

Inputs:
A First source vector base address
I A address increment
B Second source vector base address
J B address increment
C Destination vector base address
K C address increment

USING THE ARRAY PROCESSORS Page 11-39
ROUTINES 08 May 84

N Element count

11.7.3.52 VNEG - Take the negative of the elements of a vector.
C(mK) = - A(ml) for m = 0 to N-l
VNEG (A, I, Cr Kf N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.53 VRVRS - Reverse the elements in a vector.
C(mK) = C((N-m)K) for m = 0, N-l
VRVRS <C, Kf N)

Inputs:
C Source and destination vector base address
K C address increment
N Element count

11.7.3.54 VSADD - Add a scalar to the elements of a vector
C(mK) = B + A(ml) for m = 0, N-l
VSADD (Af If Br Cf Kf N)

Inputs:
A Source vector base address
I A address increment
B Adding scalar address
C Destination vector base address
K C address increment
N Element count

USING THE ARRAY PROCESSORSROUTINES Page 11-4008 May 84

11.7.3.55 VSIN - Take the sine of the elements of a vector.
C(mK) * SIN (A(mD) for m = 0rN-l (A in radians)
VSIN (Af If C, Kf N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.56 VSMA - Multiply the elements of a vector by a scalar and
adds to the elements of another vector.

D(mL) ■ (A(ml) * B) + C(mK) for m * 0, N-l
VSMA (Ar I, Bf Cf Kf Df L, N)

Inputs:
A First source vector base address
I A address increment
B Source scalar base address
C Second source vector base address
K C address increment
D Destination vector base address
L D address increment
N Element count

11.7.3.57 VSMAFX - Multiply the elements of a vector by a scalar, add
a scalar and round to an integer.

D(mL) = FIX (ROUND((A(ml)*B)+C)) for m « 0fN-l
VSMAFX (A, If Bf Cf Df L, N)

Inputs:
A Source vector base address
I A address increment
B Multiplying scalar address
C Adding scalar address
D Destination vector base address
L D address increment
N Element count

USING THE ARRAY PROCESSORS
ROUTINES

11.7.3.58 VSMSA - Multiply the elements of a vector by
add a second scalar.

D(mL) = (A(mI)*B)+C for m=0rN-l
VSMSA (Af I, B, C, D, L, N)

Inputs:
A Source vector base address
I A address increment
B Multiplying scalar address
C Adding scalar address
D Destination vector base address
L D address increment
N Element count

11.7.3.59 VSMUL - Multiply the elements of a vector by
C(mK) * ACml) * B for m * 0r N-l
VSMUL (A, I, B, C, K, N)

Inputs:
A Source vector base address
I A address increment
B Multiplying scalar address
C Destination vector base address
K C address increment
N Element count

11.7.3.60 VSQ Square the elements of a vector
C(mK) = A(ml)**2 for m * 0 to N-l
VSQ (A, I, C, Kf N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

a scalar and

Page 11-41
08 May 84

a scalar.

USING THE ARRAY PROCESSORSROUTINES Page 11-4208 Nay 84

11.7.3.61 VSQRT - Take the square root of the elements of a vector,
C(mK) - SQRT (A(ml)) for m = 0,N-1
VSQRT (A, I, C, K, N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.62 VSUB - Subtract the elements of two vectors.
C(mK) = B(mJ) - A(ml) for m = 0 to N-l
VSUB (A, I, B, J, Cr K, N)

Inputs:
A First source vector base address
I A address increment
B Second source vector base address
J B address increment
C Destination vector base address
K C address increment
N Element count

11.7.3.63 VSWAP - Swap the elements of a vector.
A(ml) = C(mK) and C(mK) = A(ml) for m = 0f N-l
VSWAP (A, I, C, K, N)

Inputs:
A First source/destination vector base address
I A address increment
C Second source/destination vector base address
K C address increment
N Element count

USING THE ARRAY PROCESSORS
ROUTINES

Page 11-43
08 May 84

11.7.3,6 4 VTRANS - Transpose a (row-stored) M X N array of row
vectors of length LV. The starting address is given by IAD. The
algorithm works in place. It is adapted from Boothroyd's CACM
ALG.#302. Other, probably better, algorithms, are CACM #*S 3 80 and
467, but they're not as simple to program.

VTRANS (M, N, IAD, LV)
Inputs:
M First dimension of the vector array
N Second dimension of the vector array
IAD Base address of the array
LV Length of the vectors.

USING THE ARRAY PROCESSORS
ROUTINES

Page 11-43
08 May 84

11.7,3,64 VTRANS - Transpose a (row-stored) M X N array of row
vectors of length LV. The starting address is given by IAD. The
algorithm works in place. It is adapted from Boothroyd's CACM
ALG.#302. Other, probably better, algorithms, are CACM #'S 3 80 and
467, but they're not as simple to program.

VTRANS (M, N, IAD, LV)
Inputs:
M First dimension of the vector array
N Second dimension of the vector array
IAD Base address of the array
LV Length of the vectors.

CHAPTER 12
THE Z ROUTINES

All of the functions that are required by AIPS programs that
depend on the host computer or operating system are performed in
routines whose names begin with a "Z" and are referred to as the "Z
routines". In principle, all that is required to make AIPS work on a
new machine is to develop a disk file structure and create a set of Z
routines to interface AIPS programs to the operating system and the
file structure. If routines other than "Z" (or "Y") routines are
modified then they will have to be modified every time the AIPS system
is updated. For this reason we recommend that na routines other than
OUL lo r "X "). ro u t in e s should b£ modified. This chapter will describe
the functions of the upper layer of Z routines? in any implementation
there will probably be additional lower level machine-dependent
routines. Careful study of an existing implementation of AIPS is
recommended before attempting a new installation

For purposes of discussion the Z routines will be divided up into
a number of overlapping categories;

1. Eata M anipulation Boia.tln.ea - These routines convert data
formats from external (tape) integers and characters to local
and vice versa, and move bits and bytes.

2. UisK I/O flM Iil£ Manipulation - These routines create,
destroy, expand, contract, open, close, read, and write disk
files.

3. System Functio ns - These routines do various system functions
such as starting and stoping processes, inquiring what
processes are running, and inquiring how much space is
available on a given disk drive.

12.1 OVERVIEW

4. Efi.yj.ce 1ZQ - These routines talk to the terminals, the tape
drive, graphics devices, image displays, etc. This area
overlaps heavily with the disk I/O area.

THE Z ROUTINES
OVERVIEW

Page 12-2
0 8 May 84

5. Pir.ec.tQry find Text Filfi Routines - These routines read the
directories for, and contents of, text files.

6. Miscellaneous - There are a number of routines such as that
which initializes the Device Characteristics Common which do
not easily fit in one of the other catagories.

7. Television I/O routines. These routines are discussed in the
chapter on televisions and are not discussed further here.

A detailed description of the call sequences to each of these routines
and listings of the relevant INCLUDE files are at the end of this
chapter.

12.1.1 Device Characteristics Common
Many of the parameters describing the host operating system and

installation in AIPS programs are carried in the Device
Characteristics Common which is obtained using the includes IDCH.INC,
DDCH.INC and CDCH.INC. The text of these include files can be found
at the end of this chapter.

The contents of the Device Characteristics common are initialized
by a call to ZDCHIN. Details of the call sequence can be found at the
end of this chapter.

Many of the values in the Device Characteristics common are read
from a disk file. The values in this file can be read and changed
using the standalone utility program SETPAR. The constants kept in
this common, the values in DEVTAB, and the use of logical unit numbers
are described in the chapter on disk I/O.

12.1.2 FTAB
The FTAB array in the device characteristics common is used to

keep AIPS and system I/O tables. The FTAB has separate areas for the
three different kinds of I/O: 1) device I/O to devices which do non
need I/O tables, 2) non-map or regular I/O which is single buffered,
nonwait-mode I/O and 3) map I/O which can be double buffered, wait
mode I/O. The FTAB has space for 16 integer words for application
routine use and space for one system I/O table for non-map files and
two system I/O tables for map files. The size of the entries in FTAB
for the different types of I/O are carried in the Device
Characteristics Common. The type of the I/O (map pr non-map) is
declared by the calling routine to the file/device open routine ZOPEN.

THE Z ROUTINESOVERVIEW Page 12-30 8 Nay 84

The FTAB is divided up by ZDCHIN into three areas, one for each
type of I/O. These areas are described in the following;

1* Non-FTAB HQ. - This area has NTAB1 entries each NBTB1 bytes
long. The first integer word in each entry is zero if that
entry is not in use and the LUN of the corresponding device
if the entry is in use.

2. £ T M "non-map" l/Q - This area has NTAB2 entries each NBTB2
bytes long. The first 16 integer words in each entry are
reserved for application routines; the first of these is
zero if that entry is not in use and the LUN of the
corresponding device if the entry is in use. Following these
16 integers is space for one copy of whatever system I/O
table is required for the host system.

3. FTAB "map" I/O - This area has NTAB3 entries each NBTB3 bytes
long. The first 16 integer words in each entry are reserved
for application routines; the first of these is zero if that
entry is not in use and the LUN of the corresponding device
if the entry is in use. Following these 16 integers is space
for two copies of whatever system I/O table is required for
the host system.

Note that a byte is defined in this manual as half a short integer.

12.1.3 Disk Files
The AIPS system uses binary files for data and text files for

source code and control information. The location and physical name
of the various files depends very much on the host system and
installation. The physical name of a file is derived by ZPHFIL and
the location of a file is determined by ZPHFIL and ZOPEN (or ZTOPEN
for text files).

12.1.3.1 Binary (data) Files - Binary files are divided into two
types, "map" and "non-map" files corresponding to the two types of
I/O. (It should be noted however that "non-map" I/O routines should
work on "map" files.) Normally most AIPS binary files on a given disk
are put in a single area or directory. Current implementations of
AIPS use 8 characters for the basic physical name and 3 more if private catalogues are supported.

An example from a VAX system with private catalogues is
"DAOn;ttdcccvv.uuu" ; where n is the zero relative disk drive number,
DAOn; is a logical variable which is assigned to a directory, tt is a
two character file type (eg. 'HA'), d is the one relative disk drive
number, ccc is the catalogue slot number, vv is the version (01 for
"MA" and "UV" files), and uuu is the users number in hexidecimal notation.

THE Z ROUTINES
OVERVIEW

Page 12-4
08 May 84

"Map" type files are files on which it should be possible to
double buffer. It should be possible to contract "map" files but it
is not necessary to expand "map" files so these files may be forced to
be contigious on the disk. Contigious files are more efficient but
they cause problems for users with large files. These files should be
capable of random access with I/O beginning on a disk sector boundary.

"Non-map" files should be expandable and contractable. These
files should be capable of random access with I/O beginning on a disk
sector boundary.

12.1.3.2 Text Files - Text files are used primarily for storing
source code and control information such as the RUN and HELP/INPUT
files. Currently text files may be read but not written using AIPS
routines. The source code routines are accessed primarily by AIPS
managment routines such as the AIPS manual printing program.

Different types of text files are kept in different areas which
have directories. The type of the text file is specified to ZPHFIL as
one of several types? the directory may be further selected by the
ZTOPEN argument VERSON which can specify the version (directory or
area). The member (or file) name is specified to ZTOPEN and may
contain up to eight characters. These types and the files kept in
each area are described in the following:

- HE - These are the HELP files which specify which AIPS
adverbs are to be sent to tasks and contain the primary user
documentation.
IN - Same as HE. This is a relic of older versions in which
the HELP files and INPUTS files were distinct.

- RU - The RUN files usually contain instructions for the AIPS
program. Other types of text files may appear in this area
as input for AIPS tasks.

- DC - These are the programmer documentation files, primarily
sections of the AIPS manual.
SO - These are the "standard" source code routines. These
routines are those which should conform to all AIPS coding
standards.
SR - This area contains source code which is used only by the
AIPS program and standalone utility programs but not AIPS tasks.

the z routinesOVERVIEW Page 12-508 May 84

SI - This area contains the include files*
SN - This area contains source code which has not been
determined to meet all AIPS coding standards. Code in this
area may give problems in a new installation.
SF - This area contains the source code for the true array
processor routines.
SP - This area contains the source code for the pseudo array
processor routines.
SL - This area contains miscellaneous files.

12.2 DATA MANIPULATION ROUTINES
The internal form in which characters and integers are stored

varies from computer to computer but a given FITS data tape should be
able to be read on any AIPS system. Thus it is necessary to be able
to convert between the external (FITS) formats to the internal
formats. The format of data on FITS tape files is discudded in
another chapter.

The following list gives the names and uses of the upper level
data manipulation "Z" routines? in practical installations more Z
routines will be required. Details of the call sequences of the upper
lever, non TV Z routines are found at the end of this chapter.

ZCLC8 - converts local characters to standard ASCII.
- ZC8CL - converts standard ASCII to the local characters.

ZI16IL - converts standard 16 bit integers to the local short
integer.
ZI32IL - converts standard 32 bit integers to a pair of local
short integers.
ZI8L8 - converts 8 - bit unsigned binary numbers to bytes.
ZILI16 - converts local short integers to external format 16
bit integers.
ZP4I4 - converts pseudo 1*4 to true 1*4.

- ZR8P4 - converts between pseudo 1*4 and REAL*8.

THE Z ROUTINES Page 12-6
DATA MANIPULATION ROUTINES 0 8 May 84

12.3 DISK I/O AND FILE MANIPULATION ROUTINES
This section describes the routines needed for manipulating disk

data (binary) files. The physical names of disk data files are always
constructed by ZPHFIL and these files are always opened by ZOPEN.
There are separate routines for writing to the message file (ZMSGCL,
ZMSGDK, and ZMSGOP) to avoid recursion when reporting an error message
from one of the I/O routines.

A short description of the disk file routines are given in the
following list; detailed descriptions of the call sequences are given
at the end of the chapter.

ZCLOSE - closes disk files or devices.
ZCMPRS - contracts disk files.

- ZCREAT - creates disk files.
- ZDESTR - destroys disk files
- ZEXIST - determines if a given file exists.
- ZEXPND - expands "non-map" files.

ZFIO - does "non-map" (single buffer) I/O to disk files and
devices.

- ZMIO - does "map" (double buffer, wait mode) I/O to disk
files and devices.
ZMSGCL - closes the message file.

- ZMSGDK - writes to the message file.
ZMSGOP - opens the message file.
ZOPEN - opens disk files and devices.

- ZPHFIL - constructs physical file names.
- ZRENAM - changes the physical name of a file.

THE Z ROUTINES
DISK I/O AND FILE MANIPULATION ROUTINES Page 12-708 May 84

ZWAIT - suspends the calling task until an I/O operation
initiated by ZMIO is complete.

12.4 SYSTEM FUNCTIONS
There are a number of functions involving processes or system

resources which must be done in a system dependent fashion. These
include controlling processes (starting, killing, suspending and
resuming) and determining the time, date, name of the current process,
and the amount of CPU time used by the current task. Some of these
may require special privileges.

The AIPS interactive program may start independent processes
called tasks. These tasks do most of the computations. After AIPS
has started a task it suspends itself indefinately? the newly started
task then restarts AIPS either at the start or the end of its
operation as specified by the user. There may be several tasks and
the AIPS program running at a given time.

Communication between AIPS and tasks is rather primitive, AIPS
writes a disk file with the control information which the task reads.
When the task resumes AIPS it returns a completion error code.

The following list gives a short description of these routines;
complete descriptions of the call sequence can be found at the end of
this chapter.

- ZCPU - returns the amount of CPU time used by the current
process.
ZDATE - returns the current calender date.
ZDELAY - delays the current task for a specified period.
ZPRIO - raises or lowers a tasks priority.
ZTACTQ - checks if a given process is active.
ZTIME - returns the current time.
ZTRSUM - resumes a specified task.
ZACTV8 - activates a specified process.

- ZFREE - determines the amount of disk space available on each
of the disks.

THE Z ROUTINES
SYSTEM FUNCTIONS

Page 12-8
08 May 84

ZSTAIP - restores the process to its normal state on the
completion of an interactive AIPS process,
ZSUSPN - suspends the executing task,
ZTKILL - kills (aborts) a specified task.
ZTQSPY - writes a list of the current AIPS processes running
to the user monitor terminal and the message file.
ZWHOMI - returns the name of the executing task.

12.5 DEVICE (NON-DISK) I/O ROUTINES
Many of the routines discussed in the disk I/O section will also

work on other devices. There are a number of special functions
required for non-disk devices. One example of these is the routine to
talk to a terminal; some operating systems don't allow Fortran I/O to
a terminal so this I/O is done through the routine ZTTYIO.

The following list gives a short description of these routines;
complete descriptions of the call sequence can be found at the end of
this chapter.

ZDOPRT - plots a bit map onto the plotter.
ZENDPG - does a page eject on the line printer.

- ZTAPE - positions a tape and writes file marks.
- ZTKBUF - formats the output buffer for the graphics output

device.
ZTTYIO - reads and writes to the terminal.
ZTVMC - clears the image display.
ZPRMPT - does a prompted read from the terminal.

THE Z ROUTINESDIRECTORY AND TEXT FILE ROUTINES Page 12-9
0 8 May 84

12.6 DIRECTORY AND TEXT FILE ROUTINES
Text files are used for source code and control information and

have been discussed previously in this chapter. Currently text files
may be read but not written from AIPS routines.

The following list briefly describes the function of the special
routines for text files; detailed descriptions of the call sequences are found at the end of this chapter.

ZTOPEN - opens a text file.
ZTREAD - reads a text file.

- ZTCLOS - closes a text file.
ZTXMAT - searches a directory for files whose names begin
with a given character string.
ZGTDIR - returns the directory for a text file area.

12.7 MISCELLANEOUS
Several Z routines don't naturally fit in any of the above

categories. The following list gives a brief description of each?
details of the call sequence and function are given at the end of this
chapter.

ZDCHIN - initializes the Device Characteristics Common.
- ZMATH4 - does pesudo 1*4 arithmetic.
- ZTFILL - initializes the FTAB array in the Device

Characteristics Common.
- ZKDUMP - dumps an array to the user message monitor and

message file in a number of different formats.

THE Z ROUTINES
INCLUDES

Page 12-10
08 May 84

12.8 INCLUDES
There are several types of INCLUDE file which are distinguished

by the first character of their name. Different INCLUDE file types
contain different types of Fortran declaration statments as described
in the following list.

- Dxxx.INC. These INCLUDE files contain Fortran type (with
dimension) declarations.

- Cxxx.INC. These files contain Fortran COMMON statments.
- Exxx.INC. These contain Fortran EQUIVALENCE statments.
- Vxxx.INC. These contain Fortran DATA statments.

Ixxx.INC. Similar to Dxxx.INC files in that they contain
type declarations but the declaration of some varaible is
omitted. This type of include is used in the main program to
reserve space for the omitted variable in the appropriate
common. The omitted variable must be declared and
dimensioned separately.

- Zxxx.INC. These INCLUDE files contain declaration! which may
change from one computer or installation to another.

12.8.1 CDCD.INC

Include CDCH
COMMON /DCHCOM/ NVOL, NBPS, NSPG, NBTB1, NTABl, NBTB2, NTAB2,

NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR,
CSIZPR, NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP, NBITWD,
NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, XPRDMM, XTKDMM,
NTVACC, NTKACC, UCTSIZ, BYTFLP, SYSNAM, VERNAM, USELIM,
IFILIT, RLSNAM

COMMON /FTABCM/ DEVTAB, FTAB
End CDCH.

12.8.2 CMSG.INC

Include CMSG
COMMON /MSGCOM/ MSGCNT, TSKNAM, NPOPS, NLUSER, MSGTXT,
* MSGSUP, NACOUN, MSGREC, MSGKIL

End CMSG.

the z routines
INCLUDES Page 12-1108 May 84

12.8.3 DDCH.INC

C Include DDCH
REAL*4 XPRDMM, XTKDMM, SYSNAM<5), VERNAM, RLSNAM(2)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2>,
* CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP,
* NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC,
* NTKACC, UCTSIZ, BYTFLP, USELIM, IFILIT,
* DEVTAB(50), FTAB(1)

C End DDCH.

12.8.4 DMSG.INC

C Include DMSG
INTEGER*2 MSGCNT, TSKNAM(3), NPOPS, NLUSER, MSGSUP, NACOUN,
* MSGREC, MSGKIL
REAL*4 MSGTXT(20)

C End DMSG.

12.8.5 IDCH.INC

C Include IDCH
REAL*4 XPRDMM, XTKDMM, SYSNAM(5), VERNAM, RLSNAM(2)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
* CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP,
* NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC,
* NTKACC, UCTSIZ, BYTFLP, IFILIT,
* USELIM, DEVTAB(50)

C End IDCH.

THE Z ROUTINES
ROUTINES

Page 12-12
0 8 May 84

12.9 ROUTINES
12.9.1 Data Manipulation
12.9.1.1 ZCLC8 - converts local characters in a buffer to standard
8-bit ASCII in another buffer - which may be the same buffer 11

ZCLC8 (NCHAR, INB, NP, OUTB)
Inputs: NCHAR 1*2 Number of characters

INB R*4(*) Input buffer in local chars: start at 1NP 1*2 Start index in output buffer
8-bit chars, 1-relative

in units of
Output: OUTB R* 4(*) Output buffer

12.9.1.2 ZC8CL - extracts 8-bit ASCII standard characters from a
buffer and stores them in the local character form. Must work even
when INARR and OUTARR start at the same address.

ZC8CL (NCHAR,NP,INARR,OUTARR)
Inputs: NCHAR 1*2 Number of characters to extract

NP 1*2 Start position in input buffer in units
of 8-bit characters

INARR R*4(*) Input buffer
Output: OUTARR R*4(*) Output buffer

12.9.1.3 ZI16IL - ZI16IL extracts 16-bit, 2's complement integers
from a buffer and puts them into the local small integer form. Must
work even when INB and OUTB have the same address.

ZI16IL (NVAL, NP, INB, OUTB)
Inputs: NVAL

NP
INB

Output: OUTB

1*2 # values to extract
1*2 start position in input counting from 1

in units of 16-bit integers
1*2(*) Input buffer
1*2(NVAL) Output buffer

12.9.1.4 ZI32IL - extracts 32-bit, 2's complement integers from a
buffer and puts them into the local small integer form. Must work
even when INB and OUTB have the same address. The IBM order must
apply to the output: i.e. the most significant part of the 32-bit
integer must be at a lower index in OUTB than the least significant
part. They will be picked up into standard pseudo 1*4 via IP(2) =
OUTB(i), IP(1) a OUTB(i+l) .

the z routines
ROUTINES Page 12-1308 May 84

ZI32IL (NVAL, NP, INB, OUTB)
Inputs: NVAL

NP
INB

Output: OUTB

1*2
1*2

1*2(*)

values to extract
start position in input counting from 1
in units of 32-bit integers
Input buffer

1*2(2*NVAL) Output buffer

12.9.1.5 ZI8L8 - converts 8-bit unsigned binary numbers to "bytes"
(one-half of a local small integer). Must work when input and output
buffers are the same.

ZI8L8 (NVAL, NP, INB, OUTB)
Inputs: NVAL

NP
INB

Output: OUTB

1*2 # values
1*2 First value to get from INB counting from 1

in units of 8-bit numbers
1*2(*) Input buffer
1*2(NVAL/2) Output buffer

12.9.1.6 ZILI16 - converts a buffer of local small
buffer of standard 16-bit, 2's complement integers.

ZILI16 (NINT, INB, NP, OUTB)

integers to a

Inputs: NINT 1*2
INB 1*2(*)
NP 1*2

Outputs:OUTB 1*2(*)

Number of integers
Input buffer: start at index 1
start point in output buffer 1-relative in
units of standard 16-bit integers
Out buffer

12.9.1.7 ZP4I4 - Converts Pseudo 1*4 integer to true 1*4.
ZP4I4 (P4, 14)

Input:
P4 1*2(2) pseudo 1*4 value

Output:
14 1*4 1*4 value

THE Z ROUTINES
ROUTINES

Page 12-14
08 May 84

12.9*1.8 ZR8P4 - converts between pseudo 1*4 and R*8.
ZR8P4 (OP, INTG, DX)

Inputs: OP R*4 *4108' Pseudo 1*4 to R*8
'8T041 R*8 to pseudo 1*4
14IB81 IBM i*4 to R*8
18IB41 R*8 to IBM 1*4

In/out: INTG 1*2(2) the 1*4
DX R*8 the R*8

Pseudo 1*4 has the form of two short integers with the least
significant half at the lower 1*2 index.
IBM 1*4 has the form of a 2's complement, 32-bit integer with the
most significant 16 bits in the 1*2 word of lower index and the
least significant 16 bits in the 1*2 word of higher index.

12.9.2 Disk I/O
12.9.2.1 ZCMPRS - releases unused disk space from
Will also allow "map" files. File must be open.
1/2 of a small integer.

ZCMPRS (IVOL, PNAME, ISIZE, LSIZE, LUN, IERR)

a non-map file.
"Byte" defined as

Inputs: IVOL
PNAME
ISIZE
LSIZE
LUN

1*2 volume number
R*4(6) physical file name
1*4
1*4
1*2

Outputs: IERR 1*2

original size bytes
desired final size bytes
logical unit number under which file is
open
error code: 0 => ok

1 => input data error
2 => compress error FMGR

12.9.2.2 ZCREAT - Creates a disk file.
ZCREAT (IVOL,PHNAME,NBYTE,MAP,IERR)

Inputs:
IVOL
PHNAME

1*2
R* 4(6)

NBYTE P 1*4
L*2
1*2

MAP
Outputs:

IERR

Disk drive unit number.
Physical file name given by ZPHFIL.
left justified, padded with blanks.
Size of the file in bytes. Will be rounded to
next higher 512 byte block boundary.
True if map file.
Error return code. The values mean
0 - success.
1 - file already exists.
2 - volume is not available.

THE Z ROUTINES
ROUTINES

Page 12-1508 Nay 84

3 - space is not available.
4 - Other,

12.9.2.3 ZDESTR - Destroy the file associated with PNANE. The file
must already be closed.

ZDESTR (IVOL,PNANE,IERR)
Input:
IVOL 1*2 Volume number of disk.
PNANE R*4(6) Physical file name.

Output:
IERR 1*2 Completion code. 0=good. l=failed.

l«file not found
2=failed

12.9.2.4 ZEXIST - determines if a file exists. If so the size of the
file is returned.

ZEXIST (IVOL, PHNANE, ISIZE, SCRTCH, IERR)
Inputs:
IVOL 1*2 The disk volume to seach. Not used on the VAX.

This information is found in PHNANE.
PHNANE R*4(6) File name.

Outputs:
ISIZE 1*2 Size of the file in 512 byte blocks.
SCRTCH 1*2(256) Scratch buffer. Not used on the VAX.
IERR 1*2 Error code 0 = file exists, l=file not found,

2 = other.

12.9.2.5 ZEXPND - increases the size of a non-map file.
ZEXPND (LUN, IVOL, PHNANE, NREC, IERR)

Inputs: LUN 1*2 LUN of file (already open)
IVOL 1*2 disk volume number of file
PHNANE R*4(6) physical file name of file

In/Out: NREC 1*2 # 256-integer records requested/received
Output: IERR 1*2 error code 0 => ok

1 => input error
2 => FMGR error

THE Z ROUTINES
ROUTINES

Page 12-16
0 8 May 84

12.9.2.6 ZFIO - reads or writes one logical record between core and
device LUN. For disk devices, the record length is always 512 bytes
(a byte being defined as half of a short integer). NREC gives the
random access record number (in units of 512 bytes). For non-disk
devices, NREC contains the number of bytes.

ZFIO (OPER, LUN, FIND, NREC, BUF, IERR)
Inputs:

OPER R*4 Operation = 'READ' or 'WRIT*
LUN 1*2 logical unit number
FIND 1*2 pointer to file area in FTAB
NREC 1*2 record number in file: starts with 1 (DISKS)

number of bytes (Sequential DEVICES)
BUF 1*2 (256) array to hold record

Output:
IERR 1*2 error code: 0 => ok

1 -> file not open
2 => input error
3 -> I/O error
4 -> end of file
5 -> begin of medium
6 -> end of medium

12.9.2.7 ZMIO - a low level random access, large record, double
buffered device I/O routine.

ZMIO (OP, LUN, FIND, BLKNO, NBYTES, BUFF, IBUFF, IERR)
Inputs:

OP R*4 Operation - 'READ', 'WRIT'. ASCII - 4 characters.
LUN 1*2 Logical unit number of a previously opened map.
FIND 1*2 Pointer to FTAB returned by ZOPEN.
BLKNO P 1*2 One relative beginning block number. The size of a

block is given by NBPS in COMMON/DCHCOM/.
NBYTES 1*2 Number of bytes to transfer.
BUFF R*4 The i/o buffer.
IBUFF 1*2 Buffer number to be used - 1 or 2.

Outputs:
IERR 1*2 Error return code:

0 = Success.
1 = File not open.
2 * Operation incorrectly specified.
3 = I/O error.
4 ** end of file (no messages)

THE Z ROUTINESROUTINES
Page 12-17
08 May 84

12.9.2.8 ZMSGCL - closes message file associated with LUN removing
any exclusive use state and clears up the FTAB.

ZMSGCL (LUN, FIND, IERR)
Inputs: LUN 1*2 logical unit number
Output: IERR 1*2 error code: 0 -> no error

1 -> Deaccess or Deassign error
2 -> file already closed in FTAB
3 -> both errors
4 -> erroneous LUN

12.9.2.9 ZMSGDK - reads or writes one 512-byte logical record betwen
core buffer BUF and disk unit LUN. Special version for message
writing.

ZMSGDK (OPER, LUN, FIND, NREC, BUF, IERR)
Inputs:

OPER R*4 Operation = 'READ' or 'WRIT'
LUN 1*2 logical unit number
FIND 1*2 pointer to file area in FTAB
NREC 1*2 record number in file: starts
BUF 1*2 (256) array to hold record

Output:
IERR 1*2 error code: 0 => ok

1 -> file not open
2 => input error
other -> I/O error

12.9.2.10 ZMSGOP - opens message files, performing full RMS open on
disk files for which LUN > NDEVT.

ZMSGOP (LUN, IND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)
Inputs:

LUN
IVOL
PNAME
MAP
EXCL
WAIT

Output:
IND
IERR,

0 = No error
1 * LUN already in use
2 = File not found
3 ■ Volume not found
4 = Excl requested but not available

1*2 Fortran Logical file number.
1*2 Disk volume containing file, 1,2,3,...
R*4(2) 8 Character physical file name,left justified
L*2 Is this a map file.
L*2 Desire exclusive use.
L*2 I will wait.
1*2 Index into FTAB for the file control block.
1*2 error code

THE Z ROUTINES
ROUTINES

Page 12-18
0 8 May 84

5 = No room for LUN
6 = Other open errors

12.9.2.11 ZOPEN - opens logical files, performing full open on disk
files for which LUN > NDEVT. Tape units are assigned an I/O channel
and given an FTAB entry for double buffering.

ZOPEN
Inputs:

LUN
IVOL
PNAME
MAP
EXCL
WAIT

Output:
IND
IERR

(LUN, IND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)
1*2 Logical unit number.
1*2 Disk volume containing file, 1,2,3,...
R*4(6) 24-character physical file name,left justified,

packed, and padded with blanks.
L*2 is this a map file ?
L*2 desire exclusive use?
L*2 I will wait?
1*2 Index into FTAB for the file control block.
1*2 Error return code:

0 * no error
1 = LUN already in use
2 * file not found
3 = volume not found
4 a excl requested but not available
5 a no room for lun
6 a other open errors

12.9.2.12 ZPHFIL - constructs a physical file name in PNAM from
ITYPE, IVOL, NSEQ, and IVER. New version designed either for public
data files or user specific files. This routine contains the logical
assignment list for Graphics devices and is thus site dependent as
well as machine dependent.

EXAMPLE: If ITYPEa'MA', IVOLa8, NSEQ=321, IVER=99, NLUSER=762 then
PNAMEa*DA07:MA832199;11 for public data or
PNAME='DA07:MA832199.762?1' for private data

1MT' leads to special name for tapes
'TK' leads to special name for TEK4012 plotter CRT
'TV' leads to special name for TV device
'ME' leads to special logical for POPS memory files

ITYPE =
ITYPE =
ITYPE =
ITYPE =

ZPHFIL (ITYPE, IVOL, NSEQ, IVER, PNAM, IERR)
Inputs:

Two characters denoting type of file. For example,
'MA' for map file.
Number of the disk volume to be used.
User supplied sequence number. 000-999.
User suppplied version number. 00-255.

Outputs:

ITYPE 1*2
IVOL 1*2
NSEQ 1*2
IVER 1*2

the z routines
ROUTINES Page 12-1908 May 84

PNAM R*4(6) >* 24-byte field to receive the physical file name,
left justified (packed) and padded with blanks.

IERR 1*2 Error return code.
0 = good return. 1 * error.

12.9.2.13 ZRENAM - Rename a disk file.
ZRENAM (IVOL, NAME1, NAME2, IERR)

Inputs:
IVOL
NAME1
NAME 2

Outputs:
IERR

1*2 Volume number (1 relative).
R*4(6) Old file name. 24 char., left justified, padded

on the right with blanks, and packed.
R*4(6) New file name, like NAME1.
1*2 error code.

0 = successful completion
2 = old file not found
3 « volume not found or not ready
6 = new file name already exists in directory.
7 = other errors.

12.9.2.14 ZWAIT - waits until an I/O operation started by ZMIO is
complete.

ZWAIT (LUN, IND, IBUF, IERR)
Inputs:

LUN 1*2 logical unit number
IND 1*2 Pointer to FTAB
IBUF 1*2 Wait for 1st or 2nd buffer in double buffered I/O

Output:
IERR 1*2 Error return 0 => ok

1 => LUN not open
3 => I/O error
4 => end of file
7 => wait service error

THE Z ROUTINES
ROUTINES

Page 12-20
0 8 May 84

12.9.3 System Functions
12.9.3.1 ZCPU - determines cumulative cpu usage in seconds for this
process: i.e. each time a process calls ZCPU during an execution, TIME is larger.

ZCPU (TIME, IOCNT)
Output: TIME R*4 Current CPU accumulation in seconds

IOCNT P 1*2 I/O count

12.9.3.2 ZDATE - returns local time of day.
ZDATE (ID)

Output: ID(1) year since 0.
ID (2) month (1-12).
ID(3) day (1-31).

12.9.3.3 ZDELAY - Cause a delay of time determined by the argument.
ZDELAY (SECS, IERR)

Input:
SECS R*4 Number of seconds to delay.

Output:
IERR 1*2 Error code. 0 = ok, 1 = error.

12.9.3.4 ZPRIO - changes the current program's machine priority
between that of batch programs and that of interactive programs. This
routine is used by tasks using true array processors.

ZPRIO (OP, IERR)
Inputs: OP R*4 'UPPP' to inter., 'DOWN' to batch

IERR 1*2 Error code: 0 => ok
1 => bad OP
2 => illegal request
3 => other failures

THE Z ROUTINESROUTINES Page 12-21
08 Nay 84

12.9,3.5 ZTACTQ - determines if a specified task is active.
ZTACTQ (NANE, ACTIVE, IERR)

12.9.3.6 ZTINE - returns the local time of day.
ZTINE (IT)

Outputs IT(1) 1*2 hours (0-23)
IT(2) 1*2 min (0-59)
IT(3) 1*2 sec (0-59)

12.9.3.7 ZTRSUN - resumes a hibernating task.
ZTRSUN (CNAME, IERR)

Inputss CNAME 1*2(3) task name.
Outputss IERR 1*2 error codes

12.9.3.8 ZFREE - This routine will calculate the number of free 512
byte blocks that are available on the disks used for AIPS data and
print the information on the screen. This routine is normally in the
AIPS program library (for AIPS and other standalone programs but not tasks).

ZFREE (IERR)
Inputs s

From common /DCHCON/
NVOL 1*2 Number of AIPS disks.

Outputs
IERR 1*2 0 = ok, l=error in disk logical name.

Inputs; NANE 1*2(3)
Outputs ACTIVE L*2

IERR 1*2
actual task name.(2 char/integer)
T => task active,
error numbers

0 => ok.
1 => invalid task name.

0 => ok
1 => invalid task name.
2 => insufficient privilege

THE Z ROUTINES
ROUTINES

Page 12-22
0 8 May 8 4

12.9.3.9 ZSTAIP - performs any operations needed to normalize the
local operating system at the conclusion of an interactive AIPS
session. This routine is normally kept in the AIPS program library
(not for tasks).

ZSTAIP (SCRTCH)

Outputs: SCRTCH 1*2(256) Scratch buffer

12.9.3.10 ZSUSPN - puts an executing process into hibernation. This
routine is normally in the AIPS program library (for AIPS and other
standalone programs but not tasks).

ZSUSPN (NPOPS? IERR)
Inputs: NPOPS 1*2 pops number (not used here).
Output: IERR 1*2 error no.; 0 => ok

12.9.3.11 ZTKILL - will delete the subprocess specified by NAME.
This routine is normally in the AIPS program library (for AIPS and
other standalone programs but not tasks).

ZTKILL (NAME, IERR)
Inputs: NAME 1*2(3) actual task name.(2 char/integer)
Output: IERR 1*2 error number:

0 => ok.
1 => error.

12.9.3.12 ZTQSPY - obtains entire list of AlPS-originated tasks now
running in system and prints info about them. This routine is
normally in the AIPS program library (for AIPS and other standalone
programs but not tasks).

ZTQSPY (TLIST)
Output: TLIST 1*2(256) Scratch buffer

THE Z ROUTINESROUTINES Page 12-23
0 8 May 84

12.9.3.13 ZWHOMI - determines the actual task name under which the
present version of AIPS is running. It uses this information to set
the value of NPOPS in the common /MSGCOM/. it then assigns the TV and
TK devices setting NTVDEV and NTKDEV in common /DCHCOM/. It checks
for remote entries at this stage and uses the true device numbers (set
by ZDCHIN) to do the assignments. This routine is normally in the
AIPS program library (for AIPS and other standalone programs but not
tasks).

ZWHOMI (IERR)
Outputs IERR 1*2 error codes 0 ok.

1 => task is AIPS, but NPOPS illegal.
2 => task is not AIPS.

12.9.4 Non-disk I/O Routines
12.9.4.1 ZDOPRT - read a bit map such as produced by PRTDRW and
convert it into a FORTRAN file that can be spooled to the
printer-plotter as a plot.

ZDOPRT (IVOL, IBMLUN, NCOPY, FILNAM, DESTRY, ISIZE,
* INBLK, IERR)
Inputss

IVOL 1*2
IBMLUN 1*2
NCOPY 1*2
FILNAM R* 4(6)
DESTRY L*2
ISIZE 1*2

In/Outs
INBLK I*2(*)

Outputss
IERR 1*2

0 -
>0 -

volume no. of bit map disk (1 rel)
bit map logical unit number.
Number of copies of the plot to make
physical file name of bit map.
destroy bit file when done?
size of INBLK in words.

error return code.

12.9.4.2 ZENDPG - advances the line printer to avoid "burn-out" on
electrostatic type printers.

ZENDPG (LINE)
Inputss LINE 1*2 # lines printed on page so far

THE Z ROUTINES
ROUTINES Page 12-24

0 8 May 84

12.9.4,3 ZTAPE - Performs standard tape manipulating functions,
ZTAPE (OP, LUN, FIND, COUNT, IERR)

Inputs:
OP R*4 Operation to be performed. 4 characters ASCII,

'ADVF* =* advance file marks
1ADVR1 ■ advance records
1BAKF' * backspace file marks.
1BAKR1 = backspace records.
1DMNT1 = dismount tape. Works for VMS 3.0 & later.
'MONT1 = mount tape. Works for VMS 3.0 and later.
1REWI1 = rewind the tape on unit LUN
1WEOF' = write end of file on unit LUN: writes 4

EOFs, positions tape after first one
1MEOF' • write 4 EOF marks on tape, position tape

before the first one
LUN 1*2 logical unit number
FIND 1*2 FTAB pointer. Drive number for MOUNT/DISMOUNT.
COUNT 1*2 Number of records or file marks to skip. On MOUNT

this value is the density.
Outputs:

IERR 1*2 Error return: 0 => ok
1 ■ File not open
2 ■ Input specification error.
3 = I/O error.
4 « End Of File
5 = Beginning Of Medium
6 = End Of Medium

12.9.4.4 ZTKBUF - puts the low order byte of IN into the proper byte
of the TEKTRONIX output buffer (DRBUFF). The "Z" is to allow other
conversions as required locally.

ZTKBUF (IN, IT, FIND, IERR)
Input: IN

IT
FIND

Output: IERR
COMMON: TKPOS

TKBUFF

1*2 the low order byte of this word is put into
DRBUFF.

1*2 Type of data: 1 control, 2 position, 3 char
1*2 FTAB position of TEK 4012 data.
1*2 error code. 0=ok, l=write error.
Byte position in TKBUFF to place IN.
TEKTRONIX output buffer.

THE Z ROUTINESROUTINES Page 12-25
0 8 May 84

ZTTYIO (OPER, LUN, FIND, NBYTES, BUFFER, IERR)
12*9*4.5 ZTTYIO - performs I/O to a terminal*

Inputs: OPER R*4 'READ' or 'WRIT'
LUN 1*2 LUN of open device
FIND 1*2 Pointer to FTAB for open device
NBYTES 1*2 # bytes (characters) to transmit (<= 132)

In/out: BUFFER R* 4(*) I/O buffer
Output: IERR 1*2 Error code: 0 => ok

1 => file not open
2 => input parameter error
3 => I/O error
4 => end of file

12.9.4*6 ZTVMC - issues a "master clear" to the TV. This resets the
TV I/O system (if necessary) to expect a command record next.

ZTVMC
No arguments

12.9.4.7 ZPRMPT - prompts user on CRT screen and reads a line. This
routine is normally in the AIPS program library (for AIPS and other
standalone programs but not tasks)•

ZPRMPT (IPC,BUFF,IERR)
INPUT: IPC 1*2 prompt character.
OUTPUT: BUFF 1*2(40) line of user input.

IERR 1*2 error code: 0 => ok.
1 => read/write error.

12.9.5 Directory And Text File
12.9.5.1 ZTCLOS - closes a text file.

ZTCLOS(LUN,FIND,IERR)
Inputs: LUN 1*2 logical unit number.

FIND 1*2 Not used with this routine.
Output: IERR 1*2 Error code.

0 => no error.
1 => RMS error.
2 => file not open*

THE Z ROUTINES
ROUTINES

Page 12-26
08 May 84

12.9.5.2 ZTOPEN - opens a text file.
ZTOPEN (LUN, FIND, IVOL, PNAME, MNAME, VERSON, WAIT,

* IERR)
Inputs: LUN 1*2 logical unit number.

1*2 disk drive number (NOT USED ON VAX).
R*4(6) disk-file type. Only type ('HE' ect)

used. Should be generated by ZPHFIL.
R*4(2) file name.

Version (determines in which dir/subdir
to look for the file).
T => wait until file is available,
error code:Output:

LUN
IVOL
PNAME
MNAME
VERSON
WAIT
IERR

R*4 (5)
L*2
1*2

FIND

0 => No error.
1 => LUN already in use.
2 => File not found.
3 => Volume not found.
4 => File locked.
5 => No room for LUN
6 => Other open errors.

1*2 pointer to FTAB location.

12.9.5.3
file.

ZTREAD - reads the next sequential card image from a text

ZTREAD (LUN, FIND, BUF, IERR)
Inputs: LUN 1*2 logical unit number

FIND 1*2 FTAB pointer for LUN
Output: BUF(*) 1*2 array card image.(> = 80 chars packed)

IERR 1*2 Error code:
0 => No error
1 => File not open.
2 => End of file.
4 => Other.

12.9.5.4 ZTXMAT - opens the directory for a source file area and
returns a list of member names whose first NCH characters match the
first NCH characters of MNAME.

ZTXMAT (IVOL, PNAME, MNAME, NCH, VERSON, NAMES,
* NNAM, IERR)

Inputs: IVOL 1*2
PNAME R*4(6)
MNAME 1*2(4)
NCH 1*2
VERSON R*4(5)

Volume number (not used in VAX version).
File name: 24 packed chars
Test member name
Number of characters to compare
Tells which dir to get names from.

THE Z ROUTINES
ROUTINES Page 12-2708 May 84

Output: NAMES 1*2(4,64) Names which match NCH chars of MNAME
NNAM 1*2 Number of names in NAMES
IERR 1*2 Error code: 0 => ok

1 »> none
2 => error in inputs or Open
3 *> I/O error

12.9.5.5 ZGTDIR - gets alphabetized list of members of text files.
ZGTDIR (ITYPE, LNAME, HNAME, VERSON, NUM, NAMES, IERR)

Inputs: ITYPE 1*2 type of file (HE, SO, etc).
LNAME 1*2(4) lowest name to include.
HNAME 1*2(4) include names lower than this one.
VERSON R*4(5) Version. Set in AIPS as the adverb VERSION.

Output: NUM 1*2 number of names found.
NAMES 1*2(4,1000) sorted file names.
IERR 1*2 error code.

12.9.6 Miscellaneous
12.9.6.1 ZDCHIN - initializes the disk characteristics common. If
NDISK < 0, ZDCHIN uses ABS (NDISK) but skips reading parameters from
the parameter disk file. Otherwise, ZDCHIN starts by hardcoded
parameter values and then resets some based on values on an alterable
disk file.

ZDCHIN (NDEV, NDISK, NMAP, IOBLK)
Inputs: NDISK 1*2 max number regular disk files open at once

NMAP 1*2 max number of map (double buf) files open at once
NDEV 1*2 max number of devices open at once
IOBLK 1*2(256) I/O block for reading values off disk.

12.9.6.2 ZMATH4 - does 1*4 arithmetic on pseudo 1*4 arguments
ZMATH4 (ARG1, OP, ARG2, RESULT)
Inputs:

ARG1 P 1*4 First P 1*4 argument
OP 1*2 OPeration =* PL*(+);'MI1(-);1 MU'(x);1DI1(/)

'MN'(min)? 'MX*(max)
ARG2 P 1*4 Second P 1*4 argument

Outputs:
RESULT P 1*4 Result

THE Z ROUTINES
ROUTINES

Page 12-28
08 May 84

12.9.6.3 ZKDUMP - dumps portions of an array in INTEGER*2, char*4,
hex*2, and REAL*4: i.e. in as many forms as possible ZKDUMP is
called a Z routine because the formats may not be acceptable on all
machines. This routine is normally in the AIPS program library (for
AIPS and other standalone programs but not tasks).

ZKDUMP (II, 12, K, C)
Inputs: II 1*2 start subscript in integer array

12 1*2 end subscript in integer array
K I*2(*) integer array
C R*4(*) real array equivalenced to K

CHAPTER 13
PITS TAPES

The principle route for getting data and images into and out of
AIPS is by FITS (Flexible Image Transport System) format tape files.
FITS is an internationally adopted medium of exchange of astronomical
data and allows easy interchange of data between observatories and
image processing systems. FITS also has the advantage that it is a
self-defining format and the actual bit pattern on the tape is
independent of the machine on which the tape was written. The purpose
of this chapter is to describe the general features of FITS and the
details of the AIPS implementation of FITS. This chapter is not
intended to be a rigorous description of the FITS standards.

The fundamental definition of the FITS system is given in Wells,
Greisen, and Harten (1981), with an extension described in Greisen and
Harten (1981). A proposed further extension is given in Harten,
Grosbol, Tritton, Greisen and Wells, (1984). FITS has been adopted as
the recommended medium of exchange of astronomical data by the IAU,
the Working Group on Astronomical Software (WGAS) of the AAS, and WGLAS.

Because of the great flexibility of the FITS system, many of its
features have been adopted for the internal data storage format in
AIPS. See the chapter on the catalogue header for more details on the
AIPS internal storage format.

There are three main portions of a FITS file 1) the main header,
2) the main data and 3) any number of records containing auxilary
information. In addition, an extension of the original definition of
the FITS structure allows storage of ungridded visibility data. Each
of these is discussed in detail in the following sections.

13.1 OVERVIEW

13.2 PHILOSPHY
FITS is a philosophy as much as a data format. The underlying

philosophy is to provide a standardized, simple, and flexible means to
transport data between computers or image processing systems. FITS is
standarized in the sense that any FITS reader should be able to read
any FITS image, at least to the degree that the array read is of the
correct dimension and pixel values have at least the correct relative

FITS TAPES
PHILOSPHY

Page 13-2
08 May 84

scaling. In addition, any FITS reader should be able to cope with any
FITS format tape and at least skip over portions or ignore keywords
that it doesn't understand.

The requirement of simplicity means that the implementation of
FITS reading and writing be fairly straight forward on any computer
used for astronomical image processing. Simple also implies that the
structure of the file be self defining and to a large degree self
documenting.

The main advantage of FITS is its flexibility. Due to the self
defining nature of the files, a large range of data transport needs
are fulfilled. The introduction of new keywords gives the ability to
add new pieces of information as needed and the use of generalized
extension files allows almost unlimited flexibility in the type of
information to be stored. Thus FITS can grow with the needs of the
Astronomical community.

The great flexibility of FITS is a potential weakness as well as
a strength. There is a great temptation to proliferate keywords and
new extension file types. This should be done with great caution.
Since FITS is a worldwide medium of data exchange, there needs to be
coordination of keywords and extension files to prevent duplication
and inconsistencies in usage.

The most fundamental philosophical ideal of FITS is that no
change in the system should render old tapes illegal or unreadable.
This philosophy is reflected in the AIPS implementation of FITS in
that all obselete implementations (e.g. old CLEAN component or
antenna extension files) are trapped and processed in the most
accurate manner possible.

13.3 IMAGE FILES
The most common form of astronomical information is the image and

historically the first FITS tape files were for multidimensional
images. The following sections describe FITS image files.

13.3.1 Overall Structure
The structure of a FITS image file consists of one or more

records containing ASCII header information followed by one or more
binary data records. (These may be followed by other records which
are discussed in another section.)

All "logical" records on FITS tapes are 2880 8-bit (aytes long
with one record per tape block. (Larger blocking factory are being
considered but have not yet been implemented.) The number of bits in a
FITS record is an even multiple of words and bytes on any computer
ever sold commercially. The definition of FITS allows standard ANSI
labeled tapes but the AIPS implementation only writes unlabeled tapes.
Labeled tapes may be read by AIPS by skipping header apd trailer

FITS TAPES
IMAGE FILES Page 13-3

08 May 84

records
Each FITS header record contains 36 80-byte "card images" written

in 7-bit ASCII (sign bit set to zero)• These header records contain
all the information necessary to read, and hopefully, label the image.
In addition, other information including the processing history may be given.

Following the header records come the data records. These
records contain the pixel values in one of several binary formats.

13.3.2 Header Records
Each "card image" in the header is in the form,

Keywords should be no more than 8 characters long and the
keyword = value should be readable by Fortran 77 list directed I/O.
To accomodate more primitive systems, a fixed format is mandatory for
the required keywords and suggested for the optional keywords. This
fixed format is as follows:

- Keyword name beginning in column 1.
- "=" in column 9
- T or F (logical true or false) in column 30.
- Real part (integer or floating) right justified, ending in

column 30.
- Imaginary part (integer or floating) right justified, ending

in column 50.
- character string with a beginning "'" in column 11 and an

ending "'" in or after column 20

The first keyword in a header must be SIMPLE and have a value of
T (true) if the file conforms to FITS standards and an F (false) if it
doesn't. (The ASCII string "SIMPLE = T" occupying the first 30 bytes
of a file of 2880-byte records is the "signature" of FITS). The
keywords and values must convey the size of the image and the number
of bits per pixel value. Optionally, the coordinate system, scaling
and other information may be given. In the AIPS implementation a
considerable amount of information is given.

keyword = value / comment

FITS TAPES
IMAGE FILES

Page 13-4
08 May 84

13.3.2.1 Keywords - The following keywords (data type) are required
for ALL FITS files (for all time) in the order given.

1. SIMPLE (logical) says if the file conforms to FITS standards.
2. BITPIX (integer) is the number of bits used to represent the

pixel value; 8 => 8 bit unsigned integers, 16 => 16 bit,
twos complement signed integers, 32 => 32 bit, twos
complement signed integers.

3. NAXIS (integer) is the number of axes in the array.
4. NAXIS1 (integer) is the number of pixels on the fastest

varying axis.
5. up to NAXIS999 (integer) is the number of pixels on the 999

th fastest varying axis.
6. END , the last keyword must be END. The last header record

should be blank filled past the END keyword.
AIPS routines can accept up to 7 dimensional images.

The following optional keywords were suggested by Wells et. al.
(1981). Their order (between the required keywords and the END
keyword) is arbitrary; in general, all of these keywords appear in an
AIPS FITS header.

- BSCALE (floating) is the scale factor used to convert tape
pixel values to true values (true = [tape BSCALE] + BZERO).

- BZERO (floating) is the offset applied to true pixel values
(see BSCALE).

- BUNIT (character) gives the brightness units.
- BLANK (integer) is the tape pixel value assigned to undefined

pixels.
- OBJECT (character) is the image name.
- DATE (character) is the date the file was written

('dd/mm/yy')
- DATE-OBS (character) is the date of data acquition

('dd/mm/yy1)•
- ORIGIN (character)is the tape writing institution.
- INSTRUME (character) is the data acquisition instrument.

TELESCOP (character) is the data acquisition telescope.
- OBSERVER (character) is the observer name / identification.

FITS TAPES
IMAGE FILES Page 13-508 May 84

blank in col 1-8 (none) means columns 9 - 8 0 are a comment.
- COMMENT (none) means columns 9 - 8 0 are a comment.
- HISTORY (none) means columns 9 - 8 0 are a comment.
- CRVALn (floating) is the value of physical coordinate on axis

n at the reference pixel.
- CRPIXn (floating) is the array location of reference pixel

along axis n. CRPIX may be a fractional pixel and/or be
outside of the limits of the array.

- CDELTn (floating) is the increment in physical coordinate
along axis n as FORTRAN counter increases by 1.

- CTYPEn (character) is the type of physical coordinate on axis
n.
CROTAn (floating) is the rotation angle of actual axis n from
stated coordinate type.
DATAMAX (floating) is the maximum data value in file (after
scaling).

- DATAMIN (floating) is the minimum data value in file.
EPOCH (floating) is the epoch of coordinate system (years).

Of these keywords, all are well defined except the rotation? see the
chapter on the catalogue header for more details on the current AIPS
rotation conventions. AIPS routines can currently read up to 32768
header records each consisting of 36 card images.

13.3.2.2 History - In the AIPS implementation, the "HISTORY" cards
contain the entries of the history file associated with the image. As
they appear on the tape, these history entries are in the form;
HISTORY tsknam keywordl=valuel, keyword2=value2 ... / comment
Where "tsknam" is the name of the task (or AIPS) making the entry and
the keywords are the AIPS adverbs used. Thus these history records
may be used to carry AIPS specific values which don't have official
keywords. This feature is used, for example, to determine the default
file name, class etc. when reading a file which was written on an
AIPS system.

FITS TAPES
IMAGE FILES

Page 13-6
08 May 84

13.3*2.3 AIPS Nonstandard Image File Keywords - There are a number of
keywords used by AIPS which are not standard.

- TABLES (integer) is the number of tables following the file,
(now obsolete)

- DATE-MAP (character) is the date the map was made.
('dd/mm/yy')

- OBSRA (floating) is the Right ascension of the antenna and
delay tracking position used for the observations.

- OBSDEC (floating) is the declination of the antenna and delay
tracking position used for the observations.

- VELREF (floating) is the reference velocity.
- ALTRVAL (floating) is the value of the alternate

(frequency/velocity) axis at the alternate reference pixel
(ALTPIX).

- ALTRPIX (floating) is the alternate (frequency/velocity)
reference pixel.

- RESTFREQ (floating) is the rest frequency of the spectral
line being observed.

- XSHIFT (floating) is the offset of the phase center from the
tangent point of the Right ascension after any rotation.

- YSHIFT(floating) is the offset of the phase center from the
tangent point of the declination after any rotation.

A number of keywords which are specific to AIPS are hidden on
HISTORY cards. These keywords are recognized if the first symbol in
columns 10 - 17 is one of the following: 'AIPS1, 'VLACV', or
'RANCID'.

IMNAME (character) the name of the file in an AIPS (or
RANCID) system used to generate the FITS tape.
IMCLASS (character) the class of the AIPS file.

- IMSEQ (integer) the sequence number of the AIPS file.
USERNO (integer) the AIPS user number.
PRODUCT (integer) the type of CLEAN image. l=>normal clean,
2=>components, 3=>residual, 4=>points.

- NITER (integer) the number of CLEAN components used for the
image.

PITS TAPES
IMAGE FILES Page 13-708 May 84

BMAJ (floating) the major axis (FWHP) of the restoring beam,
(degrees)
BMIN (floating) the minor axis (FWHP) of the restoring beam.
BPA (floating) the position angle (from north thru east) of
the major axis of the restoring beam.

AIPS also recognizes, but does not write, the following
non-standard keywords:

- OPHRAE11 (floating) an obscure number related to the Right
ascension of the center on an image made on the VLA pipeline PDP11.

- OPHDCE11(floating) an obscure number related to the
declination of the center on an image made on the VLA
pipeline PDP11.
MAPNAM11 (character) the name of the file on the VLA pipeline
PDP11.

Any keywords which are not recognized by AIPS are written into the
history file.

13,3,2,4 Coordinate Systems - The coordinate type and the system used
for each type is given by the CTYPEn values. The character strings
used for these values are identical to the strings used in the AIPS
catalogue header record (CAT4(K4CTP+n-l)). The coordinate type is
encoded into the first 4 characters of the coordinate type string
(e.g. 'RA— ' indicating Right ascension) and the system used is
encoded into characters 5 - 8 (e.g. '-SIN' indicating a sine
projection onto the sky)• The coordinate systems and their symbolic
names are described in detail in the chapter on the catalogue header
and AIPS memo number 27. The coordinate system used to describe the
polarization of an image needs careful attention.

The AIPS convention for projected geometries is to specify the
tangent point of the projection as the reference pixel even though
this need not correspond to an integer pixel and need not even be
contained in the array given. The tangent point is the position on
the sky where the plane on which the image is projected is tangent to
the celestial sphere. For images derived from synthesis arrays, this
is the position for which u, v, and w were computed. The reference
pixel for a synthesis array beam image is the phase reference of the
image? this should be the position of the peak of the beam (pixel
value = 1.0).

The use of one rotation angle per axis cannot be used to define a
general rotation of the axis system. Since the AIPS catalogue header
uses the same convention, the same problems occur internally to AIPS.
See the chapter on the AIPS catalogue header for a brief discussion of
the conventions used in AIPS. The same conventions are used when

FITS TAPES
IMAGE FILES

Page 13-8
0 8 May 84

reading and writing FITS tapes.

13.3.2.5 Example Image Header - The following is an example of an
image header written by AIPS (with most of the HISTORY entries removed).

FITS TAPES
IMAGE FILES Page 13-908 May 84

000000000111111111122222222223333333333444444444455555555556666666666
123 4567890123456789012345678901234567 89012345678901234567890123 4567 89SIMPLE = T /
BITPIX = 16 /
NAXIS s 4 /
NAX I SI = 2048 /
NAXIS2 = 1024 /
NAX I S3 = 1 /
NAXIS4 = 1 /
OBJECT = 13C405 ' / SOURCE NAME
TELESCOP>s i i /
INSTRUME i i /
OBSERVER 'PERL 1 /
DATE-OBS1 _ 127/10/821 /OBSERVATION START DATE DD/MM/YY
DATE-MAP= '14/07/83' /DATE OF LAST PROCESSING DD/MM/YY
BSCALE = 7•0 46 257 20 812E-0 5 /REAL = TAPE * BSCALE + BZERO
BZERO = 2.186 8886 9476E+00 /
BUNIT = 'JY/BEAM ' /UNITS OF FLUX
EPOCH =S 1 • 950000000E+03 /EPOCH OF RA DEC
DATAMAX = 4.495524406E+00 /MAX PIXEL VALUE
DATAMIN s -1.217470840E-01 /MIN PIXEL VALUE
CTYPE1 S 'RA-- SIN' /
CRVAL1 = 2.99435165226E+02 /
CDELT1 as -4.166666986E-05 /
CRPIX1 = 1.024000000E+03 /
CROTA1 = O.OOOOOOOOOE+OO /
CTYPE2 = 'DEC— SIN' /
CRVAL2 = 4*05961940065E+01 /
CDELT2 = 4*166666986E-05 /
CRPIX2 = 5.130000000E+03 /
CROTA2 = O.OOOOOOOOOE+OO /
CTYPE3 = 'FREQ ' /
CRVAL3 = 4.86635000000E+09 /
CDELT3 = 1.250000000E+07 /
CRPIX3 = 1.000000000E+00 /
CROTA3 = O.OOOOOOOOOE+OO /
CTYPE4 = 'STOKES ' /
CRVAL4 1.00000000000E+00 /CDELT4 = 1.000000000E+00 /CRPIX4 as 1.000000000E+00 /
CROTA4 = O.OOOOOOOOOE+OO /
HISTORY UVLOD /DATA BASE CREATED BY USER 76 AT 14-JUL-1983 10:17;HISTORY UVLOD OUTNAME®1CYGA i OUTCLASS='XY •HISTORY UVLOD OUTSEQ= 1 OUTDISK = 3
ORIGIN

• •
' AIPSNRAO VLA VAX3 t /DATE = •19/08/83' / TAPE WRITTEN ON DD/MM/YYHISTORY AIPS IMNAME='CYGA i IMCLASS='IMAP ' IMSEQ= 1HISTORY AIPS USERNO= 76 /END

FITS TAPES
IMAGE FILES

Page 13-10
0 8 May 84

13.3.2.6 Units - The units for pixel values and coordinate systems
should be SI units where appropriate (e.g. velocities in meters/sec)?
angles in degrees; pixel values in Jy, Jy/beam, magnitudes, or
magnitudes/pixel.

13.3.3 Data Records
The data array starts at the beginning of the record following

the last header record. The data occurs in the order defined by the
header; in increasing pixel number with axis 1 the fastest varying
and the last axis defined the slowest varying. Data is packed into
the 2880 byte records with no gaps; that is, the first pixel of any
given axis does not necessarily appear in the first word of a new
record.

The bits in each word are in order of decreasing signifigance
with the sign bit first. This convention means the PDP-11 and VAX
machines will have to reverse the order of the bytes in 16 and 32 bit
words before writing or after reading the tape. There are a number of
AIPS utility routines for converting FITS tape data to the local
convention; these are briefly described in the following list.
Complete details of the call sequences etc. are given at the end of
the chapter on the Z routines.

1. ZCLC8 converts local characters to standard 8-bit ASCII.
2. ZC8CL extracts 8-bit standard characters from a buffer and

stores them in the local character form.
3. ZI16IL extracts 16-bit twos complement integers from a buffer

and puts them in a local small integer array.
4. ZI32IL extracts 32-bit twos complement integers from a buffer

and puts them in a local array of pseudo 1*4 integers.
5. ZI8L8 converts 8-bit unsigned binary numbers to "bytes" (half

of a local small integer).
6. ZILI16 converts a buffer of local small integers to a buffer

of standard 16-bit, twos complement integers. ZR8P4 converts
between pseudo 1*4 and double precision (R*8).

13.4 RANDOM GROUP (UV DATA) FILES
The extension of the original FITS standards described by Greisen

and Harten 1981 allows uv data to be written in FITS files. These
files are called "Random group" FITS files. This extension is to
allow multiple "images" i.e. rectangular data arrays each of which is
arbitrarily located on some "axes". Thus each data array is preceeded
by a number of "random" parameters which describe its location on axes
on which it is not regularly gridded, e.g, u, v, w, time, and

FITS TAPESRANDOM GROUP (UV DATA) FILES Page 13-11
0 8 May 84

baseline. The definition of what constitutes an "axis" is extremely
vague. Currently AIPS FITS routines can accept up to 7 actual axes in
the regular portion of a group and up to 20 random parameter words.
The structure of a group is shown in the following.

I rl» r2, r 3, ... rk I pi1, pi2, ... pmn I
where rl ... rk are random parameters 1 thru k

pll ... pmn are the pixel value in the order
defined for image arrays. Two dimensions
are used only for demonstration.

FITS image files are actually a subset of this more general
structure but for historical reasons the random group FITS is treated
as a special case of the image file. This has unfortunate
consequences as will shortly become obvious. Most of the features of
random group files are identical to image files and the discussion in
the following section will concern the differences between image and
random group FITS files.

13.4.1 Header Record
For obscure historical reasons, random group FITS files are

declared to have zero pixels on the first axis? the first real axis
is labeled axis 2 and so on. This will allow FITS image readers that
don't know about random group files to do something reasonable, i.e.
skip over the file. Thus a random group FITS file has one more axis
described in the header than actually occurs in the data.

In addition to playing games with the axis numbers, random group
FITS headers have the following required keywords (in any order)s

1. GROUPS (logical) is true (T) if the data file is a random
group FITS file.

2. PCOUNT (integer) is the number of random parameters preceding
each data array.

3. GCOUNT (floating) is the number of groups in the file.

The random parameters may be labeled and scaled in a fashion
similar to image axes and pixels. In addition, multiple word
precision in some of the random parameters is allowed by giving
multiple random parameters the same label. If several random
parameters have the same name (PTYPE), their values should be summed
after scaling. Labeling and scaling use the following optional
keywords (arbitrary order):

FITS TAPES
RANDOM GROUP (UV DATA) FILES

Page 13-12
08 May 84

PTYPEn (character) is the label for the n-th random
parameter. If several random parameters have the same value
of PTYPEn they should be summed after scaling.

- PSCALn (floating) gives the scale factor for random parameter
n. True_value = tape_value * PSCALn + PZEROn

- PZEROn (floating) gives the scaling offset for random
parameter n.

A number of keywords which are specific to AIPS are hidden on HISTORY
cards. These keywords are recognized if the first symbol in columns
10 - 17 is one of the following: 'AIPS1, 'VLACV', or 'RANCID'.

- SORT ORDER (character) the order of the groups.
- WTSCAL (floating) an additional scaling factor for visibility

weights.

13.4.2 Data Records
The binary data records are stored beginning in the first record

following the last header record in much the same way that image files
are stored; the beginning of a group does not necessarily correspond
to the beginning of a record. The same pixel data types are allowed
as for image files (note: the data type must be the same for all
values both random parameters and the "data" array).

13.4.2.1 Weights And Flagging - Uv FITS files written by AIPS have as
their first (real, i.e. second in the header) axis the 'COMPLEX' axis
which is dimensioned 3. The values along this axis (coordinate values
lr 2, and 3) are real part (in Jy), imaginary partr and weight. A non
positive weight indicates that the the visibility has been flagged.
The scaling desired for the weight may be different for the real and
imaginary parts so an additional scaling factor is stored in the
header as a HISTORY entry as follows:
HISTORY AIPS WTSCAL » 2.76756756757E+01

/ CMPLX WTS=WTSCAL*(TAPE*BSCALE+BZERO)
The use of WTSCAL allows the reader to recover the same values for the
weights as the AIPS file which was used to generate the FITS file. If
WTSCAL is ignored (or absent) the relative but not absolute scaling of
the weights is preserved.

In addition to the form described abover AIPS will accept other
forms of weighting/flagging data.

FITS TAPESRANDOM GROUP (UV DATA) FILES Page 13-1308 May 84

1. Magic value blanking. In this case the COMPLEX axis is
dimensioned 2 (real and imaginary) and the header keyword
BLANK is used to indicate undefined data values. Thus if
either the real or imaginary parts are 'blanked' the data is
assumed to be flagged (invalid).

2. Bandam parameter flagging. Data written on the VLA pipeline
is in this format. The weights and flags are passed as
random parameters. More on this later in the broadcast.

13.4.2.2 Antennas And Subarrays - If data from different arrays (or
different VLA configurations) are combined, the physical identity of a
given antenna may not be constant in a given data base. In order to
identify the physical antennas involved in a given visibility record,
AIPS uses a subarray number. The (subarray number - 1) * 0.01 is
added to the baseline number to identify the subarray.

There is an antenna file or list for each subarray. The
information about the antennas (e.g. locations etc.) is given in the
antenna files. Currently AIPS writes these files as extension table
files (described later) with the file version number corresponding to
the subarrav number.

AIPS will also recognize antenna locations given
cards. An example (from Greisen and Harten 1981) of
COMMENT ANTENNA LOCATIONS IN NANOSECONDS!

in the HISTORY
this follows:

HISTORY VLACV ANT
HISTORY VLACV ANT
HISTORY VLACV ANT
HISTORY VLACV ANT
HISTORY VLACV ANT
HISTORY VLACV ANT

-8061.210
-2452.399
-50.585

-4910.700
-170.397

N= 9 X= 10924.708 Y=-28961.684 Z=-16194.042

N=
N=
N=
N=
N=

2
4
5
6
7

X=
X=
x=
x=
x=

5470.525 Y=-14443.276 Z=
1667.280 Y= -4396.334 Z=
37.719 Y= 135.627 Z=

3353.710 Y= -8816.123 Z=
118.761 Y= 445.786 Z=

ST='AW4'
ST=1CW8'
ST='DE21
ST='BW6'
ST='DE41
ST='AW6'

COMMENT FORMULA FOR BASELINES BETWEEN ANTENNA I AND J (I<J):
COMMENT BASELINE(IJ) • LOCATION(I) - LOCATION(J)
COMMENT FORMULA FOR UU, W, WW :
COMMENT UU = BX * SIN(HA) + BY * COS(HA)
COMMENT W » BZ * COS(DEC) + SIN(DEC) * (BY * SIN(HA) - BX * COS(HA))
COMMENT WW - BZ * SIN(DEC) + COS(DEC) * (BX * COS(HA) - BY * SIN(HA))

WHERE UU AND W ARE THEN ROTATED TO THE EPOCH
The above example also defines the antenna geometry and u,
terms used for VLA data.

and w

13.4.2.3 Coordinates - The coordinate systems used to write FITS uv
data tapes are very similar to the AIPS internal systems? the major
difference being the use of 'DATE' (giving the Julian date) for time
tagging the data rather than 'TIME1' (giving the time in days from the
beginning of the experiment). See the uv data section of the disk I/O
chapter for more details of the AIPS internal uv data coordinate

FITS TAPES
RANDOM GROUP (UV DATA) FILES

Page 13-14
08 May 84

systems.

13.4.2.4 Sort Order - The ordering of visibility records is variable
and may be changed by programs such as AIPS task UVSRT. The sort
order is given as a two character code in the FITS header as in the
following example:
HISTORY AIPS SORT ORDER = 'XY'
Data sorted in AIPS has a two key sort order with the first key
varying the slowest. The two keys are coded as characters given by
the following table:

B => baseline number
T => time order
U => u spatial freq. coordinate
V => v spatial freq. coordinate
W => w spatial freq. coordinate
R => baseline length.
P => baseline position angle.
X => descending ABS(u)
Y => descending ABS(v)
Z => ascending ABS(u)
M => ascending ABS(v)
* => not sorted

13.4.3 Typical VLA Record Structure
The following is a uv FITS header for continuum VLA data which

demonstrates the use of multiple precision random parameters. Most of
the HISTORY records are removed from this example. The header
indicates that the data in this example is followed by two antenna
files in the old AIPS tables format.
000000000111111111122222222223333333333444444444455555555556666666666
1234567 890123 4567 8901234567 890123 4567 8901234567 890123 4567 890123456789SIMPLE
BITPIX =
NAXIS
NAXIS1 =
NAXIS2 =
NAXIS3 =
NAXIS4 =
NAXIS5 =
NAXIS6 =
OBJECT =
TELESCOP=
INSTRUME=
OBSERVER*
DATE-OBS=

0923+350 i i
i i
»C0TT i
30/04/82

STANDARD IMAGE JUST GROUP

T /
16 /
6 /
0 /NO
3 /
4 /
1 /
1 /
1 /
/
/
/
/
/OBSERVATION START DATE DD/MM/YY

SOURCE NAME

FITS TAPES
RANDOM GROUP (UV DATA) FILES Page 13-15

08 May 84

DATE-MAP=
BSCALE =
BZERO
BUNIT
EPOCH
OBSRA
OBSDEC =
TABLES =
CTYPE2 =
CRVAL2 =
CDELT2 =
CRPIX2 =
CROTA2 =
CTYPE3 =
CRVAL3 =
CDELT3 *
CRPIX3 «
CROTA3 =
CTYPE4 =
CRVAL4 =
CDELT4 =
CRPIX4 =
CROTA4 *
CTYPE5 =
CRVAL5 =
CDELT5 -
CRPIX5 =
CROTA5 «
CTYPE6 =
CRVAL6 =
CDELT6 -
CRPIX6 =
CROTA6 =
GROUPS =
GCOUNT =
PCOUNT =
PTYPE1 =
PSCALI -
PZEROl =
PTYPE2 =
PSCAL2 =
PZER02 =
PTYPE3 =
PSCAL3 =
PZER03 =
PTYPE4 =
PSCAL4 =
PZER04 =
PTYPE5 =
PSCAL5 =
PZER05 =
PTYPE5 =
PSCAL5 =
PZER05 =
PTYPE7 =
PSCAL7 =

'11/10/83'
3 *30987 595420E-06
0.OOOOOOOOOOOE+OO

'JY '
1 • 950000000E+03

1•40795415491E+02
3•50133331865E+01

2
'COMPLEX '

1.00000000000E+00
1.000000000E+00
1.000000000E+00
0.000000000E+00

'STOKES '
-1.00000000000E+00
-1.000000000E+00
1.000000000E+00
0.000000000E+00

'FREQ '
4.88510000000E+09
5 *000000000E+07
1.000000000E+00
0.000000000E+00

* RA 1
1.40795415491E+02
0.000000000E+00
1.000000000E+00
O.OOOOOOOOOE+OO

'DEC '
3.50133331865E+01
O.OOOOOOOOOE+OO
1.000000000E+00
O.OOOOOOOOOE+OO

T
21389.

7
'UU-L '

2.56659543954E-09
0.OOOOOOOOOOOE+OO

'W-L '
3.46332811989E-09
0.OOOOOOOOOOOE+OO

'WW-L '
2.33722136998E-09
0.OOOOOOOOOOOE+OO

'BASELINE'
1.OOOOOOOOOOOE+OO
0.OOOOOOOOOOOE+OO

'BASELINE'
1.00000000000E-0 2
0.00000000000E+00

'DATE '
2.50000000000E-01
2.44508950000E+06

'DATE '
1.52587890600E-05

/DATE OF LAST PROCESSING DD/MM/YY
/REAL = TAPE * BSCALE + BZERO
/
/UNITS OF FLUX
/EPOCH OF RA DEC
/ANTENNA POINTING RA
/ANTENNA POINTING DEC
/THIS IS THE ANTENNA FILE
/
/
/
/
/
/
/ STOKES AS RR, LL, RL, LR
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

FITS TAPES
RANDOM GROUP (UV DATA) FILES

Page 13-16
08 May 84

PZER07 = 0.00000000000E+00 /
/ WHERE BASELINE = 256*ANT1 + ANT2 + (ARRAY#-1)/100

HISTORY UVLOD RELEASE*'15NOV83 ' /CREATED AT ll-OCT-1983 13:34:50
HISTORY UVLOD OUTNAME*'0923+350 1 OUTCLASS*1UVDATA'
HISTORY UVLOD OUTSEQ* 1 OUTDISK* 3
ORIGIN =*'AIPSNRAO node CVAX 15NOV83' /
DATE ■ '11/10/83' / TAPE WRITTEN ON DD/MM/YY
HISTORY AIPS IMNAME*'0923+350 ' IMCLASS*'XYAC ' IMSEQ= 1 /
HISTORY AIPS USERNO* 413 /
HISTORY AIPS SORT ORDER = 'XY'

/ WHERE X MEANS DESC ABS(U)
/ WHERE Y MEANS DESC ABS(V)

HISTORY AIPS WTSCAL = 2.76756756757E+01 / CMPLX WTS=WTSCAL*(TAPE*BSCALE+BZER(END

13.5 EXTENSION FILES
There is frequently auxilary information associated with an image

or data set which needs to be saved in the same tape file. Examples
of this in AIPS are the Antenna files and CLEAN component files.
There is currently a draft proposal to the IAU (Harten &X* 1984)
defining a standard format for the invention of extension files to be
written after the main data records (if any) and defining a "Tables"
type extension file. The Tables extension files will be able to carry
information which can be expressed in the form of a table. The
following section will describe the proposed standards which are being
incorporated into AIPS.

13.5.1 Standard Extension
The standard, generalized extension file is not a true tape file

in the sense that it is separated by tape EOF marks, but is a number
of records inside a FITS tape file which contains information of
relevence to the file. Each standard extension "file" will have a
header which is very similar to the main FITS header. This header
consists of one or more 2880 8-bit byte "logical" records each
containing 36 80-byte "card images" in the form:

keyword = value / comment

The extension file header begins in the first record following
the last record of main data (if any) or the last record of the
previous extension file. The format of the generalized extension
"file" header is such that a given FITS reader can decide if it wants
(or understands) a given extension file type and can skip over the
extension file if the reader decides it doesn't.

FITS TAPES
EXTENSION FILES Page 13-1708 May 84

Most of the standards concerning data types and bit orders for
the main FITS data records also apply to extension files. One
difference is that 8-bit pixel values can be used to indicate ASCII
code.

The use of the generalized extension "files" requires the use of
a single additional keyword in the main header:

- EXTEND (logical) if true (T) indicates that there may be
extension files following the data records and if there are,
that they conform to the generalized extension file header
standards.

The required keywords in an extension file header record are, in
order:

1. XTENSION (character) indicates the type of extension file,
this must be the first keyword in the header.

2. BITPIX (integer) gives the number of bits per "pixel" value.
The types defined for the main data records plus 8-bit ASCII
are allowed.

3. NAXIS (integer) gives the number of "axes"; a value of zero
is allowed which indicates that no data records follow the
header•

4. NAXIS1 (integer) is the number of "pixels" along the first
axis (if any).

5. NAXISn (integer) is the number of "pixels" along the last
axis.

6. PCOUNT (integer) is the number of "random" parameters before
each group. This is similar to the definition of random
group main data records. The value may be zero.

7. GCOUNT (integer) is the number of groups of data defined as
for the random group main data records. If an image-like
file (e.g. a table file) is being written this will be 1.

8. END is always the last keyword in a header. The remainder of
the record following the END keyword is blank filled.

There are three optional standard keywords for extension file
header records. The order, between the required keywords and the END keyword, is arbitrary.

- EXTNAME (character) can be used to give a name to the
extension file to distinguish it from other similar files.
The name may have a hierarchical structure giving its
relation to other files (e.g. "mapl.cleancomp")

FITS TAPES
EXTENSION FILES

Page 13-18
0 8 May 84

EXTVER (integer) is a version number which can be used with
EXTNAME to identify a file.

- EXTLEVEL (integer) specifies the level of the extension file
in a hierarchical structure. The default value for EXTLEVEL
should be 1.

The number of bits in an extension file (excluding the header)
should be given by the formula:
NBITS = BITPIX * GCOUNT * (PCOUNT + NAXIS1 * NAXIS2 * ... * NAXISn)
The number of data records following the header record are then given
by:

NRECORDS = INT ((NBITS + 23039) / 23040)
It is important that the above formulas accurately predict the number
of data records in an extension "file" so that readers can skip over
these "files". The data begins in the first record following the last
record of the header.

Extreme caution must be exercized when inventing new types of
extension files. In particular, duplication of types or several types
with the same function must be avoided. This means that when a new
extension file type is invented, it should be as general as possible
so that it may be used for other similar problems.

13.5.2 Tables Extension
A very common type of extension file is one containing data that

can be expressed in the form of a table. That is, a number of entries
which are all identical in form. A general, self defining table
extension file type is proposed by Harten et. a I. (1984). The
following sections describe the proposed format.

The table extension file uses ASCII records to carry the tabular
information. Each table entry will contain a fixed number of entries
(although the number can vary between different extension files). For
each entry is given 1) a label (optional), 2) the beginning column, 3)
an undefined value (optional) , 4) a Fortran format to decode the
entry, 5) scaling and offset information (optional), 6) the units (optional).

13.5.2.1 Tables Header Record - The keywords for tables extension
file headers are given in the following:

PITS TAPES
EXTENSION PILES Page 13-1908 May 84

- XTENSION (character) is required to be the first keyword and
has a value 'TABLE ' for table extension files.

- BITPIX (integer) is a required keyword which must have a
value of 8 indicating printable ASCII characters.

- NAXIS (integer) is a required keyword which must have a value
of 2 for tables extension files.

- NAXIS1 (integer) is a required keyword which given the number
of characters in a table entry.

- NAXIS2 (integer) is a required keyword which gives the number
of entries in the table. A value of 1 is allowed.
PCOUNT (integer) is a required keyword which must have the
value of 0 for tables extension files.

- GCOUNT (integer) is a required keyword which must have the
value of 1 for tables extension files.

- TFIELDS (integer) is a required keyword which must follow the
GCOUNT keyword. TFIELDS gives the number of fields in each
table entry.

- EXTNAME (character) is the name of the table.
- EXTVER (integer) is the version number of the table.
- EXTLEVEL (integer) is the hierarchical level number of the

table/ 1 is recommended, (optional)
- TBCOLnnn (integer) the pixel number of the first character in

the nnn th field .
TFORMnnn (character) the Fortran format of field nnn
(I,A,E,D)

- TTYPEnnnn (character) the label for field nnn. (optional,
order arbitrary)
TUNITnnn (character) the physical units of field nnn.
(optional, order arbitrary)
TSCALnnn (floating) the scale factor for field nnn.
True_value = tape_value * TSCAL + TZERO. Note: TSCALnnn and
TZEROnnn are not relevant to A-format fields. Default value
is 1.0 (optional, order arbitrary)

- TZEROnnn (floating) the offset for field nnn. (See
TSCALnnn.) Default value is 0.0 (optional, order arbitrary)
TNULLnnn (character) the (tape) value of an undefined value.
Note: an exact left-justified match to the field width as
specified by TFORMnnn is required. (optional, order
arbitrary)

FITS TAPES
EXTENSION FILES

Page 13-20
08 May 84

- AUTHOR (character) the name of the author or creator of the
table, (optional, order arbitrary)

- REFERENC (character) the reference for the table, (optional,
order arbitrary)

- END must always be the last keyword and the remainder of the
record must be blank filled.

The TFORMnnn keywords should specify the width of the field and
are of the form Iww, Aww, Eww.dd, or Dww.dd (integers, characters,
single precision and double precision). If -0 is ever to be
distinguished from +0 (e.g. degrees of declination) the sign field
should be declared to be a separate character field.

13.5.2.2 Table Data Records - The table file data records begin with
the next record following the last header record and each contains
2880 ASCII characters in the order defined by the header. Table
entries do not necessarily begin at the beginning of a new record.
The last record should be blank filled past the end of the valid data.

13.5.2.3 Example Table Header And Data - The first two lines of
numbers are only present to show card columns and are not part of the
extension file.

123 4567890123 4567 890123 456789012XTENSION= 'TABLE i /BITPIX s 8 /NAXIS = 2 /NAXISI = 60 /NAXIS2 as 449 /PCOUNT 35 0 /GCOUNT S 1 /TFIELDS as 3 /EXTNAME = 'AIPS CC i /EXTVER = 1 /TBCOL1 = 1 /TFORM1 = 'E15.6 i /TTYPE1 as 'FLUX i /TUNIT1 as 'JY i /TSCAL1 s 1.0 /TZEROl = 0.0 /TBCOL2 s 17 /TFORM2 s 'E15.6 i /TTYPE2 ss 'DELTAX i /
TUNIT2 = 'DEGREES i /TSCAL2 = 1.0 /

A MATRIX

FITS TAPESEXTENSION FILES
Page 13-21
08 May 84

TZER02
TBCOL3
TF0RM3
TTYPE3
TUNIT3
TSCAL3
TZER03
END

= 'E15.6 '
= 'DELTAY '
= 'DEGREES '

0.0 / ZERO POINT FOR FIELD N
33 / STARTING CHAR. POS. OF FIELD N

/ FORTRAN FORMAT OF FIELD N
/ TYPE (HEADING) OF FIELD N
/ PHYSICAL UNITS OF FIELD N

1.0 / SCALE FACTOR FOR FIELD N
0.0 / ZERO POINT FOR FIELD N

The rest of the header block is blank filled,
the next block boundary.

The data cards start on

0 .1833 87E+00
0.146710E+00
0.117368E+00
0.938941E-01
0.183387E+00

-0.138889E-03
-0.138889E-03
-0.138889E-03
-0.138889E-03
-0.138889E-03

0.6 94444E-0 4
0.694444E-04
0.694444E-04
0.6 94444E-04
0.694444E-04

13.5,3 Older AIPS Tables
Prior to the (presumed) establishment of the standard tables

extension files, AIPS had it own tables file format and a large number
of tapes have been written with these tables. These old tables were
encoded in ASCII and could have any number of columns in the table.
However, all values in the table had to be of the same data type and
written with the same format. AIPS FITS readers will continue to
recognize and deal with these obsolete tables indefinitely. The
following sections describe these tables.

13.5,3.1 General Form Of Header - The presence of the old format AIPS
tables is indicated in the main header by the presence of the integer
keyword TABLES which gives the number of tables following the data
records. Each table has a header record in a manner similar to the
now standard extension file header but with different keywords. The
header contains the following keywords:

FITS TAPES Page 13-22
EXTENSION FILES 08 Nay 84

1. TABNANE (character) gives the name of the file,
2. TABVER (integer) gives the version number of the file.
3. TABCOUNT (integer) gives the number of entries in the table.
4. TABWIDTH (integer) gives the number of values per table entry
5. TABCARDS (integer) gives the number of values per card image.
6. TTYPEn (character) gives a label for the n th column.
7. NUMTYPE (character) gives the data type used for internal

storage (1*2, R*4, R*8)
8. FORMAT (character) gives the format for the table elements.
9. END is the last keyword.

13.5.3.2 Data Records - The data records consist of floating point
values encoded in ASCII in 36 80-byte card images per record in a free
field format. The values are encoded TABCARDS values per 80 byte card
image.

13.5.3.3 CC Files - The details of the AIPS old CLEAN component (CC)
table file are illustrated in the following example of a header.
Component positions are given in degrees from the tangent point
(reference pixel) of the image in the projected and rotated plane
(i.e. not true RA and dec). Component flux densities are in Janskys.
CLEAN components are stored 2 per card image written as 6E13.5.
TABNAME = 'AIPS CC' / AIPS CLEAN COMPONENTS
TABVER = 1 / VERSION NUMBERTABCOUNT= 100 / # LOGICAL RECORDS IN TABLE
TABWIDTH* 3 / # VALUES PER LOGICAL RECORD
TABCARDS* 6 / # VALUES PER CARD IMAGETTYPE1 ■ 'DELTAX ' / COLUMN 1 LABEL
TTYPE2 = 'DELTAY ' / COLUMN 2 LABEL
TTYPE3 = 'FLUX(JY)' / COLUMN 3 LABELNUMTYPE = 'R*4 ' / OUR INTERNAL STORAGE SIZEFORMAT = 'E13.5 ' / FORMAT ACTUALLY USED HEREEND

13.5.3.4 AN Files - The details of the AIPS old antenna table file
are illustrated in the following example of a header. Antenna
positions are given in seconds (light travel time)

FITS TAPES EXTENSION FILES Page 13
08 May

TABNAME = 'AIPS AN' /ANTENNA IDS, LOCATIONSTABVER = 1 /VERSION NUMBERTABCOUNT= 28 / # LOGICAL RECORDS IN TABLETABWIDTH= 5 / # VALUES PER LOGICAL RECORDTABCARDS= 5 / # VALUES PER CARD IMAGETTYPE1 = 'AN NO. ' / COLUMN 1 LABELTTYPE2 * 'STATION ' / COLUMN 2 LABELTTYPE3 = 'LX ' / COLUMN 3 LABELTTYPE4 = 'LY ' / COLUMN 4 LABELTTYPE5 = 'LZ ' / COLUMN 5 LABELEND

13.6 AIPS FITS INCLUDES
There are several AIPS INCLUDES which contain tables of KEYWORD

names, data types and pointers to the AIPS catalogue header. Each of
the sets consists of a declaration include (Dnnn.inc), an EQUIVALENCE
include (Ennn.inc) and a DATA include (Vnnn.inc). These includes can
be used directly by routines such as FPARSE. The basic components of
these includes is shown below:

- AWORD (R*4) - this array contains the recognized keywords,
two R*4 words per keyword with four characters per R*4 word.
This array can be sent to GETCRD as the list of keywords.

- NCT (1*2) - this gives the number of required keyword names
in CWORD which is equivalences at the beginning of AWORD.

- NKT (1*2) - this given the number of optional keywords names
in KWORD which is equivalenced into AWORD after CWORD.

- ATYPE (1*2) - this array gives the data types corresponding
to keywords in AWORD. l=>logical variable, 2*>numerical value, and 3=>string.

- APOINT (1*2) - this array contains pointers in the common in
the includes DHDR.INC and CHDR.INC to the AIPS catalogue
header in the form lOOOnbytes + lOOoffset + position of
pointer in common. Here nbytes given the number of bytes
used in the AIPS catalogue header and the offset is the
character offset past the position indicated by the header
pointer. The text of these includes is in the following sections.

FITS TAPES
AIPS FITS INCLUDES

Page 13-24
08 May 84

13.6

C

C

13.6

C

C

13.6

C

C

13.6

C

.1 DFUV.INC

Include DFUV
INTEGER*2 ATYPE(150), APOINT(ISO), CTYPE(ll), KTYPE(139),

* CPOINT(11) , POINTU39), NKT, NCT
REAL*4 AWORD(2,150), CWORD(2,ll), KWORD (2,13 9) , Kl(2,73),* K2(2,66)

End DFUV

.2 DFIT.INC

Include DFUV
INTEGER*2 ATYPE(82)f APOINT(82), CTYPEUO), KTYPE(72), CPOINTUO),
* POINT(72), NKT, NCT
REAL*4 AWORD(2, 82), CWORD(2,10), KWORD(2,72)

End DFUV

.3 EFUV.INC

Include EFUV
EQUIVALENCE (AWORD(l,l), CWORD(l,l)), (AWORD (1, 85) , K2(l,l))f
* (AWORD(1,12)t KWORD(lfl), Kl(lrl))
EQUIVALENCE (APOINT(l)r CPOINT(l)), (APOINT(12), POINT(l))
EQUIVALENCE (ATYPE(1)f CTYPE(l))r (ATYPE(12)f KTYPE(1))

End EFUV

.4 EFIT.INC

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(AWORD(1f1), CWORD(1r1)),
(APOINT(l)t CPOINT(l))f
(ATYPE (1), CTYPE (D) f

Include EFUV
(AWORD(1f11), KWORD(1f1))
(APOINT(ll) , POINT(l))
(ATYPE(11) f KTYPE(1))

End EFUV

FITS TAPESAIPS FITS INCLUDES
Page 13-2.5
08 May 84

13.6.5 VFUV.INC

DATA
Include VFUV

DATA CWORD/'SIMP ', 'LE ','BITP','IX ','NAXI•,'S ','NAXI i9* 'SI 'NAXI', 'S2 'NAXI' 'S3 ','NAXI' , 'S4 ','NAXI',' S5 ',
* NAXI',' S6 ','NAXI' ' S7 ','NAXI','S8 '/

DATA K1 /'OBJE','CT ','TELE' 'SCOP' ,'INST' ,'RUME' ,'OBSE','RVER',
'DATE','-OBS','DATE' '-MAP' ,'BSCA' ,'LE *,'BZER','0 ',
'BUNI *,i ip » »CTYP' 'El ','CTYP' , 'E2 ','CTYP*,' E3 ',
'CTYP',' E4 iCTypt ' E5 ','CTYP','E6 *,'CTYP',' E7 ',
'CTYP *,* E8 ','CRVA' 'LI 1,'CRVA' ,' L2 ','CRVA','L3
' CRVA' ,' L4 ','CRVA' ' L5 ','CRVA' ,'L6 ','CRVA',' L7 ',
'CRVA',' L8 ','CDEL' ' T1 ','CDEL' ,'T2 ','CDEL',' T3 ',
'CDEL',' T4 ' ,'CDEL' ' T5 ','CDEL','T6 ','CDEL',' T7 ',
'CDEL',' T8 ' ,'CRPI' 'XI ','CRPI','X2 ','CRPI',' X3 ',
'CRPI',' X4 ','CRPI' ' X5 ','CRPI', 'X6 ','CRPI',' X7 ',
'CRPI',' X8 ' ,'CROT' ' A1 ','CROT' ,' A2 ','CROT','A3 ',
'CROT*,* A4 ' ,'CROT' ' A5 ','CROT' ,'A6 ','CROT*,' A7 ',
'CROT',' A8 ' ,'EPOC' 'H ','DATA' ,'MAX ','DATA','MIN ',
'BLAN','K ' ,'INHI' 'BIT ','IMNA' ,' ME ','IMCL','ASS ',
*IMSE*f'Q 'USER' 'NO ','PROD','UCT ','NITE','R ',
'BMAJ',i i 'BMIN* i i,'BPA ' i i, ,' VELR',' EF ',
'ALTR','VAL ','ALTR' 'PIX ','OBSR' , 'A ','OBSD','EC ',
'REST*,'FREQ','XSHI' 'FT ','YSHI' , 'FT ','DATE',i i
'ORIG','IN '/

DATA K2 /'GROU' 'PS ' ,'GCOU' 'NT ', 'PCOU',' NT ','PTYP','El ',
'PTYP',' E2 ' f'PTYP' ' E3 ','PTYP* ,'E4 ','PTYP',' E5 ',
* PTYP',' E6 ','PTYP * *E7 ','PTYP' , 'E8 ','PTYP',' E9 ',
'PTYP','E10 ','PTYP' 'Ell ','PTYP','E12 ','PTYP','E13 ',IpTyplf'El4 ','PTYP' ' El 5 ','PTYP','E16 ','PTYP','El7 ',
'PTYP','El8 ','PTYP' ' El 9 ','PTYP' ,'E20 ','PSCA','LI ','PSCA',' L2 ','PSCA' ' L3 ','PSCA' ,'L4 ','PSCA', ' L5 ',
'PSCA',' L6 ' f'PSCA' ' L7 ','PSCA' , 'L8 ','PSCA', ' L9 ','PSCA','L10 ','PSCA' ' Lll ','PSCA','L12 ','PSCA','L13
'PSCA','L14 ' ,'PSCA' 1 LI 5 ','PSCA' ,'L16 ','PSCA',*L17'PSCA','LI8 'PSCA' ' LI 9 ',' PSCA','L20 ','PZER','01 ',
'PZER','02 ' ,'PZER' '03 ', 'PZER' , '04 ','PZER','05 ' ,'PZER','06 ','PZER' '07 ','PZER' ,'08 ','PZER','09 ' ,'PZER','010 ', 'PZER' 'Oil ','PZER' ,'012 ','PZER', '013 \'PZER*,'014 ','PZER' '015 ','PZER' ,'016 1,'PZER','017 ','PZER','018 ','PZER' '019 ','PZER* ,'020 ','TABL',' ES ' ,'SORT','ORDR' 'WTSC' ' AL '/

1 =Logical variable
2=Number

CTYPE /l,2, 3 =StringDATA 2,2, 2,2,2,2, 2,2,2/
DATA KTYPE /3,3,3,3, 3 3,2,2, 3,3/3,3, 3,3,3,3, 3,2,2,2,* 2,2,2,2, 2 2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2,★ 2,2,2,2, 2,2,2,2, 2,2,2, 2, 2,2,3,3, 2,2,2,2,* 2,2,2,2, 2,2,2,2, 2,2,2,3, 3,1, 2,2,★ 20*3 r 20*2, 20*2, 2,3,2/

DATA CPOINT

no
no

n
FITS TAPES
AIPS FITS INCLUDES

Page 13-26
0 8 May 84

* 2542, 26 42, 2742/
DATA POINT / 8001, 8002, 8003, 8004, 8005, 8006, 8029, 8030* 8007, 8009, 8109, 8209, 8309, 8409, 8509, 8609* 8709, 8031, 8131, 8231, 8331, 8431, 8531, 8631* 8731, 4010, 4110, 4210, 4310, 4410, 4510, 4610* 4710, 4011, 4111, 4211, 4311, 4411, 4511, 4611* 4711, 4012, 4112, 4212, 4312, 4412, 4512, 4612* 4712, 4013, 4014, 4015, 4016, 2044,12017, 6 218* 2045, 20 46, 2048, 2047, 4020, 4021, 4022, 2049* 8035, 4023, 8032, 8033, 8034, 4024, 4025, 0* 0, 1001, 2039, 2040,* 20*8008, 20*4004, 20*4004, 4004, 2048, 4004/

C End VFUV.

13.6.6 VFIT.INC

*
DATA

■NAXI■,'S6 1,
KWORD /'OBJE1,'CT

'NAXI','S7 '/
•,'TELE','SCOP','INST','RUME1,'OBSE',

* 1RVER','DATE','-OBS','DATE','-MAP','BSCA','LE ','BZER','O* 'BUNI1,'T i 'CTYP' ,'E1 ','CTYP', ' E2 ','CTYP',*E3* 1CTYP1,'E4 i 'CTYP','E5 ','CTYP', ' E6 ','CTYP',' E7* *CRVA1,'LI i 'CRVA' ,'L2 ','CRVA',' L3 •,'CRVA',' L4* 'CRVA','L5 i 'CRVA1,'L6 ','CRVA',' L7 ','CDEL',' T1* 'CDEL','T2 i 'CDEL' ,'T3 ','CDEL', ' T4 ','CDEL',1T5* 'CDEL','T6 i 'CDEL','T7 ','CRPI','XI 1,1CRPI',' X2* 'CRPI','X3 i 'CRPI' ,'X4 ','CRPI',*X5 1,'CRPI','X6* 1CRPI',* X7 i 'CROT' ,'A1 ','CROT *,»A2 ','CROT*,'A3* 'CROT','A4 i 'CROT' ,'A5 ','CROT',' A6 ','CROT',' A7* 'EPOC','H i 'DATA' ,'MAX ','DATA1,'MIN ','BLAN',•K* 'INHI','BIT i 'IMNA' ,'ME ','IMCL', 'ASS ','IMSE','Q* 'USER','NO t 'PROD' ,'UCT ','NITE','R ','BMAJ',i* 'BMIN',' i ' BPA ',' ','VELR', ' EF ','ALTR','VAL* 'ALTR','PIX i 'OBSR' ,'A ','OBSD', ' EC ','REST','FREQ* 'XSHI','FT i 'YSHI','FT 1,'DATE',i i,'ORIG','IN* 'TABL','ES t 'OPHR* ,'AE11','OPHD',1CE11','MAPN',' AM11

DATA
DATA

CTYPE /l,2,2,2,
KTYPE /3,3,3,3,

2,
3,
2,2,2,
3,2,2,

l=Logical
2=Number
3=String

2,2/
3,3,3,3, 3,3,3

variable

,3, 2,2,2,2,* 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2, 2, 2,2,2,2,★ 2,2,2,2, 2,2,2,2, 2,3,3,2, 2,2,2, 2, 2,2,2,2,* 2,2,2,2, 2,2,3,3, 2,2,2,3/
1000*nbytes + 100*offset +

8005, 8006

PITS TAPES
AIPS FITS INCLUDES Page 13-27

08 May 84

8007, 8009, 8109, 8209, 8309, 8409, 8509, 8609,
8031, 8131, 8231, 8331, 8431, 8531, 8631, 4010,
4110, 4210, 4310, 4410, 4510, 4610, 4011, 4111,4211, 4311, 4411, 4511, 4611, 4012, 4112, 4212,
4312, 4412, 4512, 4612, 4013, 4014, 4015, 4016,2044,12017, 6218, 2045, 2046, 2048, 20 47, 4020,4021, 4022, 2049, 8035, 4023, 8032, 8033, 8034,
4024, 4025, 0, 0, 4001, 4101, 4201,12017/

End VFIT

13.7 AIPS FITS PARSING ROUTINES
There are several AIPS utility routines which are useful for

parsing (reading) FITS header records. These routines are briefly
described in the following; details of the call sequences etc. will
be given later.

- FPARSE parses a FITS header card, unpacking the card image,
interpreting it and putting the data value into the correct
location in the AIPS catalogue header. This routine is for
standard FITS headers but with the substitution of the
INCLUDES DFIT.INC, EFIT.INC and VFIT.INC for DFUV.INC,
EFUV.INC and VFUV.INC the routine will work for FITS image
tapes written on the VLA pipeline.

- GETCRD unpacks a given card image from a header block of FITS
data and looks for keywords in a supplied table.

- GETSYM finds the next symbol in an unpacked buffer. A symbol
is defined to begin with a letter and have up to 8
alpha-numeric characters.
GETLOG obtains the value of a logical variable from an
unpacked buffer.

- GETNUM converts an ASCII numeric field into a REAL*8 value.
- GETSTR obtains a character string from an unpacked buffer.

PITS TAPES
AIPS FITS PARSING ROUTINES

Page 13-28
08 May 84

Following are the details of the call sequence and function of
the AIPS FITS parsing utility routines.

13.7.1 FPARSE - (parse FITS card) will unpack and interpret a card
image from a block of FITS data and put that data into the internal
AIPS header. Works for standard uv or image FITS headers.

FPARSE (ICARD, FITBLK, PSCAL, POFF, PTYPES, TABLES,
* END, IERR)

Inputs:
ICARD
FITBLK

Outputs:
PSCAL
POFF
PTYPES
TABLES
END
IERR

1*2
1*2(1440)
R*8(20)
R*8(20)
R*4(20)
1*2
L*2
1*2

The card number (1-36) in block to interpret,
A block of FITS header data.
Random parameter scalings
Random parameter offsets
Random parameter types (packed chars every
other one)
Tables extension
True if end card found, else false.
error code 0=ok. l=error.

COMMON /MAPHDR/

13.7.2 GETCRD - (get card) will unpack a given card image from a
header block of FITS data, look for a recognizable key word from a
supplied table and return information to the calling routine.

GETCRD (ICARD, NOSYM, STRSYM, SYMTAB, FITBLK, NPNT,
* KL, SYMBOL, TABNO, ISHIST, END, IERR)

Inputs:
ICARD 1*2
NOSYM 1*2
STRSYM 1*2
SYMTAB 1*2(2,NOSYM)
FITBLK 1*2(1440)

In/Out:
NPNT 1*2
KL 1*2(80)

Outputs:
SYMBOL 1*2(2)
TAB NO 1*2
ISHIST L*2
END L*2
IERR 1*2

the card image (1-36) in FITS data block,
the number of entries in key word table.
Start search with symbol # STRSYM
unpacked keywords, two per 1*2.
the block of FITS header cards.
The position to start scan in array KL.
Returns the last position scanned plus one.
input the unpacked card image if NPNT > 1,
else returns the unpacked card image.
the unpacked symbol found on the card.
SYMBOL matches SYMTAB(l&2,TABNO).
True if history card else false.
True if end card found, else false.
0=match found, l=no match on otherwise
valid keyword, 2=card ends or other trouble

FITS TAPES
AIPS FITS PARSING ROUTINES Page 13-2908 May 84

13.7.3 GETLOG - obtains the value of a logical variable
buffer.

GETLOG (KB, LIMIT, KBP, IL)

from loose

Inputs:
KB (80)
LIMIT
KBP

Outputs:
KBP
IL

1*2 Loose buffer of card image
1*2 Number of words in loose buffer
1*2 Pointer position at start
1*2 Pointer position of next field
1*2 Value of logical field

0— > .false.
1— > .true.
2— > invalid

13.7.4 GETNUM - converts ASCII numeric field into REAL*8 number
GETNUM (KB, KBPLIM, KBP, X)

Inputs: KB 1*2()
KBPLIM 1*2
KBP 1*2

Outputs: KBP 1*2
X R*8

loose character buffer
characters in buffer
start of numeric field
start of next field (incl blanks)
numerical value

13.7.5 GETSTR - obtains a hollerith value from a loose buffer.
GETSTR (KB, KBPLIM, NMAX, KBP, ISTR, NCHAR)

Inputs: KB 1*2(80)
KBPLIM 1*2
NMAX 1*2
KBP 1*2

Outputs: KBP 1*2
ISTR R*4(*)
NCHAR 1*2

loose buffer
size of loose buffer
max string length in characters
start position in KB
start position in KB next field
packed string, blank filled
characters (0 => no string found)

13.7.6 GETSYM - scrutinizes a card image to look for the next symbol.
A symbol begins with a letter and contains up to eight alpha-numeric
characters (A-Z,0-9,_). This routine is used for interpreting a FITS
tape and for interpreting the HI files.

GETSYM (LBUFF, NPNT, SYM, IERR)
Inputs:

LBUFF(80) 1*2 Loose packed card image

FITS TAPES
AIPS FITS PARSING ROUTINES

Page 13-30
08 Nay 84

NPNT
Output:

NPNT
SYH(2)
IERR

0— > Found legal symbol followed by
1— > Ran off the end of the card
2— > Symbol had >8 characters
3— > Found legal symbol with no '='

or SYN is HISTORY or COMHENT
4— > Found a '/' symbol
5— > Symbol contains an illegar char

1*2 Pointer to first character
1*2 Pointer value after getting symbol
R*4 Symbol, padded with blanks
1*2 Return code

13•8 REFERENCES
Wells, Greisen, and Harten 1981, Astronomy and Astrophysics Supplement

series, vol. 44, pp 363 - 370.
Greisen and Harten, 1981, Astr.onomy. and Astrophysics Supplement

Series, vol. 44, pp 371 - 374.
Harten, Grosbol, Tritton, Greisen and Wells 1984, draft reproduced in

the iau Comission 9 As.tJLQn.Qnu.-CaI image Processing Circular.

Index Page Index-1
09 May 84

INDEX

-ARC, 5-13
-NCP, 5-13
-SIN, 5-13
-TAN, 5-13
/CFILES/, 3-10 to 3-11,
3-17 to 3-18, 5-2, 6-3, 6-5,
6-12, 6-28, 6-40 to 6-41,
11-9, 11-17

/DCHCOM/, 5-11
/HDRVAL/, 5-10
/LOCATI/, 5-14
/MAPHDR/, 5-25, 6-2 to 6-3,
6-18, 6-34, 6-40 to 6-42, 6-45

/TVCHAR/, 5-11
/UVHDR/, 5-25, 6-18, 6-20, 6-45
AIPS batch, 3-18, 4-2, 4-11,
4-16, 7-1, 11-5

APGET, 11-23
APGSP, 11-23
APIO, 11-10, 11-16
APPUT, 11-24
APRFT, 11-24
APWAIT, 11-24
APWD, 11-25
APWR, 11-25
AXEFND, 5-8, 5-20
AXSTRN, 9-21
BADDISK, 3-17
BOXSUM, 11-25
BPINIT, 11-5, 11-25
BPRLSE, 11-5, 11-25
BPROLL, 11-5, 11-17
CANDY, 2-1, 2-8, 2-13, 2-16,
CAPC.INC, 11-13
CAPL.INC, 4-29
catalogue, 3-9 to 3-10, 5-1,
5-3, 5-7, 5-25, 6-16, 6-18,
6-34, 6-42, 6-45, 8-1

CATDIR, 5-2, 5-8, 5-20,
6-5 to 6-6, 8-1

CATIO, 5-8, 5-21, 6-5, 8-1
CBAT.INC, 4-29
CBPR.INC, 11-5, 11-13
CBUF.INC, 8-10
CBWT.INC, 4-30
CCAT.INC, 8-11
CCON.INC, 4-30
CDCD.INC, 3-22, 11-14, 12-10

CDCH.INC, 6-2, 6-7 to 6-8,
11-5, 12-2

CERR.INC, 4-10, 4-30
CFFT, 11-26
CFIL.INC, 3-22
CHCOMP, 3-3, 3-25
CHCOPY, 3-3, 3-25
CHDR.INC, 5-17
CHFILL, 3-4, 3-25
CHLTOU, 3-4, 3-25
CHMATC, 3-4, 3-26
CHPAC2, 3-4, 3-26
CHPACK, 3-4, 3-26
CHWMAT, 3-4, 3-26
CHXPN2, 3-4, 3-27
CHXPND, 3-4, 3-27
CIO.INC, 4-30
CITB.INC, 8-10
CLENUP, 8-3, 8-12
CLOC.INC, 5-18
CMSG.INC, 3-23, 12-10
COMOFF, 6-11 to 6-12, 6-28
CONVRT, 6-15, 6-28
CPOP.INC, 4-30
CRVMUL, 11-26
CSMS.INC, 4-31
CSQTRN, 11-26
CTKS.INC, 7-8
CTVC.INC, 5-18, 7-8, 9-25
CTVD.INC, 9-26
CUVH.INC, 3-10, 3-23, 5-25,
6-18, 6-45

CVCMUL, 11-27
CVCONJ, 11-27
CVEXP, 11-27

3-3 CVJADD, 11-28
CVMAGS, 11-28
CVMMAX, 11-28
CVMOV, 11-29
CVMUL, 11-29
CVSDIV, 11-29
CVSMS, 11-30
DAPC.INC, 11-14
DAPL.INC, 4-31
DBAT.INC, 4-32
DBPR.INC, 11-5, 11-14
DBWT.INC, 4-32
DCAT.INC, 8-10
DCON.INC, 4-32
DDCH.INC, 3-23, 6-7 to 6-8,

Index Page Index-2
09 May 84

11-5, 11-14, 12-2, 12-11
DEC-, 5-13
DECBIT, 9-11 to 9-12, 9-40
DERR.INC, 4-10, 4-32
Device Characteristics Common,
11-5, 12-2, 12-9

DEVTAB, 6-7
DFIL.INC, 3-23
DFIT.INC, 13-24
DFUV.INC, 13-24
DHDR.INC, 5-18
DIE, 3-1, 3-7, 3-10 to 3-11,
3-18, 3-27, 6-2, 6-5

DIETSK, 3-1, 3-7, 3-18, 3-28
differential precession, 5-16
DIO.INC, 4-32
DIRADD, 11-30
DLINTR, 9-19, 9-39
DLOC.INC, 5-19
DMSG.INC, 3-24, 12-11
DOWAIT, 1-4
DPOP.INC, 4-33
DSKFFT, 3-18, 6-15, 6-28, 11-9,
11-17

DSMS.INC, 4-33
DTKS.INC, 7-8
DTVC.INC, 5-19, 7-8, 9-25
DTVD.INC, 9-25
DUVH.INC, 3-10, 3-24, 5-25,
6-18, 6-45

EAPC.INC, 11-15
EBUF.INC, 8-11
ECAT.INC, 8-11
ECON.INC, 4-33
EFIT.INC, 13-24
EFUV.INC, 13-24
ELAT, 5-13
ELON, 5-13
EXTCOP, 3-13, 3-28, 6-23
EXTINI, 6-3, 6-6 to 6-7, 6-23,
6-29, 6-47, 8-4

EXTIO, 6-1, 6-7, 6-23, 6-31,
6-47, 8-4

FILAIP, 5-9
FILCLS, 8-3, 8-12
FILCR, 8-3, 8-12
FILDES, 8-3, 8-12
FILIO, 8-3, 8-12
FILOPN, 8-3, 8-13
FITS, 1-4, 5-1, 6-16, 12-5
Floating Point Systems, 11-2,
11-4, 11-8

FNDX, 5-14, 5-23

FNDY, 5-14, 5-23
FPARSE, 13-27 to 13-28
FTAB, 12-2
FUDGE, 2-1 to 2-2, 2-4, 3-3
GET1VS, 6-18, 6-32
GETCRD, 13-27 to 13-28
GETHDR, 8-3, 8-13
GETLOG, 13-27, 13-29
GETNUM, 13-27, 13-29
GETSTR, 13-27, 13-29
GETSYM, 13-27, 13-29
GETVIS, 6-18, 6-31
GLAT, 5-13
GLON, 5-13
GTPARM, 3-1, 3-7, 3-18, 3-28,

8-1 to 8-2
HAIDD, 3-1
HDRINF, 8-3, 8-13
HIADD, 3-12, 3-29, 8-4
HICLOS, 3-1, 3-12, 3-29
HICREA, 6-3
HIINIT, 3-12, 3-29
HISCOP, 3-1, 3-12, 3-29, 6-3,

8-4
HIST, 11-30
history, 3-2, 3-12
IBU1.INC, 8-9
IBU2.INC, 8-9
IBU3.INC, 8-9
IBU4.INC, 8-9
IBU5.INC, 8-9
ICINIT, 5-11, 5-22, 7-6, 7-9,
9-11

ICOVER, 5-11, 5-22
ICREAD, 5-11, 5-22, 9-21
ICWRIT, 5-11, 5-22, 7-6, 7-9
IDCH.INC, 3-24, 11-15, 12-2, 12-11
IENHNS, 9-39
IITB.INC, 8-10
IMA2MP, 9-21
image catalogue, 5-2, 5-9
IMANOT, 9-38
IMCHAR, 9-3 8
IMVECT, 9-39
INCLUDE, 3-2, 3-7 to 3-9
IOSET1, 8-13
IOSET2, 8-13
IOSET3, 8-13
IOSET4, 8-13
IOSETn, 8-3

Index Page Index-309 May 84

logical unit number,
6-6 to 6-7, 8-5

LUN, 6-7, 7-2, 7-4, 8-5
LVGT, 11-31
MAKOUT, 3-11, 3-30
MAPCLS, 5-7, 5-23, 6-7, 6-10,
6 —33

MAPCR, 8-3, 8-14
MAPFIX, 8-3, 8-14
MAPIO, 8-3, 8-14
MAPMAX, 8-3, 8-15
MAPOPN, 5-7, 5-24, 6-6 to 6-7,
6-10, 6-18, 6-33, 9-12

MAPSIZ, 6-4, 6-33
MAPWIN, 8-3, 8-15
MAPXY, 8-3, 8-15
MAXMIN, 11-31
MAXV, 11-31
MCREAT, 3-1, 6-2 to 6-3, 6-34
MDESTR, 6-5, 6-34
MDISK, 6-7, 6-11 to 6-12, 6-18,
6-35, 7-3, 7-9 to 7-10

MINIT, 6-7, 6-11 to 6-12, 6-18,
6-35, 7-3, 7-10, 8-1

MINSK, 6-14, 6-36, 6-39
MINV, 11-32
MOVIST, 9-11 to 9-12, 9-40
MP2SKY, 9-21
MSCALE, 6-15, 6-37
MS CALF, 6-15, 6-38
MSCALI, 6-15, 6-39
MSGWRT, 3-2, 3-13
MSKIP, 6-14, 6-36, 6-39
M TRANS, 11-32
OPENCF, 8-3, 8-15
pain, 3-3
PEAKFN, 11-9, 11-18
PFPL, 3-3
PHSROT, 11-32
PLNGET, 6-15, 6-40, 11-9, 11-19
PLNPUT, 6-15, 6-41
POLAR, 11-33
POPS, 1-3 to 1-4
POPSGN, 4-2, 4-9, 4-18
precession, 5-16
PRPLn, 2-1
PS FORM, 3-31
Quiche Eaters, 8-1

KEYIN, 6-25, 6-32 RA— , 5-13
RECT, 11-33
RELPOP, 3-1, 3-7, 3-16, 3-31
RFFT, 11-33
RNGSET, 9-12, 9-40
rotation, 5-16
ROTFND, 5-8, 5-24
scratch files, 3-17, 8-1 to 8-2
SET1VS, 6-18, 6-42
SETLOC, 5-14, 5-25
SETPAR, 3-9, 5-2, 12-2
SETVIS, 6-18, 6-41
SNCRC, 3-1, 3-31, 6-2 to 6-3,
6-6

SNDY, 6-5
sort order, 6-17, 13-14
STOP, 3-18
SVE, 11-3 4
SVESQ, 11-34
TAFFY, 2-1, 2-5, 3-3
tape files, 7-1 to 7-3
TEKFLS, 7-5 to 7-6, 7-11
TEKVEC, 7-5 to 7-6, 7-11
TKCHAR, 7-4 to 7-6, 7-12
TKCLR, 7-4 to 7-6, 7-12
TKCURS, 7-5, 7-12
TKDVEC, 7-4, 7-12
TKPL, 7-4
TKVEC, 7-5
TSKBE1, 8-16
TSKBE2, 8-16
TSKBE3, 8-16
TSKBE4, 8-16
TSKBE5, 8-16
TSKBEn, 8-3
TSKEND, 8-3, 8-16
TV displays, 9-1
TVCLEAR, 9-11
TVCLOS, 9-11 to 9-12, 9-19,
9-21, 9-36

TVFIDL, 9-37
TVFIND, 5-11, 5-25, 9-36
TVLOAD, 9-12, 9-37
TVOPEN, 9-11 to 9-12, 9-19,

9-21, 9-35
TVSCROLL, 9-19
TVWHER, 9-21
TVWIND, 9-12, 9-36
u,v,w, computing, 13-13
UNSCR, 8-3, 8-16
UVCREA, 3-1, 6-2 to 6-3, 6-42
UVDISK, 6-7, 6-18 to 6-20,

Index Page Index-4
09 May 84

6-43, 7-3, 7-13
UVDISK,, 6-19
UVFIL, 2-1, 2-8 to 2-9, 2-13,
3-3

UVINIT, 6-7, 6-18 to 6-20,
6-43 to 6-44, 7-3,
7-13 to 7-14

UVPGET, 3-32, 5-8, 5-25, 6-18,
6-45

VABS, 11-34
VADD, 11-34
variable length records, 7-1
VBOUT, 7-1, 7-3, 7-15
VCLIP, 11-35
VCLR, 11-35
VCOS, 11-35
VDIV, 11-36
Vector Function Chainer,

11-8 to 11-9
VERBS, 4-11, 4-16
VERBSB, 4-11, 4-16
VERBSC, 4-11, 4-16
VEXP, 11-36
VFILL, 11-36
VFIT.INC, 13-26
VFIX, 11-36
VFLT, 11-37
VFUV.INC, 13-25
VHDRIN, 3-1, 5-3, 5-5, 5-10
VIDIV, 11-37
VLN, 11-37
VMA, 11-38
VMOV, 11-3 8
VMUL, 11-38
VNEG, 11-39
VRVRS, 11-39
VSADD, 11-39
VSIN, 11-40
VSMA, 11-40
VSMAFX, 11-40
VSMSA, 11-41
VSMUL, 11-41
VSQ, 11-41
VSQRT, 11-42
VSUB, 11-42
VSWAP, 11-42
VTRANS, 11-43
XYPIX, 5-14, 5-26
XYVAL, 5-14, 5-26
Y routines, 9-2, 9-7
YALUCT, 9-9, 9-33
YCHRW, 9-7, 9-26

YCNECT, 9-7, 9-26
YCONST, 9-9
YCRCTL, 9-8, 9-30
YCUCOR, 9-7, 9-27
YCURSE, 9-8, 9-19, 9-27
YDEA.INC, 9-10
YFDBCK, 9-9, 9-3 4
YGGRAM, 9-9 to 9-10
YGRAFE, 9-9
YGRAPH, 9-8, 9-28
YGYHDR, 9-9, 9-34
YIFM, 9-9, 9-35
YIMGIO, 9-8, 9-31
YINIT, 9-8, 9-31
YLNCLR, 9-8, 9-28
YLOWON, 9-10
YLUT, 9-8, 9-31
YMAGIC, 9-9
YMKCUR, 9-10
YMKHDR, 9-9
YMNMAX, 9-10
YOFM, 9-8, 9-32
YRHIST, 9-10, 9-35
YSCROL, 9-9, 9-19, 9-32
YSHIFT, 9-10
YSLECT, 9-8, 9-28
YSPLIT, 9-9, 9-32
YSTCUR, 9-10
YTCOMP, 9-10
YTVCIN, 7-4, 7-6, 7-15, 9-8,

9-29
YTVCLS, 9-8, 9-29
YTVMC, 9-8, 9-30
YTVOPN, 9-8, 9-30
YZERO, 9-8, 9-11, 9-29
YZOOMC, 9-9, 9-33
ZACTV8, 12-7
ZC8CL, 12-5, 12-12, 13-10
ZCLC8, 12-5, 12-12, 13-10
ZCLOSE, 6-10, 6-46, 7-6, 12-6
ZCMPRS, 6-5, 6-47, 12-6, 12-14
ZCPU, 12-7, 12-20
ZCREAT, 6-3 to 6-5, 6-47, 12-6,
12-14

ZDATE, 12-7, 12-20
ZDCHIN, 3-1 to 3-2, 3-9, 3-19,
3-32, 5-4, 12-2, 12-9, 12-27

ZDEACL, 9-6
ZDEAMC, 9-6
ZDEAOP, 9-6
ZDEAXF, 9-6
ZDELAY, 12-7, 12-20
ZDESTR, 6-5, 6-47, 12-6, 12-15
ZDOPRT, 12-8, 12-23

Index Page Index-509 Hay 84

ZENDPG, 12-8, 12-23
ZEXIST, 12-6, 12-15
ZEXPND, 6-5, 6-48, 12-6, 12-15
ZFIO, 6-26 to 6-27, 6-48, 7-3,
12-6, 12-16

ZFREE, 12-7, 12-21
ZFT5.INC, 8-11
ZGTDIR, 12-9, 12-27
ZI16IL, 12-5, 12-12, 13-10
ZI32IL, 12-5, 12-12, 13-10
ZI8L8, 12-5, 12-13, 13-10
ZILI16, 12-5, 12-13, 13-10
ZKDUMP, 12-9, 12-28
ZM70CL, 9-6
ZM70MC, 9-6
ZM700P, 9-6
ZM70XF, 9-6
ZMATH4, 3-5, 3-33, 11-4, 12-9,
12-27

ZMIO, 6-26, 6-49, 12-6 to 12-7,
12-16

ZMSGCL, 12-6, 12-17
ZMSGDK, 12-6, 12-17
ZMSGOP, 12-6, 12-17
ZOPEN, 6-6, 6-10, 6-25, 6-49,
7-2, 7-4, 7-6, 7-16, 12-2,22—6 12—18

ZP4I4/ll-10, 11-20, 12-5, 12-13
ZPFIL, 7-2
ZPHFIL, 5-2, 6-6, 6-10, 6-50,
7-4, 7-6, 7-16, 8-1, 12-6,
12-18

ZPRIO, 12-7, 12-20
ZPRMPT, 12-8, 12-25
ZR8P4, 3-4, 3-33, 11-4, 12-6,
12-14, 13-10

ZRENAM, 12-6, 12-19
ZSTAIP, 12-8, 12-22
ZSUSPN, 12-8, 12-22
ZTACTQ, 12-7, 12-21
ZTAPE, 7-2, 7-17, 12-8, 12-24
ZTCLOS, 6-25, 6-50, 12-9, 12-25
ZTFILL, 12-9
ZTIME, 12-7, 12-21
ZTKBUF, 12-8, 12-24
ZTKILL, 12-8, 12-22
ZTOPEN, 6-6, 6-25, 6-51, 12-9,
12-26

ZTQSPY, 12-8, 12-22
ZTREAD, 6-25, 6-51, 12-9, 12-26
ZTRSUM, 12-7, 12-21
ZTTYIO, 3-2, 3-16, 3-33, 12-8,
12-25

ZTVMC, 12-8, 12-25
ZTXMAT, 12-9, 12-26

ZWAIT, 6-26, 6-51, 12-7, 12-19
ZWHOMI, 12-8, 12-23

