
Gaiag AIESj.
A P r o g r a m m e r s G u i d e £ jQ t h e H R A Q AsfcrflUQmiQ&l Image Processing System

W. D. Cotton and a oast of AIPS
Version 15 July 85

VOLUME 1

ABSTRACT

This manual is designed for persons wishing to write
programs using the NRAO Astronomioal Image Prooessing System (AIPS). It should be useful for a wide range of applications from making minor ohanges in existing
programs to writing major new applications routines. All basio aspeots of AIPS programming are dealt with in some detail.

AIPS programmers contributing to this manual:
John Benson - VLBI
Bill Cotton - Array processors and applications routines Bob Duquet - CRAY COS implementation Gary Fiokling - Systems and plotting Erio Greisen - Head knooker, TVs and AIPS system integration
Kerry Hilldrup - Unix, CRAY COS implementation Fred Sohwab - Hathematios Craig Walker - Gadfly and VLBI
Don Wells - Hardware implementations and image prooessing techniques

Page 2
15 July 85

CONTENTS

CHAPTER 1 INTRODUCTION
1.1 S C O P E .. 1-1
1.2 HEY YOU, READ THIS............................. 1-11.3 PHILOSOPHY.................................... 1-2
1.4 AN OVERVIEW OF THE AIPS SYSTEM................. 1-41.4.1 T a s k s 1-41.4.2 V e r b s 1-4
1.4.3 Data Files.................................. 1-51.4.4 I / O .. 1-51.5 S T Y L E .. 1-51.5.1 Precursor Comments 1-51.5.2 Body Comments.............................. 1-61.5.3 Indentation................................ 1-6

1.5.4 Continue Statments 1-71.5.5 Statement Numbers 1-7
1.5.6 Blanks...................................... 1-81.5.7 Modular Code................................ 1-81.5.8 Portability................................ 1-81.6 LANGUAGE...................................... 1-9
1.6.1 FORTRAN.................................... 1-9
1.6.2 Statement O r d e r1-101.6.3 INCLUDES.................................. 1-11

1.6.4 Variable Declaration 1-12
1.6.5 Literals And Expressions In CALL Statments . . 1-131.7 DOCUMENTATION.............................. 1-131.7.1 User Documentation.........................1-131.7.1.1 HELP Files 1-13
1.7.1.2 AIPS Manual And Cookbook 1-141.7.2 Programmer Documentation 1-14
1.7.2.1 Precursor Comments 1-141.7.2.2 Shopping Lists 1-141.7.2.3 CHANGE.DOC 1-151.7.2.4 The Cheokout System 1-15

CHAPTER 2 SKELETON TASKS
2.1 DATA MODIFICATION TASKS - FUDGE AND TAFFY 2-22.1.1 F U D G E 2-3
2.1.2 T A F F Y 2-52.2 DATA ENTRY TASKS (UVFIL AND CANDY) 2-92.2.1 U V F I L 2-102.2.2 C A N D Y 2-142.3 MODIFIYING A SKELETON TASK................... 2-17

2.4 HINTS FOR USING THE VAX/VMS DEBUGGER IN AIPS. . 2-18

Page 3
15 July 85

CHAPTER 3 GETTING STARTED - TASKS
3.1 OVERVIEW................................ 3-13.2 THE COST OP MACHINE INDEPENDENCE............... 3-33.2.1 Charaoter Strings 3-3

3.2.2 Integers.................................... ..3.2.3 Call Arguments.............................. ..
3.3 TASK NAME CONVENTIONS....................... 3-5
3.4 GETTING THE PARAMETERS.........................3-63.4.1 In AIPS (Help F i l e)3-63.4.2 In The Task (GTPARM)3-7
3.5 RESTARTING A I P S 3-73.6 INCLUDE F I L E S 3-8

3.7 INITIALIZING COMMONS 3-93.7.1 Devioe Charaoteristios Common 3-93.7.2 Catalogue Pointer Common 3-103.7.3 History Common............................ 3-103.7.4 TV C o m m o n 3-103.7.5 UV Data Pointer Common.....................3-10
3.7.6 Files Common, /CFILES/ 3-113.8 INPUT AND OUTPUT FILE N A M E S 3-12
3.9 COPYING EXTENSION FILES 3-123.9.1 History.................................. 3-13
3.9.2 Extension Tables (TABCOP) 3-143.10 COMMUNICATION WITH THE U S E R 3-143.10.1 Writing Messages 3-14
3.10.2 Turning Off System Messages 3-153.10.3 Writing To The Line Printer............... 3-15
3.10.4 Writing To The Terminal (ZTTYIO) 3-163.11 SCRATCH F I L E S 3-18

3.12 TERMINATING THE PROGRAM.....................3-193.13 BATCH JOBS.................................. 3-19
3.14 INSTALLING A NEW T A S K3-203.14.1 On A V A X 3-20

3.14.1.1 Logioal Assignments 3-21
3.14.1.2 Where To Put The Files (AIPS Directories). . . 3-213.14.1.3 Where To Put The Files (Programmers Direotory) 3-223.14.1.4 Compile And Link Edit Prooedures........... 3-223.15 INCLUDES.................................... 3-233.15.1 CDCD.INC 3-233.15.2 CFIL.INC 3-24
3.15.3 CMSG.INC 3-243.15.4 CUVH.INC 3-24
3.15.5 DDCH.INC 3-243.15.6 DFIL.INC 3-25
3.15.7 DMSG.INC 3-25
3.15.8 DUVH.INC 3-253.15.9 IDCH.INC 3-25
3.16 ROUTINES.................................. 3-263.16.1 CHCOPY 3-263.16.2 CHCOMP 3-263.16.3 CHFILL 3-26

3.16.4 CHLTOU 3_263.16.5 CHMATC 3-27

Page 4
15 July 85

3.16.6 CHPACK 3-273.16.7 CHPAC2 3-273.16.8 CHWMAT3-273.16.9 CHXPND 3-283.16.10 CHXPN23-28
3.16.11 D I E 3-283.16.12 DIETSK3-29
3.16.13 EXTCOP3-293.16.14 GTPARM3-303.16.15 HIADD3-30
3.16.16 HIAD803-30
3.16.17 HICLOS3-313.16.18 HIINIT3-31
3.16.19 HISCOP3-313.16.20 MAKOUT3-323.16.21 PSFORM3-323.16.22 RELPOP3-323.16.23 SCREAT3-33
3.16.24 TABCOP.............................. 3-333.16.25 UVPGET3-343.16.26 ZDCHIN3-353.16.27 ZMATH43-35
3.16.28 ZR8P43-353.16.29 ZTTYIO3-36

CHAPTER 4 THE AIPS PROGRAM
4.1 OVERVIEW 4-1
4.2 STRUCTURE OP THE AIPS PROGRAM................. 4-24.2.1 The POPS Prooessor...........................4-24.2.2 POPS Commons................................ 4-54.2.2.1 /CORE/ 4-5

4.2.2.2 /POPS/ 4-84.2.2.3 /SMSTUF/ 4-94.2.2.4 /IO/.. 4-9
4.2.3 TAG And TYPE................................ 4-94.2.4 Error Handling............................ 4-104.2.5 Memory Files.............................. 4-10
4.2.6 Speoial M o d e s 4-11
4.2.6.1 RUN F i l e s 4-114.2.6.2 Batoh 4-11

4.2.6.3 Prooedures 4-12
4.3 EXAMPLE OF THE POPS PROCESSOR................. 4-124.3.1 The Compiler.............................. 4-124.3.2 The Interpreter...........................4-15
4.4 INSTALLING NEW VERBS.........................4-174.5 INSTALLING NEW ADVERBS.......................4-194.6 POPSGN...................................... 4-194.6.1 Funotion.................................. 4-204.6.2 POPSDAT. H L P 4-20
4.7 INCLUDES.................................... 4-314.7.1 CAPL.INC.................................. 4-31
4.7.2 CBAT.INC.................................. 4-31

Page 5
15 July 85

4.7.3 CBWT.INC.................................. 4-32
4.7.4 CCON.INC............................ 4-32

4.7.5 CERR.INC.................................. 4-32
4.7.6 CIO. I N C 4-32
4.7.7 CPOP.INC.................................. 4-32
4.7.8 CSMS.INC.................................. 4-33
4.7.9 DAPL.INC.................................. 4-33

4.7.10 DBAT.INC 4-34
4.7.11 DBWT.INC 4-34
4.7.12 DCON.INC 4-34
4.7.13 DERR.INC 4-34
4.7.14 DIO.INC 4-34
4.7.15 DPOP.INC 4-35
4.7.16 DSMS.INC 4-35
4.7.17 ECON.INC 4-35

CHAPTER 5 CATALOGUES
5.1 OVERVIEW...................................... 5-1
5.2 PUBLIC AND PRIVATE CATALOGUES................... 5-25.3 FILE NAMES.................................... 5-25.4 DATA CATALOGUE................................ 5-3

5.4.1 Catalogue Directory 5-35.4.2 Header Blook................................ 5-3
5.4.3 Direotory Seotlon 5-3
5.4.4 Direotory Useage 5-4
5.4.5 Struoture Of The Catalogue Header Reoord 5-55.4.5.1 Image Piles 5-8
5.4.5.2 Uv Data F i l e s 5-9
5.4.6 Routines To Aooess The Data Catalogue....... 5-95.4.6.1 MAPOPN And M A P C L S5-105.4.6.2 CATDIR And CATIO 5-10

5.4.7 Routines To Interpret The Catalogue Header . . 5-105.4.8 Catalogue Status 5-115.5 IMAGE CATALOGUE............................ 5-115.5.1 Overview 5-11
5.5.2 Data Struotures...........................5-115.5.3 Usage N o t e s 5-13
5.5.4 Subroutines.............................. 5-135.5.5 Image Catalogue Commons 5-135.6 COORDINATE SYSTEMS 5-14
5.6.1 Velooity And Frequenoy.....................5-145.6.1.1 Axis L a b e l s 5-145.6.1.2 Catalogue Information 5-155.6.2 Celestial Positions 5-155.6.2.1 Axis L a b e l s 5-155.6.2.2 Determining Positions 5-165.6.2.2.1 Position Routines 5-165.6.2.2.2 Common /LOCATI/............................ 5-17
5.6.3 Rotations................................ 5-18
5.7 TEXT OF INCLUDE F I L E S5-195.7.1 CHDR.INC.................................. 5-19
5.7.2 CLOC.INC.................................. 5-20

5.7.3 CTVC.INC.................................. 5-205.7.4 DHDR.INC.................................. 5-205.7.5 DLOC.INC.................................. 5-215.7.6 DTVC.INC.................................. 5-21
5.8 ROUTINES.................................... 5-225.8.1 AXEPND.................................... 5-225.8.2 GATDIR.................................... 5-225.8.3 C A T I O 5-235.8.4 ICINIT.................................... 5-24
5.8.5 ICOVER.................................... 5-245.8.6 ICWRIT.................................... 5-245.8.7 I ORE A D 5-24
5.8.8 FNDX...................................... 5-255.8.9 FNDY...................................... 5-25

5.8.10 MAPCLS5-255.8.11 MAPOPN5-265.8.12 ROTFND5-265.8.13 SETLOC5-275.8.14 TVFIND5-27
5.8.15 UVPGET5-275.8.16 XYPIX5-285.8.17 XYVAL5-29

Page 6
15 July 85

CHAPTER 6 DISK FILES
6.1 OVERVIEW 6-16.2 TYPES OF FILES................................ 6-26.3 FILE MANAGMENT................................ 6-2
6.3.1 Creating Files.............................. 6-26.3.2 Example Using ZCREAT 6-36.3.3 Destruction Routines 6-5
6.3.4 Expansion And Contraction Of Files........... 6-56.4 I/O TO DISK F I L E S 6-6
6.4.1 Upper Level I/O Routines......................6-76.4.2 Logioal Unit Numbers.........................6-7

6.4.3 Contents Of The Devioe Characteristics Common . 6-96.4.4 Image F i l e s 6-106.4.4.1 Opening Image Files 6-106.4.4.2 MINI3 And MDIS3 6-11
6.4.4.3 Multi-plane Images (COMOF3) 6-126.4.4.4 Example Of MINI3 And MDIS3 6-136.4.4.5 MINS3 And MSKI3 6-15
6.4.5 Image File Manipulation Routines 6-156.4.6 Uv Data F i l e s 6-16
6.4.6.1 Single And Multisource Files 6-166.4.6.2 Subarrays 6-17
6.4.6.3 Visibility Reoord Struoture 6-17*6.4.6.4 Data Order, UVPGET 6-206.4.6.5 Data Reformatting Routines 6-206.4.6.6 UVINIT And UVDISK 6-20
6.4.6.7 Example Using UVINIT And UVDISK 6-226.4.7 Extension F i l e s6-256.4.7.1 TABINI And TABIO 6-26

Page 7
15 July 85

6.4.7.2 EXTINI And EXTIO 6-266.4.8 Text Files................................. 6-266.5 BOTTOM LEVEL I/O ROUTINES................... 6-286.5.1 ZMIO And ZWAIT............................ 6-28
6.5.2 ZFIO...................................... 6-296.6 ROUTINES.................................... 6-306.6.1 CALCOP............................ . 6-306.6.2 CHNDAT.................................... 6-306.6.3 C0M0F3.................................... 6-316.6.4 CONVRT.................................... 6-31
6.6.5 EXTINI.................................... 6-32
6.6.6 E X T I O 6-336.6.7 GETVIS.................................... 6-34
6.6.8 GET1VS.................................... 6-346.6.9 K E Y I N 6-356.6.10 MAPSIZ 6-35
6.6.11 MAPCLS 6-366.6.12 MAPOPN 6-366.6.13 MCREAT 6-376.6.14 MDESTR 6-37
6.6.15 MDIS3 6-38
6.6.16 MINI3 6-386.6.17 MINS3 6-396.6.18 MSCALE 6-40
6.6.19 MSCALF 6-416.6.20 MSCALI 6-426.6.21 MSKI3 6-426.6.22 PLNGET 6-43
6.6.23 PLNPUT 6-44
6.6.24 SETVIS 6-446.6.25 SET1VS 6-456.6.26 TABINI 6-466.6.27 TABIO 6-486.6.28 UVCREA 6-496.6.29 UVDISK 6-49
6.6.30 UVGET 6-506.6.31 UVINIT 6-52
6.6.32 UVPGET 6-536.6.33 ZCLOSE 6-54
6.6.34 ZCMPRS 6-556.6.35 ZCREAT 6-55
6.6.36 ZDESTR 6-566.6.37 ZEXPND 6-56
6.6.38 ZFIO...................................... 6-566.6.39 ZMIO...................................... 6-576.6.40 ZOPEN 6-576.6.41 ZPHFIL 6-58
6.6.42 ZTCLOS 6-586.6.43 ZTOPEN 6-596.6.44 ZTREAD 6-596.6.45 ZWAIT 6-59

Page 8
15 July 85

CHAPTER 7 HIGH LEVEL UTILITY ROUTINES
7.1 OVERVIEW 7-1

7.2 DATA CALIBRATION AND REFORMATTING ROUTINES 7-17.3 OPERATIONS ON IMAGES...........................7-27.4 UV MODEL CALCULATIONS.........................7-27.5 IMAGE FORMATION.............................. 7-2
7.6 INCLUDES...................................... 7-37.6.1 CFIL.INC.................................... 7-37.6.2 CGDS.INC.................................... 7-37.6.3 CMPR.INC.................................... 7-37.6.4 CSEL.INC.................................... 7-47.6.5 CUVH.INC.................................... 7-4
7.6.6 DFIL.INC.................................... 7-5
7.6.7 DGDS.INC.................................... 7-57.6.8 DMPR.INC.................................... 7-57.6.9 DSEL.INC.................................... 7-67.6.10 DUVH.INC.................................... 7-6
7.7 ROUTINES...................................... 7-77.7.1 CALCOP...................................... 7-77.7.2 DSKFFT...................................... 7-87.7.3 GRDCOR...................................... 7-87.7.4 MAKMAP.................................... 7-107.7.5 U V G E T 7-15
7.7.6 UVGRID.................................... 7-177.7.7 UVMDIV.................................... 7-197.7.8 UVMSUB.................................... 7-20
7.7.9 UVUNIF.................................... 7-22

CHAPTER 8 WAWA ("EASY") I/O
8.1 OVERVIEW 8-1
8.2 SALIENT FEATURES OF THE WAWA I/O PACKAGE....... 8-18.3 NAME STRINGS.................................. 8-2
8.4 SUBROUTINES.................................. 8-38.5 THINGS WAWA CAN'T DO WELL OR AT A L L 8-48.5.1 Non-map Files................................ 8-4
8.5.2 UV Data Files................................ 8-48.5.3 Plotting.................................... 8-48.5.4 History.................................... 8-5
8.5.5 More Than 5 I/O Streams At A Time............. 8-58.5.6 I/O To Tapes................................. 8-5

8.6 ADDITIONAL GOODIES AND "HELPFUL" HINTS 8-58.6.1 Use Of L U N S 8-5
8.6.2 WaWa Commons................................ 8-58.6.2.1 Information Common 8-6
8.6.2.2 Catalogue And Buffer Commons.................. 8-78.6.2.3 Declaration Of Commons........................8-78.6.3 Error Return Codes........................... 8-8
8.7 INCLUDES...................................... 8-98.7.1 IBU1.INC.................................... 8-9
8.7.2 IBU2.INC.................................... 8-98.7.3 IBU3.INC.................................. 8-10

Page 9
15 July 85

8.7.4 IBU4. I N C 8-10
8.7.5 IBU5.INC.................................. 8-108.7.6 IITB.INC.................................. 8-10
8.7.7 DCAT.INC.................................. 8-118.7.8 DFIL.INC.................................. 8-118.7.9 CBUF.INC.................................. 8-118.7.10 CFIL.INC8-118.7.11 CITB.INC8-118.7.12 CCAT.INC8-128.7.13 EBUF.INC8-12
8.7.14 ECAT.INC8-12
8.7.15 ZFT5.INC8-12
8.8 DETAILED DESCRIPTIONS OF THE SUBROUTINES. . . . 8-138.8.1 CLENUP.................................... 8-13
8.8.2 FILCLS.................................... 8-138.8.3 F I L C R 8-13
8.8.4 FILDES.................................... 8-138.8.5 F I L I O 8-13
8.8.6 FILOPN.................................... 8-148.8.7 GETHDR.................................... 8-14
8.8.8 HDRINF.................................... 8-14
8.8.9 IOSET1, IOSET2, IOSET3, I0SET4, And IOSET5 . . 8-158.8.10 MAPCR8-158.8.11 MAPFIX8-15
8.8.12 MAPIO8-158.8.13 MAPMAX8-168.8.14 MAPWIN8-168.8.15 HAPXY8-178.8.16 OPENCF8-17
8.8.17 TSKBE1, TSKBE2, TSKBE3, TSKBE4, And TSKBE5 . . 8-178.8.18 TSKEND8-17
8.8.19 UNSCR8-18

Page 10
15 July 85

VOLUME 2

CONTENTS

CHAPTER 9 DEVICES
9.1 OVERVIEW...................................... 9-1
9.2 TAPE D R I V E S 9-19.3 GRAPHICS DISPLAYS 9-4
9.4 INCLUDES...................................... 9-8
9.5 ROUTINES...................................... 9-9

CHAPTER 10 USING THE TV DISPLAY
10.1 OVERVIEW.................................... 10-1
10.2 FUNDAMENTALS OF THE CODING................... 10-510.3 CURRENT APPLICATIONS 10-1110.4 INCLUDES.................................... 10-2610.5 Y-ROUTINE PRECURSOR REMARKS: 10-27

CHAPTER 11 PLOTTING
11.1 OVERVIEW.................................... 11-1
11.2 PLOT FILES.................................. 11-2
11.3 PLOT PARAFORM T A S K S11-6

CHAPTER 12 USING THE ARRAY PROCESSORS
12.1 OVERVIEW.................................... 12-1
12.2 THE AIPS MODEL OF AN ARRAY PROCESSOR......... 12-212.3 HOW TO USE THE ARRAY PROCESSOR............... 12-412.4 PSEUDO-ARRAY PROCESSOR.......................12-1112.5 EXAMPLE OF THE USE OF THE A P 12-11
12.6 INCLUDES.................................... 12-14

CHAPTER 13 TABLES IN AIPS
13.1 OVERVIEW.................................... 13-1

13.2 GENERAL TABLES ROUTINES 13-113.3 SPECIFIC TABLES ROUTINES13-213.4 THE FORMAT DETAILS...........................13-213.5 ROUTINES.................................... 13-7

CHAPTER 14 FITS TAPES
14.1 OVERVIEW 14-1

Page 11
15 July 85

14.2 PHILOS P H Y 14-1
14.3 IMAGE F I L E S 14-214.4 RANDOM GROUP (UV DATA) FILES 14-10

14.5 EXTENSION F I L E S 14-17
14.6 AIPS FITS INCLUDES...........................14-24
14.7 AIPS FITS PARSING ROUTINES................... 14-2814.8 REFERENCES.................................. 14-31

CHAPTER 15 THE Z ROUTINES
15.1 OVERVIEW 15-1
15.2 DATA MANIPULATION ROUTINES................... 15-515.3 DISK I/O AND FILE MANIPULATION ROUTINES 15-715.4 SYSTEM FUNCTIONS 15-815.5 DEVICE (NON-DISK) I/O ROUTINES 15-915.6 DIRECTORY AND TEXT FILE ROUTINES............. 15-10
15.7 MISCELLANEOUS.............................. 15-1015.8 INCLUDES.................................... 15-1115.9 ROUTINES.................................... 15-13

CHAPTER 1
INTRODUCTION

1.1 SCOPE
This dooument is intended for programmers who are familiar with general programming praotioes and Fortran in particular and who are familiar with the oommon techniques for manipulating astronomioal

data. This manual is intended to be used in oonjunotion with the AIPS manual, especially volumes 2 and 3 and should be of use to oasual as well as serious programmers wishing to program using the
AIPS system. Going AXES is not intended to be an exhaustive description of the funotions and subroutines available in AIPS but rather to illustrate general techniques.

1.2 HEY YOU, READ THIS.
This manual is designed for a wide variety of users; ranging from those wishing to add 1 line of oode to an existing task to the poor soul who has to assume the oare and feeding of AIPS in the oase

all the ourrent AIPS programmers are hit by a truck. While the weight of this manual would tend to bring on attacks of massive
depression or homioidal mania in the lighter users from the above mentioned range, it should be noted that, for many purposes, only a
small fraotion of the material in this manual is neoessary in order to program in the AIPS system. The following table suggests oourses of aotion for various situations.

"I want to get my data into AIPS."
There are a number of skeleton tasks whioh make this relatively straightforward - frequently requiring several hours of effort. See the ohapter on the skeleton tasks and ignore the rest of this manual unless you run into problems.

- "I just want to do something simple to my data."
See the ohapter on skeleton tasks. There are two tasks, FUDGE and TAFFY, whioh read uv data or an image,

pass the data to a user provided subroutine and write what

INTRODUCTION
HEY YOU, READ THIS. Page 1-2

2 May 85

oomes baok into a new file. All of the messy stuff is already taken oare of.
"I have this idea."

This requires a bit more understanding about how AIPS
works. Read the rest of this chapter, the ohapter on the skeleton tasks, the chapter on tasks, and the ohapter on
disk I/O. Depending on the application, several other chapters may be relevant. Then find an existing task that
is olosest to your need and start from there. For a great many purposes the skeleton tasks are a good place to start. There is also a ohapter describing various high level utility routines such as making images from uv data or subtracting model values from uv data.
"I have lots of ideas."

Find a comfortable chair, open a six paok of beer and start reading.
- "We just bought the Whizbang 8000 computer and want to run AIPS on it."

Read all of this manual, then give us a oall.
"Why didn't you %#6f(*fif! see that truok."

Read it all, then write the parts left out. Lots ofluok.

1.3 PHILOSOPHY
The NRAO Astronomioal Image Processing System (AIPS) is designed to give the astronomer an integrated system of flexible tools with which to manipulate a wide variety of astronomioal data.

To be of maximum benefit to the general astronomical community and to inorease the useful lifetime of the software, the AIPS system has gone to great lengths to isolate the effects of the partioular computer and installation on whioh it is run. Needless to say, this portability requirement makes the programmer's life more diffioult.
The routines whioh depend on the host machine or operating system are denoted by using a "Z" as the first oharaoter of the name; these are refered to as the "Z routines". No other "standard" routines should depend on the host maohine or operating system to work properly. Routines whioh depend on the partioular television

display devioe are denoted with names beginning with a "Y"; these are the "Y routines". Routines whioh depend on the computing hardware (e.g. array processors, vector processors, or laok thereof) have names beginning with a "Q".

INTRODUCTIONPHILOSOPHY Page 1-3
2 May 85

It lias been argued that it is not worth the additional effort to isolate the maohine dependencies. We are all aware of usable paokages that have died beoause they were strongly tied to a partioular oomputer. VAXes ourrently dominate the astronomioal oomputing oommunity but those with a sufficiently long memory will reoall that IBM 360s and 370s and CDC Cybers had a similar stranglehold during the 60s and early 70s. By not tying ourselves
to a partioular oomputer or even vendor, we have the freedom to buy hardware from the vendor who offers the most oost effeotive models.
This strategy should allow the AIPS system to last longer than previous systems so we oan spend more time investigating new algorithms and less time patching or reooding old programs every time we ohange oomputer.

In addition to isolating maohine dependencies, we advooate modular program structure. By this we mean that the main program
should be relatively short and should basically call routines eaoh of whioh has a well defined and limited funotion. Modular ooding is
especially important for machines on whioh most programs must be
overlaid (hopefully a dying species), but it also makes the code easier to debug, easier to maintain, and very importantly, easier
from which to steal pieces. Routines whioh may be of use in other
applications should be ooded in as general a form as possible and placed in the appropriate AIPS subroutine library. This may take longer in the short run but should pay off in the long run.

Another philosophical feature of AIPS is that the programs should run as quiokly as possible without making the oode too diffioult to maintain. This is frequently a matter of judgment but, in general, trioks and exoessive oleverness should be avoided.
Sinoe many of the most expensive AIPS tasks are I/O limited, the AIPS I/O system has been designed for maximum performance. In

general, this means that I/O is done in a double buffered mode, in as large blocks as possible, with fixed logioal record size and programs work direotly out of the I/O buffers. This makes many of
the features of the I/O system whioh are normally hidden from the programmer muoh more obvious and allows the I/O to run as fast as the oomputer oan manage.

The AIPS philosophy has always been that it should always be possible to determine what has been done to a data set. For this purpose, every oataloged data file has an associated history file in whioh a permanent reoord is kept of the processing done to the data in that file. It is the responsibility of the programmer to insure the integrity of the history. In addition to the history files, most oommunioations between the user and AIPS or tasks are logged in a file whioh oan be printed.

INTRODUCTION
AN OVERVIEW OF THE AIPS SYSTEM Page 1-4

2 May 85

1.4 AN OVERVIEW OF THE AIPS SYSTEM
The AIPS system oonsists of several distinot parts. First and most obvious to users is the program oalled AIPS. This program,

based around the People Oriented Parsing System (POPS), interaots
with the user, performs many of the display funotions, does some manipulation of data and initiates other programs whioh run
asynohronously from AIPS. Funotions built into AIPS are oalled verbs, the asynchronous programs are oalled tasks, and both are
controlled by the values of parameters in the POPS prooessor known as adverbs. A third type of program in the AIPS system is the
standalone utility program whioh is mostly of interest to the AIPS system manager.

1.4.1 Tasks
Communication between the AIPS program and the tasks it spawns is fairly limited. When a task is initiated from AIPS an external file is read whioh speoifies the number and order of adverbs whose values are sent to the task. These values, along with some "hidden" values, are written into a disk (TD) file. AIPS then initiates the requested task and begins looping, waiting for the task to either

disappear or put a return oode into the TD file. The task reads the TD file and depending on the value of a logioal "hidden" adverb (DOWAIT in AIPS and RQUICK in the task) may immediately restart AIPS by returning the return oode. The task then does the requested
operation and before stopping sends AIPS the return oode if this was not done previously.

Tasks are used for operations whioh either require muoh oomputer memory or CPU time or both, whereas verbs are used for operations which take no longer than a few seconds to finish. Since
the tasks run asynohronously from AIPS, the user may do other things while one or more tasks are running. Sinoe there is a minimal interaction between AIPS and tasks, programming tasks is muoh simpler than programming verbs; AIPS does not need to be modified to install a new task. Tasks may oommunioate directly to the user.

1.4.2 Verbs
Verbs are the funotions built into the AIPS program itself. Many of these involve the display of images and most of the

interactive features of the AIPS system. POPS is a programming language itself, and oomplioated combinations of tasks and verbs may be assembled into POPS prooedures. Verbs but not tasks may ohange the value of POPS adverbs.
The AIPS program is very modular and most verbs are implemented via a branoh table oontained in an external file. Most of the adverbs are oalled from subroutines with names like AU1, AU2, AU5C

INTRODUCTIONAN OVERVIEW OF THE AIPS SYSTEM Page 1-5
2 May 85

eto. A table read from an external text file determines the subroutine and a funotion number for eaoh funotion. The values of adverbs are oontained in a oommon.

1.4.3 Data Files
Data is kept in files whioh are oatalogued in AIPS. At present we have two kinds of data (more are possible): images and uv data. The internal struoture is much like that of a FITS format tape exoept that the data may be in floating point format. Associated

with eaoh main data file may be up to 10 types of auxiliary information files with up to 255 versions of eaoh type. The basio information about the main data file and the existenoe of the
auxiliary files (oalled extension files) is kept in a oatalog file. Bookkeeping and other information is kept in the first reoord of
most of the extension files. One example of the extension file is the History file in whioh a reoord of the processing of the data is automatically logged by the AIPS tasks.

1.4.4 I/O
The AIPS system has three basio types of files and three types of I/O to aocess them. The main data files whioh are assumed to oontain the bulk of the data are read in a double buffered mode with

large blooks being transferred. The extension files are read by single buffered transfers of 512 bytes. Both types are intrinsically random aooess; however, in praotice the main data file access is sequential but the extension file aooess is frequently
random. For the main data file, I/O tasks usually work direotly from the I/O buffer.

A third type of file is the text file. At the moment AIPS only reads text files. The files are used mostly for documentation although the file whioh defines the list of adverbs to be sent to a
task is a text file. More details about the I/O routines oan be found in the ohapter on I/O.

1.5 STYLE
1.5.1 Preoursor Comments

Preoursor oomments are the prinoiple form of detailed programmer documentation in the AIPS system. These are oomments plaoed immediately following the PROGRAM, SUBROUTINE, or FUNCTION statement whioh explain the purpose and methods of the routine, the input and output arguments, any use of variables in oommons, and any
speoial ooding techniques or limitations in the transportability of the routine. Preoursor oomments do not need to be verbose, but they

INTRODUCTION
STYLE Page 1-6

2 May 85

must explain most things whioh a programmer must know about oalling the routine. Routines must have aooeptable prologue oomments before they will be aooepted into the AIPS system. As a simple example, consider:
SUBROUTINE COPY (N, KFROM, KTO)

c ---
C COPY oopies integer words from one array to another.
C Inputs: N 1*2 number of words to be oopiedC KFROM I*2(N) souroe arrayC Outputs: KTO I*2(N) destination array
c ---

INTEGER*2 N, KFROM(l), KTO(l)
c ---
C no oopy: N <- 0IF (N.LE.O) GO TO 999 DO 10 I - 1,NKTO(I) - KFROM(I)10 CONTINUEC999 RETURN END

1.5.2 Body Comments
"Body" oomments are plaoed at strategic looations throughout the body of the oode. They aot as sign posts to alert the reader to

eaoh logioal blook of oode and also to clarify any difficult portions. Ideal plaoes for body oomments are prior to DO loops and IF olauses. Body oomments within a routine must all begin in the same oolumn and that oolumn should be near oolumn 41. Body oomments (and precursor oomments) should be typed in lower oase letters. This helps to separate visually the comments from the program text (whioh must be all in upper oase!!!).

1.5.3 Indentation
Another powerful tool to illustrate to the reader the logioal struoture of a routine is indentation. By indenting statements to indioate that they belong together, one oan enhanoe greatly the readability of one's programs. Eaoh step of indentation shall be

three (3) spaoes, beginning in oolumn 7. Numbered CONTINUE statements should be employed to enhanoe the indentation pattern.
DO loops and IF olauses are prime oandidates for indentation. As an example, oonsider:

INTRODUCTION
STYLE Page 1-7

2 Hay 85

C Multiply by transform matrix

10

DO 10 I - 1,3 VEC(I) - 0.0
DO 10 J - 1,3VEC(I) - VEC(I) + TMATX(I,J)*VECO(J) CONTINUECC Unit veotor to polar Case at poleIF ((X.NE.0.0) .OR. (Y.NE.0.0)) GO TO 20 ALPHA =0.0 DELTA - 0.0
GO TO 3020 ALPHA - ATAN2 (X, Y)
DELTA = SQRT (X*X + Y*Y)30 PDIST - ATAN2 (Z, DELTA)

C Swap to inoreasing orderIF (A.LT.B) GO TO 40
C - A A = B
B - C 40 Z - Z ** (B-A)

1.5.4 Continue Statments
All DO loops end with CONTINUE statements rather than some exeoutable statement. This enhanoes legibility as well as preventing oompilation errors on those statements whioh are not

allowed, by some oompilers, to be the last statement in a DO loop. A branoh other than those oaused by DO loops should be to exeoutable statments.

1.5.5 Statement Numbers
The use of GO TO statements is the oause of most logio errors in programming. Unfortunately, FORTRAN offers us no alternative. However with the use of standard indentation and statement numbering

schemes, errors oan be reduoed and readability enhanoed. Statement
numbers must inorease through the routine and should be integer multiples of 5 or 10. They should not exoeed 999. Format numbers should have 4 digits with the low order 3 giving the nearest preceding statement number to the first statement using that format. All statement numbers are left justified beginning in oolumn 2.

Statement numbers oan help to olarify the logioal struoture of a routine. Let us oonsider the oommon example of a routine whioh begins with some setup operations (e.g. file opening), then does operation set A or B or C or D, and then does some dose down operations (e.g. file dosing) before returning. Where possible, suoh a routine should use statement numbers 5 - 9 5 for the setup,

INTRODUCTION
STYLE Page 1-8

2 May 85

100 - 195 for set A, 200 - 295 for set B, 300 - 395 for set C, 400 - 495 for set D, and 900 - 995 for the olose down.

1.5.6 Blanks
Blank spaoes oan improve the readability of the routine as oan

parentheses. Blanks should surround equals signs and separate multiple word statements. Parentheses are a great help in oompound logioal expressions. For example,A - B
DO 10 I - 1,10GO TO 999CALL KPACK (IX,IY)
IF ((A.GT.B) .AND. (C.LE.D)) GO TO 20

1.5.7 Modular Code
Modularity in program design is a very important asset for many reasons. Complicated tasks beoome dearer, to coder and reader alike, when oonstruoted from a logioal sequenoe of smaller

operations performed by subroutine oall. Suoh well-ordered tasks are far easier to design, to understand, and to make work oorreotly
than vast monolithio single programs. Furthermore, the small operation subroutines will often turn out to be fairly general and useful to many other tasks as well. Programmers will have to remember that their tasks will have to run not only in the
"unlimited" address space of 32-bit virtual oomputers, but also in the very limited address spaoe of 16-bit oomputers. The task should be designed in a modular way to allow it to be overlayed on the "smaller" maohines.

1.5.8 Portability
The oode of AIPS is intended to aohieve a very high degree of portability between oomputers. Programmers for the system must be

aware of this requirement and avoid the easy assumptions about suoh matters as word and oharaoter lengths. The basio oommon /DCHCOM/ contains parameters giving the number of bits/word, words/floating point, words/double preoision floating point, and
oharaoters/floating point. These must be used, rather than simple equivalence statements, when dealing with "data struotures" (arrays containing a mixture of integer, oharaoter, and floating point
variables). One may use DATA statements to assign two oharaoters to an integer and four oharaoters to a real and then use formats A2 and A4, respectively, to print them. However, one oannot regard these variables as being fully paoked with oharaoters. The teohnique one must use to handle data struotures, suoh as the map catalog data blook desoribed later in this manual, goes as follows: One

INTRODUCTION
STYLE Page 1-9

2 May 85

equivalences integer, real, and double preoislon arrays to the full structure. Then one oomputes, using the parameters in /DCHCOM/, the subscripts needed with the three types of arrays to extraot the desired quantities. The routine VHDRIN performs this computation for oatalog blooks, storing its results in the oommon /HDRCOM/.
Programmers will find this routine instructive. There are a wide
variety of servioe routines to manipulate oharaoers and to oompute addresses.

All of the things mentioned in this ohapter should be used in moderation. One oan bury good code in a plethora of inane oomments. One oan inundate statements with parentheses or spread them out with blanks until they are no longer legible. Vastly elaborate indentation and numbering sohemes oan oonfuse rather than aid the reader. The oreation of large numbers of very short, speoial purpose subroutines will overburden linkage editors and AIPS's bookkeeping sohemes. (In this regard, AIPS already oontains a wide range of useful utility subroutines. Programmers should oheok to
see if a funotion is already available before oreating additional subroutines.) Basioally, programmers should use good oommon sense in applying the standards described in this ohapter.

1.6 LANGUAGE
The magnitude of the AIPS project and the desire to achieve portability of the software require a high degree of standardization in the programming language and style. One must oode in a language

whioh oan be oompiled on all machines. One must follow strict rules in statement ordering and location so that simple preprocessors may, when neoessary, looate and modify the standard oode. Everyone must
type oode in the same way so that all programmers will be able to
read it with as little effort and confusion as possible. All experienced programmers develop a personal typing style whioh they prefer. To them, the rules given in this ohapter may seem arbitrary, oaprioious, and unworkable. Nonetheless, they are the
rules to be followed when coding for the AIPS system. Routines whioh do not meet these standards will not be aooepted. This
projeot is too important and too large to allow compromise at this level. Also, we have found these rules to be fairly comfortable after we got used to them.

1.6.1 FORTRAN
The programming language will be ANSI standard FORTRAN 66 exoept for the addition of INCLUDE, ENCODE, and DECODE statements and the use of a minimum number of looal assembly language in Z

routines when absolutely required. I oannot review the entire language here, but I urge programmers to reread a basio referenoe. (Do not read your looal FORTRAN IV PLUS or FORTRAN 77 manual. Use a
fundamental referenoe suoh as IBM's Fortran Language manual.) In

INTRODUCTION
LANGUAGE Page 1-10

2 May 85

partioular, I remind programmers that the names of oommons, variables, funotions, and subroutines must begin with a letter and contain no more than six (6) oharaoters. In AIPS, program names may have no more than five oharaoters beoause of the need to append the
value of NPOPS. Comments are introduoed by plaoing the oapital letter C in oolumn 1 of the oard. No in-line oomments are allowed.
Continuation statements are formed by plaoing a non-blank oharaoter in oolumn 6 of the oard. In AIPS, this oharaoter shall be an
asterisk (*). There may be no more than 19 continuations of a single statement. Only oard oolumns 1 - 7 2 are used, even in
oomments. Executable statements at the first level of indentation begin in oolumn 7. TAB oharaoters must not be left in the oode after it is typed and edited. The three non-standard statements have the forms:

1. INCLUDE ' < name > '
where INCLUDE begins in oolumn 7, the first single quote is in oolumn 15, the <name> is a left justified oharaoter string of no more than 8 oharaoters, and the

seoond single quote follows <name> with no blanks. The conventions for <name> will be desoribed later. The statement oauses the file oalled <name> to be inserted in the routine in plaoe of the INCLUDE statement.
2. ENCODE (<nohar> , <format> , <array>) <list>

where <nohar> is the total number of oharaoters to be enooded, <format> is the format number, <array> is the variable into whioh the data are to be enooded, and <list> is an optional list of the variables whose values are to be enooded. The value of <nchar> may exceed the aotual number
of oharaoters to be enooded, but may not exceed the number of oharaoters whioh will fit in <array>. ENCODE performs a formatted write into memory.

3.
DECODE (<nohar> , <format> , <array>) <list>
where <nohar> is the total number of oharaoters to be deooded, <format> is the format number, <array> is the variable from whioh the data are to be deooded, and <list>

is the list of variables to reoeive the deooded values. DECODE performs a formatted read from memory.

1.6.2 Statement Order
Statements must be ordered as follows. The PROGRAM, FUNCTION, or SUBROUTINE statement must oooupy the first line and must begin in

oolumn 7. Then oome the precursor oomments, the body of the

INTRODUCTION
LANGUAGE Page 1-11

2 May 85

program, the format statements, and the END statement. Eaoh of these segments will be separated by a oomment delimiter line (i.e. C followed by 71 or so minus signs). The last line of the body of the routine must have the statement number 999 and be a STOP (for programs) or RETURN (for funotions and subroutines) statement. There must be no other STOP or RETURN statement in the routine.
Many computer systems allow declaration statements to occur in almost any order. However, some of the simpler oompilers do not. Therefore, in AIPS, we will use the following order:
1. Data type and dimension statements: INTEGER*2, INTEGER*4, LOGICAL*2, REAL*4, REAL*8 and COMPLEX in any order. We

prohibit DIMENSION, INTEGER(see below), REAL, DOUBLE PRECISION, INTEGER*3, LOGICAL*1, L0GICAL*4, REAL*6, COMPLEX*8, COMPLEX*16, and CHARACTER statements and any use
of these statements for data initialization. Note: the use of COMPLEX arithmetic is disoouraged as many oompliers
do not oorreotly oompile statments involving oomplex
arithmetic. Also, INTEGER is to be used to deolare variables to be used for variable dimension statments. This INTEGER statment should appear before the statment using the variable dimension.

2. Common statements: COMMON. We prohibit unlabeled oommon
and use of the COMMON statement to give the types and dimensions of variables.

3. Equivalence statements: EQUIVALENCE.
4. Data initialization statements: DATA. We prohibit the use

of DATA statements to initialize variables in oommons. Charaoter data must be typed oorreotly. Thus, althoughINTEGER*2 IC(2)DATA IC /'IAMC'/
will work on many oomputers, we prohibit it. The use of
ootal and hexadeoimal numbers in data statements is strongly disoouraged.

5. Funotion definitions.

1.6.3 INCLUDES
INCLUDE statements are used in AIPS primarily to provide a fixed and uniform set of declarations for oommons and data structures. The naming conventions for suoh INCLUDES is

'INCS:aooo.INC' , where INCS: is a logioal direotory name (whioh must be dealt with by a preprocessor on some systems), 'a' is D, C,
E, and V for the above types 1, 2, 3, and 4, respectively and 'coo' is a one to three oharaoter name for the INCLUDE. Sinoe the statement order is fixed, an include text file may oontain

INTRODUCTION
LANGUAGE Page 1-12

2 May 85

statements of only one of the above types. For example,
INCLUDE 'INCS:DBWT.INC'INCLUDE 'INCS:CBWT.INC'

oauses the text:
C Include DBWTINTEGER * 2 BWTLUN,BWTIND,BWTREC,BWTDAT(256) LOGICAL*2 WASERR
C End DBWT
C Inolude CBWTCOMMON /BWTCH/ BWTLUN,BWTIND,BWTREC,WASERR,BWTDAT
C End CBWTto be inserted.

Note: I is sometimes used as the first letter of a declaration inolude whioh oontains an array whioh should be explioitly deolared in the routine. An example is IDCH.INC for the devioe oharaoteristios oommon. The CDCH.INC file inoludes a oommon used to oarry an array called FTAB whioh is used for I/O tables. The size
of FTAB depends on the number of I/O streams desired concurrently and should be deolared in the main routine of the program. Thus in
the main routine of eaoh program the inoludes INCS:IDCH.INC and INCS:CDCH.INC should appear as well as an INTEGER*2 declaration for FTAB. (See the ohapter on I/O for a discussion of the required dimension of FTAB.)

1.6.4 Variable Declaration
The programmer is urged to deolare every variable in the routine. This will avoid any problems with the various default data types in various oomputer systems. Of partioular importance, in this regard, are those variables and constants whioh appear in CALL

statements. Using the example of the subroutine COPY given above, the statement
CALL COPY (2, KF, KT)

will work on some maohines, but will not work on oomputers whioh
default to INTEGER*4 with an address whioh points to the high-order byte. The right way to oode this is:

INTEGER*2 KF(n), KT(n), N2
DATA N2 / 2 /
CALL COPY (N2, KF, KT)

All deolaration statements must begin in oolumn 7.

INTRODUCTION
LANGUAGE Page 1-13

2 May 85

1.6.5 Literals And Expressions In CALL Statments
Literals (e.g. 2) and expressions should NEVER be used in CALL sequences. The data type received by the routine oalled may not be what it (or the programmer) expeots.

1.7 DOCUMENTATION
Proper documentation for both users and programmers is vital to the success of any software system. In the AIPS system, this documentation is primarily the responsibility of the programmer. In

the following seotions the various categories of AIPS documentation are discussed.

1.7.1 User Documentation
1.7.1.1 HELP Files - The primary souroe of user documentation is the HELP file. This information is available to the user on-line from the AIPS program. There are several types of help files: 1) task help files, 2) general help files, and 3) adverb help files. The general help files aid the user in finding the name of the task

or verbs for a given operation. These entries oonsist of the name and a one line description of a task or verb. New tasks should be
entered into the appropriate general help files. Task help files are the primary user documentation for a task or verb.

There are three parts of the task HELP file separated by a line of 64 -'s. Details about the format of the HELP file are found in the ohapter on tasks.
1. INPUTS

The INPUTS seotion of the help file is required for any task to run. AIPS uses this seotion to determine the number and order of adverbs to be sent to the task and oan oheok on limits on the values. The INPUTS seotion also oontains a short description of the use of the task and of eaoh of the adverbs. A listing of the INPUTS seotion of the help file is displayed on the user's terminal showing the ourrent values of the named adverbs when the user types "INPUT" to AIPS.

INTRODUCTION
DOCUMENTATION

Page 1-14
2 May 85

2. HELP
The HELP seotion of the help file gives a more detailed description of the funotion of the task and a more oomplete description of the meaning of eaoh of the adverbs than the INPUTS seotion. This seotion should also explain the default values of the adverbs. The HELP seotion of the HELP file is listed on the users terminal when the user types "HELP name".

3. EXPLAIN
The EXPLAIN section of the help file should desoribe the techniques for properly using the task; hints about reasonable value of the adverbs oan be given here. A discussion of the interaction of the given task with other

tasks is also appropriate. It is best if someone other than the programmer writes the EXPLAIN section of the help file. The HELP and EXPLAIN sections of the help file are
written on the line printer when the user types "EXPLAIN name" to AIPS.

1.7.1.2 AIPS Manual And Cookbook - The AIPS manual and especially
the AIPS oookbook are employed by many AIPS users as a guide to using AIPS. In partioular, many users are unaware of the existanoe of any feature in AIPS not advertised in the oookbook; unfortunately, the Cookbook only oovers the most elementary portions of the AIPS system. The AIPS manual and the Cookbook are maintained by Erio Greisen in Charlottesville.

1.7.2 Programmer Documentation
1.7.2.1 Preoursor Comments - The most fundamental souroe of detailed programmer documentation in the AIPS system are oomments in the souroe oode especially the preoursor oomments. A listing of all

of the precursor oomments in the AIPS system oan be found in the AIPS manual volume 3. The preoursor oomments for all routines
should desoribe the use of the routine as well as the meaning, units eto. of all oall arguments. Many of the detailed descriptions of oall sequenoes in this manual are essentially the preoursor oomments of the routines.

1.7.2.2 Shopping Lists - There are a number of list of AIPS routines with one line descriptions of their funotions. These lists
are a good plaoe to disoover what utility routines are available.

INTRODUCTION
DOCUMENTATION Page 1-15

2 May 85

1.7.2.3 CHANGE.DOC - Onoe souroe oode, text files, eto. are entered into the AIPS libraries all ohanges should be dooumented in the CHANGE.DOC file. Installations outside of the main AIPS programming group are enoouraged to adopt this system. The CHANGE.DOC file contains entries giving the date, name of the routine, and the name of the person making the ohange with a short description of the ohanges. If a bug is being oorreoted, its symptoms should be desoribed. The CHANGE.DOC file associated with
the master version of the AIPS system is published quarterly in the AlPSletter.

1.7.2.4 The Cheokout System - The AIPS group has instituted a
oheok-out system for the text files in the master version of the AIPS system (inoluding CHANGE.DOC). The purpose of this check out system is to prevent different programmers from destroying each
others ohanges to oode by trying to work on the same routines at the
same time. There are occasionally changes made in AIPS which require ohanges in most or all tasks; frequently the original
programmer of a task will be unaware of these ohanges. For these reasons, modifications or additions to the the master version of AIPS should (are required to):

1. Cheok out the relevant files. A detailed description of the ourrent oheok-out routines may be obtained from Gary Fiokling in Charlottesville.
2. Modify the files.
3. Cheok the files baok in.
4. Dooument the ohanges in CHANGE.DOC (whioh must itself be oheoked out).

CHAPTER 2
SKELETON TASKS

By far the easiest way to write a new task is to find an old one that does something similar to what is desired and change it. With this thought in mind, we have written tasks whose sole purpose
is to be ohanged into something useful. These tasks take oare of most of the bookkeeping chores and make oertain limited classes of
operations quite simple. The source oode for these tasks is heavily commented to aid the user in making the neoessary modifications.
The names and funotions of these tasks are given in the following list.

- FUDGE This task modifies an existing uv data base and writes a new one.
- TAFFY This task modifies an existing image file and writes a new one.

UVFIL This task oreates, catalogues and fills a new uv data file.
- CANDY This task oreates, catalogues and fills a new image file.
- PRPLn These tasks (PRPL1, PRPL2, PRPL3) are used to

generate plots and are disoussed in detail in the ohapter on plotting.

Since these tasks oontain most of the startup, shutdown, cataloguing, etc. ohores, they are a good place to start writing a new task. Many of the standard AIPS tasks are oloned from FUDGE or TAFFY. No one in the AIPS programming group has written a task from
scratch in years. This ohapter will desoribe in some detail the struoture and use of the skeleton tasks.

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY Page 2-2

2 May 85

2.1 DATA MODIFICATION TASKS - FUDGE AND TAFFY
There are two data modification tasks for the two types of data files, uv data (FUDGE) and images (TAFFY). The basio struoture of these two tasks are very similar. The main routine in these tasks is very short and oalls routines to do the basio funotions:
1. Startup (FUDGIN in FUDGE, TAFIN in TAFFY)

- initialize oommons
- get adverb values
- restart AIPS (If DOWAIT is FALSE)
- find input file in catalogue
- oreate and oatalogue output file

2. Prooess data (SENDUV in FUDGE, SENDMA in TAFFY)
3. Convert output file to integer form if requested (OUTMA, TAFFY only)
4. write history (FUGHIS in FUDGE, TAFHIS, called from OUTMA in TAFFY)
5. Shut down (DIE)

- unmark oatalogue file statuses
restart AIPS if not done previously

Both FUDGE and TAFFY send one logioal record (a visibility
reoord in uv data or a row of an image) at a time to a user supplied subroutine. This subroutine oan do some operation on the logioal reoord and return the result. The result is then written to an
output file. When all of the data has been processed, a final oall is made to the user routine. In this oall, the routine oan reoord any entries to be made in the history file. In the history routine
the old history file is oopied to the new file and some standard history entries are made. Then any user supplied entries are added. More detailed descriptions of FUDGE and TAFFY oan be found in the following seotions

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY Page 2-3

2 May 85

2.1.1 FUDGE
FUDGE sends uv data records to a user supplied routine one at a time. The user routine performs some operation on the reoord and returns the reoord with a flag whioh says whether the result is to be kept or ignored. Many operations whioh require operating on several data reoords oan be done by sorting the data with UVSRT so that reoords whioh are to be oombined are adjaoent in the data file.
If the size of the visibility reoord is unohanged, the only ohanges needed in FUDGE for most simple operations are in the user supplied routine DIDDLE. If the reoord size is changed there must

be ohanges made in FUDGIN so that the output file oreated has the oorreot size and oatalogue header information. SENDUV must also be
modified so that it writes oorreot size reoords to the output file.

The souroe oode for DIDDLE oontains preoursor oomments explaining the use of the routine; these oomments are reproduoed below.
SUBROUTINE DIDDLE (NUMVIS, U, V, W, T, IA1, IA2, VIS, RPARM,* INCX, IRET)

C --
C This is a skeleton version of subroutine DIDDLE whioh allows the
C user to modify a UV data base. Visibilities are sent one at a time C and when returned are written on the output file if so specified.
C Up to 10 history entries oan be written by using ENCODE toC reoord up to 64 oharaoters per entry into array HISCRD. Ex:C ENCODE (64,format #,HISCRD(1,entry #)) list
C The history is written after the last oall to DIDDLE.C
C Messages oan be written to the monitor/logfile by enoodingC the message (up to 80 ohar) into array MSGTXT in COMMON /MSGCOM/C and then issuing a oall:C CALL MSGWRT (priority #)C
C Unit 1 is the line printerC
C If IRET .GT. 0 then the output file will be destroyed iffC it was oreated in the ourrent exeoution.C
C If the size of the vis reoord is to be ohanged, appropriateC modifications should be made to CATBLK in FUDGIN before the oallC to UVCREA and LRECO in SENDUV should refleot the oorreot size ofC the output reoord.C
C See the preoursor oomments for UVPGET for a descriptionC of the oontents of COMMON /UVHDR/ whioh allows easy aooess toC muoh of the information from the oatalogue header (CATBLK) andC whioh describes the order in whioh the data is given.c
C After all data has been prooessed a final oall will be made toC DIDDLE with NUMVIS— 1.0D0. This is to allow for the oompletion of

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
Q

O
O

O
O

O
Q

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY Page 2-4

2 May 85

pending operations, i.e. preparation of History oards. Data returned is ignored. If valid data is to be returned then SENDUV should be modified.
LUN's 16 and 17 are open and not available to DIDDLE.
The ourrent oontents of CATBLK will be written baok to the oatalogue after the last oall to DIDDLE.

Inputs:
NUMVIS R*8

R*4R*4R*4R*4

Visibility number, -1.0=> final oall, no data passed but allows any operations to be oompleted.U in wavelengths V in wavelengths
W in wavelengths
Time in days sinoe 0 IAT on the first day for whioh there is data, the Julian day corresponding to to this day oan be obtained in R*8 form by:CALL JULDAY (CAT4(K4D0B),XDAY) where XDAY will be the Julian day number.First antenna number
Seoond antenna number IA1 < IA2
Random parameter array whioh inoludes U,V,W eto but also any other random parameters.VIS(INCX,*) R*4 Visibilities in order real, imaginary, weight
(Jy, Jy, unitless). Weight <= 0 => flagged.NOTE: INCX may be any value .GE. 2

Inputs from COMMON

IA1
IA2RPARMC *)

1*21*2
1*2

NAME2C3) CLAS2(2)
SEQ2 DISK2
APARM(IO) BPARM(IO) B0X(4,10)RA
DEC
FREQ
NRPARM NCOR
CATBLK(256)I*2

R*4R*4
1*2
1*2R*4R*4
R*4
R*8
R*8
R*8
1*2
1*2

OutputUV
WTRPARM
VIS

R*4R*4R*4R*4R*4
R*4

Name of the aux. file (12 ohar)Class of the aux. file (6 ohar)Sequence number of the aux. file.
Volumn number of the aux. file.User array.User array.User array.
Right asoension of epooh CAT4(K4EP0) of phase oenter (Deg.)
Deolination of epooh CAT4(K4EP0) of phase oenter. (deg)
Frequenoy of observation (Hz)# random parameters.
stokes parameters.Catalogue header reoord. See the ohapter on oatalogues for details.

U in wavelengths V in wavelengths W in wavelengths Time in same units as input.
Modified random parameter array. NB U,V,W,
time and baseline should not be modified in RPARMVisibilities

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY Page 2-5

2 May 85

C IRET 1*2 Return oode -1 «*> don't write0 -> OK
>0 -> error, terminate.

CCC
C Output in COMMON
C NUMHIS 1*2 # history entries (max. 10)C HISCRD(16,NUMHIS) R*4 History reoordsC CATBLK 1*2 Catalogue header blook C

There are a number of adverbs already inoluded in FUDGE to pass
user information to the user routine; these are speoifioations for a second input file and the arrays CPARM, DPARM and BOX. More or different adverbs are readily added.

FUDGE will automatically oompress the output file if the number of visibility reoords in the file is reduced. The souroe oode for FUDGE oan be found in the standard program souroe area; this is
usually assigned the logioal name "APLPGM:" whose ourrent value is UMAO:[AIPS.150CT85.APL.PGM].

2.1.2 TAFFY
TAFFY reads a seleoted subset (or all) of an image, sends the image one row at a time to a user supplied routine (DIDDLE) whioh operates on the row. The user routine sends baok the result whioh

may be of arbitrary length; in partioular the input row may be reduoed to a single value. The values sent baok from the user supplied routine are written into the new oatalogued file. DIDDLE oan defer returning the next row; this allows the use of sorolling
buffer. TAFFY oan handle multidimensional, blanked, and integer or floating format images. The task TRANS may be used before a TAFFY olone to transpose whioh ever axis is neoessary to the first axis.

If the size or format of the output file is to be different from the input file, or if it is neoessary to oheok that the proper
axis ooours first in the data array, or if there are several possible operations to be specified by the adverb OPCODE, then the routine NEWHED needs to be modified. The main purpose of NEWHED is to form the oatalogue header reoord for the output file. For many
purposes the only modifications needed to NEWHED are to modify the values in DATA statements from the default values supplied. The beginning portion of NEWHED is reproduoed below.

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY Page 2-6

2 May 85

SUBROUTINE NEWHED (IRET)
c --
C NEWHED is a routine in whioh the user performs several operationsC assooiated with beginning the task. For many purposes simplyC ohanging some of the values in the DATA statments will be all thatC is neoessary. The following funotions are/oan be performedC in NEWHED:
C 1) Modifying the oatalogue header blook to represent theC output file. The MINIMUM modifications required here are thoseC required to define the size of the output file; ie.C CATBLK(K2DIM) - the number of axes,C CATBLK(K2NAX+i) - the dimension of eaoh axis, and
C CATBLK(K2BPX) => 1 = integer*2, 2 = real*4 pixel values.C Other changes oan be made either here or in DIDDLE; the
C oatalogue blook will be updated when the history file isC written.
C 2) Cheoking the input image and/or input parameters.C For example, if a given first axis type suoh as
C Frequency/Velooity is required this should be oheoked. TheC routine ourrently does this and all that is required toC implement this is to modify the DATA statments.
C A returned value of IRET .NE. 0 will oause the task to terminate.C A message to the user via MSGWRT about the reason for theC termination would be friendly. This oan be done by encoding
C the message into MSGTXT, setting IRET to a non-zero valueC and issuing a GO TO 990.
C 3) Setting default values of some of the input parametersC (OUTNAME, OUTCLASS, OUTSEQ, OUTDISK, TRC and BLC defaults areC set elsewhere). As ourrently set, the default OPCODE is theC first value in the array CODES whioh is set in a data statment.C
C Input:
C CATBLK(256) 1*2 Output catalog header, also CAT4, CAT8
C CATOLD(256) 1*2 Input oatalog header, also 0LD4, OLD8C Output:
C CATBLK(256) 1*2 Modified output oatalog header.
C IRET 1*2 Return error oode, 0=>OK, otherwise abort.
C --

INTEGER*2 LIMIT, I, FIRSTI, FIRSTO, NX, N4, N8, IRET, IFPC REAL*4 CAT4(128), 0LD4(128)REAL * 8 CAT8(64), OLD8(64)
INTEGER*2 SEQIN, SEQOUT, DISKIN, DISKO, NEWCNO, OLDCNO,* CATOLD(256), CATBLK(256), NUMHIS, JBUFSZ, ICODE LOGICAL*2 DROP1
REAL*4 NAMEIN(3), CLAIN(2), XSEQIN, XDISKI, NAMOUT(3),* CLA0UT(2), XSEQO, XDISKO, BLC(7), TRC(7), OPCODE, CPARM(IO),* DPARM(IO), HISCRD(16,10), FBLANK, BADD(IO)
INTEGER*2 NCODE, NTYPES, IOFF, IERR, INDXI, INC, INDEX, ITYPE,* NCHTYP(IO)
REAL*4 CODES(10), UNITS(2,10), ATYPES(2,10), BLANK(2), TEMP,* FCHARS(3)
LOGICAL*2 LDROP1 INCLUDE 'INCS:DDCH.INC'

oo
o

oo
oo

oo

oo
oo

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY Page 2-7

2 May 85

INCLUDE 'INCS:DMSG.INC'INCLUDE 'INCS:DHDR.INC'
INCLUDE 'INCS:CDCH.INC'INCLUDE 'INCS:CMSG.INC'INCLUDE 'INCS:CHDR.INC'
COMMON /INPARM/ NAMEIN, CLAIN, XSEQIN, XDISKI, NAMOUT, CLAOUT,* XSEQO, XDISKO, BLC, TRC, OPCODE, CPARM, DPARM, BADD COMMON /PARMS/ FBLANK,* DROP1,
* SEQIN, SEQOUT, DISKIN, DISKO, NEWCNO, OLDCNO,* CATOLD, JBUFSZ, ICODE
COMMON /HISTRY/ HISCRD, NUMHIS COMMON /MAPHDR/ CATBLK
EQUIVALENCE (CATBLK, CAT4, CAT8), (CATOLD, 0LD4, OLD8)DATA FCHARS /'FREQ','VELO','FELO'/DATA Nl, N4, N8 /l,4,8/,

DATA NCODE /0/
DATA CODES /10*' '/

DATA UNITS /'UNDE','FINE',18*

DATA NTYPES /0/ DATA ATYPES /20* ' DATA NCHTYP /10*4/

DATA LDROP1 /.FALSE./

DATA ITYPE /0/

BLANK /2*' '/
User definable values
and value of OPCODES

Output units for eaoli OPCODE.
Two R*4 words with 4 ohar. ea.'/
Allowed number of axis types and types.

If LDROP1 is .TRUE, then the first axis will be dropped, (ie, one value results from the operation on eaoh row.)
Set desired output pixel type 0 - same as input,1-1*2, 2=R*4;

The data modification routine in TAFFY is DIDDLE whioh oontains numerous preoursor oomments describing its use; these preoursor oomments follow.

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY Page 2-8

2 May 85

SUBROUTINE DIDDLE (IPOS, DATA, RESULT, IRET)
c ---
C This is a skeleton version of subroutine DIDDLE whioh allowsC operations on an image one row at a time (1st dimension).C Input, DATA, are Real*4 with blanking if necessary; output valuesC are R*4 whioh may also be blanked. The calling routine keeps trackC of max., min. and the ooourenoe of blanking. If DROP1 is .TRUE.,C the oalling routine expeots 1 value returned per oall;
C otherwise, CATBLK(K2NAX) values per oall are expeoted returned.
C NOTE: blanked values are denoted by the value of the common variableC FBLANK.
C DIDDLE may aooumulate a sorolling buffer by returning a negativeC value of IRET. This tells the oalling routine to defer writting theC next row. If rows are deferred then and equal number of oalls toC DIDDLE will be made with no input data; this allows reading out anyC rows left in DIDDLEs internal buffers. Suoh a "no input oall" isC indioated by a value of IPOS(l) of -1. The writting of the returnedC values of these "no input oalls" may NOT be deferred.
C Up to 10 history entries oan be written by using ENCODE toC reoord up to 64 oharaoters per entry into array HISCRD. Ex:C ENCODE (64,format #,HISCRD(1,entry #)) list
C TRC, BLC and OPCODE are already taken oare of.C The history is written after the last oall to DIDDLE.
C Messages oan be written to the monitor/logfile by enoodingC the message (up to 80 ohar) into array MSGTXT in COMMON /MSGCOM/C and then issuing a oall:
C CALL MSGWRT (priority #)C Unit 1 is the line printer C
C If IRET .GT. 0 then the output file will be destroyed.
C After all data have been prooessed a final oall will be made toC DIDDLE with IPOS(l)=-2. This is to allow for the oompletion ofC pending operations, i.e. preparation of History oards.C
C LUN's 16-18 are open and not available to DIDDLE.C
C The ourrent oontents of CATBLK will be written baok to theC oatalogue after the last oall to DIDDLE.C
C Inputs:
C IP0S(7) 1*2 BLC (input image) of first value in DATA
G IPOS(l) - -1 -> no input data this oall.C IPOS(2) - -2 -> last oall (no input data).C DATA(*) R*4 Input row, magio value blanked.C Values from oommons:
C ICODE 1*2 Opoode number from list in NEWHED.C FBLANK R*4 Value of blanked pixel.C CPARM(IO) R*4 Input adverb array.C DPARM(IO) R*4 Input adverb array.
C CATBLK 1*2 Output oatalog header (also CAT4, CAT8)C CATOLD 1*2 Input oatalog header (also 0LD4, OLD8)C DROP1 L*2 True if one output value per oall.

SKELETON TASKS
DATA MODIFICATION TASKS - FUDGE AND TAFFY Page 2-9

2 May 85

C Output:
C RESULT(*) R*4 Output row.
C IRET 1*2 Return oode 0 -> OK
C >0 -> error, terminate.C Output in COMMON
C NUMHIS 1*2 # history entries (max. 10)C HISCRDC16,NUMHIS) R*4 History reoordsC CATBLK 1*2 Catalogue header blook

In addition to the adverb OPCODE to speoify the desired operation and the adverbs BLC and TRC to speoify the window in the input map, there are several user defined adverbs sent to TAFFY.
These are the arrays CPARM and DPARM; more and/or other adverbs oan be added.

If the output file from TAFFY is to be in the form of soaled integers, the temporary results are kept in a soratoh file. More details about TAFFY oan be found in the oomments in the souroe
version of the program. The souroe oode for TAFFY oan be found in the standard program souoe area; this is usually assigned the logioal name "APLPGM:" whose ourrent value is UMAO:[AIPS.150CT85.APL.PGM].

2.2 DATA ENTRY TASKS (UVFIL AND CANDY)
There is a pair of skeleton tasks for entering data into AIPS,

UVFIL for uv data and CANDY for images. These tasks are used to enter either observational or model data into the AIPS system.
CANDY especially has been used a number of times and usually takes a oouple of hours to produoe a working program.

These tasks eaoh have two subroutines whioh may need to be supplied or modified. The first routine is the one to oreate the new header reoord and for UVFIL to enter information about the
antennas. most of the modifications required are to ohange data statements from the supplied default values. The beginning portion of these routines will be given with the detailed descriptions of UVFIL and CANDY. Details about the oatalogue header reoord are given in the ohapter on catalogues.

The seoond routine, to be supplied by the user, generates the data to be written to the output file. This may be done by reading an external disk or tape file or by any other means.
The basio struoture of UVFIL and CANDY are very similar. The main routine in these tasks is very short and oalls routines to do the basio funotions:
1. Startup (UVFILN in UVFIL, CANIN in CANDY)

SKELETON TASKS
DATA ENTRY TASKS (UVFIL AND CANDY)

- initialize oommons
- get adverb values
- restart AIPS (If DOWAIT is FALSE)

2. Create new oatalogue header reoord (NEWHED)
- oreate and oatalogue output file
- Enter antenna information (In UVFIL only)

3. Read/generate data (GETUV in UVFIL, MAKMAP in CANDY)
4. Convert output file to integer format if requested (CANDY

only in OUTMA)
5. Write history (and antenna file) (FILHIS in UVFIL, CANHIS in CANDY)
6. Shut down (DIE)

- Unmark oatalogue file statuses
- Restart AIPS if not done previously

2.2.1 UVFIL
UVFIL oreates, catalogues and fills an AIPS uv data file. It oan be used either to translate uv data from another format or

generate model data. Sinoe olones of this task are likely to be speoialized, some of the AIPS transportability requirements may be relazed. In partioular, the souroe oode for UVFIL expeots the names of external text files to be opened and read by normal Fortran
oalls. UVFIL oomes with speoifio example oode reading suoh a file.

The first routine, NEWHED, whioh the user may need to modify is
needed to enter information used to oreate the oatalogue header blook and to enter information about the antennas. The beginning
portion of this routine follows:

Page 2-10
2 May 85

oo
oo

oo
oo

oo
oo

oo
oo

oo
oo

oo
oo

oo
oo

oo
oo

o
SKELETON TASKS
DATA ENTRY TASKS (UVFIL AND CANDY) Page 2-11

2 May 85

SUBROUTINE NEWHED (IRET)
NEWHED is a routine in whioh the oatalogue header is oonstruoted. Neoessary values oan be read in in the areas markes "USER CODE GOES HERE".
NOTE: the AIPS oonvention for the ooordinate referenoe value for the STOKES axis is that 1,2,3,4 represent I, Q, u, V
stokes' parameters and -1,-2,-3,-4 represent RR, LL, RL and LR oorrelator values. Currently set for R and L polarization ie Ref. value - -1 and inorement - -1.
The MINIMUM information required here is that required to define the size of the output file; ie.CATBLK(K2GCN) - 1*4 number of visibility reoords

CATBLK(K2PCN) - Number of random parameters.CATBLK(K2DIM)= the number of axes,
CATBLK(K2NAX+i) - the dimension of eaoh axis.Other ohanges oan be made either here or in FIDDLE; the

oatalogue blook will be updated when the history file is written.
The antenna information oan also be entered in this

routine. It is possible to put muoh more information in the ANtenna file, see the AIPS manual vol. 2 for details.
Input:
CATBLK(256)

Output:
CATBLK(256) IRET

1*2 Output oatalogue header, also CAT4, CAT8 The OUTNAME, OUTCLASS, OUTSEQ are entered elsewhere.
1*2 Modified output oatalogue header.
1*2 Return error oode, 0=>0K, otherwise abortAlso the antenna informtion oan be filled into a oommon.

INTEGER*2 CATBLK(256), SEQOUT, I, NAXIS, NRAN, ANTSYM(30), NO, Nl, N2, N8, N256, NCHAN, NPOLN,
DISKO, JBUFSZ, IERR, NANT, NDIM(7), INDEX, INC, ISTAR

REAL*4 INFILE(12), IN2FIL(12), TYPES(2,7), RTYPES(2,7), NAMOUT(3), CLA0UT(2), XSOUT, XDISO,APARM(IO), BPARM(IO),
BUFFER(1600), CAT4(128), ANTNAM(2,30), IATUTC, CRPIX(7), CRINC(7), UNITS(2), 0P4T08, BANDW, TELE(2), OBSR(2), INSTR(2), BLANK(2),UT1UTC, OBSDAT(2)
CAT8(64), ANTLOC(3,30), GSTO, CRVAL(7), XCOUNTREAL*8

INCLUDEINCLUDEINCLUDEINCLUDEINCLUDEINCLUDEINCLUDE

INCSINCSINCSINCS
INCSINCSINCS

DDCH.INC'
DMSG.INC'
DHDR.INC'
DUVH.INC'
CDCH.INC'
CMSG.INC'
CHDR.INC'

INCLUDE 'INCS:CUVH.INC'
C Antenna info oommonCOMMON /ANTS/ ANTLOC, GSTO, IATUTC, UT1UTC, ANTNAM, NANT,* ANTSYMCOMMON /BUFRS/ BUFFER, JBUFSZ COMMON /INPARM/ INFILE, IN2FIL,* NAMOUT, CLAOUT, XSOUT, XDISO,* APARM, BPARM,

* SEQOUT, DISKO COMMON /MAPHDR/ CATBLK
EQUIVALENCE (CATBLK, CAT4, CAT8)
DATA NO, Nl, N2, N8, N256 /0,1,2,8,256/, BLANK /2*' '/DATA 0P8T04 /'8T04'/, ISTAR /'**'/

C User definable valuesC Random parameters.
C No. random parameters.DATA NRAN /5/
C Rand. parm. names.DATA RTYPES /'UU-L', ' ' ,'VV-L', ' ' ,'WW-L'* 'TIME','! ','BASE','LINE' , 4* ' '/
C Uniform axes.
C No. axes.

SKELETON TASKS Page 2-12
DATA ENTRY TASKS (UVFIL AND CANDY) 2 May 85

DATA NAXIS /5/
c Axes names.DATA TYPES /'COMP','LEX ', 'STOK'.'ES ','FREQ','* 'RA ' , 'DEC '/ ',4*' '/
c Axis dimensionsDATA NDIM /3,1,1,1,1,0,0/
c Referenoe valuesDATA CRVAL /1.0D0, -1.0D0, 5*0.0D0/
c Referenoe pixel.DATA CRPIX /7 * 1.0/
c Coordinate inorement.DATA CRINC /1.0, -1.0, 0.0, 0.0, 0.0, 2*0.0/
c Epooh of position.DATA EPOCH /1950.0/
c UnitsDATA UNITS /'JY ',' ' /

The user supplied routine FIDDLE returns visibility reoords whioh are written into the oatalogued output file. The preoursor oomments describing the use of FIDDLE follow.

SKELETON TASKS Page 2-13
DATA ENTRY TASKS (UVFIL AND CANDY) 2 May 85

SUBROUTINE FIDDLE (NUMVIS, U, V, W, T, IA1, IA2, VIS, RPARM,* IRET)
C--
C This is a skeleton version of subroutine FIDDLE whioh allows theC user to oreate a UV data base. Visibilities are returned one atC a time and are written on the output file.C
C Up to 10 history entries oan be written by using ENCODE toC reoord up to 64 oharaoters per entry into array HISCRD. Ex:C ENCODE (64,format #,HISCRD(1.entry #)) listC The history is written after the last oall to FIDDLE.C
C Messages oan be written to the monitor/logfile by enoodingC the message (up to 80 ohar) into array MSGTXT in COMMON /MSGCOM/C and then issuing a oall:
C CALL MSGWRT (priority #)C
C Unit 1 is the line printerC
C If IRET .GT. 0 then the output file will be destroyed.
C A value of IRET .It. 0 indioates the end of the data.CC
C See the preoursor oomments for UVPGET in the ohapter onC the oatalogues for a desoription of the oontents of
C COMMON /UVHDR/ whioh allows easy aooess to muoh of the information
C from the oatalogue header (CATBLK) and whioh desoribes the orderC in whioh the data is being written.C
C After all data has been prooessed a final oall will be made toC FIDDLE with NUMVIS— 1. This is to allow for the oompletion ofC pending operations, i.e. preparation of History oards.C
C AIPS I/O LUN 16 is open and not available to FIDDLE.C FORTRAN unit numbers greater than 50 will probably not get theC AIPS routines oonfused. (Any unit numbers other that 1 and 5C will probably also work.)C
C The ourrent oontents of CATBLK will be written baok to theC oatalogue after the last oall to FIDDLE.C
C Inputs:
C NUMVIS 1*4 Visibility number, -1 -> final oall, no data
C passed but allows any operations to be oompleted.C
C Inputs from COMMON
C IN2FIL(12) R*4 Name of the aux. file (48 ohar)C APARM(IO) R*4 User array.C BPARM(IO) R*4 User array.
C RA R*8 Right asoension of epooh CAT4(K4EP0) of phase center.C (Deg.)
C DEC R*8 Deolination of epooh CAT4(K4EP0) of phase oenter.C (deg)

SKELETON TASKS Page 2-14DATA ENTRY TASKS (UVFIL AND CANDY) 2 May 85

C FREQ R*8 Frequency of observation (Hz)C NRPARM 1*2 # random parameters.C NCOR 1*2 # correlators
C CATBLK(256)I*2 Catalogue header reoord. See the oatalogue ohapter C for more details.CC Output:
C U R*4 U in wavelengths at the referenoe frequency.C V R*4 V in wavelengths
C W R*4 ¥ in wavelengths
C T R*4 Time in days sinoe the midnight at the start ofC the referenoe date.C IA1 1*2 Antenna number of the first antenna.C IA2 1*2 Antenna number of the seoond antenna.C NOTE: IA2 MUST be greater that IA1C RPARM R*4 Modified random parameter array. NB U,V,W,C time and baseline should not be modified in RPARMC VIS(3,*) R*4 Visibilities. The first dimension is the COMPLEX C axis in the order Real part, Imaginary part, weight. C The order of the following visibilities is defined C by variables in COMMOM /UVHDR/ (originally
C speoified in NEWHDR). The order number for Stokes C parameters is JLOCS and the order number for C frequenoy is given by JLOCF. The lower order number C inoreases faster in the array.
C See precursor oomments in UVPGET for more details.C IRET 1*2 Return oode -1 »> End of data.C 0 -> OK
C >0 =*> error, terminate.CC Output in COMMON
C NUMHIS 1*2 # history entries (max. 10)C HISCRD(16,NUMHIS) R*4 History reoordsC CATBLK 1*2 Catalogue header blook C

The user defined array adverbs APARM and BPARM are sent to UVFIL; more and/or other adverbs oan easily be added. The souroe oode for UVFIL oan be found in the nonstandard program souoe area; this is usually assigned the logioal name "NOTPGM:" whose ourrent value is UMAO:[AIPS.150CT85.NOTST.PGM].

2.2.2 CANDY
CANDY is similar to TAFFY exoept there is no AIPS input data file. This is a good routine to use to generate an AIPS image from either a model or an external data file. Candy has example oode

(mostly oommented out) in the text whioh gives an example of reading a formatted disk file using Fortran 77.

SKELETON TASKS
DATA ENTRY TASKS (UVFIL AND CANDY) Page 2-15

2 May 85

The routine in CANDY in whioh the values neoessary for the oatalogue header must be entered is named NEWHED. The beginning, heavily oommented, portion of NEWHED follows.
SUBROUTINE NEWHED (IRET)

C NEWHED is a routine in whioh the user performs several operations C assooiated with beginning the task. For many purposes simply C ohanging some of the values in the DATA statments will be all that C is neoessary. The following funotions are/oan be preformed C in NEWHED:
C 1) Creating the oatalogue header blook to represent the
C output file. The MINIMUM information required here is that C required to define the size of the output file; ie.C CATBLK(K2DIM)= the number of axes,
C CATBLK(K2NAX+i) - the dimension of eaoh axis, and
C CATBLK(K2BPX) => l - integer*2, 2 = real*4 pixel values.C Other ohanges oan be made either here or in MAKMAP; the
C oatalogue blook will be updated when the history file is C written.
C 2) Setting default values of some of the input parametersC As ourrently set the default OPCODE is the first value in the C array CODES whioh is set in a data statment.C
C Input:
C CATBLK(256)C
C
C Output:C CATBLK(256)C IRET
C--------------------

INTEGER*2 LIMIT, I, NAXIS, N1, N8 REAL*4 CAT4(128)REAL*8 CAT8(64)
INTEGER*2 SEQOUT, DISKO, NEWCNO, CATBLK(256),
* NUMHIS, JBUFSZ, ICODE, IFPC, IROUND
REALM FILEIN(12), SOURCE(2), XMSIZE(2), CELLS(2),* NAMOUT(3), CLAOUT(2), XSEQO, XDISKO,* OPCODE, CPARM(IO), DPARM(IO),* HISCRD(16,10), FBLANK
INTEGER*2 NCODE, NTYPES, IOFF, IERR, INDXI, NX, NY,* TWP TW1TRY TTYPT?
REALM* CODES(10) , UNITS(2,10) , ATYPES(2,7),* BLANK(2), TEMP, FCHARS(3)

C*

C SAMPLE CODE C
CHARACTER*48 INFILEQ**$gj|(g]|tj|eg|(]|ei|C)|t]|(;|ti|Cg]|e,|(9|(,|Ci|Cj|e;|(,|t;|C
INCLUDE 'INCS:DDCH.INC'INCLUDE 'INCS:DMSG.INC'INCLUDE ' INCS: DHDR. INC'INCLUDE 'INCS:CDCH.INC'

1*2 Output oatalog header, also CAT4, CAT8The OUTNAME, OUTCLASS, OUTSEQ are entered elsewhere.
1*2 Modified output oatalog header.
1*2 Return error oode, Q=>OK, otherwise abort.

SKELETON TASKS
DATA ENTRY TASKS (UVFIL AND CANDY)

INCLUDE 'INCS:CMSG.INC'INCLUDE 'INCS:CHDR.INC'
COMMON /INPARM/ FILEIN, SOURCE, XMSIZE, CELLS,* NAMOUT, CLAOUT, XSEQO, XDISKO,* OPCODE, CPARM, DPARM
COMMON /PARMS/ FBLANK, SEQOUT, DISKO, NEWCNO,* JBUFSZ, ICODE
COMMON /HISTRY/ HISCRD, NUMHIS COMMON /MAPHDR/ CATBLK EQUIVALENCE (CATBLK, CAT4, CAT8)
DATA FCHARS /'FREQ','VELO','FELO'/DATA Nl, N8 /l,8/, BLANK /2*' '/

User definable values# and value of OPCODESDATA NCODE /0/
DATA CODES /10*' '/

Output units for eaoh OPCODE. Two R*4 words with 4 ohar. ea. DATA UNITS /'UNDE','FINE',18*' '/
Number of axes and types.(Set for two axes - Ra, Deo.)DATA NAXIS /2/

DATA ATYPES / ' RA— ' , ' -SIN' , ' DEC-' , ' -SIN' ,* 'STOK'.'ES ','FREQ','* 6*' '/
Set desired output pixel type 1=1*2, 2=R*4DATA ITYPE /I/

The user supplied routine that reads or generates the image is MAKMAP. This routine returns the image one row at a time. The preoursor oomments desoribing the use of this routine follow.
SUBROUTINE MAKMAP (IPOS, RESULT, IRET)

C ---
C This is a skeleton version of subroutine MAKMAP whioh allowsC to user to oreate an image, one row at a time.C Output values are R*4 whioh may be blanked.
C The oalling routine keeps traok of max., min. and the ooourenoe of C blanking. CATBLK(K2NAX) values per oall are expeoted returned.
C NOTE: blanked values are denoted by the value of the oommon variableC FBLANK C
C Up to 10 history entries oan be written by using ENCODE toC reoord up to 64 oharaoters per entry into array HISCRD. Ex:C ENCODE (64,format #,HISCRD(1,entry #)) list0 TRC, BLC and OPCODE are already taken oare of.
0 The history is written after the last oall to MAKMAP.C
C Messages oan be written to the monitor/logfile by enoodingC the message (up to 80 ohar) into array MSGTXT in COMMON /MSGCOM/C and then issuing a oall:C CALL MSGWRT (priority #)

CC

C
C
CC

CC

Page 2-16
2 May 85

SKELETON TASKS
DATA ENTRY TASKS (UVFIL AND GANDY) Page 2-17

2 Hay 85

CCCCCCC
CCCG
CCC
CC
C
C
CC

Unit 1 is the line printer
If IRET .GT. 0 then the output file will be destroyed.
After all data has been prooessed a final oall will be made to MAKMAP with IPOS(l)=-l. This is to allow for the oompletion of pending operations, i.e. preparation of History oards.
AIPS I/O LUN 16 is open and not available to MAKMAP.FORTRAN unit numbers greater than 50 will probably not get the AIPS routines oonfused. (Any unit numbers other that 1 and 5 will probably also work.)
The ourrent oontents of CATBLK will be written baok to the oatalogue after the last oall to MAKMAP.

Inputs:
IPOS(7) 1*2 BLC (input image) of first value in DATA Values from oommons:

Opoode number from list in NEWHED.Value of blanked pixel.Input adverb array.Input adverb array.
Output oatalog header (also CAT4, CAT8)

C ICODE 1*2C FBLANK R*4C CPARM(IO) R*4C DPARM(IO) R*4C CATBLK 1*2C Output:C RESULT(*) R*4C IRET 1*2CC

Output row. Return oode 0 => OK
>0 -> error, terminate.

Output in COMMON
NUMHIS 1*2 # history entries (max. HISCRD(16,NUMHIS) R*4 History reoords CATBLK 1*2 Catalogue header blook

10)

Pixel blanking is supported thru magio value blanking, i.e.,
the value of FBLANK is reoognized to mean no value is assooiated with the pixel. The souroe oode for CANDY is fairly heavily
oommented and oan be found in the nonstandard program souoe area; this is usually assigned the logioal name "NOTPGM:" whose ourrent value is UMAO:[AIPS.150CT85.NOTST.PGM].

2.3 MODIFIYING A SKELETON TASK
To make a modified version of one of the skeleton tasks, first oopy the souroe oode and the help file to the area in whioh you intend to work on the task. Then rename the task to avoid oonfusion (only five oharaoters are allowed in an AIPS task name). In addition to ohanging the name of the files, it is oruoial to ohange the name of the task entered in a data statement in the main program. You should also ohange the task name referenoed in the

SKELETON TASKS
MODIFIYING A SKELETON TASK Page 2-18

2 Hay 85

help file. (If there is a ohanoe that your new task will beoome part of the standard AIPS paokage, and we weloome all contributions, make Erio Greisen's life easier and rename the names of the subroutines as well.)
The next step is to modify the souroe oode to taste. If the adverbs whioh the task uses are ohanged, the help file should also be ohanged to reflect this. If the task is to be of more than temporary use, then it is friendly to put sufficient documentation into the help file to assist other users in understanding the use of the input adverbs; besides, you will also forget just what it is that BPARM(3) does.
Onoe the souroe oode is modified, see the seotion in the ohapter on tasks about installing a new task. Basioally this means getting the proper logioal assignments for the inolude files and the subroutine libraries so that you oan oompile and link edit the task. Then you're all set (on a VAX at least). The VAX/VMS, NORD (and

UNIX ?) versions of AIPS support the use of an adverb VERSION whioh speoifies the directory in whioh the load module and help file are to be found. Simply set VERSION to the proper value, set the neoessary adverbs and tell AIPS 'GO'.

2.4 HINTS FOR USING THE VAX/VMS DEBUGGER IN AIPS.
The symbolio debugger in VAX/VMS systems is a very powerful tool for debugging AIPS tasks. In the following seotion there are a few hints about using the debugger in AIPS tasks.
- The AIPS oompile and link edit oommand prooedures will

aooept an argument 'DEBUG' after the name of the task and link a load module with the debugger. These prooedures are ©COMLNK for non-AP standard tasks, ©NCOMLNK for non-AP
nonstandard tasks, ©APCLNK for standard AP tasks, and ©NAPCLNK for nonstandard AP tasks.

- Use the verb WAITTASK after starting a task with the
debugger on. This keeps AIPS and the debugger from trying to talk to you at the same time and will resume AIPS when the task quits for any reason.
'WATCHPOINT' doesn't work in AIPS programs. If a WATCHPOINT is set, all AIPS I/O routines will fail.

- When speoifying a routine, type "SET SCOPE routine\routine" or give the SET SCOPE oommand twioe; the debugger doesn't think that you are serious if you only do it onoe.

CHAPTER 3
GETTING STARTED - TASKS

3.1 OVERVIEW
Tills ohapter will desoribe both the general struoture of AIPS tasks and the operations whioh are needed for the smooth startup and shutdown of most tasks. Following ohapters will desoribe in detail

other aspeots of AIPS tasks. The prinoipal steps of a "typioal" task are illustrated in the following. The names of relevant AIPS utility subroutines are given in parentheses.
1. Startup

- initialize oommons (ZDCHIN, VHDRIN eto.)
- get adverb values (GTPARM)
- restart AIPS (RELPOP)

2. Setup data files
- find input file in oatalogue (MAPOPN, CATDIR, CATIO)
- oreate and oatalogue output file (MCREAT, UVCREA)
- oreate soratoh files (SCREAT)

3. Prooess data
4. Write history (HISCOP, HIADD, HICLOS)
5. Shut down (DIETSK, DIE)

- destroy soratoh files
- unmark oatalogue file statuses

restart AIPS if not done previously

GETTING STARTED - TASKS
OVERVIEW

Page 3-2
6 May 85

The programmer speoifies the adverbs to be used for a task in
the first seotion of the help file. The AIPS user speoifies the values of the adverbs used to oontrol a task and AIPS writes these values into a disk file (TD). The task must read these values from the TD file. After AIPS has started up a task it, suspends itself until either, 1) the task returns a return oode in the TD file, or 2) the task disappears. It is the responsibility of the task to restart AIPS. This is usually done either at the beginning or at the end of the task, depending on the value of the adverb DOWAIT (usually oalled RQUICK in tasks).

AIPS tasks use oommons extensively to keep various system and oontrol information. Sinoe many of these oommons are in many hundreds of routines, their deolarations are kept in INCLUDE files.
This allows relatively simple system-wide changes in these basio commons.

Most of the details of the installation on whioh a task is running is kept in a disk text file. These details include, how many tape drives, how many disk drives, how many oharaoters per floating point word, eto. The parameters oharaoterizing the system are kept in a oommon whioh must be initialized by a oall to the routine ZDCHIN. Several other oommons may be used in a given task, and many of these need to be initialized at the beginning of the program.
There is an accounting file whioh keeps traok of various

bookkeeping details of tasks. Calls to the aooounting routines are hidden from the programmer of the standard startup and shutdown routines.
Data in the AIPS system are kept in catalogued disk files.

Information about the main data file is kept in a oatalogue header reoord and only data values are kept in the main data file. Auxiliary data may be kept in one or more "extension" files assooiated with a catalogued file. Most AIPS tasks modify a data file and write the results into a new catalogued file, although the user is frequently allowed to speoify the input file as the output file.
Eaoh oatalogued AIPS data file should have an assooiated History extension file in whioh as oomplete as possible a reoord of the prooessing is kept. It is the responsibility of the programmer of a task to oopy old history files to a new file, if neoessary, and to update the history information. In general, the values of the adverbs after defaults have been filled in are kept in the history file. There are usually other extension files whioh should also be copied if a new output file is being generated. These inolude ANtenna files for UV data and CLEAN oomponents (CC) files for images.
Most oommunioation between the user and AIPS or tasks is done

thru a single routine (MSGWRT) whioh logs most of the oommunioations in a disk file whioh oan be printed. A major

GETTING STARTED - TASKS
OVERVIEW Page 3-3

6 Hay 85

differenoe between the message file and history files is that history files are permanent, whereas message files are not. User interaction with a task is allowed; see the ohapter on devioe I/O and ZTTYIO in partioular.
The simplest way to write a program is to find a program that is dose to the one desired and make the neoessary ohanges. In this spirit, there are two tasks available whioh read data, send it to a routine, and write the result baok to a new oatalogued disk file. Two others will oreate and oatalogue a new disk file and fill it with data generated in a subroutine. These routines (FUDGE, CANDY,

TAFFY, and UVFIL) allow the simplest aooess to the AIPS data files, and even for fairly oomplioated tasks, one of these programs is a good plaoe to start (a great many AIPS uv tasks were oloned from
FUDGE). The ohapter on skeleton tasks desoribes these tasks in more detail. A number of skeleton task for plotting (PFPL1, PFPL2, and PFPL3) are desoribed in the plotting ohapter.

3.2 THE COST OF HACHINE INDEPENDENCE
There are a number of general programming aspeots whioh areseriously affeoted by the requirement of maohine independence.Several of these, whioh will be disoussed in detail below, are

oharaoter handling, integers and oall arguments for subroutines and funotions.

3.2.1 Charaoter Strings
One of the more serious problems with Fortran is its handling of oharaoters. In Fortran 66, there is no distinot oharaoter data type, but oharaoters oan be put into other data type variables. These variables oan be equivalenoed in various ways to form data structures; that is, arrays whioh oontain data of various types.

Fortran 77 introduced explioit oharaoter variables and formally forbids storing oharaoters in other data types. Unfortunately, the internal storage format for oharaoter variables is not defined and
varies from maohine to maohine. There is even a deliberate attempt
to make it diffioult to determine the exaot internal struoture of oharaoter variables. This means that oharaoter variables oannot be
equivalenoed in any way to other data types and most oonrpilers oheok.

The net effeot of the ohanges to Fortran 77 is that data
struotures are formally forbidden, although many oompilers allow the Fortran 66 conventions. As a result, the AIPS system uses the Fortran 66 conventions and stores oharaoters in REAL or INTEGER words. We strongly disoourage the use of double preoision words to hold 8 oharaoters, sinoe this will not work on some maohines like Deo-10's.

GETTING STARTED - TASKS
THE COST OF MACHINE INDEPENDENCE

Page 3-4
6 May 85

Different maohines oan store different numbers of oharaoters in a REAL word. We take oare of this problem with two types of oharaoter strings, paoked and unpaoked. Unpaoked oharaoter strings oontain 4 oharaoters per REAL word and paoked oharaoter strings oontain as many oharaoters as possible. The number of oharaoters per REAL is a parameter oarried in a oommon. A number of oharaoter
manipulation routines are available. A list follows; detailed descriptions of the oall sequenoe oan be found at the end of this ohapter.

- CHCOPY moves oharaoters from one string to another
- CHCOMP oompares two paoked oharaoter strings.
- CHFILL fills a string with a oharaoter
- CHPACK takes 4 oharaoters per real word and paoks them into a string.
- CHPAC2 takes 2 oharaoters per integer and paoks them into a string
- CHXPND expands a paoked oharaoter string into a real array 4 oharaoters per word.
- CHXPN2 expands a paoked oharaoter string into a integer array 2 oharaoters per word.
- CHLTOU converts any lower oase oharaoters in a paoked string to upper oase.
- CHMATC searches one paoked string for the ooourrenoe of another.
- CHWMAT matohes a pattern string containing "wild-oard"

oharaoters with a test string. The wild oards '*' for any number and "?" for exaotly one of any oharaoter are supported.

3.2.2 Integers
The number of bits in an integer word is also a problem. In partioular, PDP 11 oomputers do not support 32 bit integers and Fortran 77 formally does not allow 16 bit integers. AIPS uses both

short (16 bit) and long (32 bit) integers where appropriate, but all varaibles should be explicitly deolared. On maohines where these data types are not supported (e.g. all integers are 64 bits) a preprocessor is neoessary to oonvert INTEGER*2 and INTEGER*4 to
INTEGER. The ratio of the length of a short integer to a long integer is kept in the DCH oommon as NWDPLI; the ratio of the number
of bits in a short integer to those in a single preoision value is

GETTING STARTED - TASKS
THE COST OP MACHINE INDEPENDENCE Page 3-5

6 May 85

NWDPFP; the ratio for double preoision (REAL*8) is NWDPDP. When
possible, it is best to tell the oompiler that all undeclared and literal integer values are INTEGER*2.

Until reoently the use of Integer*4 was forbidden in AIPS whioh oaused the adoption of the rather unwieldy oonoept of "pseudo INTEGER*4" (usually denoted P 14) in whioh an array of two INTEGER*2 words are used to represent a larger integer. The first word oontains the lowest order bits and the seoond word oontains the higher order bits. There are two basio routines for handling pseudo INTEGER*4 integers, ZR8P4 and ZMATH4. A short description of eaoh
is given here and details of the oall sequenoes are given at the end of this ohapter. Use of Pseudo 1*4 is being phased out but it still appears in plaoes.

- ZR8P4 oonverts between pseudo 1*4 and R*8. Pseudo 1*4 has
the form of two short integers with the least significant half at the lower 1*2 index. IBM 1*4 has the form of a 2's
complement, 32-bit integer with the most significant 16 bits in the 1*2 word of lower index and the least significant 16 bits in the 1*2 word of higher index.

- ZMATH4 does 1*4 arithmetio on pseudo 1*4 arguments

3.2.3 Call Arguments
Most maohines have several lengths of integers or reals and in general AIPS routines will be using the shorter form. This oan lead to problems if the default type is the longer form. In this oase,

if the oall statement inoludes a literal or an expression, the value passed will be the long form whereas the routine being oalled probably expeots a short integer. Similar problems arise if the default is the short type and the long type is expeoted by the routine being oalled.
To avoid the problems resulting from expressions and literal values in oall arguments, we advooate avoiding all expressions and literals in oall arguments. For instanoe if a value of 1 is needed

for a subroutine oall, a variable named N1 is deolared and DATAed a value of 1. The oall argument used is then Nl. Literal oharaoter strings should nasal be used in oalls to AIPS system routines.

3.3 TASK NAME CONVENTIONS
The number of oharaoters allowed in task names is limited in many operating systems to six oharaoters. AIPS uses the last

oharaoter of the name to indioate the AIPS number of the initiating prooess, in hexadeoimal, leaving five oharaoters for a task name. It is most helpful to the bewildered user looking through the mass

GETTING STARTED - TASKS
TASK NAME CONVENTIONS Page 3-6

6 Hay 85

of AIPS tasks if the name is at least vaguely memnonio. For example, most tasks whose prinoiple output is to the line printer are named 'PRT..'; many tasks manipulating uv data are named 'UV.. .' eto.

3.4 GETTING THE PARAHETERS
3.4.1 In AIPS (Help File)

The adverbs to be used by a task are defined by the programmer in the beginning portion of the help file. This portion of the HELP file lists the adverbs in order, oan give limits on the range of
aooeptable values, and gives a short description of the use of the adverb. If the limit fields for an adverb are left blank then no
limits are enforoed. When AIPS reoeives the GO oommand, it reads the associated help file for the list of adverbs and plaoes the
ourrent values of these adverbs as well as a few "hidden" adverbs into the task data (TD) file. AIPS then starts the requested task. An example, the help file for PRTTP follows:
PRTTP LLLLLLLLLLLLUUUUUUUUUUUU CCCCCCCCCCCCCCCCCCCCCCCCCCCCC PRTTP: Task to print oontents of tapes (UV data, maps, ...)INTAPE 0.0 2.0 Tape unit # (0«> 1)
NFILES 0.0 32000.0 # files to advanoe from

beginning of tape. > 1000 -> start where tape is now.PRTLEV -1.0 2.0 Amount of print (2 -> a lot)
(0 -> summaries)(-1 -> very brief print)

PRTTP
Type: Task (interactive only)
Use: To print on the line printer a fairly detailed summary

of the oontents of a tape. The program begins by rewinding the tape and then advanoes the tape by the user speoified number of files. PRTTP then reports on
the oontents of all files until a double end-of-file mark is found. The tape is finally positioned after the first of the two end-of-files. The task oan
reoognize the FITS formats (map and UV), the IBM map format, and the VLA UV-data export format.Adverbs:

INTAPE......Input tape drive number. 0 «> 1.
NFILES......Number of files to advanoe from the beginningof the tape. <- 0 -> 0. To have the program begin at the ourrent tape position, give NFILES any number > 1000. The relative file numbers (n) will appear on the print as

1000+n.
PRTLEV......Amount of print desired (for FITS format only):-1 «> minimal information, 0 -> summaries in IHHEADER form, 1 »> add non-History oards,

GETTING STARTED - TASKS
GETTING THE PARAMETERS Page 3-7

6 May 85

2 -> add History oards too.

On the first line the name of the task is given. The "L", "U" and "C" are guides showing the fields for the lower and upper limit for the value of the adverb and for the oomment field. These
symbols mark fields in oolumns 11-22 (lower limit, if any), 23-34 (upper limit, if any) and 36-64 (oomment). No text should extend
beyond oolumn 64. The next line gives the name of the task and a short explanation of the task. Following this is the list of
adverbs, their limits and a short description the use of eaoh. The descriptions should be in lower oase.

Following the inputs seotion of the HELP file and separated by a line of 64 signs oomes the help seotion. This is the text
whioh is displayed on the users terminal when he types "HELP name"
to AIPS. This seotion gives more details about the use of the task and its adverbs. The helps seotion sould have the format shown in
the example above; explanations should be in lower oase where appropriate and text should not extend beyond oolumn 64.

Following the helps seotion of the HELP file and separated from
it by a line of 64 is the explain seotion. This text, preoeeded by the help seotion, is printed when the user types EXPLAIN ... to AIPS. This seotion, whioh is unfortunately absent from the example above, desoribes in detail how to use the task and its relation to
other tasks. The general method the task uses should be desoribed in the explain seotion.

3.4.2 In The Task (GTPARM)
When the task oomes alive it must read the Task data (TD) file to get the values of the adverbs. This is done via a oall to GTPARM. (Details of the oall sequenoe to GTPARM oan be found at the end of this ohapter).

A oonvenient way to aooess the values returned by GTPARM is to deolare a oommon whioh has the variables in order and pass the name of the first variable in plaoe of RPARM. The values oan then be
obtained by name. Note that all values are as REAL variables. Oharaoters are in paoked strings.

3.5 RESTARTING AIPS
When AIPS starts a task it suspends itself until either 1) the task returns a return oode in the TD file or 2) the task disappears. It is therefore the responsibility of the task to restart AIPS. The timing of this is determined by the value of RQUICK returned by GTPARM (set by the user as the AIPS adverb DOWAIT). If RQUICK is

GETTING STARTED - TASKS
RESTARTING AIPS Page 3-8

6 Hay 85

true, then AIPS should be restarted as soon as possible (after perhaps some error oheoking on the inputs). This is done by the routine RELPOP (the oall sequenoe is given at the end of this ohapter). If the task has an interactive portion, it should be
oompleted before restarting AIPS; this will keep the task and AIPS from trying to talk to the user terminal at the same time.

RELPOP returns to AIPS a return error oode RETCOD. A non-zero value of RETCOD indioates that the task failed, in whioh case AIPS will terminate the ourrent line of instructions, prooedure or RUN
file. If RQUICK is false, then AIPS is not to be restarted until the task terminates. In this oase RELPOP is oalled by either DIETSK or DIE and the programmer only has to be sure the oorreot value of RQUICK is sent to DIETSK.

3.6 INCLUDE FILES
AIPS tasks make extensive use of oommons to keep system constants and to oommunioate between subroutines. Many of these oommons are in hundreds of routines. To make these oommons manageable, they are deolared in INCLUDE files whioh are filled into the souroe oode at oompile time. Sinoe many oompilers are fussy about the order of deolaration statements, the declarations for most oommons are divided up into several parts.
The INCLUDE files names have the form nxxx.INC where n indioates the type of inolude file: D indioates that type declarations are inoluded, C indioates that COHMON statements are inoluded, E indioates that EQUIVALENCE statements are inoluded, V indioates that DATA statements are inoluded, Z indioates that

maohine dependent declarations are inoluded, and I is a speoial version of D in whioh a partioular deolaration is omitted. The direotory oontaining the INCLUDE files is speoified via a logioal
name. The word INCLUDE must start in oolumn 7 and the entire name of the file must be braoketed in single quotes. An example:

INCLUDE 'INCS:DDCH.INC'
On CVAX:: "INCS:" is ourrently logioally assigned the value of
UMAO:[AIPS.150CT85.INC]. For development and testing purposes INCLUDE files may be kept in direotories other than the one speoified by INCS: for instanoe on a VAX one might use:

INCLUDE 'UHAO:[WDC]DUVZ.INC'
Hany tasks also have their own inoludes; this greatly reduoes the problems in developing and maintaining tasks.

GETTING STARTED - TASKS
INITIALIZING COMMONS Page 3-9

6 May 85

3.7 INITIALIZING COMMONS
In order for the oommons mentioned in the previous seotion to be of use, their values must be filled in. For this purpose there are a number of oommon initialization routines. These oommons and their initialization are disoussed in the following seotions.

3.7.1 Devioe Charaoteristios Common
The most important oommon is the Devioe Charaoteristios Common; this oommon is obtained from the INCLUDE files IDCH.INC, DDCH.INC and CDCH.INC. The text of these inoludes are to be found at the end of this ohapter.
The only differenoe between IDCH.INC and DDCH.INC is the declaration of the INTEGER array FTAB. This array is used to keep system tables for the I/O routines. The oontents of FTAB are

normally of little interest to the programmer, but the size of this
array is determined by the number of different types of files to be open at the same time. Thus, in the main routine, the inolude IDCH.INC should be used and spaoe reserved for FTAB by an explioit
declaration. In subsequent routines, the INCLUDE DDCH.INC is used to deolare the variables in the oommon. In all oases CDCH.INC is used for the COMMON statement.

The FTAB array is used to keep AIPS and system I/O tables so the size of the array depends on the oomputer. On Modoomps, whioh require the largest tables, the dimension of the FTAB should be
(# devioes open) * 2
+ (# of regular (extension) files open) * 14
+ (# of map (image and uv data) files open) * 80 bytes.

Note that a byte is defined here as half a short integer. The number of files open refers to the maximum number open in eaoh oatagory at any time. In general, it is probably a good idea to
double these values to reduoe problems with future installations.

The oontents of the Devioe Charaoteristios oommon are initialized by a oall to ZDCHIN. Details of the oall sequence oan be found at the end of this ohapter.
Many of the values in the Devioe Charaoteristios oommon are read from a disk file. The values in this file oan be read and ohanged using the standalone utility program SETPAR. The oonstants kept in this oommon are desoribed in the ohapter on disk I/O.

GETTING STARTED - TASKS
INITIALIZING COMMONS

Page 3-10
6 May 85

3.7.2 Catalogue Pointer Common
The oatalogue header reoord for an AIPS data file is a data struoture oontaining oharaoters, integers, and single and double precision reals. The size of the reoord is fixed at 512 bytes where a byte is defined as half a short integer. Values in the oatalogue header reoord are aooessed from a number of arrays of different data types equivalenoed together. Sinoe different oomputers have different sizes for different data types, we use pointers in these equivalenoed arrays. These pointers are kept in a oommon invoked with the INCLUDE DHDR.INC and CHDR.INC and are initialized by a oall

to VHDRIN. VHDRIN has no arguments, but should be oalled after
ZDCHIN. For more details, see the ohapter on the oatalogue header. In the future, the oatalogue header will probably be expanded to
inolude arbitray keyword/value pairs to allow storage of information not currently allocated spaoe in the header.

3.7.3 History Common
The routines that write History files oarry information in

pointers in oommons invoked with the INCLUDES DHIS.INC and CHIS.INC and are initialized by a oall to HIIN1T; the details of the oall sequenoe are given at the end of this ohapter.

3.7.4 TV Common
The routines that talk to the television display use information
from the oommons obtained by the INCLUDES DTVC.INC, DTVD.INC,
CTVC.INC and CTVD.INC. If a task uses the TV, there must be an initializing oall to YTVCIN whioh has no oall arguments.

YTVCIN initializes the oommon whioh desoribes the
oharaoteristios of the interaotive display devioes and the oommon whioh has the ourrent status parameters of the TV. The values set are default values only. They are reset to the ourrent true values by a oall to TVOPEN. YTVCIN resets the oommon values of TVZOOM and TVsoroll, but does not oall the TV routines to force these to be
true. See the ohapter on the television devioes for more details.

3.7.5 UV Data Pointer Common
The format in whioh uv data is stored is relatively flexible and is desoribed in the ohapter on disk I/O. Sinoe it is rather flexible, the looation in a logioal reoord of a given value must be determined from the oatalogue header. In order to make it easier to

find values in a uv data reoord, we use a oommon oontaining pointers; this oommon is obtained by using the INCLUDES DUVH.INC and CUVH.INC. This oommon is filled in by a oall to UVPGET whioh

GETTING STARTED - TASKS
INITIALIZING COMMONS Page 3-11

6 May 85

analyzes the ourrent oatalogue header in oommon /MAPHDR/. Details of the oall arguments and the pointers eto. set are found at the end of this ohapter.

3.7.6 Files Common, /CFILES/
Many tasks open a number of oatalogued files and oreate several soratoh files. The status of the oatalogued files are marked 'READ' or 'WRIT' in the oatalogue direotory and need to be oleared by the end of the program. Soratoh files must be destroyed by the end of the program. Sinoe an error might terminate the program at any stage, the program must be prepared to olear oatalogue files and destroy soratoh files under any oiroumstanoes in whioh it oontrols its death.
Many tasks aoomplish these funotions through use of the oommon obtained from the inoludes DFIL.INC and CFIL.INC and use of the termination routine DIE (whioh will be disoussed in a later

seotion). The oontents of the DFIL.INC and CFIL.INC are found at the end of this ohapter.
In this oommon NSCR is the number of soratoh files that have

been oreated. SCRCNO oontains the oatalogue numbers of the soratoh files and SCRVOL oontains the disk numbers of the soratoh files.
NCFILE tells how many oatalogue files are marked, FVOL oontains the disk numbers of the oatalogued files marked, FCNO oontains the oatalogue slot numbers of the marked files, and FRW oontains flags

for eaoh of the marked oatalogue files (0 “'READ', 1='WRIT', 2*'WRIT' but destroy if the task fails.
IBAD is an array to oontain the disk drive numbers on whioh not to put soratoh files; IBAD is used by the soratoh file oreation routine SCREAT. RQUICK is also oarried along in this oommon so that AIPS oan be restarted by the shutdown routines if neoessary. if the information in this oommon is kept ourrent, oatalogue file status words will be oleared and soratoh file deleted by the shutdown routine DIE . If the /CFILES/ oommon is being used it should be initialized with the following statements before use:
NSCR - 0 NCFILE - 0

and by initializing the array IBAD to zeroes or the values of BADDISK sent by AIPS.

GETTING STARTED - TASKS
INPUT AND OUTPUT PILE NAMES Page 3-12

6 May 85

3.8 INPUT AND OUTPUT FILE NAMES
The input and output file name, olass, sequenoe eto. passed to a task are subjeot to a number of default and wildoard conventions in the oase that they are not completely speoified. For the most part, these conventions are incorporated into the standard utility routines. For some tasks, there are logioal default values whioh are not the standard default whioh must be handled by the task. An

example of this is the output olass for APCLN. If the input olass is IMAP and the output olass is not speoified (all blanks) then APCLN uses ICLN for the output olass.
The standard defaults for input names are as follows: If the disk is not speoified, all disks are searohed in order starting with disk 1. If the name and/or olass is not speoified, then the

oatalogue (or catalogues) are searohed until a file satisfying all speoified oriteria is found. If the sequenoe number is not speoified then the file with the highest sequenoe number meeting all speoified oriteria is pioked. In addition to the default
oonventions, AIPS also supports two types of wildoards; means any number, inoluding none, of any oharaoter will be aooepted, "?" means exaotly one oharaoter of any type will be aooepted as a matoh. The standard default and wildoard are fully supported by the standard oatalogue routines.

The standard default for the output name is the input name; the standard default for the output olass is the name of the task, and the standard default for the output sequenoe is 1 higher than the highest sequenoe number on any disk for any file with the same name
and olass; if there are no other matohing files, the sequenoe number is 1. The default output disk is the highest numbered disk on whioh
spaoe is available. Wildoards are supported in the output name;
basioally a wildoard in the output name and olass means to use the corresponding oharaoter (or oharaoters) from the input name or olass. Only one "*" is allowed in an output name or olass; others
are ignored. These defaults and wildoard oonventions are implemented in the utility MAKOUT. MAKOUT must be oalled by all tasks whioh may oreate an output file. The details of the oall sequenoe of MAKOUT are given at the end of this ohapter.

3.9 COPYING EXTENSION FILES
Eaoh oatalogued file may (and usually does) have auxiliary files oontaining information related to the oatalogued file; these files are oalled extension files. There are usually several of these extension file that a task must oopy if it is oreating a new output file. The most important of these is the history file (file type 'HI') whioh should be updated as well as oopied. For uv data

files, the antenna tables (type 'AN') should be oopied and for
images any CLEAN oomponents tables (type 'CC') should be oopied. Other extension file types may also have to be oopied. The
following seotions desoribe how to oopy and/or update these files.

GETTING STARTED - TASKS
COPYING EXTENSION FILES Page 3-13

6 Hay 85

3.9.1 History
Information desoribing the prooessing history of a data set is kept in an extension file to eaoh main data file. These files consist of 72 oharaoter reoords using the FITS oonvention for

history reoords. Eaoh task writes into the history file reoords whioh begin with the name of the task and oontain information about how data was prooessed by that task. This is usually in the form "adverb name-" followed by the aotual value used. These reoords
should be able to be parsed in the same manner as FITS header reoords. Comments are preoeded by a "/".

There are a number of utility routines to simplify handling history files. A short desoription of eaoh follows and the details of the oall sequenoes oan be found at the end of this ohapter.
- HIINIT initialized the history oommon.

HISCOP oreates and oatalogues a new history file, opens it, opens an old history file and oopies it to the new history
file, and leaves the old history file olosed and the new file open.

- HIADD adds a history oard to the history file.
- HIAD80 adds an 80-oharaoter oard image into an open history file.
- HICLOS oloses a history file, flushing the buffer if requested.

Onoe the history file is open, entries oan be made in it by first ENCODEing the message (up to 72 oharaoters) into an integer or real array dimensioned to be at least 72 bytes and oalling HIADD. An example:
INTEGER*2 CARD(36)INCLUDE 'INCS:DHSG.INC'INCLUDE 'INCS:CHSG.INC'

ENCODE (72,2000,CARD) TSKNAH,FACTOR
2000 FORHAT (2A3,' FACTOR-#,F5.2,' / CORRECTION FACTOR')CALL HIADD (HLUN, CARD, BUFFER, IERR)

Onoe all new entries have been made to the history file the buffer is flushed and the file olosed by a oall to HICLOS. (HICLOS should normally be oalled with UPDATE-.TRUE. for a history file being written)

GETTING STARTED - TASKS
COPYING EXTENSION FILES Page 3-14

6 May 85

It should be noted that HISCOP will also work properly if the old and new history files are aotually the same file. In this oase, it simply opens the new file to add new entries. Several other history utilities whioh may oooasionally be useful, are HICREA whioh oreates a history file, HIOPEN whioh opens a history file and HICOPY whioh oopies the oontents of one history file onto the end of another history file. The funotions of these routines are
incorporated into the routines desoribed above so they are normally not of great interest to the programmer. The peroursor oomments for these routines oan be found in AIPS manual volumn 3.

3.9.2 Extension Tables (TABCOP)
A simple oopy of any or all extension tables of a given type may be performed with a single oall to the utility routine TABCOP. Certain extension file types are exoluded from being oopied by TABCOP, these being history files (type 'HI') and plot files (type

'PL'). If the new and old files are physioally the same files, then TABCOP makes no ohanges and simply returns. A description of the oall sequenoe is given at the end of this ohapter.
An older form of extension files were managed by the pair of

routines EXTINI and EXTIO. Files of this type oan be oopied by the routine EXTCOP.

3.10 COMMUNICATION WITH THE USER
3.10.1 Writing Messages
Most of the important oommunioations between a user and AIPS and its tasks are sent to both a monitor terminal, whioh may be the users own terminal, and to a disk log file. This logged information is primarily of use to the user, but is frequently of great use in

debugging a program. The basio way a task oommunioates to the user is through the utility routine MSGWRT. A message of up to 80
oharaoters is first enooded into array MSGTXT in the message oommon whioh is invoked by the inoludes DMSG.INC and CMSG.INC. Then a oall is made to the routine MSGWRT with a single INTEGER*2 argument whioh is the priority level to write the message. The meaning of the priority is as follows:

Priority Use
0 Write to log file only
1 Write to monitor terminal only2 Low interest normal messages 3-4 Normal message
5 High interest normal message.6-8 Error message

9-10 Severe error messages

GETTING STARTED - TASKS
COMMUNICATION WITH THE USER Page 3-15

6 May 85

An example of the use of MSGWRT follows:
INTEGER*2 N4 INCLUDE 'INCS:DMSG.INC'

INCLUDE 'INCS:CMSG.INC'

DATA N4 74/

ENCODE (80,1000,MSGTXT) CALL MSGWRT (N4)

1000 FORMAT ('FINISHED READING THE DATA')

3.10.2 Turning Off System Messages
Many of the AIPS utility routines give messages whioh may or may not indioate a problem suoh as the "FILE ALREADY EXISTS" message from ZCREAT. Most of the messages are written at priority level 6 or 7 and may be turned off by setting the variable MSGSUP in oommon /MSGCOM/ (the same one MSGTXT lives in) to 32000. This variable

should be restored to a value of 0 to enable level 6 and 7 messages.

3.10.3 Writing To The Line Printer
The standard Fortran logioal unit number for the line printer in the AIPS system is unit 1. Writing to the line printer oan be done with normal formatted Fortran writes. Before writing to the

line printer it should be opened with a oall to ZOPEN and a header page prepared for batoh jobs with a oall to BATPRT. When the task is finished writing to the printer, a seoond oall to BATPRT will
write a trailer page, a oall to ZENDPG will ejeot a page (very
important on eleotrostaio printers), and a oall to ZCLOSE will olose the file and send it to the printer spooler. An example follows:

INTEGER*2 LPLUN, LPIND, N1, N2, BUFFER(256), IPCNT LOGICAL*2 T,F
REAL*4 LPNAME(6), VALUE1, VALUE2 INCLUDE 'INCS:DDCH.INC'

INCLUDE 'INCS:CHCH.INC'

DATA LPLUN /l/, LPNAME /6*' '/, N1, N2/l,2/

GETTING STARTED - TASKS
COMMUNICATION WITH THE USER Page 3-16

6 May 85

DATA T, F /.TRUE.,.FALSE./

Open the printer. CALL ZOPEN (LPLUN, LPFIND, N1, LPNAME, F, T, T, IERR) (handle error oondition if deteoted)
Header page if bat ohCALL BATPRT (N1, BUFFER)IPCNT - 0

C Inorement line oountIPCNT - IPCNT + 1
C Cheok if page full.IF (IPCNT .LT. PRTMAX) GO TO 100
C Write new page header

ICPNT - 01
100 WRITE (LPLUN,1000) VALUE1, VALUE2 Write to printer

C Trailer page if batohCALL BATPRT (N2, BUFFER)
C Ejeot a pageCALL ZENDPG (IPCNT)
C Close printer and send toC spooler.CALL ZCLOSE (LPLUN, LPIND, IERR)

1000 FORMAT (' VALUE1 -\F10.5, ' VALUE2 -'.1PE12.6)

The number of lines per page on the line printer is obtained,
as shown in the example, by the variable PRTMAX in the devioe oharaoteristios oommon (DDCH.INC and CDCH.INC). In the example above, ZOPEN reoognized the unit number (LPLUN) value of 1 as meaning the line printer so most of the arguments to ZOPEN are dummy in this oase.

3.10.4 Writing To The Terminal (ZTTYIO)
Many mainframe oomputers are batoh oriented and discourageprograms from talking direotly to a terminal. To get around thisproblem, AIPS has a "Z" routine for this purpose. ZTTYIO, rather than Fortran reads and writes to units 5 and 6 is used to oommunioate with the terminal.

GETTING STARTED - TASKS
COMMUNICATION WITH THE USER Page 3-17

6 May 85

If a task is going to talk to the user terminal is should not oall RELPOP until after oommunioation with the user terminal is oomplete. If AIPS is restarted too soon, both AIPS and the task will be trying to talk to the terminal at the same time; this will probably oonfuse the user.
Before oalling ZTTYIO, the devioe must be opened by a oall to ZOPEN, and after the task is through talking to the terminal, it should be olosed with a oall to ZCLOSE. Use a value of 5 for the

LUN. In the oall to ZOPEN, the file name and disk number are dummy
parameters sinoe ZOPEN reoognizes LUN-5 as a Fortran devioe. Enoode
messages to be sent into an array and send the array to ZTTYIO. Lines read from the terminal will be returned by ZTTYIO as an
unpaoked oharaoter string. An example of the use of ZTTYIO is the following:

INTEGER*2 N1, N72
INTEGER*2 TYYLUN, TYYIND, IRET, LINE(36)LOGICAL*2 T,FREAL*4 READ, WRITE

DATA Nl, N72 /l,72/, TTYLUN /5/
DATA T, F /.TRUE.,.FALSE/, READ, WRITE /'READ','WRIT'/

C Open the terminalCALL ZOPEN (TTYLUN, TTYIND, Nl, LINE, F, T, T, IERR)
C Error if IERR .NE. 0

C Enoode message for terminal ENCODE (72,1000,LINE)
C Send to terminal
C Set here to read and writeG up to 72 oharaoters perC transmission.CALL ZTTYIO (WRITE, TTYLUN, TTYIND, N72, LINE, IERR)
C Error if IERR .NE. 0

C Read from terminal.
C Up to 72 oharaoters.CALL ZTTYIO (READ, TTYLUN, TTYIND, N72, LINE, IERR)
G Error if IERR .NE. 0

Close terminalCALL ZCLOSE (TTYLUN, TTYIND, IERR)

1000 FORMAT (' HI THERE')

GETTING STARTED - TASKS
SCRATCH FILES

Page 3-18
6 May 85

3.11 SCRATCH FILES
Many tasks require the use of soratoh files whioh must be oreated at the beginning of the task and destroyed at the end of the

task. Sinoe the task may deteot an error oondition and deoide to quit at an arbitrary plaoe in the program, some provision must be made to destroy the soratoh files under all oonditions for whioh the task oontrols its death. Soratoh files are now oatalogued as type 'SC' so that the user oan direotly delete them. The /CFILES/ oommon desoribed in a previous seotion is designed for this purpose and is obtained by the INCLUDES DFIL.INC and CFIL.INC.
A simple way to oreate soratoh files is to use the oommon /CFILES/ and the routine SCREAT. SCREAT will try to soatter the

soratoh files among as many disk drives as possible, will try all of the disks if neoessary to find spaoe for a soratoh file, and oan be prohibited from putting soratoh files on oertain disks by use of the array IBAD (adverb array BADDISK in AIPS). Details of the oall sequenoe for SCREAT oan be found at the end of this ohapter.
An example of the use of SCREAT is the following:
INTEGER*2 IRET, NX, NY, NP(2), BP, N2, BUFF(512)INTEGER*4 SIZE
INCLUDE 'INCS:DFIL.INC'INCLUDE 'INCS:DDCH.INC'

INCLUDE 'INCS:CFIL.INC'
INCLUDE 'INCS:CDCH.INC'

DATA N2 /2/

C NX, NY are the size of an
C image. Make a soratoh fileC big enough for a REAL oopyC of the image.C
C Compute the size in bytes,c Note: NWDPFP is from the
C /DCHCOM/ and is the size ofC a REAL word in terms ofC short integers. 1 shortC integer - 2 bytes BP - 2 * NWDPFP NP(1) - NX

NP(2) - NY
C Compute size needed
C SIZE is a pseudo 1*4.CALL MAPSIZ (N2, NP, BP, SIZE)
C Create soratoh file.CALL SCREAT (SIZE, BUFF, IRET)

GETTING STARTED - TASKS
SCRATCH FILES Page 3-19

6 Hay 85

C Test for errors...
In the above example, the soratoh file oreated will be entered in the /CFILES/ oommon as NSCR (whioh was incremented). The disk

and oatalogue slot numbers are thus SCRVOL(NSCR) and SCRCNO(NSCR). This soratoh file oan be opened as follows:INTEGER*2 LUN, IND, SC, N1 REAL*4 FILE(6)
DATA N1 /!/, SC /'SC'/, T /.TRUE./

CALL ZPHFIL (SC, SCRVOL(ISCR), SCRCNO(ISCR), N1, FILE, IRET) CALL ZOPEN (LUN, IND, SCRVOL(ISCR), FILE, T, T, T, IRET)
Onoe opened, these files oan be initialized and read or written in the same way as oatalogued data files.

3.12 TERHINATING THE PROGRAH
Host tasks oreate soratoh files or open oatalogued files whioh have status words marked in the oatalogue direotory. These soratoh files should always be destroyed by the end of the program, and the

oatalogue files should be unmarked. Also AIPS may have to be restarted at the end of the program. For these and other reasons,
we strongly advise that when error oonditions are deteoted that the routine finding the error set the appropriate error oode and return; all the way baok to the main routine. Then a oall to one of the shutdown routines oan be followed by a Fortran STOP statement.

hQ HQ Other STQP Statements in the program.
In the seotion desoribing initialization of the /CFILES/ oommon, there is a disoussion of using it to oarry information about soratoh and oatalogued files. If this oommon is used, the shutdown

routine DIE will take oare of deleting all soratoh files, unmarking oatalogue files, and restarting AIPS if neoessary. If the /CFILES/ oommon is not used, the routine DIETSK will restart AIPS and take oare of the other shutdown funotions. (DIE oalls DIETSK). Both of
these routines aooept a return oode whioh is sent to AIPS if it is restarted at that time; a nonzero value of the return oode indioates that the program failed. Descriptions of DIE and DIETSK oan be found at the end of this ohapter.

3.13 BATCH JOBS
AIPS has a capability to run tasks in the batoh mode. It usually makes little differenoe to a task if it is being run in batoh or interactive mode but use of some devioes are forbidden to batoh tasks. These devioes are the tape drive, the graphios devioe, and the television. After the oalls to GTPARH and ZDCHIN, a task

C ISCR - /CFILES/ slot number.

GETTING STARTED - TASKS BATCH JOBS Page 3-20
6 May 85

oan determine if it ie running as a batoh task by oomparing the
value of NINTRN (number of interactive AIPS allowed) from the devioe
charaoteristios oommon (DDCH.INC and CDCH.INC) with NPOPS (the AIPS number of the initiating task) from the message oommon (DMSG.INC and
CMSG.INC). If NPOPS is greater than NINTRN then the task is running as a batoh task and use of the devioes mentioned above is disallowed. Batoh jobs always run with RQUICK (DOWAIT in AIPS) true and thus do not restart AIPS until they are done.

3.14 INSTALLING A NEW TASK
The prooedure to install a task depends a great deal on the host oomputer and operating system. The following sections will desoribe the prooedure for several operating systems.

3.14.1 On A VAX
The AIPS installation on a VAX makes heavy use of the direotory struotures, oommand files, and the logioal name oapability. AIPS

files are kept in a hierarohial directory struoture with logioal names for eaoh of the subdirectories. An example of the direotory struoture is:
CVAX::UMAO:[AIPS.150CT85.APL.ZSUB.VMS]

where:
CVAX:: denotes the DECNET node name (optional)UMAO: is the name of the disk drive[AIPS. is the main AIPS direotory
.150CT85. is the direotory for the ourrent release.APL. indioates “standard" non-array prooessor oode.ZSUB. indioates the "Z" subroutine sub direotory.VMS] indioates the VMS subroutine library.

The logioal name for the direotory desoribed above is APLVMS.
The steps in installing a task on a VAX/VMS system are then:
1. Set the logioal assignments. This is usually done with a oommand prooedure whioh will be desoribed below.
2. Create or put the souroe and help files in the oorreot

directories. A later seotion will desoribe the use of directories.

GETTING STARTED - TASKS
INSTALLING A NEW TASK Page 3-21

6 Hay 85

3. Compile and link edit the task with the AIPS libraries. The oompile and link edit procedures will be desoribed in a later seotion.

3.14.1.1 Logioal Assignments - The logioal assignments are usually set with one of several oommand prooedures: NEW:ASSIGNP for the TST
version of AIPS, NEW:ASSIGNN for the NEW version and NEW:ASSIGNO for old. Most development will probably be done in TST. Programmers in the same VHS group as AIPS oan invoke this by:
$@NEW:ASSIGNP
Programmers in other groups need to install and use the following prooedure:

$! CDNEW sets the various prooess logioal assignments required.$! It also oauses the default proteotion to go to Owner and $! Group having RWED.
$ 1 This is a sample prooedure. Eaoh programmer should have a oopy $! of this prooedure in his own area.
$1--

$! date of release may need to be updated.$ ASS UHAO:[AIPS.150CT85] NEW:$ @NEW:ASSIGNP $ EXIT
The direotory given in the above example should be ohanged to the ourrent value for your system. Cheok with the AIPS system manager for details.

3.14.1.2 Where To Put The Files (AIPS Directories). - The proper AIPS direotory depends of the type of file involved. The following partial list tells whioh direotory by logioal name corresponds to different types of files.

$ i CDNEW
$1-------

File Type Logioal name

INCLUDE file..........HELP file.............
Documentation........."Standard" subroutines..
"Nonstandard subroutines "Standard" programs

HLPFIL: DOCTXT:
APLSUB: NOTSUB:

INCS:

without array prooessor "Nonstandard" programs APLPGH:
without array prooessor NOTPGH:

GETTING STARTED - TASKS
INSTALLING A NEW TASK

"Standard" programs
using array prooessor....... APLAPG:11 Nonstandard" programs
using array prooessor....... NOTAPG:VMS "Z" routines............... APLVMS:Exeoute module................. LOAD:

3.14.1.3 Where To Put The Files (Programmers Direotory) - For many
purposes, it is oonvienent to leave a task in the programmers own direotory. The direotory in whioh to find the HELP file and the exeoutable module oan be speoified in AIPS using the adverb VERSION, e.g.

VERSION-'UMAO:[MYAIPS.PGM]'
In this oase, souroe and objeot modules may be kept in any direotory. The HELP file and the exeoute module must be put in the same direotory.

3.14.1.4 Compile And Link Edit Prooedures - There are a number of command prooedures to oompile and link edit programs. These prooedures use logioal names for the different libraries, so the one
of the prooedures ASSIGNP, ASSIGNN, ASSIGNO (depending on the version of AIPS being used) must be run before the oompile and link edit prooedures. These prooedures are kept in the direotory obtained with the logioal name NEW:. Programmers using their own
directories will need to oopy the relevant prooedures to their own area and to ohange the direotories for souroe oode or exeoute modules as needed. The oompile and link edit prooedures are used as in this example:
$@COMLNK "task name"
The following list desoribes the use of the major oompile and link edit routines.

Compile subroutine and enter into library
Subroutine type Prooedure

Standard (not AP).............. COMRPL
Nonstandard (not AP)........... NCOMRPLFPS AP routines................ FCOMRPLPseudo AP routines............. PCOMRPL

Compile and link edit task
Task type Prooedure

Page 3-22
6 May 85

GETTING STARTED - TASKS
INSTALLING A NEW TASK Page 3-23

6 May 85

Standard (no AP)............... COMLNK
Nonstandard (no AP)............ NCOMLNKStandard (AP).................. APCLNK
Nonstandard (AP)............... NAPCLNKAIPS or utility pgm............ ACOMLNK

3.15 INCLUDES
There are several types of INCLUDE file whioh are distinguished by the first oharaoter of their name. Different INCLUDE file types

oontain different types of Fortran declaration statments as desoribed in the following list.
- Dxxx.INC. These INCLUDE files oontain Fortran type (with dimension) declarations.
- Cxxx.INC. These files oontain Fortran COMMON statments.
- Exxx.INC. These oontain Fortran EQUIVALENCE statments.

Vxxx.INC. These oontain Fortran DATA statments.
- Ixxx.INC. Similar to Dxxx.INC files in that they oontain

type declarations but the declaration of some varaible is omitted. This type of inolude is used in the main program
to reserve spaoe for the omitted variable in the appropriate oommon. The omitted variable must be deolared and dimensioned separately.

- Zxxx.INC. These INCLUDE files oontain declarations whioh may ohange from one oomputer or installation to another.

3.15.1 CDCD.INC

Inolude CDCHCOMMON /DCHCOM/ XPRDMM, XTKDMM, SYSNAM, VERNAM, RLSNAM, TIMEDA,* TIMESG, TIMEMS, TIMESC, TIMECA, TIMEBA, TIMEAP, RFILIT,
* NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2, NBTB3, NTAB3,* NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR, CSIZPR, NINTRN,* KAPWRD, NCHPFP, NWDPFP, NWDPDP, NVDPLI, NWDPLO, NBITWD,
* NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC, NTKACC,* UCTSIZ, BYTFLP, USELIM, NBITCH COMMON /FTABCM/ DEVTAB, FTAB

End CDCH.

GETTING STARTED - TASKS
INCLUDES Page 3-24

6 May 85

3.15.

C

C

3.15.

C

C

3.15.

C

C

3.15.!

C

2 CFIL.INC

Include CFILCOMMON /CFILES/ RQUICK, NSCR, SCRVOL, SCRCNO, NCFILE, FVOL, FCNO FRW, CCNO, IBAD, LUNS
End CFIL

3 CMSG.INC

_ ̂ Inolude CMSGCOMMON /MSGCOM/ MSGCNT, TSKNAM, NPOPS, NLUSER, MSGTXT NACOUN, MSGSUP, MSGREC, MSGKIL
End CMSG.

4 CUVH.INC

Inolude CUVHCOMMON /UVHDR/ FREQ, RA, DEC, SOURCE, NVIS, ILOCU, ILOCV,
ILOCW, ILOCT, ILOCB, ILOCSU, JLOCC, JLOCS, JLOCF, JLOCR,JLOCD, JLOCIF, INCS, INCF, INCIF, ICORO, NRPARM, LREC, NCOR, ISORT

End CUVH

5 DDCH.INC

Inolude DDCHREAL*4 XPRDMM, XTKDMM, SYSNAM(5), VERNAM, RLSNAM(2), TIMEDA(15)* TIMESG, TIMEMS, TIMESC, TIMECA, TIMEBA(4), TIMEAP(3),* RFILITC14)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,

NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2), CSIZPRC2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP, NTOPLI, NWDPLO, NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV,
**
tc
* NTVACC, NTKACC, UCTSIZ, BYTFLP* USELDT NBITCh !DEVTABC50), FTAB(l)

End DDCH.

GETTING STARTED - TASKS
INCLUDES Page 3-25

6 Hay 85

3.15.

C

C

3.15.

C

C

3.15.

C

C

3.15.!

C

6 DFIL.INC

Inolude DFILINTEGER*2 NSCR, SCRVOL(20), SCRCNO(20), IBAD(IO), LUNS(IO),* NCFILE, FV0L(50), FCNO(50), FRW(50), CCNO LOGICAL*2 RQUICK
End DFIL

7 DHSG.INC

Inolude DMSGINTEGER*2 HSGCNT, TSKNAH(3), NPOPS, NLUSER, MSGSUP, MSGREC,* MSGKIL
INTEGER*4 NACOUN REAL*4 HSGTXTC20)

End DMSG.

8 DUVH.INC

Inolude DUVHINTEGER*4 NVIS
INTEGER*2 ILOCU, ILOCV, ILOCW, ILOCT, ILOCB, ILOCSU, JLOCC,* JLOCS, JLOCF, JLOCR, JLOCD, JLOCIF, NRPARM, LREC, NCOR, ISORT,* INCS, INCF, INCIF, ICORO REAL*4 SOURCE(2)REAL*8 FREQ, RA, DEC

End DUVH

9 IDCH.INC

Inolude IDCHREAL*4 XPRDMM, XTKDMM, SYSNAM(5), VERNAM, RLSNAM(2), TIMEDA(15)* TIMESG, TIMEMS, TIMESC, TIMECA, TIMEBA(4), TIMEAP(3),* RFILIT(14)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,

NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2), CSIZPRC2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP, NWDPLI, NWDPLO, NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV,NTVACC, NTKACC, UCTSIZ, BYTFLP, USELIM, NBITCH,* DEVTABC50)
End IDCH.

GETTING STARTED - TASKS
INCLUDES Page 3-26

6 Hay 85

3.16 ROUTINES
3.16.1 CHCOPY - moves oharaoters from one string to another.

CHCOPY (NCHAR, NP1, STR1, NP2, STR2)Inputs: NCHAR
NP1 STR1
NP2Output: STR2

1*2
1*2R*4(*)
1*2R*4(*)

Number of oharaoters to move Start ohar position in input string Input string
Start ohar position in output string Output string

3.16.2 CHCOMP - oompares two oharaoter strings.
CHCOMP (NCHAR, KP1, STR1, KP2, STR2, EQUAL)
Inputs: NCHAR 1*2 # oharaoters to oompare

KP1 1*2 starting oharaoter in string 1STR1 R*4(*) string 1
KP2 1*2 starting oharaoter in string 2STR2 R*4(*) string 2

Output: EQUAL L*2 T —> strings are same

3.16.3 CHFILL - fills a string with a oharaoter.
CHFILL (NCHAR, CHAR, Input s: NCHAR 1*2

CHAR 1*2 NBP 1*2 Output: STRING R*4(

NBP, STRING)
Number of ohar positions to fill Char in ohar position 1
Start ohar position to fill ‘) Filled string

3.16.4 CHLTOU - oonverts any lower oase oharaoters in a paoked string to upper oase.
CHLTOU (N, STRING)
Inputs: N 1*2 Number of oharaoters
In/out: STRING R*4(*) Paoked string to be oonverted.

GETTING STARTED - TASKS
ROUTINES Page 3-27

6 May 85

3.16.5 CHMATC - searches one string for the ooourrenoe string.
CHMATC (NA, JA, CA, NB, JB, CB, NP)

of another

Inputs: NA JA CA NB
JB CBOutput: NP

1*2 Number of oharaoters in CA (start at JA)1*2 Start at ohar position JA in CAR*4(*) Paoked substring to be found in CB
1*2 Number of oharaoters in CB (n.b. TOTAL)1*2 Start searoh at offset in CBR*4(*) Paoked string.
1*2 start position in CB of CA, 0 if none, w.r.t. start of string

3.16.6 CHPACK - takes oharaoters 4 / real and string. paoks them into a

CHPACK (NCH, Inputs: NCH
ISTR NPOutput: OSTR

ISTR, NP, OSTR)
1*2 number of oharaoters R*4(*) real array 4 ohar / word

start position in output string output paoked string
1*2R*4(*)

3.16.7 CHPAC2 - takes oharaoters 2 / integer and paoks them into string.
CHPAC2 (NCH, Inputs: NCH ISTR

NPOutput: OSTR

ISTR, NP, OSTR)
1*2I*2(*)
1*2R*4(*)

number of oharaoters integer array 2 ohar / word start position in output string output paoked string

3.16.8 CHWMAT - matohes a pattern string oontaining "wild-oard" oharaoters with a test string. The wild oards '*' for any number and "?" for ezaotly one of any oharaoter are supported.
CHWMAT (NPM,
Inputs: NPM PS, IPT, NTS, TS, EQUAL)

Output:

PSIPT
NTSTSEQUAL

1*2
R*4(*)
I*2(NPM)1*2R*4(*)
L*2

Length of test string (not inol NTS-1 oharaoters)Paoked pattern string
Pattern array prepared by PSFORM
Start ohar position in TS for testing Paoked test string T -> they matoh

GETTING STARTED - TASKS
ROUTINES Page 3-28

6 May 85

3.16.9 CHXPND - expands a paoked oharaoter string into a real array with four oharaoters per word.
CHXPND (NCH, KIN, KFIRST, KOUT)
Inputs: NCH 1*2 Number of oharaoters to unpack KIN R*4(*) Paoked string

KFIRST 1*2 First oharaoter to unpack Outputs: KOUT R*4(*) Looser string

3.16.10 CHXPN2 - expands a paoked oharaoter string into an integer array with two oharaoters per word.
CHXPN2 (NCH, KIN, KFIRST, KOUT)
Inputs: NCH 1*2 Number of oharaoters to unpaok KIN R*4(*) Paoked string

KFIRST 1*2 First oharaoter to unpaok Outputs: KOUT I*2(*) Looser string

3.16.11 DIE - does the housekeeping neoessary for an orderly death
of the task, primarily olearing oatalogue flags and destroying soratoh files. It also oalls RELPOP if RQUICK is false. A oall to DIE should be the last executable statement before the STOP statement.
NOTE: DIE should be used only by tasks using oommon /CFILES/ (obtained from inoludes CFIL.INC and DFIL.INC).

DIE (ICODE, BUFF)
Inputs: ICODE 1*2 Return oode: 0 **> good, other »> bad end BUFF 1*2(256) Work buffer

Looations in oatalogue are oommunioated by COMMON /CFILES/
NCFILE
FVOL(50)FCNO(50)FRW(50)

1*2
1*21*21*2

NSCR 1*2 SCRVOL(20) SCRCNO(2Q)

Number of files marked in oatalogue.Volumn numbers of the maps.Slot numbers of the maps.
A 0 if READ , 1 if WRITE olear desired,
a 2 if a new file with Write, destroy on ICODE bad other values => file already olosed.
Number of soratoh files to be destroyed 1*2 Soratoh file volumn numbers

1*2 Soratoh file oatalogue numbers

GETTING STARTED - TASKS
ROUTINES Page 3-29

6 May 85

3.16.12 DIETSK - must be oalled at the end of eaoh task as the last
real statement before the final RETURNS and STOP statement. It issues a olosing message, terminates the aooounting, and, if RQUICK
is false, restarts the initiating AIPS program. (DIETSK is oalled by DIE).

DIETSK (IRET, RQUICK, IBUF)
Inputs: IRET 1*2 0 -> ok, else bad end

RQUICK L*2 T -> initiator already resumedOutput: IBUF 1*2(256) Soratoh buffer

3.16.13 EXTCOP - copies a extension file(s) of the EXTINI-EXTIO variety.
EXTCOP (TYPE, INVER, OUTVER, LUNOLD, LUNNEW, VOLOLD,
* VOLNEW, CNOOLD, CNONEW, CATNEW, BUFFI, BUFF2, BUFF3, IRET)

Extension file type eg 'CC'.'AN'Version number to oopy, 0=>oopy all.
Version number on output file, if more than one
oopied (INVER-O) this will be the no. of the first
file. If OUTVER-O the EXTINI defaults are used. LUN for old file
LUN for new file Disk number for old file.Disk number for new file.
Catalogue slot number for old file
Catalogue slot number for new file Catalogue header for new file.
Work buffer: 256 words + n * 256 words (enough to hold at least one logioal reoord)Work buffer: as BUFFI
Buffer large enough to hold one logioal reoord.

Inputs:TYPE 1*2INVER 1*2OUTVER 1*2

LUNOLD 1*2LUNNEW 1*2VOLOLD 1*2VOLNEW 1*2CNOOLD 1*2CNONEW 1*2CATNEW(256)I*2In/out:BUFFI(>512)1*2
BUFF2(>512)1*2BUFF3(*) 1*2Output:IRET 1*2 Return error oode 01

234

ok
files the same, no oopy. no input files exist failed
no output files oreated.

GETTING STARTED - TASKS
ROUTINES Page 3-30

6 Hay 85

3.16.14 GTPARH - obtains the aotivator (AIPS) task number, obtains the transmitted parameters, initializes the message oommon, and outputs the message 'task NAHE begins'. It also handles startup aooounting.
GTPARH (NAHE, NPARHS, RQUICK, RPARH, SCRTCH, IERR)Inputs:
Outputs:

NAHE
NPARHS RQUICK
RPARHSCRTCHIERR

1*2(3)
1*2 L* 2 T =>

F -
R*4(NPARHS) 1*2(256)
1*2

Task name (ASCII) 2 ohars / integer
number of real variables wanted

release POPs as soon as possible wait until you have finished parameters reoeived soratoh buffererror oode: 0 -> ok
1 -> initiator not found2 -> disk troubles
3 -> initiator zeroed

3.16.15 HIADD - adds a history oard to a history file. I/O takes
Plaoe only if neoessary. Thus UPDATE - .TRUE. on HICLOS is required.

HIADD (HLUN, CARD, BUFFER, IERR)
Inputs: HLUN 1*2 lun of HI file (must be openl!)CARD I*2(*) new oard IN/out: BUFFER 1*2(256) HI work buffer
Output: IERR 1*2 0 -> ok, other set by HI10

3.16.16 HIAD80 - puts an 80-oharaoter oard image file. It aotually puts 0 (CARD all blank), 1 (< oards in the file.
into a history • 72 ohars), or 2

HIAD80 (HLUN, Inputs: HLUN 1ST CARD In/out: HBLK Output: IERR

1ST, CARD,
1*2
1*2
R*4(20)1*2(256)1*2

HBLK, IERR)
LUN of HI file (must be open!!)
Start oharaoter position in oard 80-oharaoter packed "oard"HI I/O buffer
Error oode of HIADD

GETTING STARTED - TASKS
ROUTINES Page 3-31

6 May 85

3.16.17 HICLOS - oloses a history file updating it if requested.
HICLOS (HLUN, UPDATE, BUFFER, IERR)Inputs: HLUNUPDATE In/out: BUFFER Output: IERR

1*2L*2
1*2(256)1*2

file lun (already open!!)
T =*> write last reoord fif update pointers HI work buffer error oode : 0 - ok

1 - LUN not open 2-6 - ZFIO errors

3.16.18 HIINIT - initializes the history oommon area /HICOM/.
HIINIT (NFILES)
Inputs: NFILES 1*2 number of HI files open at onoe (max)

at least 3 are available via DHIS.INC

3.16.19 HISCOP - oopies one history file to another. If the new history file already exists, the only aotion is to open it. At finish, the old history file is olosed; the new history file is
open. The task name, date, and time are entered on the new file. NOTE: IERR < 3 is a warning only, - 3 serious, - 4 a real problem. Calling programs should ignore IERR < 3, branoh to HICLOS of the new HI file on IERR - 3, and skip over all HI stuff on IERR = 4.

HISCOP (LUNOLD, LUNNEW, VOLOLD, VOLNEW, CNOOLD,
* CNONEW, CATBLK, BUFER1, BUFER2, IERR)

LUN for old history file.
LUN for new history file.
Vol. number for old history file.
Vol. number for new history file.
Catalogue slot number of old history file Catalogue slot number of new history file Catalogue header of map for new file.Work buffer, used for old file.Work buffer, new file; must be used in further HIADD oalls until file is olosed. Return error oode: 0 -> OK.
1 -> oould not open old history file.2 -> oould not oopy old history file.3 -> oould not write time on new file4 «> oould not oreate/open new HI file.

Inputs: LUNOLD 1*2LUNNEW 1*2VOLOLD 1*2VOLNEW 1*2CNOOLD 1*2CNONEW 1*2In/Out: CATBLK(256) 1*2BUFERK256) 1*2BUFER2(256) 1*2
Output: IERR 1*2

GETTING STARTED - TASKS
ROUTINES Page 3-32

6 Hay 85

3.16.20 HAKOUT - applies the wild oard standards to oomplete the preparation of the output file name parameters. Namely:
OUTS <= -1 beoomes OUTS - INSEQOUTN * ' ' beoomes OUTN = INN

'yy*zz ' beoomes OUTN * INN with first n oharaoters replaoed by yy and last m ohars with zz - if
yy or zz oontain ?'s don't replaoe those ohar positionsOUTCL * ' ' beoomes OUTCL= DEPCLS

'yy*zz ' beoomes 0UTCL= DEFCLS with same as OUTN If the 1st oharaoter of OUTCL is a 'V then the default
is replaoed with INCL and the remaining 5 oharaoters of OUTCL are used as normal.

HAKOUT (INN,
Inputs: INN INCL, INS, DEFCLS, OUTN, OUTCL, OUTS)

R*4(*) Input file name 12 paoked ohars
Input file olass 6 packed ohars Input file sequenoe number
Default output file olass 6 packed ohars if 1st 4 ohars blank, use task name User-supplied OUTNAHE adverb
User-supplied OUTCLASS adverb
User-supplied OUTSEQ adverb in integer NOTE: the aotual Input file name parameters must be supplied,

not the user adverbs (whioh oan themselves oontain wild oards pure blank fields, zeros, and the like.

In/Out

INCL
INS
DEFCLS
OUTNOUTCL
OUTS

R*4(*)
1*2R*4(*)
R*4(*) R*4(*)
1*2

3.16.21 PSFORH - prepares a string patterm array for use by CHWHAT (the wild oard matohing subroutine).
PSFORH (NC, PS, IPT)
Inputs: NC 1*2 Number oharaoters in pattern possiblePS R*4(*) Pattern string (paoked)
Output: IPT I*2(NC) Coded array: value - -2 »> position is *

value -- 1 => position is ?
value = 0 => position is a blank
value >0 => there are IPT(i) real ohars

inol present following

3.16.22 RELPOP - releases the held POPS (AIPS) task, passing it a return oode.
RELPOP (RETCOD, SCRTCH, IERR)
Inputs: RETCOD 1*2 return oode number Outputs: SCRTCH 1*2(256) soratoh buffer

IERR 1*2 error number: 0 -> ok

GETTING STARTED - TASKS
ROUTINES Page 3-33

6 Hay 85

1,2 -> task not resumed3 -> NPOPS out of range4 -> parameter not passed

3.16.23 SCREAT - uses the Common inoluded via the new DFIL.INC,
CFIL.INC pair and returns the soratoh file disk and oatalog number in variables SCRVOL(NSCR) and SCRCNO(NSCR), where NSCR is updated on suooessful oreation. It attempts to avoid the disk used for the previously oreated soratoh file. All files have physioal name SCvoooOl where v is the disk number and ooo is the oatalog slot number. Disk volumns listed in the oommon array IBAD are avioded.

SCREAT (SIZE, WBUFF, IERR)
Input: SIZE 1*4 Desired size in bytes (NOTE real 1*4)Output: WBUFF 1*2(512) Soratoh buffer (NOTE 512 integers) IERR 1*2 0 «> ok

1 -> oatalog error in setting name2 -> oatalog error on open
3 «> CATIO error writing header to oatlg4 «> No allowed disk with room If IERR > 0, file has not been oreated.

TYPE INVER OUTVER
1*2
1*2
1*2

3.16.24 TABCOP - oopies Table extension file(s). The output file must be a new extension - old ones oannot be rewritten. The output file must be opened WRIT in the oatalog and will have its CATBLK updated on disk.
TABCOP (TYPE, INVER, OUTVER, LUNOLD, LUNNEW, VOLOLD,* VOLNEW, CNOOLD, CNONEW, CATNEW, BUFFI, BUFF2, IRET)Inputs

Extension file type (e.g. 'CC','AN')Version number to oopy, 0 -> oopy all.
Version number on output file, if more than one
oopied (INVER-0) this will be the number of the first file. If OUTVER - 0, it will be taken as1 higher than the previous highest version.LUN for old file LUN for new file
Disk number for old file.
Disk number for new file.Catalog slot number for old file Catalog slot number for new file
Catalog header for new file.
Work buffer

LUNOLD 1*2LUNNEW 1*2VOLOLD 1*2VOLNEW 1*2CNOOLD 1*2CNONEW 1*2In/out:
CATNEW(256)I*2Output:
BUFFI(256) 1*2

GETTING STARTED - TASKS
ROUTINES Page 3-34

6 May 85

BUFF2(256) 1*2 IRET 1*2 Work buffer
Return error oode 0

1
2345

ok
files the same, no oopy no input files exist failed
no output files oreated
failed to update CATNEW

3.16.25 UVPGET - determines pointers and other information from a
UV CATBLK. The address relative to the start of a vis reoord for the real part for a given speotral ohannel (CHAN) and stokes parameter (ICOR) is given by :
NRPARM + (CHAN-1) * INCF + (ICOR-IABS (ICORO)) * INCS

UVPGET (IERR)
Inputs: From oommon /MAPHDR/

CATBLK(256) 1*2 Catalogue blook
CAT4 R*4 same as CATBLKCAT8 R*8 same as CATBLK Output: In oommon /UVHDR/
SOURCE(2) R*4 Paoked souroe name.
ILOCU 1*2 Offset from beginning of vis reoord of UILOCV 1*2 " VILOCW 1*2 " V
ILOCT 1*2 " Time
ILOCB 1*2 - BaselineILOCSU 1*2 " Souroe id.JLOCC 1*2 Order in data of oomplex values
JLOCS 1*2 Order in data of Stokes' parameters.JLOCF 1*2 Order in data of Frequenoy.JLOCR 1*2 Order in data of RAJLOCD 1*2 Order in data of deo.JLOCIF 1*2 Order in data of IF.
INCS 1*2 Inorement in data for stokes (see above)INCF 1*2 Inorement in data for freq. (see above)INCIF 1*2 Inorement in data for IF.
ICORO 1*2 Stokes value of first value.NRPARM 1*2 Number of random parametersLREC 1*2 Length in values of a vis reoord.NVIS 1*4 Number of visibilitiesFREQ R*8 Frequenoy (Hz)
RA R*8 Right asoension (mean epooh) deg.DEC R*8 Deolination (mean epooh) deg.NCOR 1*2 Number of oorrelatorsISORT C*2 Sort order
IERR 1*2 Return error oode: 0->OK,

1, 2, 5, 7 : not all normal rand parms2, 3, 6, 7 : not all normal axes4, 5, 6, 7 : wrong bytes/value

GETTING STARTED - TASKS
ROUTINES Page 3-35

6 May 85

3.16.26 ZDCHIN - initializes the disk oharaoteristios oommon. If NDISK < 0, ZDCHIN uses ABS (NDISK) but skips reading parameters from
the parameter disk file. Otherwise, ZDCHIN starts by hardooded parameter values and then resets some based on values on an alterable disk file.

ZDCHIN (NDEV, Inputs: NDISK
NMAP
NDEV IOBLK

NDISK, NMAP, IOBLK)
max number regular disk files open at onoe
max number of map (double buf) files open at onoemax number of devioes open at onoe
1*2(256) I/O blook for reading values off disk.

3.16.27 ZMATH4 — does 1*4 arithmetio on pseudo 1*4 arguments
ZMATH4 (ARG1, OP, ARG2, RESULT)
Inputs:

ARG1 P 1*4 First P 1*4 argument
OP 1*2 OPeration -'PL'(+);'HI'(-);'MU'(x);'DI#(/)

'HN'(min); 'MX'(max)ARG2 P 1*4 Seoond P 1*4 argument Outputs:
RESULT P 1*4 Result

3.16.28 ZR8P4 - oonverts between pseudo 1*4 and R*8. Pseudo 1*4
has the form of two short integers with the least signifioant half at the lower 1*2 index. IBM 1*4 has the form of a 2's oomplement, 32-bit integer with the most signifioant 16 bits in the 1*2 word of lower index and the least signifioant 16 bits in the 1*2 word of higher index.

ZR8P4 (OP, INTG, DX)
Inputs: OP R*4 '4T08' Pseudo 1*4 to R*8

'8T04' R*8 to pseudo 1*4 '4IB8' IBM 1*4 to R*8 '8IB4' R*8 to IBH 1*4In/out: INTG 1*2(2) the 1*4
DX R*8 the R*8

GETTING STARTED - TASKS
ROUTINES Page 3-36

6 May 65

3.16.29 ZTTYIO - performs I/O to a terminal.
SUBROUTINE ZTTYIO (OPER, LUN, FIND, NBYTES, BUFFER, IERR)'READ' or 'WRIT'LUN of open devioe

Pointer to FTAB for open devioe
bytes (oharaoters) to transmit (<= 132) Message to or from terminal, unpaoked string.

0 -> ok
1 -> file not open2 => input parameter error3 => I/O error4 => end of file

Inputs: OPER R*4
LUN 1*2FIND 1*2
NBYTES 1*2In/out: BUFFER r *4(*)

Output: IERR 1*2 Error oode:

CHAPTER 4
THE AIPS PROGRAM

4.1 OVERVIEW
The AIPS program is the portion of the AIPS system with whioh

the user normally interaots. The major funotions of the AIPS program are: 1) prepare the parameters for and initiate the tasks
whioh do most of the computations, 2) allow interaotive use of TV and graphios devioes, 3) provide limited direot analysis capability and 4) provide a high level of oontrol logio to allow simple
funotions to be grouped into more oomplex funotions (i.e. a programming language).

The basis of the AIPS program is the POPS (People Oriented Parsing Servioe) language prooessor/ POPS is an interpretive
language prooessor whioh oan either aooept statments for immediate exeoution or in the form of programs, oalled prooedures, whioh are oompiled and stored for later exeoution. Operations on data, images
eto. are performed by means of "verbs" and "tasks". Verbs are operations whioh are done direotly by the AIPS program and tasks are programs whioh are run asynohronously from AIPS. Both verbs and
tasks are oontrolled by a set of global parameters oalled "adverbs".
Verbs may ohange the values of adverbs whereas tasks oannot.

This ohapter will attempt to desoribe the basio methods of the
POPS prooessor and explain how to add new verbs and adverbs. The AIPS program does not know direotly about tasks so adding tasks
requires no modifioations to the AIPS program.

Other dooumentation about POPS processors may be found in a
report by Jerome A. Hudson entitled "POPS People-Oriented Parsing Servioe Language Desoription and Program Dooumentation" and POPS An
lafrfiEflQiilya Terminal Language Hith Applications in Radio Astronomy by A. Sume, 1978, Internal Report no. 115, Researoh Laboratory of Eleotronios and Onsala Spaoe Observatory, Chalmers University of Technology, Gothenburg, Sweden.

THE AIPS PROGRAM
STRUCTURE OP THE AIPS PROGRAM Page 4-2

6 May 85

4.2 STRUCTURE OF THE AIPS PROGRAM
The basis of the AIPS program is a POPS prooessor whioh

interprets user instructions and oalls the relevant applications routines, and spawns the desired tasks. Input to the POPS prooessor is in the form of statments whioh may do one of the following:
1. Modify an adverb value. This may be either by specifying a

literal oonstant or an arithmetio, logioal or oharaoter string expression.
2. Invoke an applications verb. These are the verbs whioh are

speoifio to a given data analysis problem, suoh as displaying an image on the TV, rather than general oontrol verbs suoh as loop oontrol or sine funotions eto.
3. Logio flow oontrol. These statments oontrol the exeoution of other statments, eg. loop oontrol, IF, THEN, ELSE eto.
4. Spawn tasks. Tasks are programs whioh take relatively long times to run and are exeouted asynohronously from AIPS. Communication between AIPS and tasks is primarily by disk files.
5. Prepare and edit prooedures. POPS programs oalled prooedures

may be entered and oompiled for later exeoution. These prooedures may later be edited.
6. Prepare batoh file. AIPS oan run in a batoh mode. To do this, the user enters and/or edits a list of oommands in a batoh file for later exeoution. This oan be done either in the normal AIPS or a speoial batoh version of AIPS named BATER.

4.2.1 The POPS Prooessor
POPS uses an "inverse POLISH" staok to store operands and operation oodes. Symbolios suoh as verb, adverb or prooedure names are stored in a symbol table and eaoh is identified by a type

(TYPE) and a number (TAG). The initial entries in the symbol table and initial values of the adverbs are read from an external disk
file whioh is prepared by the stand alone utility routine POPSGN. The various tables and staok pointers eto. are oarried in oommon and the tables are equivalenoed into an array known as the "K array".

Multiple statments, separated by semioolons, may be entered in a single line. There are a number of speoial verbs known as "pseudo" verbs whioh are exeouted as soon as they are enoountered,
oausing any other instructions on the same line to be parsed in speoial fashions, Ignored, or handled normally depending on the pseudoverb.

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM Page 4-3

6 May 85

The basio struoture of the AIPS program is very heirarohial. The main routine oalls a startup routine, AIPBEG, a shutdown and error routine, AIPERR and a single routine GTLINE whioh oontrols the bulk of the prooessing. The struoture of the basio routines in the POPS prooessor is shown in the following figure:

I GTLINE I read line
+------------

l l l +-+-------------+
I POLISH I
I oompile line I

I I I I I
— + I I i +-+--+ +-+ +---
I I

H---------------h
I OERROR I
I error messages I

+------

I
I

ICOMPIL I I PSEUDO I I EDITOR I I STORES I I HELPS I

GETFLD

+------ +
I VERBS I +------ +

------ +
II
I
I

I INTERP
I exeoute i POPS oode

i I
----+ i

I
I QUICK

I LTSTOR I I SYMBOL I I + + +--------- + +■
--------- + +--------- +
GETNUM I I GETSTR I

More details of eaoh of these routines is given in the following:
GTLINE this is the main POPS routine. It oauses lines to be read by PREAD, parsed and oompiled or exeouted (in the oase of pseudo verbs) by POLISH, and finally exeouted by INTERP.
GTLINE returns only on error or requested termination of the program.

- QERRQR this routine displays an error message on the user terminal and resets POPS.
- INHERE oauses POPS oode to be exeouted by plaoing operands on the V and STACK staoks and oalling VERBS and QUICK for verbs.

THE AIPS PROGRAM
STRUCTURE OP THE AIPS PROGRAM Page 4-4

6 May 85

- YESES oalle the relevant applications verb routines based on the verb number. Funotions are grouped together in routines named AUn. The appropriate routine is oalled with a branoh oode as an argument. This branoh oode in the verb number minus the first verb number in that AU routine plus one. The verb numbers are defined in an external file but VERBS must also know whioh verb numbers oorrespond to whioh AU routine.
- QUICK exeoutes the basio POPS oontrol verbs. These are the verbs whioh don't depend particularly on a given application but are frequently enoountered.
- POLISH parses the oharaoter string entered by the user and

translates it to Polish postfix notation. The result is a string of integers representing oode for the POPS interpreter.
Negative tokens are operand pointers while positive tokens are operator oodes. The array A, whioh is equivalenoed to STACK,
holds the list of tokens; AP points to the most reoent entry and SP points to the next entry. The operand pointers are to the looation of the adverb or temporary variable in the K array.

- COMPIL does the aotual interpretation of instruotions and adds them to the staoks. COMPIL exits when a pseudo-verb or end-of-line is enoountered.
- PSEUDO handles prooedure and adverb declarations, sets up for the runtime operators IF, THEN, ELSE, WHILE (whioh require forward referenoes and an additional oleanup pass) and the FINISH operator.
- EDITOR performs the operations required to begin and stop editing an existing prooedure.
- STORES stores either the prooedure souroe oode, prooedure objeot oode, or handles the prooedure souroe oode.
~ HELPS handles the user assistanoe facilities HELP, INPUT, EXPLAIN and RUN and other funotions whioh require aooess to external text files. HELP lists symbols by type or lists a text file whose member name matohes a user name. RUN sets the input to a speoified member of a text file. This allows users

to to have personal strings of oommands (e.g. proos, verbs, adverb settings). INPUTS lists the adverbs and their ourrent values and brief descriptions on the terminal. Subroutine HELPS simply parses the user input in a more friendly fashion
and plaoes appropriate verb numbers and strings on the staoks.

- GEIELD finds the next non-blank oharaoter in the input buffer, KARBUF, and determines whether the token begun with that oharaoter is symbolio (1st ohar is A - Z), numerio (1st ohar is0 - 9 or .3, or hollerith (1st ohar is #). After the field
length is found, appropriate oalls are made to the symbol prooessing routine, number soanning routine, eto.

THE AIPS PROGRAM
STRUCTURE OP THE AIPS PROGRAM Page 4-5

6 May 85

Communication baok to POLISH is via TYPE and TAG parameters determined by the prooessors SYMBOL, GETNUM, LTSTOR...
- LTSTOR searches the list of literals in the K array. If a matohing literal is found, the TAG is returned. If not, a new one is generated and linked to the literal list. Note: a

"literal" is a oonstant having either a numerio, oharaoter, or logioal value.
- SYMBOL finds a symbol in the symbol list. The result is

returned as TYPE and TAG through a oommon. If the routine is in the variable deolaration mode a new entry will be made in the symbol table if it does not already exist.
- GETNUM oonverts a oharaoter string into a REAL*8 value.
- GETSTR obtains a oharaoter string from a buffer.

4.2.2 POPS Commons
Most of the oommunioation between POPS subroutines is by means of oommons. As with most oommons in the AIPS system, these oommons are obtained by use of inolude files. The oontents and uses of

these oommons are desoribed in the following. The text of the inolude files is given at the end of this ohapter.

4.2.2.1 /CORE/ - This oommon is obtained by the inoludes DCON.INC, CCON.INC and ECON.INC and oontains the basio POPS "memory" or K array, ie. the symbol tables, adverb values, prooedures eto. This oommon oonsists of two equivalenoed, 1*2 (K) and R*4 (C), arrays. Inoluded in the latter part of this array are the adverb values. The variables used for the installed (predefined) adverbs are
deolared in the inoludes DAPL.INC and CAPL.INC and follow a shortened deolaration of the K array in oommon /CORE/. They speoify the adverbs as equivalences to the K array beginning at K(KX0RG+10).

User defined adverbs as well as as prooedures and temporary literal values are stored beginning at K(301). The names of all symbolios (adverbs, verbs and prooedures) are kept in a symbol table whioh is a linked list of symbol names oontaining the symbol type (TYPE), looation in the K array (TAG) and the looation of the
array or string desoriptor entries if appropriate. The first entry in the symbol table is pointed to by K(l) and a zero link indioates the last entry in the table. More details are given in later seotions.

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM Page 4-6

6 May 65

Literals (oonstants) are kept in a literal table whioh is also a linked list in the K array. The first entry is pointed to by K(4) and the last entry is pointed to by K(10). The literal table entry oontains the type, length, and value of the literal.
The ourrent oompiled version of prooedures is also kept in the

K array. Eaoh prooedure may be divided into several blooks in the K array; the blooks are oonneoted by forward links. A pointer is kept to the first looation of the souroe version of the prooedure in the LISTF array kept in the working memory file (kept on disk).
The first blook of a prooedure is pointed to by the symbol table.

The different portions of the K array are used as follows:
K(l) Symbol table link, points to first entry in the symbol table. K(2) Program link, points to first program (Prooedure)K(3) Next free oell in K array to be allooated.
K(4) Constants (literal) link, points to first entry in the literal table.
K(5) Number of oells allooatable. Currently 7380 K(6) KTEMP, pointer to KKT (temporary value) area.
K(7) Symbol proteot limit. Names with TAGs greater than this

value may be ohanged. This is used to proteot prooedures oompiled by POPSGN.
K(8) KXORG, pointer to KX array (data area). Currently 7381.
K(9) Last symbol pointer.K(10) Last literal pointer K(ll-50) Not used

KKT area, temporary storage for MODE-O
K(51) Not used
K(52) Program link
K(53) Next free oellK(54) Constants linkK(55) Number of oells allooatableK(56-59) not used
K(60) Last oonstant pointer.
K(301...) Used for program storage, oonstants, symbols eto. for the remainder of the program postion of the K array.

K(KXORG+0)K(KXORG+l)K(KX0RG+2)K(KX0RG+4)K(KXORG+5)
K(KX0RG+6)K(KX0RG+7->+9) not used
K(KX0RG+1Q...) data storage.

KX area, data storage
Not usednot used
Next free oell
Number of oells allooatablenot used
Highest adverb address in K not ohangable by user.

THE AIPS PROGRAM
STRUCTURE OP THE AIPS PROGRAM Page 4-7

6 May 85

Symbol table entries.
Word 1: Link to next symbol table entry. Zero if end of list.2: bits 2**0 to 2**3 - type.

bits 2**4 to 2**15 - number of words in symbol 3: TAG (looation in oore where the data is kept)
4: Array data blook oounter if symbol is an array name, string, or prooedure.5: Bytes 1 and 2 of the name.
6: Bytes 3 and 4 of symbol name.7: eto.

Array data blooks, define arrays.(pointed to by symbol table)
Word 1: Total array size

2: Number of dimensions
3: Initial index for first index 4: first dimension
5: Initial index for seoond dimension 6: eto.

Strings and string arrays
(pointed to by symbol table)

Word 1: Total array size
2: Number of dimensions 3: 1
4: no. floating point words in eaoh element.5: initial index for first subsoript, if any 6: first subsoript range, if any 7: eto.

Literal table entries
Word 1: Pointer to next literal table entry, zero if last entry.

2: Bits 2**0 to 2**3 - type, the types are 11->floating point
real (2 integer words), 14«>oharaoter string, 15-> logioal oonstant (TRUE or FALSE)

Bits 2**4 to 2**15 length of literal in integers.3: First integer word in literal.4: eto.
Prooedure storage (oompiled oode)(pointed to by symbol table)

Word 1: Link to next program blook, zero if last.
2: Pointer to text array for purposes of listing.3: first interpreter instruction.4: eto.

• • •
N: 1 An opoode of 1 terminates a blook. If the link to the next blook is zero the prooedure terminates.

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM Page 4-8

6 May 85

4.2.2.2 /POPS/ - This oommon oarries the various staoks, staok
pointers and other values. This oommon is obtained from inoludes DPOP.INC and CPOP.INC. The oontents of this oommon are desoribed in the following:
V(60) R*4 Operand staok for REAL variables.XX R*4 Intermediate REAL valueKT 1*2 Starting looation in K array of KKT (temporary) area.LPGM 1*2 Start address of an entry in the K array. Used while allooating storage.LLIT 1*2 Not usedLAST 1*2 Last token (opcode); if zero, finished with line. Used by COMPIL.IDEBUG 1*2 A debug flag used in various plaoes. If true (.GE.0) then debug info about POPS is given.MODE 1*2 The ourrent mode of the POPS prooessor.

0 -> immediate exeoution of an input line1 -> oompile a prooedure2 -> finishing a prooedure3 -> editing a prooedure
IFFLAG 69 -> adding a new symbol to symbol table1*2 - 1 if an operator has been found in the ourrent instruction; 0 otherwise.LINK 1*2 A link (pointer in K array)L 1*2 Another link (pointer in K array)NAMEP 1*2 Pointer in K array to a name in the symbol table.IP 1*2 Pointer in K arrayLP 1*2 Pointer in K arraySLIM 1*2 Maximum allowed index in the staoks (currently 60)AP 1*2 Pointer to last entry in STACKBP 1*2 Pointer to last entry in CSTACKONE 1*2 Pointer in C to value of 1.0ZERO 1*2 Pointer in C to value of 0.0TRUE 1*2 Pointer in C to value .TRUE.FALSE 1*2 Pointer in C to value .FALSE.STACK(60) 1*2 Instruotion staokCSTACK(60) 1*2 Seoond (temporary) instruction staokSP 1*2 Pointer in STACKCP 1*2 Pointer in CSTACKSPO 1*2 Another pointer in STACKMPAGE 1*2 Number of pages (512 bytes) in the Memory file.
LPAGE (LISTF + K array)1*2 Number of pages (512 bytes) of the memory file whioh oontain LISTF (prooedure souroe oode)

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM Page 4-9

6 May 85

4.2.2.3 /SMSTUF/ - This oommon oontain various important values
passed between routines. This oommon is obtained with the inoludes DSMS.INC and CSMS.INC. The oontents of this oommon follow.

Temporary array for storing a symbol name. A paoked oharaoter string.
The number of oharaoters in KPAK
A oharaoter pointer in KARBUF, the input line buffer Tag given by SYMBOL when allooating spaoe for a new adverb.
Symbol type. See seotion on TAG and TYPE.Not used.
Symbol number. See seotion on TAG and TYPE. Preoedenoe level bias.
Number of integer words in a oharaoter X.Preoedenoe level of next item on A-staok.Temporary storage for oharaoter strings.
Looation in symbol or literal table of ourrent symbol.

KPAK(5) R*4
NKAR 1*2KBPTR 1*2NEWCOD 1*2
TYPE 1*2SKEL R*4TAG 1*2LEVEL 1*2LX 1*2NEXTP 1*2X(15) R*4LOCSYM 1*2

4.2.2.4 /IQ/ - This oommon oontains short I/O buffers and related
information. This oommon oan be obtained from inoludes DIO.INC and CIO.INC. The oontents of this oommon follow.
ILF
ICRLFIPT
IPAGE
IVEC
NBYTES

1*2
1*2
1*21*2
1*2
1*2

KARBUF(80) 1*2 JBUFF(40) 1*2 IPRT 1*2
KARLIM 1*2 I UNIT 1*2

H0LDUF(4Q) 1*2

Not used.
Not used.
Prompt oharaoter Not used.Not used.
Number of valid oharaoters in KARBUF, number of last non blank oharaoter.
An unpaoked buffer oontaining the ourrent input line. Buffer used to read user input as a paoked string.Not used.
Number of oharaoters in KARBUF Input unit number for PREAD; 1«> text editor, 3->batoh input file soreen hold.
Buffer for storing text entered during soreen hold by SCHOLD.

user terminal, 2->4->text entered during

4.2.3 TAG And TYPE
Adverbs, verbs, prooedures eto. are all represented by symbolio names to the user. Internally, POPS identifies symbolios by TYPE and TAG. TYPE determines the type of symbolio (eg. soalar, oharaoter string, verb eto.) and TAG is a label for the

partioular symbolio (eg. a verb number). The TYPE of all symbols

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM Page 4-10

6 May 85

and the TAG of verbs are speoified to POPSGN in the POPSDAT.HLP file. The TAG of an adverb is oomputed by POPS and is the start address of the value field.
The ourrent list of symbolio types is given in the followinglist.

1 REAL soalar.
2 REAL array.3 Prooedure name.4 Verb name5 Pseudo verb name.6 Quit (used by POPSGN)7 Charaoter string8 Element of oharaoter string9 substring of a oharaoter string10 not used11 Numerio oonstant14 Charaoter oonstant15 Logioal oonstant.

4.2.4 Error Handling
If a subroutine determines that an error oondition exists it sets the variable ERRNUM in oommon /ERRORS/ to an error oode known to the routine OERROR, inorements ERRLEV in /ERRORS/, and, if

ERRLEV .LE. 5, oopies the name of the subroutine (two oharaoters per integer) into /ERRORS/ array PNAME. Following this, the subroutine returns. Thus after eaoh oall to another AIPS subroutine a subroutine should oheok ERRNUM and if it is not zero then that subroutine should inorement ERRLEV and add its name to PNAME. If GTLINE determines that an error has oooured it returns
to to the main AIPS routine whioh oalls AIPERR whioh oalls OERROR.
This provides a traoebaok oapability whioh oan be exeroised setting the AIPS adverb DEBUG to 1.0. Common /ERRORS/ is obtained from inoludes DERR.INC and CERR.INC.

4.2.5 Memory Files
The oontents of the K array and LISTF, the souroe oode for prooedures, are initially obtained by AIPS from a memory file (type 'ME'). The user may save the oontents of LISTF and the K array by the pseudo verbs STORE or SAVE. The oontents of these arrays oan be reoovered by the pseudo verbs RESTORE and GET. The working version of LISTF is stored at the beginning of the memory file.
The struoture of the memory file is illustrated in the

following. The size of the LISTF is given in pages (512 bytes) by variable LPAGE in oommon /POPS/ and the oombined number of pages

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM Page 4-11

6 May 85

used by oommon. the LISTF and the K array are given by MPAGE in the same

I Lv I KO I LO I K1 I LI I K2 I L2 I ...
where Lw

KO
LO
K1 -
LI -
K2 -
L2 - eto.

working version of LISTF
startup version of the K array initialized by POPSGN.
startup version of the LISTF initialized by POPSGN.
user STORE area 1 for K array, user STORE area 1 for LISTF. user STORE area 2 for K array,
user STORE area 2 for LISTF.

4.2.6 Speoial Modes
In the normal mode in whioh AIPS operates, the user types in

instruotions whioh are exeouted immediately. There are several alternate modes in whioh AIPS oan operate. These modes are desoribed briefly in the following seotions.

4.2.6.1 RUN Files - AIPS oan be direoted to read input from a disk text file whioh oan be prepared with the looal souroe editor. The
instruotions in suoh a file will be treated in the same fashion as
if they were typed in through the terminal. RUN files are used mostly for permanent storage of oomplex prooedures or other fixed data prooessing sohemes. In AIPS, if IUNIT-3 in oommon /IO/,
instruotions are read from the RUN file until an end-of-file or an error is enoountered.

4.2.6.2 Batoh - AIPS oan also be made to run in batoh mode at a lower priority. To run AIPS batoh, the user edits a file of instruotions whioh are the same as would be given to an interactive
AIPS. The major differenoe is that all tasks are run with DOWAIT-TRUE. This oauses AIPS to suspend itself until the task is finished. Another differenoe is that tape drives, TVs, and graphios devioes are not allowed for batoh jobs.

The batoh file oan be oreated either by an interactive AIPS or a speoial version of AIPS, oalled BATER, for this purpose. Onoe the file is oreated the SUBMIT verb sends it to AIPSC whioh oheoks
the syntax. One of several possible AIPSBs, the batoh AIPSs, is soheduled to exeoute the batoh file. Eaoh of the three versions of AIPS (AIPS, the interactive program; AIPSC, the batoh oheoker; and AIPSB, the batoh AIPS) has a separate version of the subroutine

THE AIPS PROGRAM
STRUCTURE OF THE AIPS PROGRAM

Page 4-12
6 May 85

VERBS oalled VERBS, VERBSC and VERBSB respectively.

4.2.6.3 Procedures - POPS programs, oalled prooedures, oan be entered into the K array or edited by the user with the editor in the POPS prooessor. Alternately, prooedures oan be entered by POPSGN when oreating the POPS memory files. As a prooedure is entered it is oompiled line by line and the final oompiled oode is stored in the K array. Editing or modifying a prooedure will oause
the prooedure to be recompiled and replaoed in the K array.

The souroe version of the prooedures is stored in an array oalled LISTF whioh is kept on disk in the ourrent working memory
file. All aooess to the souroe oode oauses this file to be read and/or written.

When prooedures are reoompiled and stored in the K array, the spaoe for the old instructions is not reoovered. The verb, COMPRESS, whioh was to reoover this unused spaoe, has never been implemented.

4.3 EXAMPLE OF THE POPS PROCESSOR.
The following disoussion of the POPS oompiler and an example

of its aotion is lifted (with some updates) from the 1978 Sume report.

4.3.1 The Compiler
POPS oompiles expressions into reverse polish staoks, whioh oan then be exeouted by the interpreter. Operators are translated

into integers 1, 2, 3,... and operands into negative integers. The magnitudes of the negative integers are the addresses within the K array of the operands. Arithmetio operators oarry a
preoedenoe whioh is used in converting expressions into polish sequenoes. Some operators, suoh as (and ; are used only at oompile time to signal the elevation of preoedenoe of operators, the end of a statment, eto.

The following table lists POPS operators and their preoedenoe level.

THE AIPS PROGRAM
EXAMPLE OF THE POPS PROCESSOR. Page 4-13

6 May 85

Symbol Meaning Preoedenoe

!
&

>
<

< >
TO
BY
! 1 +

Store 1Or 2And 2 Not 2
Equal (as 3 opposed to store)
Greater than 3
Less than 3
Greater or equal 3Less or equal 3Not equal 3
Loop oontrol 4Loop oontrol 4
Loop oontrol 4 String oonoatenation 4Add 5

SUBSTR
*

/* *

SubtraotString extraction,insertionMultiply
Divide
Exponentiate
Unary -+ Unary +

Verbs ;,FOR,END,READ,TYPE,PRINT, RETURN, AND DUMP All other verbs

5
5
6
6
7
8
0
0
9

Translation to polish form takes plaoe in the overlays POLISH and COMPIL as follows: Three push-down staoks, A, B, and BPR, hold
operands, operators, and operator precedents respeotively, while an expression is soanned from left to right. The expression is oontained in the array KARBUF and the tokens are obtained from KARBUF by the subroutine GETFLD (in POLISH) oalled from COMPIL.
Operands are plaoed on the A staok in order of appearanoe. Operators are plaoed on the B staok if their preoedenoe (NEXTP) exoeeds the preoedenoe of the last operator on the staok, or if the
B staok is empty. Using the BCLEAN subroutine, operators are taken off the B staok and pushed onto A if their preoedenoe is equal to or greater than the preoedenoe of the operator ourrently being soanned. This takes plaoe until the top operator on the B staok has preoedenoe lower than the one being soanned, or the B staok is emptied, whenoe the new operator is pushed onto the B staok, and its preoedenoe onto the BPR staok at the corresponding position. If the (operator is enoountered, the preoedenoe of every subsequent operator is raised by an amount MAXLEV (-10) while 3

THE AIPS PROGRAM
EXAMPLE OP THE POPS PROCESSOR.

Page 4-14
6 May 85

lovers the level by MAXLEV. The end of a statment "operator", the
; operator, and others with whioh arithmetio expressions may be assooiated, suoh as TO, BY, THEN, ELSE, eto. , are taken to have lowest possible preoedenoe, so that they have the effeot of empying the B staok. We are then left with the polish sequenoe of operators and operands in the A staok. For example, the expression.

Y - A*(B*X + C);
would be translated with the following steps:
Step Token Preo(token) A-staok B-staok BPR-staok

1)
2)

3)
4)

5)

6)

7)

8)

9)

10)

11)

A
*

B
*

X

6

raise level

6+MAXLEV

5+MAXLEV

deorement

(empty)
Y
Y
Y
A
Y A

Y
A B
Y A B
Y
A B
X
Y A B X *
Y
A B X *
C

(empty)
(empty)

SAME

(empty)
(empty)

3
3

3
6

3
6

3
6
6+MAXLEV
3
6
6+MAXLEV

3
6
5+MAXLEV

3
6
5+MAXLEV

THE AIPS PROGRAM
EXAMPLE OP THE POPS PROCESSOR. Page 4-15

6 May 85

12) 0 --- SAME ---------
(empty) (empty)13) Final result YABX*

C+
*

4.3.2 The Interpreter
The POPS interpreter exeoutes polish postfix oode left by the POPS oompiler. To do so requires 3 run-time staoks: the main staok (STACK), the oontrol staok (CSTACK) and a value staok (V).
The main staok holds operand addresses (tags.) Corresponding to eaoh operand, the appropriate position in the value staok is loaded with a floating point number, found in oore at the staok

address. This number may or may not be meaningful, depending on
the type of data kept at that address. Operators will make use of the address or value depending on whioh is appropriate.

The oontrol staok is used to save the run-time looation oounter (L) and the program ohunk link (LINK), together with saved staok pointers, eto. While the main staok oould be so used, it was felt that greater reliability would ensue if the oontrol staok were
kept separate, guarding from user-oaused staok errors (suoh as leaving garbage on the main staok). Operations using the oontrol staok require an authentication oode to appear on the top of the staok before they are aotivated.

The interpreter expeots all operands to be negative integers;
all operators, save 0 to be positive (0 is oonsidered a legitimate operand). Operands will be pushed onto the main staok. The value
staok, desoribed above, holds intermediate results of oomputations, as well as the oontents of memory when the staok was loaded.

An example, using the arithmetio expression desoribed in the polish oompile segment:

THE AIPS PROGRAM
EXAMPLE OP THE POPS PROCESSOR. Page 4-16

6 May 85

Souroe oode: Y - A * (B
Compiled oode

X + C)

1) -addr. of Y2) -addr. of A
3) -addr. of B4) -addr. of X5) +TAG of * operator6) -addr. of C
7) +TAG of + operator8) +TAG of * operator9) +TAG of operator
Suppose A - 1.5, B - 2.5, C 3.5, X =

Step

1)
2)

3)

4)

5)

6>

7)

8)

9)

10)

Token being exeouted

Y
A
B

X

finish.

staok

(empty)
Y
Y A
Y A B
Y A B X
Y A*********
Y A

* * * * * * * * *

C
Y A

* * * * * * * * * *

Y
* * * * * * * * * *

(empty)

(empty)
**** * * * *

***** * * *

1.5
**** * * * *

1.52.5
* * * * * * * *

1.52.5
10.0

***** * * *

1.5
25.0

* *******

1.5
25.03.5

* * * * * ** * *

1.528.5
* * * * * ** * *

42.75
(empty)

10.0

THE AIPS PROGRAM
EXAMPLE OP THE POPS PROCESSOR. Page 4-17

6 May 85

4.4 INSTALLING NEW VERBS
To Install a new verb in AIPS several actions are required.

1. Enter the new verb in POPSDAT.HLP and run POPSGN. The new verb will probably be TYPE 4 and should be assigned a verb number (TAG) greater than 100; making sure the verb number is not
already used. It should be noted that oontigious groups of verb numbers will use the same AU routine. If the new verb is similar to existing verbs it should be put in the same AU routine if possible.

2. Create or modify an AU routine to perform the desired funotion.
If there are available verb numbers in the range available to the relevant AU routine, then the funotion oan be added to that AU routine. If not, then a new AU routine is required. Note that the branoh oode sent to the AU routine is the verb number
(one) relative to the first verb number in that AU routine. If the verb requires more than a few lines of Fortran, the AU routine should oall a subroutine to do the work.

3. Modify VERBS, if neoessary, to oall the neoessary AU routine when it is given the new verb number (J in VERBS). The range of verb numbers in eaoh routine is defined in the arrays IAB
and IAE. If new AU routines are added the dimensions of IAB and IAE should be ohanged and the upper limit on the DO loop
index for the loop terminating at statment label 5 should be ohanged. The oomputed GO TO in this loop should be modified to inolude the new AU routine. New AU routines should be added at the end of the list for simplioity. Note that there are three
versions of VERBS (VERBS, VERBSC, and VERBSB) for the interactive AIPS, the batoh AIPS oheoker program, and batoh AIPS respectively. All three must have corresponding ohanges although an error return may be desired for the two batoh versions in the implementation of a new verb.

4. Update the overlay struoture on maohines with limited address spaoe.
5. Compile the neoessary subroutines and add them to the AIPS program subroutine library.
6. Reoompile and link edit AIPS.
7. Create a HELP file for the verb the the same manner as for a

task. Verbs will work without a HELP file but it is muoh friendlier to write one.

THE AIPS PROGRAM
INSTALLING NEW VERBS Page 4-18

6 May 85

As a oonvenlenoe for developing n@w verbs, four temporary verbs are available, T1VERB, T2VERB, T3VERB and T4VERB (verb numbers 900-903) These are aooessable through the routine AUT. To use one of these verbs all that is neoessary is to modify AUT, reoompile it, replaoe it in the AIPS program subroutine library (ACOMRPL), and reoompile AIPS and relink it. Onoe verbs are tested they should be moved to a more permanant AU routine.
The branoh oode sent to the AU routine is (one) relative to the first verb number in that AU routine. If the verb has one or more arguments, they will be found in the value staok V in oommon

/POPS/ in the reverse of the order in whioh they were speoified. Real values oan then be obtained as in the following example:
SUBROUTINE TESTXX

--

C Routine to average the top two numbers on the V staok.
C This routine is designed to be run from VERBS rather than QUICK, C that is, it should be oalled from an AU routine.
--

REAL*4 VI, V2, RESULT INTEGER*2 POTERR, N3, PRGNAM(3)
INCLUDE 'INCS:DP0P.INC'INCLUDE 'INCS:DERR.INC'
INCLUDE 'INCS:CPOP.INC'INCLUDE 'INCS:CERR.INC'DATA N3 /3/, PRGNAM /'TE','ST','XX'/

c Set potential error number, 7 - 'STACK LIMIT'c
POTERR - 7

c Cheok that staok notc
IF (SP.LT.2) GO TO 980 exhausted.

c
VI - V(SP-l)
V2 - V(SP)

Get values from staok.

c
RESULT - (VI + V2) / 2.0 Average.

c For two operands change SP and, STACK, for one don't ohangec
c

SP - SP - 1
STACK(SP) - 0

SP or STACK.

c If the verb returns a value,c
V(SP) - RESULT RESULT, do the following.

c
GO TO 999 Finished OK

c Set error oode980 ERRNUM - POTERRC
ERRLEV - ERRLEV + 1 Fill in /ERRORS/.
IF (ERRLEV.LE.5) CALL COPY (N3, PRGNAM, PNAME(3*ERRLEV-2))

THE AIPS PROGRAM
INSTALLING NEW VERBS Page 4-19

6 May 85

999 RETURN END
Return

The staok oontents are as follows when TESTXX is oalled with an immediate argument:
1. For a real soalar inoluding a subscripted real array adverb,

SP STACK(SP) * TAG V(SP) - C(TAG) (-value)

2. For an array adverb,
SP - 1 STACK(SP) ■

234
where for TYPE - 2,7 N

149

. TYPE V(SP) may be ignored N
TAG
2
- K array pointer to array desoriptor blook,
number of oharaoters,100 * oharaoter offset +# oharaoters

Adverbs may be aooessed by name using the name as defined in the inolude CAPL.INC. Note that the order of adverbs is really defined in the POPSDAT.HLP file and the order in CAPL.INC must
oorrespond exaotly. Also, all adverbs are of Fortran data type REAL although they may oontain oharaoter strings.

4.5 INSTALLING NEW ADVERBS
New, temporary, adverbs oan be oreated in an exeouting AIPS

task by SCALAR, ARRAY or STRING statments in a prooedure. Permanent installation of an adverb requires entering it in POPSDAT.HLP, running POPSGN to update the memory files, and adding a variable into the declarations in oommon /CORE/ in the inoludes DAPL.INC and CAPL.INC The new adverbs should be entered in the same relative looation amoung the other adverbs in CAPL.INC as in the POPSDAT file. The adverb value will be kept in this variable and is therefore direotly available to verbs.

4.6 POPSGN
The Initial oontents of the POPS memory files and henoe the LISTF and K arrays are set by the stand alone utility program POPSGN. This program takes as input the file POPSDAT.HLP.

THE AIPS PROGRAM
POPSGN Page 4-20

6 May 85

4.6.1 Funotion
The funotion of POPSGN is to initialize the oontents of LISTF (the souroe oode for prooedures) and the K array when AIPS starts up by storing the oontents in the POPS memory ('ME') files. This

program is normally found in the same plaoe as the AIPS program itself and asks for instruotions direotly from the key board. When the program begins it asks:
"ENTER NPOPS1,NP0PS2,IDEBUG,MNAME,VERSION (312,4A2,5A4)"

The response should be as follows:
NPOPS1 The lowest POPS number for this run of POPSGN, this is normally 1.
NP0PS2 The highest POPS number for this run of POPSGN, this

is normally the highest POPS number run - 2 * No.
interactive POPS + number of batoh queues + 1.

IDEBUG If not 0, POPSGN will give lots of debug messages. Use 0.
MNAME The name of the file in the HELP area that oontains the input file for POPSGN. This is normally POPSDAT.HLP; type only 'POPSDAT'.
VERSION This speoifies the version of AIPS to have the memory files updated. Normally this is blank

whioh will update the 'NEW' area; 'OLD' is also understood by POPSGN.

After POPSGN has digested POPSDAT.HLP it will return a '>'
prompt. Type a blank line to terminate the input and POPSGN will update the memory files.

4.6.2 POPSDAT.HLP
The bulk of the definitions of verbs, adverbs, and standard prooedures are defined in the POPSDAT file. A "C-H in oolumns one and two indioate a oomment line. A "/" oharaoter conventionally

indioates the beginning of an end-of-line oomment whioh must begin after oolumn 44. The names of symbols begin in oolumn 1 with no embedded blanks and may have no more than 8 oharaoters. The POPSDAT file is read with a
(5A2,1X,I3,1X,I3,1X,I4,1X,I4,2(1X,F7.2)) format.

The first portion of the POPSDAT file defines the POPS verbs. Most of these verbs and pseudo verbs with verb numbers (TAG) less than 100 reside in the AIPS routine QUICK. Verb numbers greater
than 100 are all in AU routines oalled by VERBS. The values

THE AIPS PROGRAM
POPSGN Page 4-21

6 May 85

following tlie symbol name are 1) the number of oharaoters in the symbol name, 2) the symbol type (4 or 5 for verbs and pseudo verbs) and 3) the TAG, in this oase the verb number. The end-of-line oomments for verbs with numbers (TAG) greater than 100 tell the AU routine in whioh that verb is found.
Following the verbs oome the adverb definitions. The values following the symbol name are: 1) the number of oharaoters in the symbol name, 2) the symbol type (see the seotion of TYPEs and TAGs). For soalar, real adverbs (TYPE 1) the next two integer

fields are blank and the following REAL field (F7.0) is taken to be the initial value of that soalar.
For real arrays (TYPE 2), the first value past the TYPE field

is the number of dimensions (1 or 2), the next integer field is blank and the following one or two REAL (F7.1) fields give the number of positions in eaoh of the one or two dimensions.
For oharaoter string variables (TYPE 7) the first integer field past the TYPE is the extent (number of positions) of the first dimension of the array of oharaoter strings. This is normally 1 as there are only soalar oharaoter string adverbs at the moment. The next integer field is blank and the next REAL (F7.0) field is the number of oharaoters in the string.
An adverb named QUIT with TYPE - 6 tells POPSGN that all verb and adverb definitions have been read. Following this, normal POPS

oommands may be entered and the definitions of the standard prooedures are normally entered here. A in oolumn 1 indioates a POPS oomment line. The end of file terminates the input.
The ourrent oontents of POPSDAT is shown in the following:

This module is POPSDAT.
c- This module is POPSDAT.
9 1 4 1 — \(
)

1 4 2 \1 4 3 \- 1 4 4 \+ 1 4 5 \
— 1 4 6 \ subtraot* 1 4 7 \/ 1 4 8 * * 4 9 \> 1 4 10 \< 1 4 11 \+ 1 4 12 \
— 1 4 13 \ unary1 4 14 \ \TO 2 4 15; 2 4 15 \BY 2 4 16 \
i 1 4 17 \ logioal

THE AIPS PROGRAM
POPSGN Page 4-22

6 May 85

fif 1 4 19 \; 1 4 20 \FOR 3 4 21 \END 3 4 22 \READ 4 4 23 \
TYPE 4 4 24
PRINT 5 4 24 \RETURN 6 4 25LENGTH 6 4 26 \
C- 27 \ res array equatesC-RUN 3 4 28 \C-EXIT 4 4 29 \C-RESTART 7 4 30 \LOG 3 4 31
LN 2 4 32MOD 3 4 33
MODULUS 7 4 34ATAN2 5 4 35SIN 3 4 36COS 3 4 37TAN 3 4 38ATAN 4 4 39SQRT 4 4 40DUMP 4 4 41 \
< - 2 4 42 \>- 2 4 43 \
< > 2 4 44 \EXP 3 4 45SUBSTR 6 4 46
i 1 2 4 47CHAR 4 4 48
VALUE 5 4 49
MSGKILL 7 5 50 — \ PSEUDOPROCEDURE 9 5 51 — \
PROC 4 5 51 \
ARRAY 5 5 52 \ELSE 4 5 53 \
THEN 4 5 54 \FINISH 6 5 55 \DEBUG 5 5 56 \
IF 2 5 57 \STRING 6 5 58WHILE 5 5 59SCALAR 6 5 60
EDIT 4 5 61 \ EDITORENDEDIT 7 5 62 — \MODIFY 6 5 63
C-storeoode 64 — \ reservedSTORE 5 5 65 \
RESTORE 7 5 66 \SAVE 4 5 67 \
GET 3 5 68 \
LIST 4 5 69 \ — STORESCORE 4 5 70 \

THE AIPS PROGRAM p . rfa 4,
popsgk L̂Tas
SCRATCH 7 5 71 \COMPRESS 8 5 72 \C-endmodlfy 73 — \ reservedERASE 5 5 79RUN 3 5 80 \ — HELPSHELP 4 5 81 — \INP 3 5 82 — \INPUTS 6 5 83GO 2 5 84TGET 4 5 85SGDESTR 7 5 86ABORTASK 8 5 87TPUT 4 5 88WAITTASK 8 5 89EXPLAIN 7 5 90CEIL 4 4 91FLOOR 5 4 92ABS 3 4 93MAX 3 4 94MIN 3 4 95C- 96 — \ res: ENDC- 97 res: WHILEC- 98 res: SUBSC- 99 res: NOPC- FORMATC-C-C-C-C- Nob Typ ITAG ???? .PRTMSG 6 4 100 \ AU1EXIT 4 4 101RESTART 7 4 102CLRMSG 6 4 103C-HELP 110 \ AUIAC-INP 111C-INPUTS 112C-EXPLAIN 113C-GO 2 4 120 \ AU2SPY 3 4 121C-WAITTASK 122C-ABORTASK 8 4 123C-TPUT 4 4 124C-TGET 130 \ AU2AC-SGDESTR 131TGINDEX 7 4 132SGINDEX 7 4 133CATALOG 7 4 150 \ AU3MCAT 4 4 151IMHEADER 8 4 152ZAP 3 4 153UCAT 4 4 154QHEADER 7 4 155PCAT 4 4 156FREESPAC 8 4 160 \ AU3AALLDEST 7 4 161TIMDEST 7 4 162SAVDEST 7 4 163

THE AIPS PROGRAM
POPSGN Page 4-24

6 May 85

SCRDEST 7 4 164RENUMBER 8 4 170RECAT 5 4 171TPHEAD 6 4 180AVFILE 6 4 181AVMAP 5 4 182REWIND 6 4 183AVEOT 5 4 184MOUNT 5 4 185DISMOUNT 8 4 186TVINIT 6 4 200TVCLEAR 7 4 201GRCLEAR 7 4 202TVON 4 4 203TVOFF 5 4 204GRON 4 4 205GROFF 5 4 206TV3COLOR 8 4 207TVPOS 5 4 208IMXY 4 4 209IMPOS 5 4 210TVNAME 6 4 211CURBLINK 8 4 212TVLOD 5 4 220TVROAM 6 4 221SETROAM 7 4 222REROAM 6 4 223TVLABEL 7 4 240TVWLABEL 8 4 241TVWEDGE 7 4 250IMWEDGE 7 4 251WEDERASE 8 4 252IMERASE 7 4 253TVWINDOW 8 4 254TVBOX 5 4 255TVSLICE 7 4 256REBOX 5 4 257TVMOVIE 7 4 260REMOVIE 7 4 261OFFPSEUD 8 4 280OFFZOOM 7 4 281OFFSCROL 8 4 282TVZOOM 6 4 283TVSCROL 7 4 284TVPSEUDO 8 4 285TVHUEINT 8 4 286OFFTRAN 7 4 290TVTRANSF 8 4 291TVBLINK 7 4 292TVMBLINK 8 4 293TVLUT 5 4 294TVMLUT 6 4 295CURVALUEC-TVALL 8 5 4 300
4 305

\ AU3B
\ AU4

\ AU5

\ AU5A

\ AU5B
\ AU5C

\ AU5D
\ AU6

\ AU6A

\ AU6B
\ AU6G

THE AIPS PROGRAM
POPSGN Page 4-25

6 May 85

TVFIDDLE 8 4 306TVSTAT 6 4 310IMSTAT 6 4 311PRTHI 5 4 330RENAME 6 4 331RESCALE 7 4 332CLRSTAT 7 4 333AXDEFINE 8 4 334ALTDEF 6 4 335ALTSWTCH 8 4 336CELGAL 6 4 337ADDBEAM 7 4 340PUTHEAD 7 4 341GETHEAD 7 4 342CLRNAME 7 4 360GETNAME 7 4 361GET2NAME 8 4 362GET3NAME 8 4 363EXTDEST 7 4 364CLR2NAME 8 4 365CLR3NAME 8 4 366EGETNAME 8 4 367EXTLIST 7 4 370MAXFIT 6 4 390IMVAL 5 4 391QIMVAL 6 4 392TKPOS 5 4 400TKVAL 8 4 401TKXY 4 4 402TKSLICE 7 4 410TKASLICE 8 4 411TKMODEL 7 4 412TKAMODEL 8 4 413TKRESID 7 4 414TKARESID 8 4 415TKGUESS 7 4 416TKAGUESS 8 4 417TKSET 5 4 420TK1SET 6 4 421SUBMIT 6 4 440BATCH 5 4 441BATEDIT 7 4 442UNQUE 5 4 443BATCLEAR 8 4 444BATLIST 7 4 445QUEUES 6 4 446JOBLIST 7 4 447BAMODIFY 8 4 448GRIPE S 4 460GRINDEX 7 4 461GRLIST 6 4 462PASSWORD 8 4 463GRDROP 6 4 464T1VERB 6 4 900

\ A06D
\ A07

\ AU7A

\ AU8

\ ATJ8A
\ AU9

\ AU9A

\ AU9B

\ AU9C
\ ADA \ AUB

\ AUC

\ AUT

THE AIPS PROGRAM
POPSGN Page 4-26

6 May 85

T2VERB 6 4 901T3VERB 6 4 902T4VERBC- 6 4 903
FORMATC-C-C-C-C- Noli Typ Ndim ????USERID 6 1 0.00INNAME 6 7 1 12.00INCLASS 7 7 1 6.00INSEQ 5 1 0.00INDISK 6 1 0.00INTYPE 6 7 1 2.00IN2NAME 7 7 1 12.00IN2CLASS 8 7 1 6.00IN2SEQ 6 1 0.00IN2DISK 7 1 0.00IN2TYPE 7 7 1 2.00IN3NAME 7 7 1 12.00IN3CLASS 8 7 1 6.00IN3SEQ 6 1 0.00IN3DISK 7 1 0.00IN3TYPE 7 7 1 2.00OUTNAME 7 7 1 12.00OUTCLASS 8 7 1 6.00OUTSEQ 6 1 0.00OUTDISK 7 1 1.00INEXT 5 7 1 2.00IN2EXT 6 7 1 2.00IN3EXT 6 7 1 2.00INVERS 6 1 0.00IN2VERS 7 1 0.00IN3VERS 7 1 0.00BADDISK 7 2 1 10.00INTAPE 6 1 1.00OUTTAPE 7 1 1.00NFILES 6 1 0.00NMAPS 5 1 0.00TASK 4 7 1 8.00DOWAIT 6 1 -1.00PRIORITY 8 1 0.00BLC 3 2 1 7.00TRC 3 2 1 7.00XINC 4 1 1.00YINC 4 1 1.00PIXXY 5 2 1 7.00PIXVAL 6 1 0.00PIXRANGE 8 2 1 2.00FACTOR 6 1 0.00OFFSET 6 1 0.00TVBUT 5 1 0.00XTYPE 5 1 5.00XPARM 5 2 1 10.00YTYPE 5 1 5.00YPARM 8 2 1 10.00OPCODE 6 7 1 4.00

THE AIPS PROGRAM page 4_2?POPSGN 6 May 85

FUNCTYPE 8 7 1 2.00ROTATE 6 1 0.00GAIN 4 1 0.10NITER 5 1 0.00FLUX 4 1 0.00SOURCE 6 1 8.00QUAL 4 1 -1.00STOKES 6 1 4.00BAND 4 1 1.00TVCHAN 6 1 1.00GRCHAN 6 1 0.00TVLEVS 6 1 256.00TVCORN 6 1 2.00COLORS 6 1 0.00TVXY 4 1 2.00DOTV 4 1 -1.00BATQUE 6 1 2.00BATFLINE 8 1 0.00BATNLINE 8 1 0.00JOBNUM 6 1 0.00LTYPE 5 1 3.00PLEV 4 1 0.00CLEV 4 1 0.00LEVS 4 1 30.00XYRATIO 7 1 0.00DOINVERS 8 1 -1.00DOCENTER 8 1 1.00ZXRATIO 7 1 0.25SKEW 4 1 45.00DOCONT 6 X 1.00DOVECT 6 1 1.00ICUT 4 1 0.10PCUT 4 1 0.10DIST 4 1 3.00IMSIZE 6 2 1 2.00CELLSIZE 8 2 1 2.00SHIFT 5 2 1 2.00SORT 4 7 1 2.00UVTAPER 7 2 1 2.00UVRANGE 7 2 1 2.00UVWTFN 6 7 1 2.00UVBOX 5 1 0.00DOGRIDCR 8 1 1.00ZEROSP 6 1 5.00BITER 5 1 0.00BMAJ 4 1 0.00BMIN 4 1 0.00BPA 3 1 0.00NBOXES 6 1 0.00BOX 3 2 4.00DOEOF 5 1 1.00NDIG 4 1 0.00DOCAT 5 1 1.00DOHIST 6 1 -1.00

THE AIPS PROGRAM
POPSGN Page 4-28

6 May 85

BDROP 5 1 0.00EDROP 5 1 0.00ASPMM 5 1 0.00MINPATCH 8 1 51.00APARM 5 2 1 10.00BPARM 5 2 1 10.00GPOS 4 2 2 2.00GMAX 4 2 1 4.00GWIDTH 6 2 2 3.00DOPOS 5 2 2 2.00DOMAX 5 2 1 4.00DOWIDTH 7 2 2 3.00NGAUSS 6 1 0.00TRANSCOD 8 7 1 14.00AXREF 5 1 1.00NAXIS 5 1 3.00AXINC 5 1 0.00AXVAL 5 2 1 2.00AXTYPE 6 7 1 8.00DOSLICE 7 1 1.00DOMODEL 7 1 -1.00DORESID 7 1 -1.00ROMODE 6 1 0.00DETIME 6 1 0.00DOCRT 5 1 -1.00CHANNEL 7 1 0.00CP ARM 5 2 1 10.00DPARM 5 2 1 10.00DOALIGN 7 1 1.00NPOINTS 7 1 1.00AX2REF 6 1 0.00DOALL 5 1 -1.00TXINC 5 1 1.00TYINC 5 1 1.00TBLC 4 2 1 7.00TTRC 4 2 1 7.00VERSION 7 7 1 48.00DOEOT 5 1 1.00DOSTOKES 8 1 -1.00PRTLEV 6 1 0.00DOARRAY 7 1 -1.00ZINC 4 1 1.00TZINC 5 1 1.00BCHAN 5 1 1.00ECHAN 5 1 0.00C-C-C-C-C- Noll Typ Ndim ????RESTFREQ 8 2 1 2.00INFILE 6 7 1 48.00IN2FILE 7 7 1 48.00OUTFILE 7 7 1 48.00DENSITY 7 1 1600.00KEYWORD 7 7 1 8.00KEYVALUE 8 2 1 2.00KEYSTRNG 8 7 1 16.00

4.00
4.004.00
4.00

THE AIPS PROGRAM
POPSGN Page 4-29

6 May 85

BCOUNT 6 1 1.00ECOUNT 6 1 0.00NCOUNT 6 1 0.00DOTABLE 7 1 1.00DOTWO 5 1 -1.00COPIES 6 1 1.00PRNUMBER 8 1 0.00PRTIME 6 1 0.00PRTASK 6 7 1 5.00CTYPE 5 2 1 4.00PIXAVG 6 1 0.00PIXSTD 6 1 0.00DOCIRCLE 8 1 -1.00CHINC 5 1 1.00NFIELD 6 1 1.00FLDSIZE 7 2 2 2.00RASHIFT 7 2 1 16.00DECSHIFT 8 2 1 16.00PHAT 4 1 0.00GAINERR 7 2 1 30.00TIMSMO 6 2 1 30.00DOOUTPUT 8 1 -1.00DOCONCAT 8 1 -1.00DONEWTAB 8 1 1.00DOCONFRM 8 1 -1.00DOALPHA 7 1 -1.00ERROR 5 1 -1.00GRNAME 6 7 1 20.00GRADDRES 8 7 1 48.00GRPHONE 7 7 1 16.00SLOT 4 1 1.00VLAOBS 6 7 1 6.00VLAMODE 7 7 1 2.00CMETHOD 7 7 1 4.00CMODEL 6 7 1 4.00BCOMP 5 2 1 16.00NCOMP 5 2 1 16.00LPEN 4 1 3.00PRSTART 7 1 1.00OPTYPE 6 7 1 4.00C- Adverbs below are dummys 1 for tetSTRA1 5 7 4.00STRA2 5 7 1 8.00STRA3 5 7 1 12.00STRB1 5 7 1 4.00STRB2 5 7 1 8.00STRB3 5 7 1 12.00STRC1 5 7 1 4.00STRC2 5 7 1 8.00STRC3 5 7 1 12.00ARRAY1 6 2 1 10.00ARRAY2 6 2 2 20.00ARRAY3 6 2 1 3.00SCALR1 6 1 1.00

16.00

2.00

THE AIPS PROGRAM
POPSGN Page 4-30

6 May 85

SCALR2 6 1 0.00SCALR3 6 1 0.00
C- Quit tells POPSGN 'end of adverbs'.QUIT 4 6
*
VERSION - ' 'DOPOS - 1 ; DOMAX - 1 ; DOWIDTH = 1 ;*
PROC TSTDUM
SCALAR X, Y, I , J , DELTAX , DELTAY FINISH*
PROC SETXWINCDELTAX,DELTAY);IMXY;BLC(1)=PIXXY(1)-DELTAX/2 TRC(1)“BLC(1)+DELTAX;BLC(2)=PIXXY(2)-DELTAY/2;TRC(2)=BLC(2)+DELTAY;RETURN;FINISH*
PROC OFFROAM;I=TVCHAN;J=GRCHAN;TVCHAN=1234;GRCHAN-1234;OFFSCROL;TVOFF;GRCHAN*J;TVCHAN=I;TVON;RETURN;FINISH
*

PROC OFFHUINT; I-ABS(TVCHAN); IF I < 12 THEN 1=12; END
J=M0D(I/10,10);I=MOD(I,10);TV0FF(1234);OFFPS;TVCH=I;OFFTR; TVCH-J;OFFTR;TVON;RETURN FINISH*
PROC TKWIN;TKXY;BLC=PIXXY;TKXY;TRC=PIXXY;RETURN;FINISH*
PROC TKBOX(I); TKXY;BOX(l,I)=PIXXY(1);B0X(2,I)=PIXXY(2)TKXY;BOX(3,I)-PIXXY(1);B0X(4,I)=PIXXY(2);RETURN;FINISH*
PROC TKNBOXS(NBOXES); FOR J=1:NBOXES;TYPE 'SET BOX NUMBER',J,' :';TKBOX(J);END;RETURN FINISH*
PROC TVRESET; COLORS;TVOFF(12345);TVON(TVCH); OFFZ; OFFSC; OFFPS; GRCH=0;GRCLEAR; OFFTR;RETURN; FINISH*
PROC TVALL; TVOFF(1234);OFFZOOM;GROFF(1234);J=GRCH;GRCH-24;GRCL; GRCH-J;TVCL;TVON(TVCH);TVLOD;TVWED(16);TVWLAB;TVFID;RETURN FINISH

THE AIPS PROGRAM
INCLUDES Page 4-31

6 May 85

4.7 INCLUDES
4.7.1 CAPL.INC

Inolude CAPLCOMMON /CORE/ K, XTRUE, XFALSE, USERID, INNAM, INCLS, INSEQ,
INDSK, INTYP, IN2NAM, IN2CLS, IN2SEQ, IN2DSK, IN2TYP, IN3NAM,
IN3CLS, IN3SEQ, IN3DSK, IN3TYP, OUTNAM, OUTCLS, OUTSEQ, OUTDSK, INEXT, IN2EXT, IN3EXT, INVER, IN2VER, IN3VER, BADDSK, INTAPE, OUTTAP, NFILES, NMAPS, TASK, DOWAIT, PRIOTY, BLCORN, TRCORN, XINC, YINC, PIXXY, PIXVAL, PXRANG, FACTOR, OFFSET, TVBUTT,
XTYPE, XPARM, YTYPE, YPARM, OPCODE, FUNTYP, ROTATE, GAIN,NITER, FLUX, SOURCE, QUAL, STOKES, BAND, TVCHAN, GRCHAN,
TVLEVS, TVCORN, COLORS, TVXY, DOTV, BATQUE, BTFLIN, BTNLIN, JOBNUM, LTYPE, PLEV, CLEV, LEVS, XYRATO, DOINVR, DOCENT,ZXRATO, SKEW, DOCONT, DOVECT, ICUT, PCUT, DIST, IMSIZE

COMMON /CORE/ CELSIZ, SHIFT, SORT, UVTAPR, UVRANG, UVWTFN, UVBOX,
DOGRDC, ZEROSP, BITER, CBMAJ, CBMIN, CBPA, NBOXES, BOX, DOEOF, NDIG, DOCAT, DOHIST, BDROP, EDROP, ASPMM, MPTCH, APARMS,BPARMS, GPOS, GMAX, GWIDTH, ERRPOS, ERRMAX, ERRWTH, NGAUSS,
TRANSC, AXREF, NAXIS, RAXINC, AXVAL, AXTYPE, DOSLIC, DOMODL, DORESI, ROMODE, DETIME, DOCRT, CHANNL, CPARM, DPARM, DOALIN,
NPONTS, AX2REF, DOALL, TVXINC, TVYINC, TVBLCO, TVTRCO, VERSON, DOEOT, DOSTOK, LEVPRT, DORRAY, ZINC, TVZINC, BECHAN, ENCHAN, RESTFR, INFLL, IN2FLL, OUTFLL, DENSTY, KEYWRD, KEYVAL, KEYSTR, BEGCNT, ENDCNT, NUMCNT, DOTABL, DOTWO, COPIES, PRNUMB, PRTIME,
PRTASK, CTYPES, PIXAVG, PIXRMS, DOCIRC, XCHINC, XNFIEL, XFLDSZ, XRASHF, XDCSHF, XPHAT, XGNERR, XTMSMO, DOOUTP, DOCNCT, DONEW, DOCONF, DOALPH, ERRORA, GRNAME, GRADDR, GRPHON, SLOTAD, VLAOBS, VLAMOD, CMETHX, CMODXX, XBCOMP, XNCOMP, QMSPEN, PRSTRT, OPTYPE,

STRA1, STRA2, STRA3, STRB1, STRB2, STRB3, STRC1, STRC2, STRC3, ARRAY1, ARRAY2, ARRAY3, SCALR1, SCALR2, SCALR3
End CAPL

4.7.2 CBAT.INC

C
C COMMON /BATCH/ BATLUN, BATIND, BATREC, BATDUM, BATDATInolude CBAT

End CBAT

THE AIPS PROGRAM
INCLUDES Page 4-32

6 May 85

4.7.3 CBWT.INC

Inolude CBWTCOMMON /BWTCH/ BWTNAM, BWTNUM, BWTLUN, BWTIND, BWTREC,* WASERR, BWTDAT
End CBWT

4.7.4 CCON.INC

C Inolude CCONCOMMON /CORE/ K
C End CCON.

4.7.5 CERR.INC

C Inolude CERRCOMMON /ERRORS/ ERRNUM, IERROR, ERRLEV, PNAME
C End CERR.

4.7.6 CIO.INC

Inolude CIOCOMMON /IQ/ ILF, ICRLF, IPT, IPAGE, IVEC, NBYTES, KARBUF,JBUFF, IPRT, KARLIM, IUNIT, HOLDUF
End CIO.

4.7.7 CPOP.INC

Inolude CPOPCOMMON /POPS/ V, XX, KT, LPGM, LLIT, LAST, IDEBUG, MODE, IFFLAG,* LINK, L, NAMEP, IP, LP, SLIM, AP, BP, ONE, ZERO, TRUE, FALSE,* STACK, CSTACK, SP, CP, SPO, MPAGE, LPAGE
End CPOP.

THE AIPS PROGRAM
INCLUDES Page 4-33

6 May 85

4.7.8 CSMS.INC

C Inolude CSMSCOMMON /SMSTUF/ KPAK, NKAR, KBPTR, NEWCOD, TYPE, SKEL,
* TAG, LEVEL, LX, NEXTP, X, LOCSYM

C End CSMS.

4.7.9 DAPL.INC

C Inolude DAPLINTEGER*2 K(7390)
C oharaoter stringsREAL*4 INNAMC3), INCLS(2), INTYP, IN2NAM(3), IN2CLS(2), IN2TYP,* IN3NAM(3), IN3CLSC2), IN3TYP, 0UTNAM(3), OUTCLS(2), INEXT,* IN2EXT, IN3EXT, TASK(2), OPCODE, FUNTYP, SOURCE(2), STOKES,* BAND, SORT, UVWTFN, TRANSC(4), AXTYPE(2), VERS0N(12),* INFLL(12), IN2FLL(12), OUTFLL(12), KEYWRD(2), KEYSTR(4),* PRTASKC2), GRNAME(5), GRADDR(12), GRPH0N(4), VLAOBSC2), VLAMOD,* CMETHX, CMODXX, OPTYPE,

* STRA1, STRA2(2), STRA3(3), STRB1, STRB2(2), STRB3(3),* STRC1, STRC2(2), STRC3(3)
C numerio variablesREAL*4 XTRUE, XFALSE, USERID, INSEQ, INDSK, IN2SEQ, IN2DSK,* IN3SEQ, IN3DSK, OUTSEQ, OUTDSK, INVER, IN2VER, IN3VER,

* BADDSK(IO), INTAPE, OUTTAP, NFILES, NMAPS, DOWAIT, PRIOTY,
* BLCORNC7), TRC0RN(7), XINC, YINC, PIXXY(7), PIXVAL, PXRANGC2),* FACTOR, OFFSET, TVBUTT, XTYPE, XPARM(IO), YTYPE, YPARM(IO),* ROTATE, GAIN, NITER, FLUX, QUAL, TVCHAN, GRCHAN, TVLEVS,
* TVCORN(2), COLORS, TVXY(2), DOTV, BATQUE, BTFLIN, BTNLIN,* JOBNUM, LTYPE, PLEV, CLEV, LEVS(30), XYRATO, DOINVR, DOCENT,* ZXRATO, SKEW, DOCONT, DOVECT, ICUT, PCUT, DIST, IMSIZE(2)REAL*4 CELSIZ(2), SHIFT(2), UVTAPR(2), UVRANG(2), UVBOX, DOGRDC,* ZEROSP(5), BITER, CBMAJ, CBMIN, CBPA, NBOXES, B0x(4,10), DOEOF,
* NDIG, DOCAT, DOHIST, BDROP, EDROP, ASPMM, MPTCH, APARMS(IO),* BPARMSC10), GP0SC2.4), GMAX(4), GWIDTH(3,4), ERRP0S(2,4),
* ERRMAXC4), ERRWTH(3,4), NGAUSS, AXREF, NAXIS, RAXINC, AXVAL(2),* DOSLIC, DOMODL, DORESI, ROMODE, DETIME, DOCRT, CHANNL,
* CPARM(IO), DPARM(IO), DOALIN, NPONTS, AX2REF, DOALL, TVXINC,* TVYINC, TVBLCO(7), TVTRCO(7), DOEOT, DOSTOK, LEVPRT, DORRAY,* ZINC, TVZINC, BECHAN, ENCHAN, RESTFR(2), DENSTY, KEYVAL(2),* BEGCNT, ENDCNT, NUMCNT, DOTABL, DOTWO, COPIES, PRNUMB, PRTIME,* CTYPESC4), PIXAVG, PIXRMS, DOCIRC, XCHINC, XNFIEL,* XFLDSZ(2,16), XRASHF(16), XDCSHF(16), XPHAT, XGNERR(30),* XTMSM0C30), DOOUTP, DOCNCT, DONEW, DOCONF, DOALPH, ERRORA,* SLOTAD, XBC0MP(16), XNC0MP(16), QMSPEN, PRSTRT,
* ARRAYl(lO), ARRAY2(20,2), ARRAY3(3), SCALR1, SCALR2,* SCALR3

C End DAPL

THE AIPS PROGRAM
INCLUDES Page 4-34

6 May 85

4.7.10 DBAT.INC

Inolude DBATINTEGER*2 BATLUN, BATIND, BATREC, BATDUM, BATDAT(256)
End DBAT

4.7.11 DBWT.INC

C Inolude DBWTINTEGER*2 BWTNUM, BWTLUN, BWTIND, BWTREC, BWTDAT(l) LOGICAL*2 WASERR
REAL*4 BWTNAM(6)C End DBWT

4.7.12 DCON.INC

C Inolude DCONINTEGER*2 K(10752), KXORG REAL*4 C(5376)C End DCON.

4.7.13 DERR.INC

C Inolude DERR
C INTEGER*2 ERRNUM, IERROR(5), ERRLEV, PNAME(15)

End DERR.

4.7.14 DIO.INC

C Inolude DIOINTEGER*2 ILF, ICRLF, IPT, IPAGE, IVEC, NBYTES, KARBUF(80),* JBUFF(40), IPRT, KARLIM, IUNIT, H0LDUF(4Q)C End DIO.

THE AIPS PROGRAM
INCLUDES Page 4-35

6 May 85

4.7.15 DPOP.INC

Inolude DPOPINTEGER*2 KT, LPGM, LLIT, LAST, IDEBUG, MODE, IFFLAG, LINK,
L, NAMEP, IP, LP, SLIM, AP, BP, ONE, ZERO, TRUE, FALSE,
STACK(60), CSTACK(60), SP, CP, SPO, MPAGE, LPAGE REAL*4 V(60), XX

End DPOP.

4.7.16 DSMS.INC

INTEGER*2 NKAR, KBPTR, NEWCOD, TYPE, TAG,* LEVEL, LX, NEXTP, LOCSYM REAL*4 SKEL, X(15), KPAK(5)

Inolude DSMS

End DSMS.

4.7.17 ECON.INC

EQUIVALENCE (K(1),C(1)), (K(8),KXORG) Inolude ECON
End ECON.

CHAPTER 5
CATALOGUES

5.1 OVERVIEW
AIPS keeps a oatalogue with a direotory whioh. oontains an entry for eaoh data file and its assooiated extension files. The oatalogue header reoord is used to keep various pieoes of information about the data in the main data file and keeps traok of the number and types of extension files assooiated with the main data file. These oatalogue header reoords are kept in individual files. The intent of this ohapter is to desoribe the oontents of the oatalogue header and to desoribe the use of the routines that aooess the oatalogue header reoord.
The information in the oatalogue header reoord is patterned after the FITS format tape header, although it is not nearly as

flexible. The oatalogue header desoribes the order and amount of data, its format, soaling information for soaled integer files, maximum and minimum values, eto.
AIPS data files have a struoture very similar to the structure of data of FITS format tapes. An image oonsists of a reotangular

array of up to 7 dimensions. Pixels looations must be evenly spaoed along eaoh axis, although a proper redefination of the axis oan usually make this possible. The header reoord oontains the number of pixels along eaoh axis, a label for eaoh axis, the number of the referenoe pixel (may be a fractional pixel and need not be in the
portion of the axis oovered), the coordinate at the referenoe pixel, the ooordinate inorement between pixels and the coordinate rotation. The axes of images may be in any order.

The AIPS format for uv data is also similar to the FITS oonvention. Eaoh data point has a number of "random parameters", usually "u", "v", time, baseline number eto. followed by a reotangular array similar to, but usually smaller than, an image
data array. Up to 7 random parameters have labels kept in the oatalogue header. More than 7 random parameters oan be used but the labels for the eighth and following are lost.

Most tasks read an old data file, do some operation on the data and write a new data file. In this oase, the task simply takes the old oatalogue header reoord and modifies it to desoribe the data in

CATALOGUESOVERVIEW Page 5-2
6 Hay 85

the new file.
AIPS also keeps a oatalogue of the Images displayed on all

display devioes. This image oatalogue allows AIPS interaotive verbs to use the display devioes without having to find and read the original oatalogue header reoord.

5.2 PUBLIC AND PRIVATE CATALOGUES.
AIPS oatalogues may be either publio, ie. all files on a given disk are in the same oatalogue, or private, ie. eaoh user has a separate oatalogue on eaoh disk. The standalone utility program, SETPAR, is used to speoify whioh type is currently in use. The distinction is completely transparent to the programmer; all

distinctions between the two types are hidden in ZPHFIL and the oatalogue routines.

5.3 FILE NAMES
AIPS data files, especially oatalogued files, are referenoed in a number of different ways. The following list summarizes the three basio ways of speoifying AIPS data files:
1. AIPS logioal names. The full AIPS logioal file speoifioation is the given by disk number, file name, file olass, file sequenoe number, file physioal type, user number, and for extension files, the version number. These

are the fundamental way an AIPS user speoifies a file; although some of these suoh as physioal type and user number may not have to be speoified direotly. In a task,
these values are used by CATDIR (whioh may be oalled by a higher level routine suoh as MAPOPN) to looate the desired
file in the AIPS oatalogue using various default and wildoard conventions.

2. Disk and oatalogue number. Just as the AIPS user
frequently uses the disk and oatalogue numbers to speoify files using the verb GETNAME, programs usually keep traok of oatalogued files by means of the disk and oatalogue numbers, file types, and version numbers for extension
files. (Soratoh files are sometimes speoified by their order numbers in the /CFILES/ oommon.)

3. Physioal name. The host operating system needs a name for
the file for its own oatalogue. The allowed physioal file speoifioations depends on the host operating system, so AIPS tasks use the Z routine ZPHFIL to oreate the physioal name from the disk and oatalogue numbers, the file type and
version, and the user number for systems with private oatalogues. These physioal names may be up to 24

CATALOGUES FILE NAMES Page 5-3
6 May 85

oharaoters long.
An example from a VAX system with private oatalogues is "DA0n:ttdooow.uuu" ; where n is the zero relative disk drive number, DAOn: is a logioal variable whioh is assigned to a direotory, tt is a two oharaoter file type (eg. 'MA'), d is the one relative disk drive number, ooo is the oatalogue slot number, w is the version (01 for "MA" and "UV" files), and uuu is the users number in hexideoimal notation.

5.4 DATA CATALOGUE
The data oatalogue aotually oonsists of many separate files. There is one direotory file (type 'CA') per user for private

oatalogues per disk drive. Eaoh oatalogued file has its own oatalogue header file ('CB').

5.4.1 Catalogue Direotory
Eaoh oatalog direotory oontains a one blook (256-word) header

and a number of oatalog direotory blooks at the end. The header blook oontains principally the number of oatalog blooks in the file; this is set when the file is initialized. The direotory blooks oontain a 32-byte referenoe to eaoh oatalog header reoord. The direotory is used to speed oatalog searohes and also oontains the map status words that register map file aotivity.

5.4.2 Header Blook
The format of the Header Blook is as follows:

OFFSET LENGTH TYPE DESCRIPTION
0 1 1*2 Volume number of disk oontaining this oatalog1 1 1*2 Unused
2 1 1*2 Number of oatalog blooks in this file

5.4.3 Direotory Seotion
The Mth direotory blook oontains NLPR entries, eaoh NWPL words, indexing the NLPR*(M-1)+1 to the NLPR*M-1 oatalog reoords. The first direotory blook is the 2nd blook in the file. The parameters are given by NWPL - 6 + IWPC(20), NLPR - 256/NWPL, and IWPC(20) - number of words to hold twenty paoked oharaoters.

CATALOGUES
DATA CATALOGUE Page 5-4

6 May 85

The description of a direotory entry is as follows:
OFFSET LENGTH TYPE DESCRIPTION

User ID number; or -1 if slot is empty Map file aotivity status 1*2(3) Date/Time file was oataloged
User defined sequenoe number 1 to 9999 User defined map name, 12 oharaoters User defined map olass, 6 oharaoters Map type, 2 oharaoters

where numbers in () are those appropriate to normal, 16-bit maohines.

0 1 1*21 1 1*22 3 I*2(5 1 1*26 (6) C*12(12) (3) C*6(15) (1) C*2

5.4.4 Direotory Useage
Map name and olass are user defined oharaoter strings of 12 and6 oharaoters that oan be used to identify and looate a speoifio map. The strings are stored as paoked oharaoters together with the 2-oharaoter string whioh identifies the “physioal" map type, in their slots in the direotory. The sequenoe number is similarly an arbitrary 1*2 referenoe number.
The Map Status is an 1*2 number registering the aotivitv of the map file itself.

STATUS - 0 -> no programs are aooessing the map file- n>0 -> n programs are reading the map
- -1 »> one program is writing into the file- n<0 -> 1 + n programs are reading the map, one

program is writing into the file.
Maintaining the integrity of the oatalog entries is essential

to insure reliable aooess to the oatalogued files. Thus certain rules should be followed when using the oatalog. These rules are
ooded in to the utility routines desoribed below; these routines should be used when at all possible to aooess the oatalog.Rules:

1. Take exolusive use of the oatalogue whenever you aooess it. The required operation should be done quiokly and thenthe oatalog file should be olosed and released.
2. The status word must be monitored to see if an intended

oatalog or map operation will disturb an (asynchronous) operation already in progress.
Speoifioally: Do not modify a oatalog blook, nor write into amap file whioh is not in a rest state (STATUS - 0).

If you intend to write into a map and STATUS - 0, ohange the
status to "WRITE" (STATUS - -1) before releasing ezolusive use of the oatalog.

CATALOGUES
DATA CATALOGUE Page 5-5

6 May 85

If you intend to read a map file or oatalog blook, oheok to see if someone else is writing on it (STATUS < 0). If so deoide whether
this is aooeptable to your program. If so modify the status to indioate use;

STATUS - 1 + STATUS if STATUS > 0 STATUS — 1 + STATUS if STATUS < 0.
Clear status when you have finished your operation. If you

were reading, reverse the prooess just desoribed. If you were writing; STATUS - - (1 + STATUS)

5.4.5 Struoture Of The Catalogue Header Reoord
The oatalogue header blook is a fixed format data struoture 512

bytes long (one byte is defined in AIPS as half a short integer). The oatalogue header blook oontains double and single preoision floating point numbers, short and long integers , and oharaoter
strings. The oatalogue header reoord is aooessed by equivalenoing integer, real and double preoision arrays, and obtaining the
information from the array of the appropriate data type. Sinoe the amount of storage for different data types varies from maohine to maohine, and the oontents of the oatalogue header reoord
oooasionally ohange, we use pointers for the different arrays that are oomputed by VHDRIN. These pointers are kept in a oommon invoked with the INCLUDES DHDR.INC and CHDR.INC.

The uses of the pointers and values on a VAX are given in the following table. In this table the term "random parameters" refer to the portion of a uv data reoord that oontain u, v, w, time,
baseline eto.; the term "indeterminate" pixel means a pixel whose

DESCRIPTION
Souroe name
Telesoope, i.e. 'VLA' e.g. reoeiver or oorrelator Observer name
Observation date in format 'DD/MM/YY' Date map oreated in format 'DD/MM/YY' Map units, i.e. 'JY/BEAM 'Random Parameter types
Coordinate type, i.e. 'LL'
Map soaling faotor
Map offset faotor: Real value -BSCALE * pixel + BZERO
Coordinate value at referenoe pixel
Coordinate value inorement along axis

tlue is not given.
?fset LENGTHl TYPE POINTER

0 8 C*8 K40BJ- 18 8 C*8 K4TEL- 316 8 C*8 K4INS- 524 8 C*8 K40BS- 732 8 C*8 K4D0B- 940 8 C*8 K4DMP- 1148 8 C*8 K4BUN- 1356 7*8 C*8(7) K4PTP- 15
(K2PTPN- 7)112 7*8 C*8(7) K4CTP- 29
(K2CTPN- 7)168 8 R*8 K8BSC- 22176 8 R*8 K8BZE- 23

184 56 R*8(7) K8CRV- 24
(K2CTPN- 7)240 28 R*4(7) K4CIC- 61(K2CTPN- 7)

CATALOGUES
DATA CATALOGUE Page 5-6

6 Hay 85

268 28 R*4(7) K4CRP= 68
(K2CTPN- 7)296 28 R*4(7) K4CRT- 75
(K2CTPN- 7)324 4 R*4 K4EP0- 82328 4 R*4 K4DMX- 83332 4 R*4 K4DMN= 84336 4 R*4 K4BLK= 85

340 4 1*4 K3GCN=

344 2 1*2 K2PCN=173346 2 1*2 K2DIM-174348 14 1*2(7) K2NAX-175 (K2CTPN- 7)362 2 1*2 K2BPX-182

364 2 1*2 K2INH-183

366 2 1*2 K2IMS-184368 12 C*12 K4IMN- 93 (K4IMN0= 1)380 6 C*6 K4IMC- 93 (K4IMC0-13)386 2 C*2 K4PTY- 93
(K4PTY0-19)388 2 1*2 K2IMU-195390 4 1*4 K3NIT-392 4 R*4 K4BMJ= 99396 4 R*4 K4BMN=100400 4 R*4 K4BPA-101404 2 1*2 K2TYP-203

406 2 1*2 K2ALT-204

408 8 R*8 K80RA- 52416 8 R*8 K80DE- 53424 8 R*8 K8RST- 54432 8 R*8 K8ARV- 55
440 4 R*4 K4ARP-111
444 4 R*4 K4XSH-112448 4 R*4 K4YSH-113452 20 1*2(10) K2EXT-227 (K2EXTN-10)472 20 1*2(10) K2VER-237

Coordinate Referenoe Pixel
Coordinate Rotation Angles
Epooh of ooordinates (years)Real value of data maximum Real value of data minumum
Value of indeterminate pixel (real maps only)
Number of random par. groups.This is the number of uv data reoords.
Number of random parameters Number of ooordinate axes Number of pixels on eaoh axis
Code for pixel type: 1 integer,2 real, 3 dbl preo, 4 oomplex, 5 dbl preo oomplex
For integer maps: < 0 the value of an
indeterminate pixel, > 0 the number of bits used to represent noise est.- 0 no blanking of pixels Image sequenoe no.Image name
Charaoter offset in paoked string Image olass
Charaoter offset in paoked string
Map physioal type (i.e. 'MA'.'UV') Charaoter offset in paoked string Image user ID number
olean iterations Beam major axis in degrees Beam minor axis in degrees
Beam position angle in degrees Clean map type: 1-4 »> normal,
oomponents, residual, points.For uv data this word oontains a two oharaoter sort order oode. Velooity referenoe frame: 1-3 -> LSR, Helio, Observer +
256 if radio definition.Antenna pointing Right Asoension
Antenna pointing Deolination Rest frequenoy of line (Hz)
Alternate ref pixel value (frequenoy or velooity)
Alternate ref pixel looation (frequenoy or velooity)

Names of subsidiary file types (i.e. 'PL') 2 ohar unpaoked form
Number of versions of corresponding

CATALOGUES
DATA CATALOGUE Page 5-7

6 Hay 85

(K2EXTN-10) subsidiary file 492 28 1*2(10) Reserved

The aotual values of the pointers depend on the size of the various data types and are oomputed in the routine VHDRIN. Note that VHDRIN should be oalled after ZDCHIN is oalled beoause it uses values set by ZDCHIN. VHDRIN has no oall arguments.
The name of the pointer tells whioh data type array the data is

to be read from: K2nnn indioates the short integer array, K3 indioates the long integer array, K4nnn indioates the real array,
and K8nnn indioates the double preoision array. Host of the oharaoter strings are obtained from the real array and many require speoial handling. The Name, olass, and physioal type are oontained in a paoked string and the labels of the regular and random axes are eaoh kept in a paoked oharaoter string. This is best explained by an example:

INTEGER*2 CATBLK(256), NDIH1, N1, N6, N8, INDEX, IFPC REAL*4 CAT4(128), CRPIX2, CLASS(2), ALABE2(2)REAL * 8 CAT8(64), CRVAL3 INCLUDE ' INCS: DHDR. INC'

INCLUDE 'INCS:CHDR.INC' COMHON /HAPHDR/ CATBLK

♦

EQUIVALENCE (CATBLK, CAT4, CAT8) DATA Nl, N6, N8 /l,6,8/

CC
NDIM1 - CATBLK(K2NAX)CC
CRPIX2 - CAT4(K4CRP+1)CC
CRVAL3 - CAT8 (K8CRV+ 2)CCCC

C
C

INDEX - K4PTP + (2-1) * IFPC (N8) CALL CHCOPY (N8, Nl, CAT4(INDEX),C

Get the dimension of the first axis (1*2)
Get referenoe pixel of seoond axis (R*4)
Get ooordinate at referenoe pixel on third axis. (R*8)
Copy axis label for seoond axis (R*4 array).
Note: IFPC is an AIPS utility funotion that returns the number of R*4 words for, in
this oase, 8 oharaoters.
Nl, ALABE2)
Copy image olass.

CATALOGUES
DATA CATALOGUE Page 5-8

6 May 85

CALL CHCOPY (N6, K4IMC0, CAT4(K4IMC), Nl, CLASS)

In the example above the oatalogue header blook is obtained from a oommon named /MAPHDR/. Many AIPS utility routines get the oatalogue header reoord from this oommon, so it is a good plaoe to store it.

5.4.5.1 Image Files - Images oonsist of a single multidimensional
(up to 7), reotangular array of pixel values. The struoture of this array is defined by the oatalogue header reoord whioh oontains the number of dimensions (K2DIM), the number of pixels on eaoh axis (K2NAX) and the format of the data (K2BPX). If the data is in the form of soaled integers, the soaling parameters are kept in the header reoord (K8BSC, K8BZE).

The label for eaoh axis is in a paoked oharaoter string array pointed to by K4CTP. The ooordinate inorement between pixels must be a oonstant on eaoh axis, and the array of axis inorements is obtained using the pointer K4CIC. The array of ooordinate referenoe pixels (the pixel at whioh the ooordinate value is that pointed to by K8CRV) is pointed to by K4CRP; the referenoe pixel need not be either an integral pixel or in the range oovered by the data. The
ooordinate values at the referenoe pixels are pointed to by K8CRV.

Eaoh axis also has an assooiated rotation angle but the only rotation currently supported is that on the plane of the sky. This
rotation value is kept on the deolination/Galaotio latitude/Eoliptio latitude axis and is the rotation of the ooordinate system from north toward east.

Sinoe there is no explioit provision made in the oatalogue header for suoh important parameters as position, frequency, and polarization, these are always deolared as axes even if that axis contains only one pixel. This allows a plaoe in the header reoord for these parameters.
Sinoe the stokes' axis is not inherently an ordered set, we use the following definations for the values along the stokes' axis.

Pixel values may be blanked using "magio value" blanking. The magio (stored) value for soaled integer images is obtained using the pointer K2INH (usually -32768) and for floating point images by K4BLK.

0 -> beam 5 -> Peroent polarization6 -> Fraotional polarization7 -> Polarization position angle8 -> Speotral index9 -> Optioal depth

1 -> I2 -> Q3 -> U
4 -> V

CATALOGUES
DATA CATALOGUE Page 8-9

6 May 85

Eaoh row of an image (first dimension) starts on a disk seotor boundary unless several rows may fit in a seotor. In the latter oase, as many rows as possible are put in a seotor but a row is not allowed to oross a seotor boundary. Eaoh plane in the image (dimension 3 and higher) starts on a seotor boundary.
All angles in the header reoord are in degrees.

5.4.5.2 Uv Data Files - Uv data files oonsist of a sequenoe of visibility reoords eaoh of whioh oontains all data measured on a given baseline in a given integration period. The number of
visibility reoords is given in the oatalogue header reoord by the integer*4 value pointed to by K3GCN. The order of the visibility reoords are given by the two oharaoter oode pointed to by K2TYP.
(More details of the sort order oan be found in the ohapter on disk I/O). All values are in floating point.

Eaoh visibility reoord oonsists of a number (K2PCN) of "random" parameters followed by a data array similar to a miniature image. Any number of random parameters are allowed but only the labels of 7
oan be kept in the header. These labels are kept in paoked oharaoter strings pointed to by K4PTP. The random parameters are used for values whioh vary "randomly" from visibility to visibility
(ie. u, v, w, time, baseline). The data array is desoribed by the oatalogue header reoord in the same ways as for an image file.

The tangent point of the data (position for whioh the u, v, and w are oomputed) is kept as the RA and Deo axis in the data array. The offset in x and y (RA and deo after rotation) are pointed to by K4XSH and K4YSH. All angles in the oatalogue header reoord are in degrees.
Uv data may oontain oorrelator based polarization or true

Stokes' parameters. In the former oase, the following Stokes' values are defined:
-1 -> RR-2 -> LL-3 -> RL-4 -> LR

Visibility reoords are allowed to span disk seotor boundaries. More details about the uv data file format are given in the ohapter on disk I/O.

5.4.6 Routines To Aooess The Data Catalogue

CATALOGUES
DATA CATALOGUE Page 5-10

6 Hay 85

5.4.6.1 HAPOPN And HAPCLS - There are a number of utility routines to aooess the oatalogue header reoord. In many oases, most of the oatalogue operations oan be taken oare of by the pair of routines HAPOPN and HAPCLS. HAPOPN will looate the oorreot oatalogue entry from a given Name, olass, disk, sequenoe and physioal type following all default and wildoard conventions. HAPOPN then reads the oatalogue header reoord, opens the main data file and marks the oatalogue status word. Following a oall to an initialization routine the file oan be read from or written to. After all I/O to
the file is oomplete, HAPCLS will olose the file, update the oatalogue header reoord if requested and olear the oatalogue status word for the file. A description of the oall sequenoe of HAPOPN and HAPCLS is desoribed at the end of this ohapter.

5.4.6.2 CATDIR And CATIO - If HAPOPN and HAPCLS are not
appropriate, then the use of more specialized routines is neoessary. First the desired file must be looated in the oatalogue direotory.
The routine CATDIR is the basio method of aooessing the oatalogue direotory. This routine will find the desired file given the name, olass, eto. following the usual default and wildoard conventions. CATDIR returns the disk number and oatalogue slot number. Given a
disk number and oatalogue slot number CATIO oan read or write a catalogue header reoord and/or ohange the status word. Detailed
descriptions of CATDIR and CATIO oan be found at the end of this ohapter.

5.4.7 Routines To Interpret The Catalogue Header
There are a number of speoialized routines whioh obtain information from the oatalogue header reoord. The following list gives a short description of eaoh and detailed descriptions of the oall sequenoe are found at the end of this ohapter.
- AXEFND will return the axis number of a given type of random or regular axis.
- ROTFND returns the angle of rotation on the sky of either an image or uv data file.
- UVPGET obtains a number of pointers and other pieoes of information whioh simplify aooessing uv data.

CATALOGUES
DATA CATALOGUE

Page 5-11
6 Hay 85

5.4.8 Catalogue Status
The AIPS oatalogue direotory keeps a status word for eaoh oatalogued file. This status word is used to help prevent oonflioting use of the file. The status may be marked as either 'READ' or 'WRIT'; the status of eaoh file oan be seen in AIPS by

listing the oatalogue. A file oan be marked 'READ' multiple times, but a file marked 'WRIT' oannot be marked 'READ' or 'WRIT' again, and a file marked 'READ' oannot be marked 'WRIT'.
The use of the status word oan oomplioate updating of the oatalogue header with CATIO. If the status of a file has been marked as 'WRIT' then the opoode in the oall to CATIO must be 'UPDT'. If the status is not marked the opoode must be 'WRIT' to update the oatalogue header blook.

5.5 IHAGE CATALOGUE
5.5.1 Overview
The image oatalogue oontains data for images stored on the TV devioe that identify the images, refer them baok to their original map files, and speoify soaling of the X-Y and intensity coordinates. There is a separate image oatalogue whioh performs the same funotions for graphios devioes (e.g. TEK4012 storage soreens).
There is one image oatalogue file for eaoh television devioe whose physioal name corresponds to IClOOOOn, where n - the devioe number (0 for graphios, 1 to n for TVs). They reside on disk 1 and must be oreated at AIPS installation, usually by FILAIP.

5.5.2 Data Structures
General: For eaoh grey-soale image plane of the TV devioe, the IC oontains N 1-blook (256-word) reoords for cataloguing up to N subimages, plus a (N-l)/51+l blook direotory. The direotory

immediately preoedes the oatalogue blooks for eaoh image plane. For
eaoh TV graphios overlay plane there is one oatalogue blook with no direotory. These blooks follow immediately after the last grey-soale blook.

The IC for pure graphios devioes (oalled TK devioes) has one image oatalogue blook for eaoh devioe in the system inoluding all "looal" TK devioes followed by all remote-entry devioes. Reoord number n in this file is assooiated with TK devioe number n (NTKDEV in /DCHCOH/).
The image oatalogue blooks themselves are essentially duplicates of the map oatalogue blooks exoept that soaling information replaoes the extension file index of the map oatalogue.

CATALOGUES
IMAGE CATALOGUE Page 5-12

6 May 85

The following is a description of the format of the direotory blook and the portions of the image oatalogue blook whioh is different from the normal oatalogue header blook.
Direotory Blook (Grey-soale image)

OFFSET LENGTH TYPE
0 2 1*2
2 2 1*24 8 1*2(4)
12 2 1*214 8 1*2(4)

DESCRIPTION
Sequenoe number of last sub-image oatalogued on this plane
Seq. no. of sub-image in slot 1;TV pixel positions of oorners of xl,yl,x2,y2
Seq. no. of sub-image in slot 2; 0 if empty TV pixel positions of oorners of 2nd sub-image

0 if slot empty
1st sub-image,

Catalogue Blook for eaoh image or subimage:
Most of the Image Catalogue blook is identioal to the map

CAtalog blook of the souroe of the image. (See seotion on CB files.) The information on antenna pointing, alternate frequenoy/velooityaxis descriptions, and extension
OFFSET LENGTH TYPE POINTER
408 8 R*4(2) toorHIIH

416 2 1*2 I2VOL-209418 2 1*2 I2CNO-210420 8 1*2(4) I2WIN-211
428 10 1*2(5) I2DEP-215
438 8 1*2(4) I2COR-220
446 2 1*2 I2TRA-224

448 2 1*2 I2PLT-225450 62 1*2(31)> I20TH»22<

files is replaoed in the IC by:
DESCRIPTION
Map values displayed as min # max
brightness (units are those of file, not the physioal ones)Disk volume from whioh map oame Catalogue slot number of orig. map
Map pixel positions of oorners of displayed image (rel. to orig. map) Depth of displayed image in 7 -
dimensional map (axes 3 - 7)TV pixel positions of oorners of image on soreen
2-ohar oode for transfer funotion
used to oompute TV brightness from map intensity values.Code for type of plot.Miso. plot type dependent info.(at the moment no more than 20 used)

The standard pointer values are oomputed by VHDRIN and are
available through the oommon /HDRVAL/ via inoludes DHDR.INC and CHDR.INC. They are maohine-dependent and are used in the same way as the normal oatalogue pointers.

CATALOGUES
IMAGE CATALOGUE Page 5-13

6 May 85

5.5.3 Usage Notes
We assume that single images only are stored on graphios planes; there is no direotory.
When a grey-image plane is oleared, its direotory is zeroed. As images are added to the plane, their coordinates are written into an open direotory slot for that plane, along with the ourrent value

of the plane sequenoe number. The sequenoe number is then incremented. If an old image is completely overwritten by a new one, its direotory slot is oleared. For partially overlapping images, the sequenoe # allows the user to select the one most reoently loaded into a given part of the plane.

5.5.4 Subroutines
There are a number of routines to manipulate the image oatalogue. The following is a short description of eaoh; detailed descriptions of the oall sequenoes is given at the end of this ohapter.

ICINIT olears the Image Catalogue for a given plane.
- ICOVER asks if there are any overlapped images in eaoh quadrant visible.

ICWRIT adds a new blook to the oatalogue.
- ICREAD returns the blook corresponding to a given TV pixel.
- TVFIND determines desired image, asks user if > l visible.

These routines expeot the "plane number" as an argument. TV gray soale planes are numbered 1 - NGRAY, TV graphios overlay planes are numbered NGRAY+1 - NGRAY+NGRAPH, and TK devioes are referenced by any plane number > NGRAY+NGRAPH.

5.5.5 Image Catalogue Commons
The COMMON /TVCHAR/ referenced by 'DTVC.INC' and 'CTVC.INC' oontains TV devioe oharaoteristios suoh as:
NGRAY - # of grey-soale planes on this devioe NGRAPH - # of graphios planes
MAZXTV(2) Maximum number of pixels in x,y directions in image

The listings of DTVC.INC and CTVC.INC are given at the end of this ohapter.

CATALOGUES
IMAGE CATALOGUE Page 5-14

6 May 85

The oommon /DCHCOM/ oontains two important parameters in this regard: NTVDEV and NTKDEV. The subroutine ZDCHIN sets these to the aotual number of suoh devioes present looally. Then, the routines ZWHOMI (in AIPS only) and GTPARM (in all tasks) reset them to the devioe number assigned to the ourrent user. ZWHOMI determines these assignments.

5.6 COORDINATE SYSTEMS
Astronomioal images are usually represented as projections onto a plane oausing the true position on the sky of a pixel to be a nonlinear funotion of the pixels looation. In a similar fashion, most speotral observations are done with evenly spaoed frequenoy ohannels whioh results in a non linear relation between the velooity

of a ohannel and the ohannel number. AIPS memo no. 27 desoribes in great detail the approaoh AIPS uses to these problems. Muoh of the following seotions is taken from this memo.

5.6.1 Velooity And Frequenoy
The physioally meaningful measure in a spectrum is the radial velooity of a feature; unfortunately, observations are normally made using a uniform spaoing in frequenoy (and may oontain Doppler

traoking to remove the effeots of the earth's motion). Thus it is neoessary to oonvert between frequenoy and velooity. The details of the oonversion are in AIPS memo no. 26 and will not be reproduoed here. Conversion oan be done using the routines desoribed in the
seotion on oelestial positions. The following seotions desoribe the naming oonventions and the way in whioh the neoessary information is stored in the oatalogue header blook.

5.6.1.1 Axis Labels - The AIPS oonvention is to use the axis label to denote the axis type with the first four oharaoters and the inertial referenoe system with the last four oharaoters. The axis types ourrently supported are 'FREQ...' whioh is regularly gridded
in frequenoy, 'VELO...' whioh is regularly gridded in velooity, and 'FELO...' whioh is regularly gridded in frequenoy but expressed in velooity units in the optioal oonvention.

The inertial referenoe systems ourrently supported are '-LSR','-HEL', and '-OBS' indioating Looal Standard of Rest, heliooentrio, and geooentrio. Others may be added if neoessary.

CATALOGUES
COORDINATE SYSTEMS Page 5-15

6 May 85

5.6.1.2 Catalogue Information - In addition to the normal axis ooordinate information oarried in the oatalogue header, desoribed previously in this ohapter, the oatalogue header reoord has provision for storing an alternate frequenoy axis type. The AIPS verb ALTDEF allows the user to switoh the two axis definitions. The pointers for these values are given in the following:
K8RST Rest frequenoy (Hz)
K4ARP Alternate referenoe pixel
K8ARV Alternate referenoe value
K2ALT axis type oode. 1->LSR, 2->HEL, 3->OBS (plus 256if radio oonvention). 0 implies no alternate axis.

5.6.2 Celestial Positions
The following seotions will desoribe the AIPS conventions and routines for determining positions from images with different projections.

5.6.2.1 Axis Labels - The AIPS oonvention is to use the first four
oharaoters of the axis type and the seoond four oharaoters to denote the projection. The standard axis types are given in the following:

- RA— denotes Right asoension
- DEC- denotes deolination

GLON denotes galaotio longitude
- GLAT denotes galaotio latitude

ELON denotes Eoliptio longitude
ELAT denotes Eoliptio latitude

CATALOGUES
COORDINATE SYSTEMS

Page 5-16
6 May 85

The geometry used for the projeotion is given in the axis label using the oodes given in the following list:
- -TAN denotes tangent projeotion. This projeotion is oommonly used in optioal astronomy.
- -SIN denotes sine projeotion. This projeotion is oommonly used in radio aperature synthesis images.
- -ARC denotes aro projeotion. In this geometry, angular distanoes are preserved and it is oommonly used for Sohmidt telesoopes and for single dish radio telesoopes.

-NCP denotes a projeotion to a plane perpendioular to the North Celestial Pole. This geometry is used by the WRST.

5.6.2.2 Determining Positions - There are a number of AIPS utility routines whioh help determine the position of a given looation in an
image. These routines use values in the oommon /LOCATI/ whioh is obtained using the INCLUDES DLOC.INC and CLOC.INC. Listings of these inoludes oan be found at the end of this ohapter. The /LOCATI/ oommon in initialized by the routine SETLOC.

5.6.2.2.1 Position Routines - The upper level position determination routines are briefly desoribed in the following; details of the oall sequenoes are given at the end of this ohapter.
SETLOC initilizes the /LOCATI/ oommon based on the ourrent oatalogue header blook in the /MAPHDR/ oommon.

- XYPIX determines the pixel looation corresponding to a speoified coordinate value.
- XYVAL determines the coordinate value (X,Y,Z) corresponding to a given pixel looation.
- FNDX returns the X axis coordinate value of a point given the Y axis coordinate value and the X axis pixel position of a point. Does rotations and non linear axes.
- FNDY returns the Y axis ooordinate value of a point given the X axis ooordinate value and the Y axis pixel position of a point. Does rotations and non linear axes.

CATALOGUES
COORDINATE SYSTEMS Page 5-17

6 May 85

5.6.2.2.2 Common /LOCATI/ - This oommon is used by the position routines and the plot labeling routines to keep oonstants needed for
the ooordinate transformation. The oontents of this oommon are desoribed in the following:

Referenoe pixel values
Degrees to radians multiplier - pi/180 delta(nu) / nu(x) when a FELO axis is present.
Referenoe pixel looations Axis inorements
Axis typesx,y axis prefixes for labeling Rotation angle of position axes
Labels for axes 3 and 4 values (4 oharaoters per floating word)
Value of Idepth from SETLOC oall1 relative number of z axis Position axis oode Whioh position is whioh
Speoial x,y label request
Extra sign to apply to rotation Kind of axis oode
0-rel axis number-longitude axis 0-rel axis number-latitude axis
0-rel axis number-frequenoy axis 0-rel axis number-stokes axis 0-rel axis number-"primary axis" 3 0-rel axis number-"primary axis" 4 Number of oharaoters in SAXLAB

RPVAL R*8(4)C0ND2R R*8AXDENU R*8
RPLOC R*4(4)AXINC R*4(4)CTYP R*4(2,4)CPREF R*4(2)ROT R*4SAXLAB R*4(5,2)
ZDEPTH 1*2(5)
ZAXIS 1*2AXTYP 1*2CORTYP 1*2LABTYP 1*2SGNROT 1*2AXFUNC 1*2(7)KLOCL 1*2KLOCM 1*2KLOCF 1*2KLOCS 1*2KLOCA 1*2KLOCB 1*2NCHLAB 1*2(2)

Several of the above values need further explanation:
no position-axis pair x-y are position pair x-z are position pair
y-z are position pair 2 z axes form a pair linear x,y axes x is longitude,
is longitude,
is longitude, is longitude, is longitude, is longitude, yoode + xoode use CPREF, CTYP

use Eoliptio longitude use Eoliptio latitude use Galaotio longitude
use Galaotio latitude use Right Asoension
use deolination no axis

value - 0
- 1- 2
- 3
- 4

value - 0- 1
- 2
- 3
- 4
- 5
- 6value - 10oode - 0- 1
wm 2- 3- 4
- 5
- 6value - -1

Y x z
Xz
Y

is latitude is latitude
is latitude is latitude is latitide is latitude

CATALOGUES
COORDINATE SYSTEMS Page 5-18

6 May 85

- 0 linear axis- 1 FELO axis
- 2 SIN projeotion- 3 TAN projeotion- 4 ARC projeotion- 5 NCP projeotion

The KLOCn parameters have a value of -1 if the oorresponding
axis does not exist. If AXTYP is 2 or 3, the pointer KLOCA will
always point at the z axis. In this oase, SETLOC does not have enough information to prepare SAXLAB(,1). The string must be oomputed later when an appropriate x,y position is speoified.

5.6.3 Rotations
The use of one rotation angle per axis as provided in the AIPS oatalogue header is obviously not enough to oompletely desoribe an arbitrary rotation of the ooordinate system. In praotioe, the only rotation ourrently used in AIPS is the rotation in the sky plane

(projeoted RA and deo, galaotio latitude and longitude, or eoliptio latitude and longitude). The rotation angle in this plane of the aotual ooordinate system of the image, in the usual astronomioal
north through east oonvention, is given on the axis corresponding to the declination, galaotio latitude, or eoliptio latitude as appropriate.

Another oonvention followed in AIPS involving rotations is related to preoession. As the earth preoesses, the north-south line
in a field will rotate; this oauses a rotation in an image made of a given field on the sky. This "differential preoession" will oause problems determining positions away from the field oenter and oomparing images made at different epoohs. To avoid this problem, the ooordinate system used for the u-v data is rotated to the orientation as of the mean epooh (1950 or 2000).

CATALOGUES
TEXT OP INCLUDE FILES Page 5-19

6 May 85

5.7 TEXT OF INCLUDE FILES
There are several types of INCLUDE file whioh are distinguished by the first oharaoter of their name. Different INCLUDE file types oontain different types of Fortran deolaration statments as desoribed in the following list.
- Dxxx.INC. These INCLUDE files oontain Fortran type (with dimension) deolarations.
- Cxxx.INC. These files oontain Fortran COMMON statments.
- Exxx.INC. These oontain Fortran EQUIVALENCE statments.

Vxxx.INC. These oontain Fortran DATA statments.
- Ixxx.INC. Similar to Dxxx.INC files in that they oontain

type deolarations but the deolaration of some varaible is omitted. This type of inolude is used in the main program to reserve spaoe for the omitted variable in the appropriate oommon. The omitted variable must be deolared and dimensioned separately.
Zxxx.INC. These INCLUDE files oontain deolarations whioh may ohange from one oomputer or installation to another.

5.7.1 CHDR.INC

Inolude CHDRCOMMON /HDRVAL/ K40BJ, K4TEL, K4INS, K40BS, K4D0B, K4DMP.* K4BUN, K4PTP, K4CTP, K4CIC,* K4DMX, K4DMN, K4BLK, K4IMN,* K4BMN, K4BPA, K4ARP, K4XSH,* K8BSC, K8BZE, K8CRV, K80RA,* K3GCN, K3NIT,
* K2PTPN, K2CTPN, K2EXTN,* K2PCN, K2DIM, K2NAX, K2BPX,* K2ALT, K2EXT, K2VER,
* I4RAN, I2VOL, I2CNO, I2WIN,
* K2RES, K2RESN

K4CRP, K4CRT, K4EP0,K4IMC, K4PTY, K4BMJ,
K4YSH, K4IMN0, K4IMC0, K4PTY0,K80DE, K8RST, K8ARV,

K2INH, K2IMS, K2IMU, K2TYP,
I2DEP, I2COR, I2TRA, I2PLT, I20TH,

End CHDR.

CATALOGUES
TEXT OF INCLUDE FILES Page 5-20

6 May 85

5.7.2 CLOC.INC

C Inolude CLOCCOMMON /LOCATI/ RPVAL, C0ND2R, AXDENU, RPLOC, AXINC, CTYP,
* CPREF, ROT, SAXLAB, ZDEPTH, ZAXIS, AXTYP, CORTYP, LABTYP,* SGNROT, AXFUNC, KLOCL, KLOCM, KLOCF, KLOCS, KLOCA, KLOCB,* NCHLAB

C End CLOC

5.7.3 CTVC.INC

C Inolude CTVCCOMMON /TVCHAR/ NGRAY, NGRAPH, NIMAGE, MAXXTV, MAXINT, SCXINC,* SCYINC, MXZOOM, NTVHDR, CSIZTV, GRPHIC, ALLONE, MAXXTK,* CSIZTK, TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS, TVZOOM,* TVSCRX, TVSCRY, TVLIMG, TVSPLT, TVSPLM, TVSPLC, TYPMOV,* YBUFF
C End CTVC

5.7.4 DHDR.INC

Inolude DHDRINTEGER*2 K40BJ, K4TEL, K4INS, K40BS, K4D0B, K4DMP, K4BUN,* K4PTP, K4CTP, K4CIC, K4CRP, K4CRT, K4EP0, K4DMX, K4DMN,* K4BLK, K4IMN, K4IMC, K4PTY, K4BMJ, K4BMN, K4BPA, K4ARP,* K4XSH, K4YSH, K4IMN0, K4IMC0, K4PTY0
INTEGER*2 K8BSC, K8BZE, K8CRV, K80RA, K80DE, K8RST, K8ARVINTEGER*2 K3GCN, K3NITINTEGER*2 K2PTPN, K2CTPN, K2EXTN
INTEGER*2 K2PCN, K2DIM, K2NAX, K2BPX, K2INH, K2IMS, K2IMU,* K2TYP, K2ALT, K2EXT, K2VER
INTEGER*2 I4RAN, I2VOL, I2CNO, I2WIN, I2DEP, I2C0R, I2TRA,* I2PLT, I20TH
INTEGER*2 K2RES, K2RESN

o o
CATALOGUES
TEXT OF INCLUDE FILES Page 5-21

6 May 85

5.7.5 DLOC.INC

Inolude DLOC Inolude DLOCREAL*8 RPVAL(4), COND2R, AXDENU
REAL*4 RPL0C(4), AXINC(4), CTYP(2,4), CPREF(2,2), ROT,* SAXLAB(5,2)
INTEGER*2 ZDEPTH(5), ZAXIS, AXTYP, CORTYP, LABTYP, SGNROT,* AXFUNC(7), KLOCL, KLOCM, KLOCF, KLOCS, KLOCA, KLOCB,* NCHLABC2)

End DLOC

5.7.6 DTVC.INC

Inolude DTVCINTEGER*2 NGRAY, NGRAPH, NIMAGE, HAXXTV(2), HAXINT, SCXINC,* SCYINC, MXZOOM, NTVHDR, CSIZTV(2), GRPHIC, ALLONE, HAXXTK(2),* CSIZTK(2), TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUHS(7),
* TVZ00MC3), TVSCRX(16), TVSCRY(16), TVLIMG(4), TVSPLT(2),* TVSPLM, TVSPLC, TYPMOV(16), YBUFF(168)

End DTVC

CATALOGUES
ROUTINES Page 5-22

6 Hay 85

5.8 ROUTINES
5.8.1 AXEFND - determines the order number of an axis whose name is
in the unpacked oharaoter string TYPE. It will work for either regular or random axes.

AXEFND (NCHC, TYPE, NAXIS, CAT4, IOFF, IERR)
Inputs: NCHC

TYPE(2) NAXIS

CAT4(*)

Output:
IOFF IERR

1*2R*4
1*2

R*4

1*2
1*2

Compare only first NCHC oharaoters of axis type Unpaoked ohar. axis type,
the number of axes to searoh, for uniform axes use: K2CTPN for random axes use: K2PTPN Catalogue axis name list,

for uniform axes use: CAT4(K4CTP) for random axes use : CAT4(K4PTP)
Axis offset (zero relative axis number)Return error oode, 0->QK, l«>oould not find.

5.8.2 CATDIR - manipulates oatalogue direotory and will fill in the defaults used for NAME, CLASS, SEQ eto. if requested.
CATDIR (OP, IVOL, CNO, NAME, CLASS, SEQ, PTYPE, USID,* STAT, BUFF, IERR)Inputs:
OP R*4 speoifies the desired operation:

searohes find entry with speoified data:
'SRCH' high seq # (if SEQ 0), return values 'SRNH' high seq # (if SEQ 0), NOT return values 'SRCN' next matoh, return values 'SRNN' next matoh, NOT return values 'OPEN' - oreate a new slot 'CLOS' - destroy a slot
'INFO' - return oontents of a slot 'CSTA' * modify status of a slot IVOL 1*2 Disk volume oontaining oatalogue
0 -> all on searohes, OPEN

CNO 1*2 Slot number to begin: SRCN, SRNN, OPEN
Ignored if IVOL - 0 : searohes, OPEN
Slot number to examine (solely): CLOS, INFO, CSTA NAME R*4(3) File name: searohes, OPEN, CLOS (12 paoked ohars) CLASS R*4(2) File olass: searohes, OPEN, CLOS (6 paoked ohars)SEQ 1*2 PTYPE 1*2 USID 1*2 STAT R*4

Outputs:CNO 1*2 IVOL 1*2

File sequenoe number: searohes, OPEN, CLOS
File physioal type (2 ohars): searohes, OPEN, CLOS User identification #: searohes, OPEN, CLOS Status (OP-CSTA): READ, WRIT, CLRD, or CLWR
Slot number found: searohes, OPEN
If 0 on input, value aotuallv used: searohes, OPENNAME R*4(3) File name: SRCH, SRCN, INFO (12 paoked ohars)

CATALOGUES
ROUTINES Page 5-23

6 Hay 85

CLASS R*4(2) File type: SRCH, SRCN, INFO (6 paoked ohars)
SEQ 1*2 File sequenoe number: SRCH, SRCN, INFO
PTYPE 1*2 File physioal file type (2 ohars): SRCH, SRCN, INFOUSID 1*2 User identification #: SRCH, SRCN, INFOSTAT R*4 Status: INFO
BUFF 1*2(256) Working bufferIERR 1*2 Error return

1 -> oan't open oat file2 -> input error
3 -> oan't read oatalogue file
4 -> CLOSE blooked by non-REST status
5 -> end of oatalogue on OPEN or SRCH i.e.no open slots or slot not found6 -> on INFO requested slot not open
7 -> oan't use WRIT status beoause now READ8 «> on CLOSE the ID's don't matoh
9 «> Warning: read status added on a filebeing written
10 -> Clear read/write when didn't exist warning

5.8.3 CATIO - reads or writes blooks in the map oatalogue.
CATIO (OP, IVOL, CNO, CATBLK, STAT, BUFF, IERR)

Inputs: OP R*4 'READ' => get blook into CATBLK
'WRIT' -> put CATBLK onto disk oatalogue 'UPDT' «> as WRIT but for use when the

oalling program has previously set the status to WRITE IVOL 1*2 Disk volume oontaining oatalogue (1 rel)CNO 1*2 Slot number of interest
CATBLK 1*2(256) Array to be written on disk: WRIT, UPDT
STAT R*4 Status desired for slot after operation

'READ','WRIT','REST' where REST -> no ohange of status is desired Outputs: CATBLK 1*2(256) Array read from disk: READ BUFF 1*2(256) Working buffer
IERR 1*2 Error oode: 0 «*> ok

1 -> oannot open oatalogue file2 -> input parameter error3 -> oannot read oatalogue file
4 -> oannot WRIT/UPDT: file is busy5 -> did READ/UPDT, oannot add STAT- WRIT
6 «> Warning on READ, file writing7 -> As 6, also added STAT-READ
8 -> As 6, STAT inconsistent or wrong
9 -> Warning: STAT inconsistent/wrong The requested OP is performed unless IERR - 1 through 4. The final status requested is not set if IERR - l - 5, 8 - 9. The latter are probably unimportant.

CATALOGUES
ROUTINES Page 5-24

6 May 85

5.8.4 ICINIT - Initialize image oatalog for plane IPLANE.
SUBROUTINE ICINIT (IPLANE, BUFF)

Input: IPLANE 1*2 Image plane to initialize Output: BUFF(256) 1*2 Working buffer

5.8.5 ICOVER - oheoks to see if there are partially replaoed images in any of the TV planes ourrently visible by quadrant. Currently this routine is in the AIPSUB: area.
ICOVER (OVER, BUF, IERR)

Outputs: OVER L*2(4) T -> there are in quadr. I BUF 1*2(512) soratoh
IERR 1*2 Error oode: 0 => ok, other oatlg 10 error

5.8.6 ICWRIT - Write image oatalog blook to image oatalog
ICWRIT (IPLANE, IMAWIN, ICTBL, BUFF, IERR)

INPUTS:IPLANE
ICTBL

OUTPUTS: BUFF IERR

1*2IMAWIN(4) 1*2 image plane involved
Corners of image on soreen1*2(256) Image oatalog blook

1*2(256) working buffer
1*2 error oode: 0 -> ok

1 -> no room in oatalog2 -> 10 problems

5.8.7 ICREAD - Read image oatalog blook.
ICREAD (IPLANE, IX, IY, ICTBL ,IERR)

INPUTS:
IPLANE 1*2 plane oontaining image whose blook is wanted
IX 1*2 X pixel ooordinate of a point within image IY 1*2 Y pixel ooordinate of point within image OUTPUTS:

CATALOGUES
ROUTINES Page 5-25

6 Hay 85

ICTBL 1*2(256) Image oatalog blook IERR 1*2 error oodes: 0 -> ok
1 -> IX, IY lies outside image2 -> Catalog i/o errors

5.8.8 FNDX - returns the X axis ooordinate value of a point given
the Y axis ooordinate value and the X axis pixel position of the point. Needed for rotations and non-linear axes (L-M).

FNDX (XPIX, YVAL, XVAL)
Inputs: XPIX R*4 X pixel position

YVAL R*8 Y ooordinate value Output: XVAL R*8 X ooordinate value
Common: /LOCATI/ position parameters must have been set up by SETLOC

5.8.9 FNDY - returns the Y axis ooordinate value of a point given
the X axis ooordinate value and the Y axis pixel position of the point. Needed for rotations and non-linear axes (L-M).

SUBROUTINE FNDY (YPIX, XVAL, YVAL)
Inputs: YPIX R*4 Y pixel position

XVAL R*8 X ooordinate value Output: YVAL R*8 Y ooordinate value
Common: /LOCATI/ position parameters must have been set up by SETLOC

5.8.10 MAPCLS - oloses a map file and dears the oatalogue status
MAPCLS (OP, I VOL,* WBUFF, IERR) Inputs:

CNO, LUN, IND, CATBLK, CATUP,

OP IVOL
CNO LUN IND
CATBLK

CATUP

R*4
1*2
1*2
1*2
1*2

Outputs:

OPoode used by MAPOPN to open this file Disk volume oontaining map file Catalogue slot number of file Logioal unit # used for file FTAB pointer for LUN
1*2(256) New oatalogue header whioh oan optionally

be written into header if OP-WRIT or INIT Dummy arguement if OP-READ
L*2 If TRUE write CATBLK into oatalogue,ignored if OP - READ

CATALOGUES
ROUTINES

1 - CATDIR oouldnt aooess oatalogue5 - illegal OP oode
IERR 1*2 0 - O.K.

5.8.11 MAPOPN - opens a map file marking tlie oatalogue entry for the desired type of operation.
MAPOPN (OP, IVOL, NAMEIN, CLASIN, SEQIN, TYPIN, USID,* LUN, IND, CNO, CATBLK, WBUFF, IERR)Inputs:
OP R*4

LUN 1*2 In/Out:NAMEIN(3) R*4
CLASIN(2) R*4SEQIN 1*2USID 1*2IVOL 1*2
TYPIN 1*2 Outputs:IND 1*2CNO 1*2
CATBLK(256)I*2IERR 1*2

Buffer:
WBUFF(256) 1*2 Working buffer for CATIO and CATDIR

5.8.12 ROTFND - finds the map rotation angle from a given oatalogue blook
ROTFND (CAT4, ROT, IERR)
Inputs:

CAT4(*) R*4 File oatalogue header

Operation: READ, WRIT, or INIT where INIT is for known oreation prooesses (it ignores
ourrent file status & leaves it unchanged) Also: HDWR for use when the header is being
ohanged but the data are to be read only. Logioal unit # to use
Image name (name) (12 paoked ohars)Image name (olass) (6 paoked ohars)Image name (seq.#)User identification #Input disk unit
Physioal type of file (2 paoked ohars)
FTAB pointer
Catalogue slot oontaining map
Buffer oontaining ourrent oatalogue blook Error output0 - OK
2 - Can't open WRIT beoause file busy

or oan't READ beoause file marked WRITE3 - File not found
4 - Catalogue i/o error5 - Illegal OP oode6 - Can't open file

Page 5-26
6 May 85

CATALOGUES
ROUTINES Page 5-27

6 May 85

Outputs:
ROT R*4 Pile rotation angle (degrees)IERR 1*2 Error oode. Q->OK, l->oouldn't find axis.

5.8.13 SETLOC - uses the oatalogue header to build the values of the position oommon /LOCATI/ for use by position finding and axis labeling routines (at least).
SETLOC (DEPTH)

Inputs: DEPTH 1*2(5) Position of map plane axes 3 - 7 Common: /MAPHDR/ oatalogue blook (not modified)
/LOCATI/ position parms - oreated here

5.8.14 TVFIND - determines whioh of the visible TV images the user wishes to seleot. If there is more than one visible image, it requires the user to point at it with the oursor. The TV must
already be open. Currently this routine is in the AIPSUB area (AIPS program).

TVFIND (MAXPL, TYPE, IPL, UNIQUE, CATBLK, SCRTCH,* IERR)
Inputs: MAXPL 1*2

TYPE 1*2Output: IPL 1*2UNIQUE L*2
CATBLK 1*2(256)SCRTCH 1*2(256)IERR 1*2

Highest plane number allowed (i.e. do graphios oount?)
2-ohar image type to restriot searoh Plane number found
T «> only one image visible now (all types)Image oatalog blook found Soratoh buffer
Error oode: 0 -> ok

1 -> no image
2 -> 10 error in image oatalog3 -> TV error

5.8.15 UVPGET - The position in the reoord of the standard random parameters (u,v,w,t,b) and the order of the regular axes oan be obtained using the routine UVPGET. UVPGET determines pointers and other information from a UV oatalogue header reoord. These pointers are plaoed in a oommon whioh is obtained by the DUVH.INC and
CUVH.INC INCLUDES. The address relative to the start of a vis reoord for the real part for a given speotral ohannel (CHAN) and stokes parameter (ICOR) is given by :

CATALOGUES
ROUTINES

Page 5-28
6 May 85

NRPARM+(CHAN-1)*INCF+(ICOR-IABS (ICORO))*INCS
UVPGET (IERR)

Inputs: From oommon /MAPHDR/
CATBLK(256) 1*2 Catalogue blookCAT4 R*4 same as CATBLKCAT8 R*8 same as CATBLK;put: In oommon /UVHDR/SOURCE(2) R*4 Paoked souroe name.ILOCU 1*2 Offset from beginning of vis reoord of UILOCV 1*2 VILOCW 1*2 VILOCT 1*2 TimeILOCB 1*2 11 BaselineILOCSU 1*2 " Souroe id.JLOCC 1*2 Order in data of oomplex valuesJLOCS 1*2 Order in data of Stokes' parameters.JLOCF 1*2 Order in data of Frequenoy.JLOCR 1*2 Order in data of RAJLOCD 1*2 Order in data of deo.JLOCIF 1*2 Order in data of IF.INCS 1*2 Inorement in data for stokes (see above)INCF 1*2 Inorement in data for freq. (see above)INCIF 1*2 Inorement in data for IF.ICORO 1*2 Stokes value of first value.NRPARM 1*2 Number of random parametersLREC 1*2 Length in values of a vis reoord.NVIS 1*4 Number of visibilitiesFREQ R*8 Frequenoy (Hz)RA R*8 Right asoension (1950) deg.DEC R*8 Deolination (1950) deg.NCOR 1*2 Number of Stokes' parametersISORT C*2 Sort orderIERR 1*2 Return error oode: 0«>0K,

1, 2, 5, 7 : not all normal rand parms2, 3, 6, 7 : not all normal axes 4, 5, 6, 7 : wrong bytes/value

5.8.16 XYPIX - determines the pixel looation corresponding to a
speoified ooordinate value. The pixel looation is not neoessarily an integer. The position parms are provided by the oommon /LOCATI/ whioh requires a previous oall to SETLOC.

XYPIX (X, Y, XPIX, YPIX)
Inputs:
Output:

X R*8 Y R*8 XPIX R*4
YPIX R*4

X-ooordinate value (header units) Y-ooordinate value (header units) x-ooordinate pixel looation y-ooordinate pixel looation

CATALOGUES
ROUTINES Page 5-29

6 May 85

5.8.17 XYVAL - determines the ooordinate value (X,Y,Z) corresponding to the pixel looation (XPIX,YPIX). The pixel values need not be integers. The neoessary map header data is passed via
oommon /LOCATI/ requiring a previous oall to SETLOC. This program is the inverse of XYPIX.

XYVAL (XPIX, YPIX, X, Y, Z)
Inputs: XPIX

YPIX
Outputs: X Y Z

R*4 Pixel looation, x-ooordinate R*4 Pixel looation, y-ooordinate
R*8 X-ooordinate value at pixel looation R*8 Y-ooordinate value at pixel looation R*8 Z-ooordinate value (if part of a position pair with either X or Y;COMMON Inputs:

/LOCATI/ position parms deduoed from the map header by subroutine SETLOC
Units are as in the mapheader: degrees for position coordinates

CHAPTER 6
DISK FILES

6.1 OVERVIEW
Most images, uv data sets, and other information in the AIPSsystem are kept in disk files. Image and uv data files to be kept

longer than the exeoution of a single task are stored in oatalogued files, although tasks may use soratoh files for temporary storage.
The purpose of this ohapter is to desoribe the general techniques for aooessing data in disk files.

Assooiated with eaoh image or uv data file may be a number of
auxilliary files known as "extension" files oontaining information about the main file. Examples of extension files are the history
file, CLEAN components files and antenna files. Details of the
structure of the various files used in AIPS programs are desoribed in the AIPS manual Volumn 2. Exoept for the image and uv data files, the details of the file struoture will not be desoribed here.

The amount of data in the image and uv data files oan be rather large, so it is important that the routines accessing them be relatively efficient. This effioienoy oomes at the oost of increased complexity. There are a number of features of AIPS I/O routines for handling large amounts of data whioh are designed for effioienoy.
1. Fixed reoord length. All files internal to AIPS have a

fixed logioal reoord length. This allows the I/O routines to blook disk transfers into a number of logioal reoords.
2. Large double buffered transfers. The upper level I/O

routines automatically make data transfers as large as possible and when possible double buffer the transfers.
3. Visible I/O buffers. To avoid an inoore transfer of all

data, most AIPS routines work direotly from the I/O buffer.

Extension files are handled somewhat differently. Sinoe the amount of data in these files is rather small, friendlier but less
effioient techniques are used. Logioal reoords have a fixed length but the basio I/O routine (TABIO) returns the data in an array

DISK FILES OVERVIEW Page 6-2
7 Hay 85

whioh allows implementation of data struotures.
This ohapter disousses the various aspeots of disk files, creating, destroying, reading, writing eto. The cataloguing of these files has been oovered in a previous ohapter. A typioal programmer will not need to understand all of the material in this ohapter to program effectively in AIPS. The detailed descriptions of the major routines discussed will be given at the end of the chapter.

6.2 TYPES OF FILES
AIPS has two logioally different types of files whioh on some maohines are also physioally different. The first type, known as regular disk files, is used mainly for extension files. This type of file may be expanded and oontraoted and physioal I/O is always done in 512 byte blooks. The seoond type of file, known as "map"

files, is used for image and uv data files. This type of file oan be oontraoted but not expanded and I/O is usually done in the double buffered mode with large size transfers. (Double buffering is when the program works out of one half of a buffer while the other half is being read from, or written to, the external devioe.)
There are several oooasions when the programmer must be aware of the distinction between these two types of files. The first is in the setup and initialization of the CDCH.INC oommons. This oommon must be deolared and initialized to handle the largest number

of each type of file whioh will be open at any given time. A description of this process is given in the chapter on tasks.
The other plaoes where there is a distinction between the two types of files are the file oreation and opening routines. Many of the higher level oreation and file open routines hide this distinction from the programmer. These routines will be disoussed later in this ohapter.

6.3 FILE MANAGMENT
AIPS has a set of utility routines for oreating and managing disk files. The four funotions oovered in this seotion are file creation, destruction, extension and contraction.

6.3.1 Creating Files
There are several higher level file oreation routines, one for eaoh of several applications. These applications are image files, UV data files, soratoh files, general extension files and history files. The basio file oreation routine is ZCREAT.

DISK FILES
FILE MANAGMENT Page 6-3

7 May 85

- MCREAT oreates and oatalogues an image file (type 'HA') using the desoription of the file oontained in a oatalogue header reoord passed to MCREAT via the oommon /MAPHDR/.
All information in the header defining the size and name of the file must be filled in before oalling MCREAT. The
oatalogue header reoord is desoribed in detail in another ohapter.

- UVCREA oreates and oatalogues a uv data file (type 'UV') using the description of the file oontained in the
oatalogue header reoord passed to UVCREA in the oommon /MAPHDR/. The oatalogue header reoord must be sufficiently
oomplete to determine the name, olass, eto and size of the required file.

- SCREAT will oreate soratoh files using the /CFILES/ oommon
system; thus the soratoh files will be automatically deleted when the task oalls the shutdown routine DIE.
Soratoh files are oatalogued as type 'SC' files. Use of SCREAT is desoribed in more detail in the ohapter desoribing tasks.

- TABINI. The oreation of most extension files is hidden
from the oasual programmer in the oreate/open/initialize routine TABINI. TABINI will be disoussed in more detail in the seotion in this ohapter on I/O to extension files.

- HICREA. The oreation of history files is normally hidden
in the upper level routine HISCOP. The use of HISCOP and HICREA are desoribed in more detail in the ohapter on writing tasks.

- ZCREAT. The basio file oreation routine is ZCREAT. If
none of the other file oreation routines are applioable
then use ZCREAT. ZCREAT needs the physioal name of the file and the size of the file in bytes. ZCREAT does not oatalogue the file oreated.

6.3.2 Example Using ZCREAT
The use of ZCREAT is demonstrated in the following;

INTEGER*2 SYM, IRET, NX, NY, NP(2), BP, N2INTEGER*4 NBYTE
LOGICAL*2 MAP
REAL*4 PHNAME(6)REAL*8 XSIZE
INCLUDE 'INCS:DDCH.INC'

DISK FILES
FILE MANAGMENT Page 6-4

7 May 85

INCLUDE 'INCS:CDCH.INC'
DATA SYM, /'MA'/, MAP /.TRUE./, N2 /2/

C NX, NY are the size of anC image. Make a fileC big enough for a REAL oopyC of the image.C
C Compute the size in bytes.C Note: NWDPFP is from theC /DCHCOM/ and is the size ofC a REAL word in terms of
C short integers. 1 shortC integer - 2 bytes BP - 2 * NWDPFP

NP(1) - NX NP(2) - NYCALL MAPSIZ (N2, NP, BP, NBYTE)
C Size now in NBYTE
C Make physioal name.C IVOL = disk number
C CNO - oatalogue slot numberC (arbitrary for
C unoatalogued files).C IVER - extension fileC version number.C 1 for main oatalogued
C files. Arbitrary
C otherwise.CALL ZPHFIL (SYM, IVOL, CNO, IVER, PHNAME, IERR)
C filename now in PHNAME.C (error if IERR not 0)C Create file of type 'MA' CALL ZCREAT (IVOL, PHNAME, NBYTE, MAP, IERR)
C Test for errors...

In the example above, a map file was oreated large enough to hold a NX by NY floating point image using the routine MAPSIZ to oompute the oorreot size for the file. If this file is to be oatalogued, then a oatalogue header reoord should be oonstruoted and oall made to CATDIR and CATIO before the oall to ZCREAT to get the
oatalogue slot number needed to form the physioal name of the file. A detailed description of the oalling sequenoe for ZCREAT oan be found at the end of this ohapter. (In praotioe, one would use
MCREAT to oatalogue and oreate the file shown in the example above.)

DISK PILES
FILE MANAGMENT Page 6-5

7 May 85

6.3.3 Destruction Routines
There are a number of speoial purpose file destruction routines; the basio file destruction routine is ZDESTR. A brief description is given here of these utility routines; a description of the oall sequenoe is given at the end of this ohapter.
_ MDESTR will delete a oatalogue entry for a file, delete all

extension files for that file, and then delete the file. The file must be in the REST state. Sinoe oatalogue files oan be marked "WRITE - Destroy if task fails" whioh will
cause the shutdown routine DIE to destroy the file there is seldom a need to oall MDESTR direotly. MDESTR will destroy either oatalogued image or uv data files.

_ SNDY will destroy soratoh files desoribed in the /CFILES/ oommon. SNDY is oalled by the shutdown utility DIE so tasks do not have to oall it separately.
_ ZDESTR is the basio file destruotion routine. ZDESTR will

not unoatalogue the file destroyed. CATDIR should be used to unoatalogue a oatalogue file destroyed.

6.3.4 Expansion And Contraction Of Files
Regular (extension) files oan be both expanded and oompressed. Map (data) files oan be oompressed but not expanded. Sinoe most extension file aooess is by TABIO the expansion of extension files is hidden from the programmer. Expansion of files is done with

routine ZEXPND and oompression is done using routine ZCMPRS.
Details of the oall sequenoes of these routines are given at the end of this ohapter.

DISK FILES
I/O TO DISK FILES

Page 6-6
7 May 85

6.4 I/O TO DISK FILES
There are a number of steps neoessary in order to aooess a disk

file. Normal Fortran I/O hides a number of these steps but they are all visible in at least some AIPS applications. This inoreased complexity of the I/O system gives the programmer a high degree of
oontrol over how the I/O is aotually done. One or more of the steps in aooessing a file may be performed with a single oall. In general, aooess of a disk file is as follows:

1. Forming the physioal name of the file. The AIPS utility ZPHFIL is always used for this purpose. The name is
derived from file type, the disk number, oatalogue slot number, version number and user ID number. The file type of image files is 'MA', of uv data files is 'UV' and of soratoh files is #SG'. The disk number and oatalogue slot number for oatalogued files may have to be obtained from
the AIPS utility routine CATDIR before oalling ZPHFIL. This step is incorporated in a number of routines suoh as SCREAT, TABINI and MAPOPN.

2. Opening the file. This is done with routine ZOPEN for binary files and ZTOPEN for text files. In either oase, the file must be given a logioal unit number (LUN) and the
opening routine returns a pointer to the AIPS I/O table (FTAB) whioh, with the LUN, must be used in all subsequent
oalls. This step is incorporated in the routines TABINI and MAPOPN.

3. Initializing the transfers. The AIPS higher level I/O routines need to be told a number of parameters about the data transfers suoh as whether a read or write is desired,
the size and number of logioal reoords, and the looation and size of the buffer to be used. In several oases the range of data desired oan also be speoified. This step is usually done in one of the speoialized routines to be desoribed later.

4. Data transfers. This is when the data is transfered from
the disk to the speoified buffer or vice versa. Aotual data transfers are done by Direot Memory Aooess (DMA) and are usually in large blooks for "map" files and in 512 byte blooks for non-map (extension) files. Sinoe the transfers
usually oonsist of a number of logioal reoords, the programmer is unaware of when transfers aotually take plaoe. Beoause the programs frequently work direotly from the I/O buffer, many of the I/O routines return a pointer
to the first word in the buffer of the next logioal reoord.

5. Flushing the buffer (writing only). When all oalls to disk
write routines are oomplete, there may still be data in the buffer whioh has not been written. In this oase, a oall must be made to the appropriate I/O routine telling it to flush the buffer to disk.

DISK FILES
I/O TO DISK FILES Page 6-7

7 Hay 85

6. Closing the file. When all operations on a file are oomplete the file needs to be olosed. This is usually done with an explioit oall to the appropriate olose routine.

6.4.1 Upper Level I/O Routines.
There are a number of AIPS upper level I/O routines whioh do most of the bookeekping. The following is a short description of the more oommonly used of these; detailed descriptions of the oall sequenoes are found at the end of the ohapter. The use of many of these routines is disoussed later in this ohapter.
- TABINI opens and initializes an extension file, will oreate and oatalogue the extension file if neoessary. See the ohapter on tables for more details.

TABIO does random aooess mixed reads and writes to extension tables. TABIO deals with one logioal reoord at a time in an array whioh oan be used as a data struoture. EXTIO takes oare of file expansion and other bookkeeping ohores. Requires initialization by TABINI.
- MAPOPN finds a oatalogued image or uv data file in the

oatalogue, opens it and returns the oatalogue header and marks the oatalogue status.
MINI3 initializes I/O for image files; oan speoify a subimage for reads.

- MDIS3 does double buffered I/O for image files; requires initialization by MINI3.
UVINIT initializes I/O for uv data files; oan speoify a starting visibility reoord number.
UVD1SK does double buffered I/O for uv data files; requires initialization by UVINIT.

- MAPCLS oloses a oatalogued image or uv data file, updates the oatalogue header blook if requested and olears the oatalogue status.

6.4.2 Logioal Unit Numbers
Many logioal unit numbers in AIPS have speoial meanings whioh indioate to the I/O routines what kind of devioe or file is involved. The information about whioh LUN oorresponds to whioh devioe is oontained in a table (DEVTAB) in the devioe

DISK FILES
I/O TO DISK FILES Page 6-6

7 Hay 85

oharaoteristios oommon (INCLUDES DDCH.INC and CDCH.INC). AIPS has50 defined LUN values, ie. DEVTAB has 50 entries, and the type ofdevioe or file type for eaoh LUN is given in DEVTAB with the following oodes:

DEVTAB(LUN) - 0
DEVTAB(LUN) - 1

DEVTAB(LUN) = 2
DEVTAB(LUN) - 3

DEVTAB(LUN) - 4

LUN is for disk file requiring I/O oontrol area in FTAB. Hulti-reoord I/O is possible.Devioe not requiring I/O oontrol area in FTAB.
I/O done by Fortran (terminals, printer/plotter). VAX does Fortran opens, Hodoomp allocates these at task build time.
LUN is for devioe requiring I/O oontrol area in FTAB. Hulti-reoord I/O not allowed (e.g. tapes) Similar to 1. Vax uses this oode to defer opens from ZOPEN to ZTOPEN for text files. Hodoomp does not use this value.
LUN is for TV devioe requiring speoial I/O routine and normal I/O oontrol area in FTAB.

In addition, many LUNs have predefined values as shown in the following table.

LUN Use1 Line printer2 Plotter3 Reserved4 Input to batoh prooessors5 Input CRT6 Output CRT7 Graphios CRT8 Array Prooessor (roller)9 TV devioe10 POPS "run" files11 POPS "help" files12 Log/error file (used by HSGWRT).13 Task oommunioation file.14 POPS "memory" file15 Catalogue files.16 - 25 Hap (image or uv data) files.26 Graphios files27 - 30 General (non-map) disk files.31 - 32 Hagnetio tape drives.

DISK FILES
I/O TO DISK FILES Page 6-9

7 May 85

6.4.3 Contents Of The Devioe Charaoteristios Common
The devioe Charaoteristios oommon, obtained from the INCLUDES DDCH.INC and CDCH.INC oontains a number of useful parameters about the host system.

XPRDMM R*4XTKDMM R*4SYSNAM R*4(5)VERNAM R*4RLSNAM R*4(2)TIMEDA R*4(15)TIMESG R*4
TIMEMS R*4
TIMESC R*4TIMECA R*4TIMEBA R*4(4)

TIMEAP R*4(3)

RFILIT R*4NVOL 1*2NBPS 1*2NSPG 1*2NBTB1 1*2NTAB1 1*2NBTB2 1*2NTAB2 1*2NBTB3 1*2NTAB3 1*2NTAPED 1*2CRTMAX 1*2PRTMAX 1*2NBATQS 1*2MAXXPR 1*2(2)CSIZPR 1*2(2)NINTRN 1*2KAPWRD 1*2NCHPFP 1*2NWDPFP 1*2NWDPDP 1*2NWDPLI 1*2NWDPLO 1*2NBITWD 1*2NWDLIN 1*2NCHLIN 1*2NTVDEV 1*2NTKDEV 1*2BLANKV 1*2NTVACC 1*2NTKACC 1*2UTCSIZ 1*2

Printer points per millimeter
Graphios points per millimeter System name (20 ohar)Version ID (4 ohar)
Release name (8 oharaoters)
Min. TIMDEST time for eaoh disk (days)
Min. TIMDEST time for SAVE/GET files (days)
Min. automatio destruotion time for messages Min. automatio destruotion time for soratoh
Min. destruotion time for empty oatalogues.
Times during whioh AP Batoh jobs oannot start.1, 2 start, stop times (hrs) on weekends3, 4 start, stop times (hrs) on weekdays 1 »> time between rolls (min)
2,3 polynomial terms for determining how long a job must wait before grabbing the AP.Spare
Number of disk drives available to AIPS Number of bytes per disk sector
Number of disk seotors per allocation granule Number bytes in FTAB / non-FTAB devioe
Max number of non-FTAB devioes open at onoe Number bytes in FTAB / slow I/O devioe
Max number of slow I/O devioes open at onoe Number bytes in FTAB / fast I/O devioe
Max number of fast I/O devioes open at onoe Number of tape drives available to AIPS Number lines / CRT terminal page Number lines / printer page Number batoh AIPSs in system
Number of plotter dots / page in X, Y Number of plotter dots / oharaoter in X, Y
Maximum # simultaneous interactive AIPSs# words of array prooessor memory oharaoters / floating point words / floating point
words / double-preoision floating point words / long integer words / logioal bits / word
words in a POPS input line
oharaoters in a POPS input line
television display devioes available graphios display devioes available Integer magio value «> blanked pixel

Number POPS programs allowed aooess to TV devioes Number POPS programs allowed aooess to graphios Private oatalogue size (0->publio)

DISK FILES
I/O TO DISK FILES Page 6-10

7 May 85

BYTFLPUSELIMNBITCHDEVTABFTAB

1*2
1*2
1*2
1*2(50) I*2(*)

Byte flip, 0=none, l=bytes, 2=words Maximum user number# bits per oharaoter Devioe type oode numbers I/O driving tables

6.4.4 Image Files
A disk image file oontains an ordered, binary sequenoe of pixel
values with logioal reoords oonsisting of single "rows" of the image. The pixel values are arranged in the order defined in the oatalogue header blook, the first axis going the fastest. The
pixels may be one of several types, but in praotioe, they are either scaled short integers or floating point values. Blanking of pixels is allowed by use of a speoial value (magio value blanking) speoified by the header. For more information about the oatalogue header and the typioal axes used see the ohapter on the oatalogue.

Image files are stored on the disk with eaoh row beginning on a blook boundry. An exoeption to this is when multiple rows will fit into a single blook in whioh oase multiple rows oan be in a given disk blook. In this latter oase, rows are not allowed to span blook boundries.

6.4.4.1 Opening Image Files - The simplest way to find, open and olose a oatalogued image file is with the routines MAPOPN and
MAPCLS. These routines and the alternate ways to find an image in the oatalogue are disoussed in the ohapter on the oatalogue and details of the oall sequenoe are found at the end of this ohapter.

If the use of MAPOPN and MAPCLS is not appropriate to open and olose the image file then the routines ZPHFIL, ZOPEN and ZCLOSE are to be used to 1) form the physioal name of the file, 2) open the file, both in the AIPS and system tables and 3) olose the file when done. The details of these routines are given at the end of this chapter. These operations are demonstrated in the following example.

DISK FILES
I/O TO DISK FILES Page 6-11

7 May 85

INTEGER*2 IRET, CNO, IVOL, IVER, MA, LUN, IND LOGICAL*2 MAP, EXCL, WAIT REAL*4 PHNAME(6)

DATA MAP, EXCL, WAIT /.TRUE.,.TRUE.,.TRUE./ DATA IVER /!/, MA /'MA'/, LUN /16/

CCCCCCCCCC
C

CALL ZPHFIL (MA, IVOL, CNO,C
CC

CALL ZOPEN (LUN, IND, IVOL,C

(I/O to file)

C Close file.CALL ZCLOSE (LUN, IND, IRET)

6.4.4.2 MINI3 And MDIS3 - Onoe the image file is opened, I/O is
normally initialized by a oall to MINI3, I/O is done by oalls to MDIS3 with a final oall to MDIS3 to flush the buffer if neoessary. MINI3 sets up the bookkeeping for one plane of an image at a time;
if multiple planes are to be read, multiple oalls to MINI3 must be
made. A reotangular window in a given plane oan be speoified to MINI3, and it oan be instruoted to read or write the rows in reverse order by reversing the values of WIN(2) and WIN(4). A subimage oannot be speoified for write.

Due to the use of buffer pointers, MDIS3 must be oalled for WRITE bfiloxfi plaoing data into the buffer. This produoes a rather strange logio flow, but is neoessary. Details of the oall sequenoes to MINI3 and MDIS3 are given at the end of this ohapter.
Note: eventually MINI3 and MDIS3 will be replaoed by MINIT and MDISK. In this new version, MINIT will aooept true I*arguments rather that pseudo 1*4 arguments.

Make physioal name.MA - file type IVOL - disk number
CNO - oatalogue slot number (arbitrary for

unoatalogued files).IVER - extension file version number.
1 for main oatalogued
files. Arbitrary
otherwise.IVER, PHNAME, IRET)

filename now in PHNAME. (error if IRET not 0)Open file PHNAME, MAP, EXCL, WAIT, IRET)
Test for errors (IRET not 0)

DISK FILES
I/O TO DISK FILES Page 6-12

7 Hay 85

6.4.4.3 Multi-plane Images (COMOF3) - If the image has more than two dimensions, planes parallel to the first plane oan be aooessed using the blook offset argument to MINI3. The subroutine COMOF3 oan be used to compute the blook offset. The blook offset is an 1*4 number whose value for the first plane is 1. C0M0F3 returns a value whioh is to be added to the block offset for the first plane. C0M0F3 will eventually be replaoed by COMOFF whioh will take true rather than pseudo 1*4 arguments.
An example of the use of COMOF3 to oompute the blook offset:
INTEGER*2 CATBLK(256), BP, BLKOF(2), ONE(2), PLARR(5),* IERR, PLUS INCLUDE 'DHDR.INC'
INCLUDE 'DDCH.INC'

INCLUDE 'CHDR.INC'
INCLUDE 'CDCH.INC'
COMMON /MAPHDR/ CATBLK

DATA ONE /1,0/, PLUS /'PL'/

CC
c
c
c
c
c
cc

c
c

c
c
c
c
c

BP - 2 * NWDPFP

PLARR(l)PLARR(2)PLARRC3)PLARR(4)PLARR(5)

Compute bytes / per pixel, assume REAL format file. NWDPFP - # short integers per floating value.
Obtained from DDCH. INC and
CDCH.INC inoludes.

Get seoond plane on third axis, first pixel on the remaining axes.

PLARR speoifies desired plane Use header blook from /MAPHDR/ CALL COMOF3 (CATBLK(K2DIM), CATBLK(K2NAX), PLARR, BP,BLKOF, IERR)
Add blook offset for first plane.CALL ZMATH4 (BLKOF, PLUS, ONE, BLKOF)
BLKOF now oontains the value to send to MINI3 to get the speoified plane.

A detailed desoription of the oall sequenoe for COMOF3 is given at the end of this ohapter.

DISK FILES
I/O TO DISK FILES Page 6-13

7 May 85

6.4.4.4 Example Of MINI3 And MDIS3 - In the following is an example in whioh two files are read, the pixel values are added and a third file is written.
SUBROUTINE FLADD (NX, NY, ISCR1, ISCR2, ISCR3, IERR)

FLADD adds the values in the soratoh files in the /CFILES/ oommon number ISCR1 and ISCR2 and writes them in the /CFILES/ soratoh file number ISCR3 Inputs:
Number of pixels per row and number of rows /CFILES/ soratoh file number of first input file
/CFILES/ soratoh file number of seoond input file /CFILES/ soratoh file number of output file

NX, NY
ISCR1 ISCR2 ISCR3 Output: IERR

1*2
1*2
1*2
1*2

10

1*2 Return oode, 0=>QK, otherwise error.
INTEGER*2 Nl, N2, N8
INTEGER*2 FIND1, FIND2, FIND3, BIND1, BIND2, BIND3, BO(2), BP, WIN(4), NX, NY, BUFSZ1, BUFSZ2, BUFSZ3, LUN1, LUN2, LUN3, SC LOGICAL*2 T,F
fcEAL*4 READ, WRITE, FINI, FILE(6)
REAL*4 BUFFI(4096), BUFF2(4096), BUFF3(4096)INCLUDE 'INCS:DMSG.INC'INCLUDE 'INCS:DDCH.INC'INCLUDE 'INCS:DFIL.INC'
INCLUDE 'INCS:CMSG.INC#
INCLUDE 'INCS:CDCH.INC'INCLUDE 'INCS:CFIL.INC'DATA T, F /.TRUE.,.FALSE./
DATA READ, WRITE, FINI, SC /'READ','WRIT','FINI','SC'/DATA BO, WIN /1,0, 4*0/DATA Nl, N2, N8 /l,2,8/,

Use LUNS 16, 17, 18DATA LUN1, LUN2, LUN3 /16,17,18/

BP 2 * NWDPFP Set bytes per pixel (floating)
Set buffer sizesBUFSZ1 - 4096 * BP BUFSZ2 - 4096 * BP BUFSZ3 - 4096 * BP
Open and init ISCR1 CALL ZPHFIL (SC, SCRVOL(ISCRl), SCRCNO(ISCRl), Nl, FILE, IERR) CALL ZOPEN (LUN1, FIND1, SCRVOL(ISCRl), FILE, T, F, T, IERR)
Cheok for errorIF (IERR.EQ.0) GO TO 10

ENCODE (80,1000,MSGTXT) IERR, READ, Nl GO TO 990
CALL MINI3 (READ, LUN1, FIND1, NX, NY, WIN, BUFFI, BUFSZ1,BP, BO, IERR)

Cheok for errorIF (IERR.EQ.O) GO TO 20
ENCODE (80,1010,MSGTXT) IERR, READ, Nl

oo
o

DISK FILES
I/O TO DISK FILES Page 6-14

7 May 85

GO TO 990
C Open and init ISCR220 CALL ZPHFIL (SC, SCRVOL(ISCR2), SCRCN0(ISCR2), Nl, FILE, IERR) CALL ZOPEN (LUN2, FIND2, SCRVOL(ISCR2), FILE, T, F, T, IERR)
C Cheok for errorIF (IERR.EQ.O) GO TO 30ENCODE (80,1000,MSGTXT) IERR, READ, N2 GO TO 990
30 CALL MINI3 (READ, LUN2, FIND2, NX, NY, WIN, BUFF2, BUFSZ2,* BP, BO, IERR)

C Cheok for errorIF (IERR.EQ.0) GO TO 40
ENCODE (80,1010.MSGTXT) IERR, READ, N2 GO TO 990

C Open and init ISCR340 CALL ZPHFIL (SC, SCRVOL(ISCR3), SCRCNO(ISCR3), Nl, FILE, IERR) CALL ZOPEN (LUN3, FIND3, SCRVOL(ISCR3), FILE, T, F, T, IERR)
C Clieok for errorIF (IERR.EQ.0) GO TO 50

ENCODE (80,1000,MSGTXT) IERR, WRITE GO TO 990
50 CALL MINI3 (WRITE, LUN3, FIND3, NX, NY, WIN, BUFF3, BUFSZ3,* BP, BO, IERR)

C Cheok for errorIF (IERR.EQ.O) GO TO 60
ENCODE (80,1010,MSGTXT) IERR, WRITE GO TO 990

C Loop, adding rows.60 DO 110 I - 1, NY
C Read ISCR1CALL MDIS3 (READ, LUN1, FIND1, BUFFI, BIND1, IERR)
C Cheok for errorIF (IERR.EQ.O) GO TO 70

ENCODE (80,1060,MSGTXT) IERR, READ, Nl GO TO 990
C Read ISCR270 CALL MDIS3 (READ, LUN2, FIND2, BUFF2, BIND2, IERR)
C Cheok for errorIF (IERR.EQ.O) GO TO 80

ENCODE (80,1060,MSGTXT) IERR, READ, N2 GO TO 990
^ Write ISCR380 CALL MDIS3 (WRITE, LUN3, FIND3, BUFF3, BIND3, IERR)
C Cheok for errorIF (IERR.EQ.O) GO TO 90

ENCODE (80,1060,MSGTXT) IERR, WRITE GO TO 990
C Add row.90 DO 100 J - 1, NX

Note: buffer pointer is to first element so need zero
relative index for eaoh pixel.J1 - j - l

BUFF3(BIND3+J1) - BUFF1(BIND1+J1) + BUFF2(BIND2+J1)

DISK FILES
I/O TO DISK FILES Page 6-15

7 May 85

100 CONTINUE110 CONTINUEC Flush buffer.CALL MDIS3 (FINI, LUN3, FIND3, BUFF3, BIND3, IERR)C Cheok for errorIF (IERR.EQ.O) GO TO 120

C
120 CALL ZCLOSE (LUN1, FIND1, IERR)

CALL ZCLOSE (LUN2, FIND2, IERR) CALL ZCLOSE (LUN3, FIND3, IERR)C Finished OK.IERR - 0
GO TO 999CC An error has oooured - send message990 CALL MSGWRT (N8)999 RETURNC---

1000 FORMAT ('FLADD: ERROR',13, ' OPEN FOR ',A4,' FILE', 12) 1010 FORMAT ('FLADD: ERROR',13,' INIT FOR ',A4,' FILE',12) 1060 FORMAT ('FLADD: ERROR',13,IX,A4,'ING FILE',12)

6.4.4.5 MINS3 And MSKI3 - There are some operations suoh as
transposing images in whioh it is oonvenient to read every n th row of an image. The pair of routines MINS3 and MSKI3 will do this
operation. Descriptions of these routines oan be found at the end of this ohapter.

Note: MINS3 AND MSKI3 will eventually be replaced by MINSK and MSKIP. In this new form MINSK will aooept true 1*4 arguments.

6.4.5 Image File Manipulation Routines
There are a number of AIPS utility routines available to operate on files. Many of these involve oopying data from oatalogue files to soratoh files or vioe versa with or without various format conversions. An important member of this olass is the FFT routine.

Details of the oall sequenoes to these routines are given at the end of this ohapter.

END

DISK FILES
I/O TO DISK FILES Page 6-16

7 Hay 85

- CONVRT (oonvert) will convert a R*4 map into an 1*2 map or
an 1*2 map into an R*4 map depending upon the type of the input map.

- HSCALE will read from a floating point file, resoale the values to correspond to the maximum and minimum, and write these soaled values to an integer format map file.
- HSCALF is like HSCALE but will handle blanked pixels.
- HSCALI will copy the values in an integer file to a floating point map file.
- PLNGET reads a selected portion of a seleoted plane from a

oatalogued file and writes it into a speoified soratoh file. The output file will be zero padded and a shift of the oenter may be speoified.
- PLNPUT writes a subregion of a REAL*4 soratoh file image into a oatalogued image (either 1*2 or R*4).

6.4.6 Uv Data Files
6.4.6.1 Single And Hultisouroe Files -

AIPS has traditionally had single souroe data files oontaining data from a single souroe whioh had already been calibrated and had most of the bad data flagged. In order to allow the development of calibration and editing software, a new "type" of data file is allowed whioh may oontain data from more than one souroe. In
addition, the data is in relatively raw form and has associated calibration and editing tables whioh must be applied before the data is used. This type of file has an index and must be in strict time-baseline order. The struoture of this "new" type of data file is very similar to the single souroe file so existing software oan aooess these files.

The prinoiple difference between the single souroe files and the multisouroe files is the addition, in the latter, of a souroe number random parameter and a number of assooiated tables. These tables are desoribed in the following:

DISK FILES
I/O TO DISK FILES Page 6-17

7 May 85

- SU table. This table oontains the information speoifio to a given souroe (e.g. position)
- NX table. This table oontains an index for the file, telling when whioh souroe was observed.
- GN tables. These tables oontains the information neoessary to oalibrate the data.
- FM tables. These tables oontains the information neoessary to flag bad data.

Read aooess to multi souroe files is through the routines UVGET
and CALCOP. UVGET seleots, reformats, flags and oalibrates data as speoified and returns one visibility per oall after setup. CALCOP will oopy all seleoted reoords after setup by UVGET. The details of the oall sequenoes of these routines are given at the end of this
ohapter. These routines handle all of the I/O ohores desoribed in this ohapter and will also work for single souroe data files.

6.4.6.2 Subarrays - Sinoe uv data sets frequently oontain data from physically separate arrays, AIPS uv data sets oan oontain "sub arrays". This is neoessary so that the physioal identity of eaoh antenna in a visibility reoord oan be uniquely established. Eaoh subarray has its own antenna file whioh oontains the true frequenoy
and date of observation and the looations and other information about eaoh antenna.

When uv data sets are oonoatenated, the u, v and w terms of eaoh subsequent data set are oonverted to wavelengths at the
referenoe frequenoy defined by the first data set. The subarray number is enooded into the baseline number in eaoh visibility reoord and a five day offset is added to the time parameter for eaoh subarray to further distinguish between subarrays.

6.4.6.3 Visibility Reoord Struoture - AIPS uv data is organized in the data file in the same way that similar data is organized of a FITS format tape. Eaoh logioal reoord oonsists of all data on a given baseline for a given integration period; that is all polarizations frequencies and IFs are oontained in a given logioal reoord. The first portion of a logioal reoord is a list of the "random" parameters suoh as u, v, time eto. Following the random
parameters oomes a regular array of data whioh is very similar to a small image file.

The length of the visibility logioal reoord is fixed in a given data base but may vary from one data base to another. All values are in floating point format, and reoords may span disk seotor boundaries.

DISK FILES
I/O TO DISK FILES Page 6-18

7 May 85

The random parameters oan be in any order but the names of only the first seven are kept in the oatalogue header reoord; this list defines the order in whioh the values ooour. The labels for the normal u, v and w random parameters are "UU-L", "VV-L", "WW-L" indioating that the ooordinates oorrespond to the tangent point of
the data and the units are wavelengths at the referenoe frequenoy. The label for the time random parameter is 11 TIME 1" for historioal
reasons and the label for the baseline parameter is "BASELINE". The
label for the souroe number random parameter is "SOURCE"; the souroe number points to an entry in the souroe (SU) table.

The regular portion of the array is like an image array in that the order of the axes is arbitrary. In praotioe, the first axis should be the COMPLEX axis (real, imaginary, weight). As in image
files, the RA, Deo and frequenoy (for continuum data) are dummy axes which provides a plaoe to store the values for these parameters.

A "regular" axis whioh is not intrinsioally regular is what will be referred to as IFs. These are the results of separate receiver (either at RF or IF) whioh are randomly spaoed but have one or more regularly spaoed frequenoy ohannels. The pixel number of these IFs points to an entry in the CH table whioh gives the
frequenoy offset from the referenoe frequenoy for that IF. The CH table is aooessed by the routine CHNDAT whose oall sequenoe is given at the end ot this ohapter.

The struoture of a typioal VLA data reoord with a single IF is shown in the following figure.

I u, v, w, t, bl Rl, II, VI, R2, 12, W2, R3, 13, W3, R4, 14, V4I random RR LL rl LR
parameters reotangular data array

The symbols in the above are:
- u - u ooordinate in wavelengths at the referenoe frequenoy
- v - u ooordinate
- w - w ooordinate
- t - time in days sinoe referenoe data given in antenna file

for this subarray. The time is offset by 5 x (subarray no.

- b - baseline oode; 256 x antenna 1 no. + antenna 2 no. + 0.01 x (subarray no. - 1).
- Rn - the real part of a oorrelator value in Jy.

DISK FILES
I/O TO DISK FILES Page 6-19

7 May 85

In - the imaginary part of a oorrelator value.
- Wn - the weight assigned to the oorrelator value. For the

VLA this is usually the integration time in tens of seoonds. In general, it is arbitrary.

AIPS uv data sets may oontain data in either true Stokes' parameters or oorrelator based values for oiroularly polarized IFs. Sinoe Stokes' parameters are not an inherently ordered set we have
adopted the following oonvention for the values along the Stokes' axis:

oorrelator) parameter Value
I 1
Q 2
u 3V 4RR -1LL -2RL -3LR -4

The order of the visibility reoords in a single souroe file may be ohanged; this is usually done with the task UVSRT. Sorting is done using a two key sort and the ourrent sort order is desoribed in the oatalogue header reoord (CATBLK(K2TYP)) as a two oharaoter string. The oodes ourrently defined for the sort order are given in the following table, the first key in the sort order varies most slowly. B -> baseline numberT -> time orderU -> u spatial freq. ooordinateV -> v spatial freq. ooordinateW -> w spatial freq. ooordinateR «> baseline length.P -> baseline position angle.X -> desoending ABS(u)Y -> desoending ABS(v)Z -> asoending ABS(u)M -> asoending ABS(v)* _ > not sorted

As examples of the use of the sort order, the mapping routines require 'XY' sorted data (aotually they are happy as long as the first key is 'X'), self oalibration tasks require 'TB' order, eto.

DISK FILES
I/O TO DISK FILES

Page 6-20
7 May 85

6.4.6.4 Data Order, UVPGET - The position in the reoord of the standard random parameters (u,v,w,t,b) and the order of the regular axes oan be obtained using the routine UVPGET. UVPGET determines pointers and other information from a uv data file oatalogue header reoord in oommon /MAPHDR/. These pointers are plaoed in a oommon whioh is obtained by the DUVH.INC and CUVH.INC INCLUDES. The address relative to the start of a vis reoord for the real part for a given speotral ohannel (CHAN), IF (NIF) and stokes parameter (ICOR) is given by :
NRPARM + (CHAN-1) * INCF + (NIF-1) INCIF +

IABS (ICOR-ICORO) * INCS

6.4.6.5 Data Reformatting Routines - The variety of different uv data formats, especially different polarization types, allowed in AIPS uv data bases oomplioates handling of uv data. If a routine is to read and write uv data it must be prepared to handle any allowed
data type. If the routine is only reading the data, reformatting the data to a standard form is praotioal. There are a number of reformatting routines available.

Effioient reformatting requires two routines, one to setup
arrays of pointers and faotors and the seoond to reformat eaoh reoord. The following list describes several suoh pairs; detailed
descriptions of the oall sequenoe to the routines oan be found at the end of this ohapter.

- SET1VS, GET1VS return a single visibility value in true stokes1 parameter (I, Q, U, V) or oiroular polarizarion (RCP, LCP). They may be requested to work on multiple frequenoy channels.
- SETVIS, GETVIS return several visibility values in the form of true stokes' parameter (I, Q, U, V) or oiroular

polarization (RCP, LCP). They may be requested to work on multiple frequenoy ohannels.
- UVGET sets up, seleots, reformats, calibrates, edits either single or multisouroe data files. After set up by UVGET, CALCOP oan be used to oopy the oontents of a file to another file.

6.4.6.6 UVINIT And UVDISK - UV data files may be looated and opened using routine MAPOPN and read or written using UVINIT and UVDISK in muoh the same manner in whioh image files are read with MINI3 and MDIS3. One signifigant differenoe between UVDISK and MDIS3 is that UVDISK oan be requested to prooess multiple logioal reoords in a
single oall. This is useful when large amounts of data are to be sent to a sorting routine or to the array prooessor or to reduce the

DISK FILES
I/O TO DISK FILES

overhead of many subroutine oalls. Another differenoe is that, unlike MINI3, UVINIT returns the buffer pointer for the first oall
bo the output buffer oan be written into before the first oall to UVDISK.

UVINIT sets up the bookkeeping for UVDISK whioh does double buffered (if possible) quiok return I/O. UVDISK will run muoh more efficiently if on disk the requested transfers (logioal reoord length x the number of reoords per oall) is an integral number of disk blooks. Otherwise partial writes or oversize reads will have to be done. Minimum disk I/O is one blook.
The buffer size for UVDISK should inolude an extra NBPS bytes for eaoh buffer for non-tape reads if NPIO reoords does not oorrespond to an integral number of disk seotors (NBPS bytes). 2*NBPS extra bytes required for eaoh (single or double) buffer for

writes. More details about the oall sequenoe to UVINIT and the use of the FTAB are given at the end of this ohapter.
UVDISK reads and writes reoords of arbitrary length especially uv visibility data. There are three operations whioh oan be invoked: READ, WRITE and FLUSH (OPoodes 'READ', 'WRIT' and 'FLSH').
If the requested transfers are too large to double buffer with the given buffer size, then UVDISK will single buffer the I/O. If it is possible to do double buffered physioal transfers of some multiple of the requested number of reoords, then this is done.
OPoode -'READ' reads the next sequential block of data as

speoified to UVINIT and returns the actual number of visibilities, NIO, and the pointer, BIND, to the first word of this data in the buffer.
OPoode-'WRIT' oolleots data in a buffer half until it is full.

Then, as many full blooks as possible are written to the disk with the remainder left for the next disk write. For tape I/O, data is
always written with the blook size speoified to UVINIT one I/O operation per oall. For disk writes, left-over data is transferred to the beginning of the next buffer half to be filled. The value of NIO in the oall is the number of visibility reoords to be added to the buffer and may be fewer than the number speoified to UVINIT. On return NIO is the maximum number whioh may be sent next time. On return BIND is the pointer in BUFFER to begin filling new data.

OPoode-'FLSH' writes integral numbers of blooks and moves any data left over to the beginning of buffer 1. One exoeption to this is when NIO -> -NIO or 0, in whioh oase the entire remaining data in
the buffer is written. After the oall, BIND is the pointer in BUFFER for new data. The prinoipal differenoe between FLSH and WRIT is that FLSH always foroes an I/O transfer. This may oause trouble if a transfer of less than 1 blook is requested. A oall with a
nonpositive value of NIO should be the last oall and oorresponds to a oall to MDIS3 with opoode 'FINI'.

Page 6-21
7 May 85

DISK FILES
I/O TO DISK FILES Page 6-22

7 May 85

The input/output argument to UVDISK, NIO, oan be very useful for oontroling the loop reading and/or writing uv data. The value of NIO for reads is the number of values in the buffer that are
available. When the file has been oompletely read, the value of NIO returned by UVDISK on the next oall is 0; this value oan be used to determine when all of the data has been read. This avoids having a
oounter for the visibilities (remember that 1*2 variables oan only oount to 32767). The example in the following seotion uses this feature in UVDISK. More details about the oall sequenoe oan be found at the end of this ohapter.

6.4.6.7 Example Using UVINIT And UVDISK -

C-CCCCG

C
C
CC

SUBROUTINE UVCONJ (ISCR1, ISCR2, LUN1, LUN2, BUFFI, BUFF2,* BUFSZ1, BUFSZ2, IERR)
UVCONJ takes the oomplex oonjugate of the values in a uv data set in a soratoh file in the /CFILES/ oommon number ISCR1 and writes them in the /CFILES/ soratoh file number ISCR2.The ourrent values in the /UVHDR/ oommon are assumed to desoribe the uv data files.

/CFILES/ soratoh file number of input file /CFILES/ soratoh file number of output file Logioal unit number to use for file 1 Logioal unit number to use for file 2 I/O buffer to use for file 1 I/O buffer to use for file 2 Size of BUFFI in bytes Size of BUFF2 in bytes >mmon /UVHDR/
Number of visibility reoords logioal reoord length,
number of random parameters.
(signed) value of first Stokes' parameter,
zero relative order of the frequenoy axis in the data array,
relative order of the Stokes' axis, relative order of the IF axis, word inorement in the data array between
suooessive frequenoies at the same looation on all other axes,
word inorement in the data array between suooessive Stokes' values.word inorement in the data array between suooessive IF values.Inputs from oommon /MAPHDR/

c Inputs:
c ISCR1 1*2
c ISCR2 1*2
c LUN1 1*2
c LUN2 1*2
c BUFF1(*) R*4
c BUFF2(*) R*4
c BUFSZ1 1*2
c BUFSZ2 1*2
c Inputs from oc
c NVIS 1*4
c LREC 1*2
c NRPARM 1*2
c ICORO 1*2
c JLOCF 1*2
c
c JLOCS 1*2
c JLOCIF 1*2
c INCF 1*2
c
c
c INCS 1*2

INCS 1*2

oo
oo

oo
o

oo
o

DISK FILES
I/O TO DISK FILES Page 6-23

7 May 85

C CATBLK(256) 1*2 Catalogue header reoord C Output:
C IERR 1*2 Return oode, 0->OK, otherwise error.C--

INTEGER*2 Nl, N2, N8
INTEGER*2 FIND1, FIND2, BIND1, BIND2, BP, NFREQ, NSTOKE, NIF,* BUFSZ1, BUFSZ2, LUN1, LUN2, I, IV, IFQ, 1ST, IIF,* NIOIN, NIOUT, CATBLK(256), INDEX, JCORO, SC INTEGER*4 BO, VOLOGICAL*2 T,F
REAL*4 READ, WRITE, FLUSH, FILE(6)REAL*4 BUFF1(1), BUFF2(1)

INCLUDE 'INCSINCLUDE 'INCSINCLUDE 'INCS
INCLUDE 'INCS
INCLUDE 'INCSINCLUDE 'INCSINCLUDE 'INCSINCLUDE 'INCS

DMSG.INC' DDCH.INC' DUVH.INC' DHDR.INC'
CMSG.INC' CDCH.INC' CUVH.INC' CHDR.INC'

Listings of the standard
INCLUDE files are at the end of the ohapter on tasks.

COMMON /MAPHDR/ CATBLK
DATA T, F /.TRUE.,.FALSE./ DATA READ, WRITE, FLUSH, SC DATA VO, BO /0,1/
DATA Nl, N2, N8 /l,2,8/

Catalogue header blook oommon

/'READ','WRIT','FLSH','SC'/

10

BP - 2 * NWDPFP

JCORO - IABS (ICORO)

NFREQ - CATBLK(K2NAX+JL0CF) NSTOKE - CATBLK(K2NAX+JLOCS)
NIF - 1
IF (JLOCIF.GT.0) NIF

Set bytes per pixel (floating)
Take absolute value of first Stokes' value.
Find dimension of freq and stokes axes.

May not have IF axis
CATBLK(K2NAX+JL0CIF)

Open and init ISCR1 CALL ZPHFIL (SC, SCRVOL(ISCRl), SCRCNO(ISCRl), Nl, FILE, IERR) CALL ZOPEN (LUN1, FIND1, SCRVOL(ISCRl), FILE, T, F, T, IERR)
Cheok for errorIF (IERR.EQ.O) GO TO 10

ENCODE (80,1000,MSGTXT) IERR, READ, Nl GO TO 990
Read 8 reoord at a oall.NIOIN - 8

CALL UVINIT (READ, LUN1, FIND1, NVIS, VO, LREC, NIOIN,BUFSZ1, BUFFI, BO, BP, BIND1, IERR)
Cheok for error

oo
o

o
o

o
o

o
oo

DISK FILES
I/O TO DISK FILES Page 6-24

7 Hay 85

IF (IERR.EQ.O) GO TO 20ENCODE (80,1010,MSGTXT) IERR, READ, Nl GO TO 990
C Open and init ISCR220 CALL ZPHFIL (SC, SCRVOL(ISCR2), SCRCN0(ISCR2), Nl, FILE, IERR) CALL ZOPEN (LUN2, FIND2, SCRV0L(ISCR2), FILE, T, F, T, IERR)
C Cheok for errorIF (IERR.EQ.O) GO TO 30

ENCODE (80,1000,MSGTXT) IERR, READ, N2 GO TO 990 30 NIOUT - 8
CALL UVINIT (WRITE, LUN2, FIND2, NVIS, VO, LREC, NIOUT,* BUFSZ2, BUFF2, BO, BP, BIND2, IERR)* BP, BO, IERR)

C Cheok for errorIF (IERR.EQ.O) GO TO 60
ENCODE (80,1010,MSGTXT) IERR, WRITE, N2 GO TO 990

Loop thru data file.Read input file60 CALL UVDISK (READ, LUN1, FIND1, BUFFI, NIOIN, BIND1, IERR)
Cheok for errorIF (IERR.EQ.O) GO TO 70

ENCODE (80,1060,MSGTXT) IERR, READ, Nl GO TO 990
70 IF (NIOIN.LE.O) GO TO 120

DO 100 IV - 1,NIOIN
DO 90 IFQ - 1,NFREQ

DO 80 1ST - 1,NSTOKE
DO 80 IIF = 1,NIF

Cheok if data all read.
Loop thru reoords
Loop through frequenoy
Loop through stokes' axis
Loop through IF axis
Compute pointer in the buffer to imag. part INDEX = NRPARM + (IFQ-1) * INCF + (IIF-1) * INCIF* + (IST-JCORO) * INCS + 1 + (BIND1 - 1)

C Conjugate visibilityBUFFI(INDEX) -- BUFFI(INDEX)80 CONTINUE
90 CONTINUE

C Copy reoord to output bufferCALL RCOPY (LREC, BUFFI(BIND1), BUFF2(BIND2))
C Update buffer pointersBIND1 - BIND1 + LREC

BIND2 - BIND2 + LREC 100 CONTINUE
C Write outputCALL UVDISK (WRITE, LUN2, FIND2, BUFF2, BIND2, NIOUT, IERR)
C Cheok for errorIF (IERR.EQ.O) GO TO 110

ENCODE (80,1060,MSGTXT) IERR, WRITE

DISK FILES
I/O TO DISK FILES Page 6-25

7 May 85

110CC
120

130

990999

GO TO 990
GO TO 60 Loop baok for more data

Finished, flush buffer.No more output reoords.NIOUT - 0
CALL UVDISK (PLUSH, LUN2, FIND2, BUFF2, BIND2, NIOUT, IERR)

Cheok for errorIF (IERR.EQ.O) GO TO 130
ENCODE (80,1060,MSGTXT) IERR, FINI GO TO 990 nfifi "Pi 1 as

CALL ZCLOSE (LUN1, FIND1, IERR)CALL ZCLOSE (LUN2, FIND2, IERR)IERR - 0
GO TO 999

Error.CALL MSGWRT (N8)RETURN
1000 FORMAT ('UVCONJ: ERROR',13,' OPEN FOR ',A4,' FILE',12)1010 FORMAT ('UVCONJ: ERROR',13,' INIT FOR ',A4,' FILE',12)1060 FORMAT ('UVCONJ: ERROR',13,IX,A4,'ING FILE',12)END

6.4.7 Extension Files
Extension files oontain a great variety of different types of data but usually are small oompared to the data files. Thus, for extension file I/O, the routines are friendlier but less effioient. In many oases the data stored in extension files oonsist of logioal

reoords whioh oontain different data types and are in faot data
struotures. The details of the extension file struoture are desoribed in the AIPS manual volumn 2 for most types of extension files.

One type of extension file is the table. This type of file oontains a self desoribing header and is useful for most types of data whioh oan be foroed into a table struoture. The prinoiple advantage of tables is that generalized tables manipulating routines, inoluding writing to and reading from tape automatically,
are available. The prinoiple disadvantage is that very oomplex data struotures are diffioult to deal with as are large arrays of integers, reals or oomplex values.

DISK FILES
I/O TO DISK FILES Page 6-26

7 May 85

6.4.7.1 TABINI And TABIO -
The routines TABINI and TABIO do I/O to extension tables. A single oall to TABINI will oreate an extension table if neoessary, oatalogue it, open the file, and initialize the I/O. TABIO then allows random aooess, with mixed reads and write allowed, to the extension file. TABINI returns a set of pointers whioh oan be used to aooess data in a reoord. In praotioe, another level of speoifio routines for eaoh table type is useful to aooess tables. Use of tables in AIPS is dealt with in more detail in another ohapter in this manual.

6.4.7.2 EXTINI And EXTIO -
The routines EXTINI and EXTIO make I/O to extension files muoh simpler than the image and uv data routines. A single oall to EXTINI will oreate an extension file if neoessary, oatalogue it, open the file, and initialize the I/O. EXTIO then allows random

aooess, with mixed reads and write allowed, to the extension file.
EXTIO copies the data into a speoified array so that a data struoture oan be formed by means of a Fortran equivalence, either an explioit EQUIVALENCE statment or through the use of a oommon.

The struoture of the extension file is a header reoord of 512 bytes, some of whioh are used by EXTINI and EXTIO for bookkeeping, but many of whioh are available for use. Following the header reoord oome the fixed length logioal reoords whioh are physically blooked in 512 byte blooks. A single logioal reoord may use several physioal blooks or several logioal reoords may be in a given 512 byte blook. Details of the oall sequenoes for EXTINI and EXTIO and a description of the file header reoord are given at the end of this ohapter.
Simple copies of any and/or all EXTINI-EXTIO files of a given type may be oopied with a single oall to EXTCOP. A description of

the oall sequenoe for EXTCOP is given at the end of the chapter on tasks.
NOTE: TABINI and TABIO are strongly preferred over EXTINI and EXTIO.

6.4.8 Text Files
AIPS uses a number of text files suoh as the HELP and RUN files. At the moment the text file oapability is read only. There

are several routines whioh allow aooess to text files: ZTOPEN, ZTREAD, ZTCLOS, and KEYIN.

DISK FILES
I/O TO DISK FILES Page 6-27

7 May 85

- ZTOPEN opens a text file. It is similar to ZOPEN exoept that it has an additional inpnt argument (MNAME) whioh gives the name of the desired file or member.
- ZTREAD returns one 80 oharaoter line of text.
- ZTCLOS oloses the text file.
- KEYIN is the AIPS version of the Cal Teoh VLBI parsing

routine. This a very flexible routine for obtaining values from external text files.

AIPS I/O routines have a number of standard plaoes that they oan find text files. These inolude the RUN file area, the HELP file area, and various souroe oode areas. If a programmer wishes to read an arbitrary text file, the best thing to do is to put the file in the RUN area. A file name (PNAME) should be oonstruoted with ZPHFIL with type 'RU'; other inputs are dummy. ZTOPEN should then be oalled with LUN-10 and this value of PNAME. An example of the use of ZTREAD to read a file named "INDATA" from the RUN area follows:
INTEGER*2 LUN, FIND, LINE(70), IERR, RU, Nl, N8, N24 LOGICAL*2 WAIT
REAL*4 PNAME(6), MNAME(2), XNAME(6), YNAME(2)INCLUDE 'INCS:DDCH.INC'

INCLUDE 'INCS:CDCH.INC'
DATA WAIT /.TRUE./, YNAME /'INDA','TA ' /, LUN /10/ DATA RU /'RU'/
DATA Nl, N8, N24 /l,8,24/

C Pack MNAMECALL CHPACK (N8, YNAME, Nl, MNAME)
C Make file nameCALL ZPHFIL (RU, Nl, Nl, Nl, PNAME, IERR)
C Open file
C VERNAM is from the oommonC in INCLUDE CDCH.INCCALL ZTOPEN (LUN, FIND, Nl, PNAME, MNAME, VERNAM, WAIT, IERR)
C Error if IERR .NE. 0

C Read line from file.CALL ZTREAD (LUN, FIND, LINE, IERR)
C Error if IERR .NE. 0
C Next line of test from fileC is now in array LINE

C Close file.CALL ZTCLOS (LUN, FIND, IERR)

DISK FILES
I/O TO DISK FILES Page 6-28

7 May 85

In the example above, oalls to KEYIN oould have replaoed the oalls to ZTREAD.

6.5 BOTTOM LEVEL I/O ROUTINES
The routines desoribed so far in this ohapter have been

relatively high level routines whioh have hidden a great deal of bookkeeping. In addition, the image and uv data I/O routines work basioally sequentially with some data seleotion ability. Beneath the higher level routines there are, of oourse, lower level
routines. These routines have a great deal more flexibility that the higher level routines but usually at a oost of a great deal of bookkeeping.

The basio AIPS I/O routines are intrinsioally random aooess; although a data transfer must start on a disk blook boundary. "Map" type files (image and uv data) are read with a pair of routines ZMIO and ZWAIT. Non-map (extension) files are read with ZFIO. These routines oan aooess both disk and tape drives.

6.5.1 ZMIO And ZWAIT
ZMIO initiates a data transfer to or from one of two possible buffers and returns without waiting for the operation to oomplete. ZWAIT is a timing routine whioh suspends the task until the

speoified I/O operation is oomplete. In this manner, I/O and computation oan be overlapped.
The I/O oommon (INCLUDES DDCH.INC and CDCH.INC) oontains an array, FTAB, whioh oontains AIPS and host system I/O tables. ZOPEN returns a pointer in FTAB to the area to use for a given file. The first 16 short integers of this area are available for AIPS program use, the remainder of an FTAB entry is used for the host system I/O

tables. These 16 words are normally used for bookeeping information (the first always oontains the value of the LUN). Examples of the use of the FTAB are found in MINI3, MDIS3, MINS3, MSKI3, UVINIT and UVDISK whioh use ZMIO and ZWAIT. Descriptions of the way these routines use the FTAB are to be found at the end of this ohapter. A
description of the oall arguments to ZMIO and ZWAIT are also found at the end of this ohapter.

DISK PILES
BOTTOM LEVEL I/O ROUTINES Page 6-29

7 May 85

6.5.2 ZFIO
Extension file I/O and single buffer non-disk I/O is usually done with the routine ZFIO. For disk files, ZFIO reads a 512 byte blook from a speoified offset in the file. This blook size is

independent of the true physioal blook size on the disks being used. The I/O transfer is oomplete when ZFIO returns.
For non-disk transfers, the number of bytes transfered by ZFIO

is arbitrary. Details of the oall sequenoe for ZFIO are found at the end of this ohapter. An example of the use of ZFIO may be found in the souroe oode for TABINI and TABIO.

DISK FILES
ROUTINES Page 6-30

7 Hay 85

6.6 ROUTINES
6.6.1 CALCOP - oopys selected data from one data file to another optionally applying calibration and editing information. The input file should have been opened with UVGET. Both files will be olosed on return from CALCOP.
Note: UVGET returns the information neoessary to oatalogue the
output file. The output file will be oompressed if neoessary at completion of CALCOP.

CALCOP (DISK, CNOSCR, BUFFER, BUFSZ, IRET)
Input:DISK 1*2 Disk number for oatalogued output file.

If .LE. 0 then the output file is a /CFILES/ soratoh file.CNOSCR 1*2 Catalogue slot number for if oatalogued file; /CFILES/ soratoh file number if a soratoh file, IF DISK=CNOSCR=0 then the soratoh is oreated.BUFFER(*) R*4 Work buffer for writing.BUFSZ 1*2 Size of BUFFER in bytes.Input via oommon:
CATBLK(256) 1*2 Catalogue header blook from UVGETNVIS 1*2 (/UVHDR/) Number of vis. reoords.LREC 1*2 (/UVHDR/) length of vis. reoord in R*4 words.NRPARH 1*2 (/UVHDR/) number of (R*4) random parameters.Output:CNOSCR 1*2 Soratoh file number if oreated.IRET 1*2 Error oode: 0 -> OK,

>0 -> failed, abort prooess.Output via oommon:
CATBLK(256) 1*2 Catalogue header blook with actual no. reoords.NVIS 1*2 (/UVHDR/) Aotual number of vis. reoords.Usage notes:

1) UVGET with OPCODE-'INIT' HUST be called before CALCOP to setup for calibration, editing and data translation. If an output oatalogued file is to be oreated this should be done after the oall to UVGET.2) Uses AIPS LUN 24

6.6.2 CHNDAT - oreates and fills or reads CH (IF desoriptor) extension tables.
CHNDAT (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,* NIF, FOFF, ISBAND, IERR)

Inputs:
OPCODE R*4 Operation oode:

'WRIT' - oreate/init for write or read 'READ' - open for read only
BUFFER(512) 1*2 I/O buffer and related storage, also defines file

DISK FILES
ROUTINES Page 6-31

7 Hay 85

if open.DISK 1*2 Disk to use.CNO 1*2 Catalogue slot numberVER 1*2 CH file versionCATBLKC256) 1*2 Catalogue header blook.LUN 1*2 Logioal unit number to useInput/Output:NIF 1*2 Number of IFs.FOFF(*) R*8 Frequenoy offset in Hz from ref. freqTrue - referenoe + offset.ISBAND(*) 1*2 Sideband of eaoh IF.
-1 «> o video freq. is high freq. end 1 -> 0 video freq. is low freq. endOutput:

IERR 1*2 Return error oode, 0->OK, else TABINI or TAB10error.

6.6.3 C0M0F3 - Computes the blook offset BLKOF of a 2-D map plane in a NAX-dimensional map from the beginning of the map.
C0M0F3 (NAX, SAX, PLARR, BYTPIX, BLKOF, IERR)

Inputs:
NAX 1*2 Number of axes in map
SAX(7) 1*2 Number of pixels on eaoh axis PLARR(5) 1*2 Depth of required plane along other axes BYTPIX 1*2 Bytes per pixel in map Outputs:
BLK0F(2) 1*2 Pseudo 14 blook offset
IERR 1*2 Error return 0 - OK, 1* error in NAX

6.4 CONVRT - Changes an 1*2 file into a R*4 file or vioe versa.
CONVRT (ILUN, ILUN2, ISLOT, IVOL, IOSIZ, IOBLK, ROSIZ,* ROBLK, IERR)

Inputs:
ILUN ILUN2 ISLOT IVOL In/Out:
IOSIZ IOBLK ROSIZ ROBLK

1*2 LUN for olosed map file.
1*2 LUN for a soratoh map file.1*2 Catalogue slot number for map.1*2 Disk volume number of map.
1*2 Size in 'bytes' (one half integer words) of IOBLK I*2(I0SIZ/2) Soratoh integer I/O buffer.1*2 Size of output buffer in 'bytes' R*4(R0SIZE/(2*NWDPFP)) Soratoh I/O buffer.

DISK FILES
ROUTINES

Page 6-32
7 Hay 85

COMMON /MAPHDR/ Current map header. The header is updated torefleot ohanges made by this program.Output:IERR 1*2 Error oode. l=warning, oould not destroy old map.2»error oonverting map. 3=map left unoatalogued. 4=map not real or integer. Map unohanged.

6.6.5 EXTINI - oreates/opens an extension file. If a file is oreated it is oatalogued by a oall to CATIO whioh saves the updated CATBLK.
EXTINI (OPCODE, PTYP, VOL, CNO, VER, CATBLK, LUN,

* IND, LREC, BP, NREC, BUFFER, IERR)Input: Operation oode, 'READ' => read only,
'WRIT' => read/write Physioal extension type (eg. 'CC')Volumn number Catalogue slot number

Version number: (<= 0 -> write a new one, read the latest one)Catalogue blook of oatalogued file.Logioal unit number to use.
Reoord length in units of BP (write new) Bytes per value. 0=> Use existing value (used for 'WRIT' only) Number of logioal
reoords to oreate in the initial file and/or the number of reoords by whioh to extent the file when it fills up.Work buffer, at least 1024 bytes in size,
more if logioal reoord longer than 512 bytes

OPCODE
PTYPVOL
CNOVER
CATBLK(256)LUN
LRECBP
NREC

BUFFER(*)

R*4
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2

1*2
Output:

LREC 1*2
BPVER
CATBLK(256)INDBUFFER(*) IERR

1*2
1*2
1*2
1*2
1*2
1*2

Logioal reoord length (in units of BP) for read/write old filesBP if input value - 0 and a file exists. Version number used.
Catalogue blook updated if neoessary.FTAB pointer.Header info.Return error oode. 0 -> OK1 * > bad input.

2 -> oould not find or open3 «> oreate/I/O problem.Useage notes:For sequential aooess, EXTINI leaves pointers for EXTIO suoh that if IRNO .le. 0 reads will begin at the start of the file and writes will begin after the last previous reoord.File should be marked 'WRIT' in the oatalogue if the file is to be oreated.

DISK PILES
ROUTINES Page 6-33

7 Hay 85

Header reoord:
Eaoh extension file using this system must have the first physioal (512 bytes) reoord oontaining neoessary information. In addition spaoe in this first reoord not reserved oan be used for other purposes. The header reoord oontains the following:
1*2 word(s) desoription

1 # 512-byte reoords in the existing file
2 # logioal reoords to extend the file when req.3 max. # of logioal reoords
4 ourrent number of logioal reoords5 # bytes per value
6 # values per logioal reoord.
7 # of logioal reoords per physioal reoord, if neg then the # of physioal reoords per logioal reoord.8 - 1 0 Creation task name (2 ohar per word)1 1-16 Creation date, time17 - 28 File name (paoked oharaoter string)
29 Volumn number on whioh file resides.30 - 32 Last write-aooess task (2 ohar per word)33 - 38 Last write-aooess time,date39 - 56 reserved. (53-56 used by EXTIO:

53 - # 1*2 words per logioal reoord.54 - IOP sent to EXTINI
55 - ourrent physioal reoord no.

(doesn't inolude header reo.)56 - ourrent logioal reo. no.57 -256 Available for use.

6.6.6 EXTIO - does random aooess I/O to an extension files, reads and writes are allowed if EXTINI was oalled 'WRIT' Hixed

EXTIO (OPCODE, LUN, Inputs:OPCODE
LUN IND
IRNORECORD()BUFFER()

Output:RECORD()
BUFFER()IERR

R*4
1*2
1*2
1*2
1*2
1*2

1*2
1*2
1*2

IND, IRNO, RECORD, BUFFER, IERR)
Opoode 'READ','WRIT','CLOS'Logioal unit number FTAB pointerLogioal reoord no. 0~> next.
Array oontaining reoord to be written Work buffer - 512 bytes + enough 512 byte blooks for at least one full logioal reoord
Array oontaining reoord read, buffer.
Return error oode 0 -> OK1 -> file not open2 -> input error3 «> I/O error

4 -> attempt to read past end of dataor write past log. or phys. reoord 32766.

DISK FILES
ROUTINES Page 6-34

7 Hay 85

IMPORTANT NOTE: the oontents of BUFFER should not be ohanged exoept by EXTIO between the time EXTINI is oalled until the file is olosed. The exoeption is that the user portion of the header reoord is available. EXTINI HUST be oalled before EXTIO.

6.6.7 GETVIS - gets and reformats uv data, stokes types. Requires setup by SETVIS. Hay return multiple

GETVIS (HODE, HVIS, JADR, SFACT, ALLWT, DATA, WT,* VIS, IERR)
Inputs: HODE

HVISJADR(2,HVIS)
SFACT(2,HVIS)ALLWT
DATA(3,*)

Outputs:WT
VIS(HVIS)IERR

1*2

1*2
1*2R*4
L*2
R*4

Operation number (see SETVIS).When HODE - 2 or 3 and RL and LR are given
the U visibility is multiplied by i.Number of visibilities wanted.Pointers set by SETVIS.Faotors set by SETVIS.
Flag set by SETVIS, if .TRUE, all relevant weights must be positive.Visibility portion of input data.

R*4 Average weight.CHPX Visibilities.1*2 Error oode, 0->0K,
1 »> bad weights.(data flagged).2 - bad input.

6.6.8 GET1VS - gets and reformats uv data. Returns one stokes' type per frequenoy ohannel. Requires setup by SET1VS.
GET1VS (HODE, HVIS, JADR, JINC, SFACT, ALLWT, STOKES,* DATA, WT, VIS, IRET)

Inputs:
HODE 1*2

HVIS 1*2JADR(2) 1*2JINC 1*2SFACT(2) R*4ALLWT L*2
STOKES L*2
DATA(3,*) R*4

Operation number (see SET1VS).When HODE - 3 and RL and LR are given,
the U visibility is multiplied by i. Number of visibilities wanted.Pointers set by SET1VS.Inorement between vis.Faotors set by SET1VS.If true all vis are required.
True if input data true Stokes' .Used for UPOL only.
Visibility portion of input data.

DISK FILES
ROUTINES Page 6-35

7 Hay 85

Outputs:
WT R*4 Average weight.VIS(MVIS) CMPX Visibilities.
IRET 1*2 Error oode, 0->OK,

1 -> bad weights.(data flagged).

6.6.9 KEYIN - Standard Fortran version of the CIT VLBI KEYIN
subroutines. This subroutine reads keyed parameters on oards images. The text file should be opened via a oall to ZTOPEN before the first oall to KEYIN and olosed via a oall to ZTCLOS after the last oall. (HINT: use LUN - 10 for the RUN area.)
As of this printing, KEYIN is not yet sufficiently standardized that it appears in any of the AIPS libraries. A oopy oan be stolen from the souroe oode of a task suoh as VBANT or UVFLG whioh uses KEYIN.

KEYIN (KEYS, VALUES, N, ENDMRK, MODE, LUN, FIND, IERR)
Inputs: KEYS(N)
VALUES(N) NENDMRKMODE

LUN FIND
Outputs: NIERR

R*8R*8
1*2R*81*2

array of parameter names (paoked oharaoters) array to reoeive values or defaults
number of parameters (dimension of keys and values) speoial keyword to indioate end of input1 - turn on refleotion, 0 - turn off
2 - interaotive mode (prompts for input,no refleotion, no limit on errors)3 - Pass values until ENDMARK, ignore anykeywords.1*2 LUN to read from (used in oall to ZTOPEN)1*2 FTAB pointer for input, (from ZTOPEN)

1*2 (MODE**3 only) number of values found
1*2 error oode, 0->OK, 1»>E0F found, 2=>Error

6.6.10 MAPSIZ - oomputes the oorreot number of bytes to request from ZCREAT for a file using map I/O methods.
MAPSIZ (NAX, NP, NB, ISIZE)Inputs: NAX 1*2 # axes

NP I*2(NAX) # pixels on eaoh axis.NB 1*2 # bytes / pixelOutput: ISIZE 1*4 file size in bytes

DISK FILES
ROUTINES Page 6-36

7 May 85

6.6.11 MAPCLS - oloses a map file and dears the oatalogue status
MAPCLS COP, IVOL,* WBUFF, IERR)

Inputs:
CNO, LUN, IND, CATBLK, CATUP,

OP I VOL
CNO LUN INDCATBLK

Outputs:IERR

R*4
1*2
1*2
1*2
1*2

CATUP L*2

OPoode used by MAPOPN to open this file Disk volume oontaining map file Catalogue slot number of file Logioal unit # used for file FTAB pointer for LUN
1*2(256) New oatalogue header whioh oan optionally

be written into header if OP-WRIT or INIT Dummy arguement if OP-READ
If TRUE write CATBLK into oatalogue, ignored if OP - READ

1*2 015
O.K.
CATDIR oouldn't aooess oatalogue illegal OP oode

6.6.12 MAPOPN - opens a map file marking the the desired type of operation. oatalogue entry for

MAPOPN (OP,* LUN, IND, Inputs:OP

IVOL, NAMEIN, CLASIN, SEQIN, TYPIN, USID, CNO, CATBLK, WBUFF, IERR)
R*4

1*2LUN In/Out:
NAMEIN(3) R* CLASIN(2) R* SEQIN USID I VOL
TYPIN Outputs:IND CNO

I*I*I*I*
I*I*CATBLK(256)I* IERR I*

Operation: READ, WRIT, or INIT where INIT is for known oreation processes (it ignores ourrent file status Gf leaves it unohanged) Also: HDWR for use when the header is being ohanged but the data are to be read only. Logioal unit # to use
Image name (name) (12 paoked ohars)
Image name (olass) (6 paoked ohars)Image name (seq.#)
User identification #Input disk unit
Physioal type of file (2 paoked ohars)
FTAB pointer
Catalogue slot oontaining map
Buffer oontaining ourrent oatalogue blook Error output OK

Can't open WRIT beoause file busy
or oan't READ beoause file marked WRITE File not found
Catalogue I/O error

02
34

DISK FILES
ROUTINES Page 6-37

7 Hay 85

5 - Illegal OP oode6 - Can't open fileBuffer:
WBUFF(256) 1*2 Working buffer for CATIO and CATDIR

6.6.13 HCREAT - oreates and oatalogues an image data file based on a oatalogue header blook in oommon /HAPHDR/.
HCREAT (IVOL, CNO, WBUFF, IERR)In/Outs:
IVOL 1*2 Volume # on whioh to put file: 0 »> ALLon output has volume used WBUFF 1*2(256) Working buffer Outputs:
CNO 1*2 Catalogue slot numberIERR 1*2 Error oode; 0 => o.k.

1 -> oouldnt oreate,no room2 => no create, duplicate name3 -> no room in oatalogue
4 »> I/O problem on oatalogue5 => Other Create errorsCommon: (in/out)

CATBLK 1*2(256) Catalogue blook (via oommon HAPHDR)
CATB4 R*4(128) Catalogue blook (equivalenoed to CATBLK)

The file oreated will be oatalogued and marked with WRITE status. The image name parameters inol. physioal type must be filled in.A blank physioal type is oonverted to 'HA'. The OUTSEQ default
is applied (0 «> lowest unique). The extension file areas of the CATBLK are oleared and the "DATE-HAP" string is filled in.

6.6.14 MDESTR - will delete a oatalogue entry for a file, delete
all extension files for that file, and then delete the file. The file must be in the REST state.

HDESTR (IVOL, ISLOT, IHDBLK, IWBLK, INDEST, IERR)
Inputs: IVOL 1*2 disk volume number of the file.ISLOT 1*2 oatalogue slot number.IWBLK 1*2(256) work buffer.In/Out: INDEST 1*2 number of extension files destroyed.

(if - -32000 on in, suppress normal msg) Output: IHDBLK 1*2(256) the header blook for this file.IERR 1*2 error oode: 0 no error1 - disk error
2 - map too busy3 - destroy failed somehow

DISK FILES
ROUTINES Page 6-38

7 Hay 85

6.6.15 HDIS3 - reads or writes image data to/from disks devices. and other

MDIS3 (OP Inputs:OP 1*4 LUN 1*2 FIND 1*2 Input and/or BUFF ??
Output:
BIND 1*2
IERR 1*2

LUN, FIND, BUFF, BIND, IERR)
Op oode ohar string 'WRIT', 'READ','FINI' logioal unit number Pointer to FTAB returned by ZOPEN output:
Buffer holding data, you better know speoifioation
Pointer to position in buffer of first pixel in window in the present lineError return: 0

1 -
2 -3 -4 -5 -
6 -

ok
file not open input error I/O error end of file
beginning of medium end of medium

HDIS3 sets array index to the start of the next line wanted. NOTE: the line sequenoe is set by the WIN parameter in HINI3, if the vaules of WIN(2) and Win(4) are switohed then the file will be aooessed baokwards.
A oall with OP - 'FINI' flushes the buffer when writing.MINI3 HUST be oalled before MDIS3.

6.6.16 MINI3 - initialized the I/O tables for MDIS3.
MINI3 (OP, LUN, IND, LX, LY, WIN, BUFF, BFSZ, BYTPIX,* BLKOF, IERR)Inputs:
OP R*4 Operation oode oharaoter string: 'R E A D W R I T 'LUN 1*2 logioal unit number
IND 1*2 pointer to FTAB, returned by ZOPEN when file is opened LX 1*2 Number of pixels per line in X-direotion for whole plane
LY 1*2 Number of lines in whole plane.
WIN 1*2(4) Xmin,Ymin,Xmax,Ymax defining desired subreotangle in the plane. A subimage may NOT be speoified for 'WRIT'. BFSZ 1*2 Size of total available buffer in bytes, should be even

Speoial oase: BUFSZ-32767 is treated as though BUFSZ-32768 to allow double buffering of 16Kbyte reoords.
BYTPIX 1*2 Number of bytes per pixel in stored map
BLKOF 1*2(2) Pseudo 1*4 blook number, 1 relative, of first map

pixel in the desired plane. Use COMOF3 + ZMATH4 to set.Outputs:
IERR 1*2 Error return: 0 »> ok

DISK FILES
ROUTINES Page 6-39

7 May 85

12
7345
6

file not openinput error
Buffer too small
I/O error on initializeend of file
beginning of mediumend of medium

MINI3 sets up speoial seotion of FTAB for quiok return, double
buffered I/O. N.B. This routine is designed to read/write images
one plane at a time. One oan run the planes together iff the rows are not blocked: i.e. iff NBPS / (LX * BYTPIX) < 2.
Usage notes: For map I/O the first 16 words in eaoh FTAB entry oontain a user table to handle double buffer I/O, the rest
oontain system-dependent I/O tables. A "major line" is 1 row or1 seotor if more than 1 line fits in a seotor. FTAB user table entries, with offsets from the FIND pointer are:FTAB + 0

1
2345
6
78 910 11
12131415

LUN using this entry
No. of major lines transfered per I/O op
No. of major times a buffer has been aoessed No. of major lines remaining on disk Output index for first pixel in window
No. pixels to inorement for next major line
Whioh buffer to use for I/O; -1 => single buffer Blook offset in file for next operation (lsb 1*4) msb of pseudo 1*4 blook offset
Blook inorement in file for eaoh operation No. of bytes transferred
I/O op oode 1=> read, 2 => write.BYTPIX
rows / major line (>- 1)
times this major line has been aooessed# pixels to inorement for next row (= LX)

6.6.17 MINS3 - initializes the I/O tables for the "soatter read" I/O routine MSKI3.
SUBROUTINE MINS3 (LUN, FIND, LROW, NROW, ISTRT, NSKIP, BUFF,* BUFSZ, BP, BO, NBUF, IERR)Input:

LUN 1*2 - Logioal unit number.
FIND 1*2 - pointer to FTAB returned by ZOPEN.LROW 1*2 - Length of a row pixels.NROW 1*2 - Total number of rows.ISTRT 1*2 - First row for read.NSKIP 1*2 - Number of rows to skip.BUFF(1) 1*2 - Output buffer.
BUFSZ 1*2 - Buffer size in bytes.BP 1*2 - bytes/pixel.
B0(2) 1*2 - Blook offset, pseudo 1*4.
NBUF 1*2 - faotor times whioh LROW (if LROW .GE. 32768)

DISK FILES
ROUTINES

Page 6-40
7 May 85

normally - 1.Output:
NBUF 1*2 - number of buffer fulls to oomplete read of row.MSKI3 must be oalled this number of times to oomplete the read.IERR 1*2 - Error oode: 0 * OK1 - file not open2 - input error

4 - tried to read past end of map.10+ - 10 + ZMIO or ZWAIT error.FTAB assigments:
0 - LUN
1 - BP bytes/pixel2 = BO(l) blook offset3 - B0(2)
4 - length of row / [5] in bytes5 - multiplier of [4]6 - next reoord number.
7 - reoord inorement+1 (total inorement)8 - # oalls per reoord.
9 - reoord oall # (when MSKI3 is oalled)10 - bytes / oall
11 - buffer flag, -1- single, 1=»>ourrent buffer is 12“>ourrent buffer«2 (buffer already read)12 - buffer size in pixels (1/2 for double buffering)13 - NROW (the number of rows to read)
14 - BTYOFF the byte offset when double buffering.

6.6.18 MSCALE - will read from a floating point file, resoale the values to oorrespond to a max and min and write these soaled values to an integer format map file. The two files must be open before this routine is oalled.
MSCALE (XMIN, XMAX, NAX, INP, IBLC, ITRC, ISLUN, ISIND,
* ISBSIZ, XBLK, IDLUN, IDIND, IDBSIZ, IDBLK, SCALEF, OFFSET,* IERR)

In/out: XMIN R*4 aotual minimum value of floating pt values. XMAX R*4 aotual maximum value.
Input: used to determine soaling Sf must enoompass full data range. If subimaging is done, output will be aotual in subim. Inputs: NAX 1*2 the number of axes

INP 1*2(7) # points on eaoh axis (input file)IBLC 1*2(7) start point for input axes:
IBLC(l) - 0 -> use full array ITRC 1*2(7) end point on eaoh axis of input array

ISLUN 1*2 the logioal unit number of the souroe file. ISIND 1*2 the FTAB pointer for the souroe file.ISBSIZ 1*2 the buffer size in bytes for the souroe file XBLK R*4(ISBSIZ/4) the souroe file I/O buffer.IDLUN 1*2 the logioal unit number for the 1*2

DISK FILES
ROUTINES Page 6-41

7 May 85

destination file.
IDIND 1*2 the FTAB pointer for the destination file. IDBSIZ 1*2 buffer size in bytes for the destination fil IDBLK I*2(IDBSIZ/2) destination file I/O buffer. Outputs: SCALEF R*8 the soale faotor used to soale the dest file
OFFSET R*8 offset used in soaling destination file.IERR 1*2 error indioator.

0 - no error.

6.6.19 MSCALF - will read from a floating point file, resoale the values to oorrespond to a max and min and write these soaled values to an integer format map file. The two files must be open before this routine is oalled. MSCALF is similar to MSCALE exoept that blanking oapability is inoluded. FBLANK is the value of the
undefined pixel in the floating point soratoh array. This pixel is set to -32768 in the integer format file.

MSCALF (XMIN, XMAX, NAX, INP, IBLC, ITRC, ISLUN, ISIND,* ISBSIZ, XBLK, IDLUN, IDIND, IDBSIZ, IDBLK, FBLANK, SCALEF,* OFFSET, IERR)
In/Out: XMIN R*4 aotual minimum value of floating pt values. XMAX R*4 aotual maximum value.

Input: used to determine soaling fif must enoompass full data range. If subimaging
is done, output will be aotual in subim. Inputs: NAX 1*2 the number of axes

INP 1*2(7) # points on eaoh axis (input file)IBLC 1*2(7) start point for input axes:
IBLC(l) “ 0 -> use full array ITRC 1*2(7) end point on eaoh axis of input array ISLUN 1*2 the logioal unit number of the souroe file. ISIND 1*2 the FTAB pointer for the souroe file.

ISBSIZ 1*2 the buffer size in bytes for the souroe file XBLK R*4(ISBSIZ/4) the souroe file I/O buffer.IDLUN 1*2 the logioal unit number for the 1*2 destination file.
IDIND 1*2 the FTAB pointer for the destination file. IDBSIZ 1*2 buffer size in bytes for the destination fil IDBLK I*2(IDBSIZ/2) destination file I/O buffer.FBLANK R*4 the value of the floating point blank pixel Outputs: SCALEF R*8 the soale faotor used to soale the dest file
OFFSET R*8 offset used in soaling destination file.IERR 1*2 error indioator.

0 - no error.

DISK FILES
ROUTINES Page 6-42

7 Hay 85

6.6.20 HSCALI - will read from an integer file, and write these
values to a floating point map file. The two files must be open before this routine is oalled.

HSCALI (SCALEF, OFFSET, NAX, INP, IBLC, ITRC, ISLUN,ISIND, ISBSIZ, ISBLK, IDLUN, IDIND, IDBSIZ, XBLK, FBLANK, XHIN, XHAX, IERR)
R*4 SCALEF * Pixel value + OFFSET = aotual pixel value.R*4 See OFFSET.
1*2 the number of axes
1*2(7) # points on eaoh axis (input file)1*2(7) start point for input axes:

IBLC(l) “ 0 -> use full array 1*2(7) end point on eaoh axis of input array
1*2 the logioal unit number of the souroe file. 1*2 the FTAB pointer for the souroe file.
1*2 the buffer size in bytes for the souroe file I*2(ISBSIZ/2) the souroe file I/O buffer.1*2 the logioal unit number for the 1*2 destination file.
1*2 the FTAB pointer for the destination file. 1*2 buffer size in bytes for the destination fil R*4(IDBSIZ/4) destination file I/O buffer.R*4 the value of the floating point blank pixel R*4 Hin map value: output ohanged only if do subarray R*4 Hax map value: ditto 1*2 error indioator.

0 - no error.

Inputs: SCALEF
OFFSETNAXINP
IBLC
ITRC
ISLUNISINDISBSIZISBLK
IDLUN
IDINDIDBSIZXBLK
FBLANKXHINIn/Out:

Outputs XHAX
IERR

6.6.21 HSKI3 - reads rows in a map file whioh are evenly spaoed.
The reads are double, single buffered or partial buffers if the row size 1) is .LE. BUFSZ/2, 2) between BUFSZ/2 and BUFSZ or3).GT.BUFSZ. For oase 3) multiple oalls (NBUF from HINS3) are required to read eaoh row. Eaoh oall returns LROW*BP/NBUF bytes and I/O is single buffered. IFIN * 0 indioates a row is oompleted. See HINS3 for more details.

SUBROUTINE HSKI3 (LUN, FIND, BUFF, BIND, IFIN, IERR)Input:
LUN 1*2 - Logioal unit number.FIND 1*2 - pointer for FTABBUFF(1)1*2 - Buffer Output:
BIND 1*2 - Pointer for BUFF
IFIN 1*2 - 0 if row oomplete, 1 otherwise.IERR 1*2 - error oode: 0 - OK

1 - file not open
2 - attempt to read past end of map.10+- I/O error - 10 + ZWAIT error.

DISK FILES
ROUTINES Page 6-43

7 May 85

MINS3 MUST be oalled before MSKI3.

6.6.22 PLNGET - reads a seleoted portion of a seleoted plane from a oatalogued file parallel to the front and writes it into a speoified soratoh file. The output file will be zero padded and a shift of
the oenter may be speoified. Output file is REAL*4 but the input
may be either INTEGER*2 of REAL*4. If the input window is unspeoified (0's) and the output file is smaller than the input file, the NX x NY region about position (MX/2+1-OFFX, MY/2+1-OFFY)
in the input map will be used where MX,MY is the size of the input map. NOTE: If both XOFF and/or YOFF and a window (JWIN) whioh does not oontain the whole map, XOFF and YOFF will still be used to end-around rotate the region inside the window.

PLNGET (IDISK, ICNO, CORN, JWIN, XOFF, YOFF,
* NOSCR, NX, NY, BUFFI, IBUFF1, BUFF2, BUFSZ1, BUFSZ2,

Input image disk number.
Input image oatalogue slot number.BLC in input image (1 Gf 2 ignored)Window in plane.
offset in oells in first dimension of the
oenter from MX/2+1 (MX 1st dim. of input win.) offset in oells in seoond dimension of the
oenter from MY/2+1 (MY 2nd dim. of input win.) Soratoh file number in oommon /CFILES/ for output.
Dimensions of output file.Work buffer
Work buffer (should be the same as BUFFI)Work buffer.
Size in bytes of BUFF1/IBUFF1 Size in bytes of BUFF2 Log. unit numbers to use.
Return error oode, 0 -> OK,

1 - oouldn't oopy input CATBLK
wrong number of bits/pixel in input map. input map has inhibit bits,
oouldn't open output map file, oouldn't init input map. oouldn't init output map. read error input map.
write error output map.
error oomputing blook offset ■ output file too small.

/MAPHDR/ is set to the input file CATBLK.

* LUN1, LUN2,Inputs:IDISK 1*2ICNO 1*2CORN(7) 1*2JWIN(4) 1*2XOFF 1*2
YOFF 1*2
NOSCR 1*2
NX, NY 1*2BUFFI(*) R*4IBUFF1(*) 1*2BUFF2(*) R*4BUFSZ1 1*2BUFSZ2 1*2LUN1, LUN2 1*2Output:IRET 1*2

Useage notes:
CATBLK in COMMON

234 ■5 -
6 -7 ■8 ■9 >
10

DISK FILES
ROUTINES Page 6-44

7 May 85

6.6.23 PLNPUT - writes a subregion of a REAL*4 soratoh into a oatalogued image (either 1*2 or R*4). file image

PLNPUT (IDISK, ICNO, CORN, JWIN, NOSCR, NX, NY,
* BUFFI, BUFF2, IBUFF2, BUFSZ1, BUFSZ2, LUN1, LUN2, IRET)

Output image disk number.
Output image oatalogue slot number.
BLC in Output image (1 6f 2 ignored)Window in plane in input image.
Soratoh file number in oommon /CFILES/ input soratoh file.
Dimensions of input file.Work buffer Work buffer.
Work buffer (should be the same as BUFF2) Size in bytes of BUFFI.
Size in bytes of BUFF2/IBUFF2 Log. unit numbers to use.

Input:IDISK 1*2I CNO 1*2CORN(7) 1*2JWIN(4) 1*2NOSCR 1*2
NX, NY 1*2BUFF1(*) R*4BUFF2(*) R*4IBUFF2(*) 1*2BUFSZ1 1*2BUFSZ2 1*2LUN1, LUN2 1*2Output:
IRET I

for

Return error oode: 0 OK1 - oouldn't read output CATBLK.2 - Output bits/pixel not allowed.3 - Output and input windows not same.4 - oouldn't open input map file.5 - oouldn't init output map.6 - oouldn't init input map.7 - read error input map.8 - write error output map.
9 = error writing header to oatalogue10 - error oomputlng blook offset.COMMONS:

CATBLK in /MAPHDR/ is used as the map header and the soaling
and offset parameters are set. Of partioular importanoe is the data max/min values whioh must apply to the real*4 map. As this is read from the oatalogue it must be updated by a oall to CATIO eto. before oalling this routine.

6.6.24 SETVIS - setup the arrays JADR, SFACT and the flag ALLWT for reformatting uv data as speoified by MODE. There is also a oheok to make sure the desired data is available. Calls to GETVIS will reformat the data. Needs values set by UVPGET and VHDRIN.
SETVIS (MODE, NCH, MVIS, JADR, SFACT, ALLWT, IERR)

Inputs:
MODE 1*2 Desired output data format:1 -> I2 -> IQU

3 -> IQUV
4 -> IV

DISK FILES
ROUTINES Page 6-45

7 Hay 85

NCH Output:
HVIS
JADR(2,*)
SFACT(2,*)
ALLWT
IERR

5 -> R (right hand oiroular)6 «> L7 -> RL
8 -> straight correlators (used in UVFND)10+n “> n I pol. line maps, (n .le. 8)20+n -> n R pol. line maps.30+n *> n L pol. line maps.1*2 First line ohannel desired.

1*2 Number of visibilities in requested output format.
1*2 Pointers to the first and seoond visibility

input reoords to be used in the output reoord. R*4 Faotors to be multiplied by the first and
seoond input vis's to make the output vis.L*2 Flag, - .TRUE, if all visibilities must have positive weight.

1*2 Error flag. 0 =>OK, otherwise data unavailable

6.6.25 SET1VS - setup the arrays JADR, SFACT and the flag ALLWT for reformatting uv data as speoified by HODE. One visibility per
frequenoy ohannel will be returned by GET1VS. There is also a oheok to make sure the desired data is available. Calls to GET1VS will reformat the data. Needs values set by UVPGET.

SET1VS (HODE, NCH, JADR, SFACT, ALLWT, JINC, IRET)
Inputs:HODE

NCH Output:
JADR(2)
SFACT(2)
ALLWT
JINCIRET

1*2 Desired output data format1
234
5
6

I
Qu
V
RCP
LCP1*2 First line ohannel desired

1*2
R*4
L*21*21*2

Pointers to the first and seoond visibility
input reoords to be used in the output reoord. Faotors to be multiplied by the first and
seoond input vis's to make the output vis.If true no flagged data is allowed.Visibility inorement.
Error flag. 0 ->OK, otherwise data unavailable

DISK FILES
ROUTINES Page 6-46

7 Hay 85

6.6.26 TABINI - oreates/opens a table extension file. If a file isoreated, it is oatalogued by a oall to CATIO whioh eaves the updated CATBLK. *

TABINI (OPCODE, PTYP, VOL, CNO, VER, CATBLK, LUN,* NKEY, NREC, NCOL, DATP, NBUF, BUFFER, IERR)
Input:OPCODE

PTYPVOL
CNO
CATBLK(256) LUN NREC NBUF In/out:
VER
NKEY

NCOL

R*4 Operation oode, 'READ' => read only,
'WRIT' => read/write Physioal extension type (eg. 'CC')Disk volume number Catalogue slot number

Catalog blook of oataloged file.Logioal unit number to use.
Number of logioal reo. for oreate/extend Number 1*2 words in BUFFER

1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2

1*2

DATP(128,2) 1*2

BUFFER(*) 1*2

Output: IERR

Version number: (< = 0 * > write a new one,
read the latest one), returns one used. Haximum number of keyword/value pairs
input: used in oreate, oheoked on write old (0 »> any); output: aotual
Number of logioal oolumns (does not inolude seleotion oolumn). Input: used in oreate, oheoked on write old (0=>any); output: aotual DATP(*,1) address pointers (output only)
DATP(*,2) oolumn data type oodes. Input: used in oreate only; output: aotual.
Work buffer, at least 1024 bytes in size,
more if logioal reoord longer than 512 bytes Output: oontrol info, lookup table, ...

1*2 Return error oode. -1 = 1 =
2 =3 -
4 -

) => OK
OK, oreated new file bad input.
oould not find or open I/O problem, oreate problem.Usage notes:

For sequential aooess, TABINI leaves pointers for TABIO suoh that,
if IRNO <“ 0, reads will begin at the start of the file and writes will begin after the last previous reoord. Cataloged file should be marked 'WRIT' if the file is to be oreated.
Header reoord:
Eaoh extension file using this system must have the first physioal (512 bytes) reoord oontaining neoessary information. The full table file format is desoribed in Going AIPS. The user must read this seotion to understand fully how to use suoh files. The header reoord oontains the following:
1*2 word(s) Desoription
1 - 2 (1*4) Number 512-byte reoords now in file

DISK FILES
ROUTINES Page 6-47

7 May 85

3 - 4 (1*4) Max number rows allowed in ourrent file 5 - 6 (1*4) Number rows (logioal reoords) now in file
7 Number of bytes/value (2 for TA files)
8 Number values / logioal (# I*2s / row for TA)9 > 0 -> number rows / physical reoord< 0 -> number physioal reoords / row10 Number logioal oolumns / row11-16 Creation date: ZDATE(ll), ZTIME(14)
17 - 28 Physical file name (set on eaoh TABINI oall)29-31 Creation task name (2 ohars / integer)32 Disk number
33 - 38 Last aooess date: ZDATE(33), ZTIME(36)39 - 41 Last aooess task name (2 ohars / integer)
42 Number logioal reoords to extend file if needed43 Sort order: logioal oolumn # of primary sorting44 Sort order: logioal oolumn # of seoondary sorting

0 => unknown, < 0 -> desoending order45 Disk reoord number for oolumn data pointers (2)
46 Disk reoord number for row seleotion strings (3)47 Disk reoord number for 1st reoord of titles (5)48 Disk reoord number for 1st reoord of units49 Disk reoord number for 1st reoord of keywords
50 Disk reoord number for 1st reoord of table data51 DATPTR (row seleotion oolumn)
52 Maximum number of keyword/value pairs allowed53 Current number of keyword/value pairs in file *********** *
54 - 60 Reserved ***********
61 Number of seleotion strings now in file
62 Next available R*4 address for a seleotion string63 First R*4 address of seleotion string 1
64 First R*4 address of seleotion string 265 First R*4 address of seleotion string 3
66 First R*4 address of seleotion string 467 First R*4 address of seleotion string 5
68 First R*4 address of seleotion string 669 First R*4 address of seleotion string 770 First R*4 address of seleotion string 8 ********** for TABIO / TABINI use only **********
71 IOP : 1 -> read, 2 -> writ
72 Number 1*2 words per logioal reoord73 - 74 (1*4) Current table row physioal reoord in BUFFER 75 - 76 (1*4) Current table row logioal reoord in BUFFER77 Type of ourrent reoord in BUFFER
78 Current oontrol physioal reoord number in BUFFER79 Current oontrol logioal reoord number in BUFFER80 Type of ourrent oontrol reoord in BUFFER81 LUN
82 FTAB pointer of open file ***********
83 -100 Reserved ***********
101 -128 Table title (4 ohars / real)

DISK FILES
ROUTINES Page 6-48

7 Hay 85

129 -256 lookup table as COLPTRClogioal oolumn) - phys oolumn

6.6.27 TABIO - does random aooess I/O to Tables extension files. Hixed reads and writes are allowed if TABINI was oalled 'WRIT'.
Writes are limited by the size of the struoture (i.e. oolumns for
units and titles) or to the ourrent maximum logioal reoord plus one. Files opened for WRITe are updated and oompressed on CLOS.

TABIO (OPCODE, IRCODE, IRNO, RECORD, BUFFER, IERR)
Inputs: OPCODE

IRCODE

IRNO

RECORD() BUFFER()

Output:
RECORD() BUFFER() IERR

R*4

1*2

1*4

1*2
1*2

1*2
1*2
1*2

* * He

Opoode 'READ','CLOS'
'WRIT' : write data as selected
'FLAG' : write data as de-seleoted0 => Table row
1 -> DATPTR/DATYPE reoord2 => data seleotion string3 -> title4 -> units
5 -> keyword/value pair
Logioal reoord number. NOTE***** 1*4
0 »> next (oan work with row data and with latest IRCODE > 0 only)
IRNO is row number (IRCODE =0)IRNO is ignored (IRCODE * 1)
IRNO is string number (IRCODE - 2)IRNO is oolumn number (IRCODE - 3)IRNO is oolumn number (IRCODE * 4)
IRNO is keyword number (IRCODE - 5)Array oontaining reoord to be written Work buffer - 512 bytes + enough 512 byte
blooks for at least one full logioal reoord Hust be the same one given TABINI.
Array oontaining reoord read, buffer.
Return error oode 0 -> OK

IHPORTANT
exoept by is olosed. reoord is

-1 -> on READ: row read is flagged1 -> file not open
2 -> input error3 -> I/O error
4 -> attempt to read past end of data

or write past end of data + 15 -> error on expanding the file NOTE: the oontents of BUFFER should not be ohanged EXTIO between the time EXTINI is oalled until the fileThe exoeption is that the user portion of the header available.

DISK FILES
ROUTINES Page 6-49

7 May 85

6.6.28 UVCREA - oreates and oatalogues a uv data file using the oatalogue header reoord in the oommon /MAPHDR/.
UVCREA (IVOL, CNO, WBUFF, IERR)In/Outs:IVOL 1*2 Volume # on whioh to put file. 0 -> any on output is volume used (IERR - 0)Outputs:WBUFF 1*2(256) Working bufferCNO 1*2 Catalogue slot numberIERR 1*2 Error oode; 0 => o.k.

1 => oouldnt oreate.no room
2 -> no oreate, duplioate name3 -> no room in oatalogue
4 -> I/O problem on oatalogue5 => Other Create errorsCOMMON: /MAPHDR/ oatalogue blook used a lot, final seq # on output

6.6.29 UVDISK - reads and writes reoords of arbitrary length,
especially uv visibility data. Operation is faster if blooks of data are integral numbers of disk blooks. There are three operations whioh oan be invoked: READ, WRITE and FLUSH (OPoodes READ, WRIT and FLSH).

READ reads the next sequential blook of data as speoified to UVINIT and returns the number of visibilities in NIO and the pointer in BUFFER to the first word of this data.
WRIT arranges data in a buffer until it is full. Then as many

full blooks as possible are written to the disk with the remainder left for the next disk write. For tape I/O data is always written with the blook size speoified to UVINIT; one I/O operation per oall. For disk writes, left-over data is transferred to the beginning of buffer 1 if that is the next buffer to be filled. Value of NIO in
the oall is the number of vis. reo. to be added to the buffer and may be fewer than the number speoified to UVINIT. On return NIO is the maximum number whioh may be sent next time. On return BIND is the pointer in BUFFER to begin filling new data.

FLSH writes integral numbers of blooks and moves any data left over to the beginning of buffer half 1. One exoeption to this is when NIO «> -NIO or 0, in whioh oase the entire remaining data in
the buffer is written. After the oall BIND is the pointer in BUFFER for new data. The prinoipal differenoe between FLSH and WRIT is that FLSH always foroes an I/O transfer. This may oause trouble if a transfer of less than 1 blook is requested. A oall with a
nonpositive value of NIO should be the last oall and corresponds to a oall to MDIS3 with opoode 'FINI'.

DISK FILES
ROUTINES Page 6-50

7 Hay 85

NOTE: A oall to UVINIT is REQUIRED prior to oalling UVDISK
UVDISK (OP,

Inputs:OP
LUN FIND
BUFFFERO NIO

Output: NIO

BIND

IERR

R*41*2
1*2
1*2
1*2

1*2

1*2

1*2

LUN, FIND, BUFFER, NIO, BIND, IERR)
Opoode 'READ','WRIT','FLSH' are legal Logioal unit number
FTAB pointer returned by ZOPEN Buffer for I/O
For writes, the number of visibilites added to the buffer; not used for reads.
For reads, the number of visibilities ready in the buffer;
For writes, the maximum number whioh oan be added to
the buffer. If zero for read or write then the file is oompletely read or written.
The pointer in the buffer to the first word of the next reoord for reads, or the first word of the next
reoord to be oopied into the buffer for writes. Return error oode.01
234
7

OK
file not open in FTAB input error
I/O error end of file
attempt to write more vis than speoified to UVINIT or will fit in buffer.

6.6.30 UVGET - obtains data from a data base with optional
application of flagging and/or calibration information. Reads data with a large variety of seleotion oriteria and will reformat the data as neoessary. Does many of the startup operations, finds uv data file eto, reads CATBLK and updates the /UVHDR/ oommon to refleot the output rather than input data.

UVGET (OPCODE, RPARH, VIS, IERR)
Input: OPCODE

Inputs via UNAHE(3) UCLAS(3) UDISK USEQ
S0URCS(2

CALS0U(2,30) R*4

R*4 Opoode 4 ohar.
'INIT' -> Open files Initilize I/O.'READ' -> Read next speoified reoord.'CLOS' -> Close files, oommon /SELCAL/ (Inoludes DSEL,CSEL.INC)R*4 AIPS name of input file.

AIPS olass of input file.AIPS disk of input file.AIPS sequenoe of input file.
Names (8 ohar) of up to 30 souroes, *->all First oharaoter of name ' —' **> all exoept those speoified.
Names (8 ohar) of up to 30 oalibrators,

,30)

R*4
R*4R*4R*4

DISK FILES
ROUTINES Page 6-51

7 May 85

'*' or blank ->all, first oharaoter of name '-' -> all exoept those speoified.Start day, hour, min, seo, end day, hour, min.seo. O's -> all
Minimum and maximum baseline lengths in 1000#s wavelengths. O's **> all Stokes types wanted.
'I','Q','U','V','R','L','IQU','IQUV'
First ohannel number selected, 1 rel. to first ohannel in data base. 0 => all Last ohannel seleoted. 0=>all
First IF number seleoted, 1 rel. to first IF in data base. 0 => all Last IF seleoted. 0«>all
Interpolation funotion for gains

' -> Linear interpolation but no smoothing '2PT ' »> 2 point linear.
'BOX ' -> boxoar INTPRM(l) hours wide.
Parameters for interpolation funotion.(1) - smoothing time for amplitudes (Hrs)(2) - smoothing time for sine, oosine(3) - smoothing time for delay, rate.
Note: smoothing with 0 time will oause
Undefined values to be filled in.Smoothing type1 - amplitude
2 - sine, oosine3 « sine, oosine, delay, rate4 - delay, rate
If true apply calibration, else not.List of antennas seleoted, 0=>all,
any negative -> all exoept those speoified FLAG file version number, if .le. 0 then NO flagging is applied.Input GAIN file version number.
GAIN file version number to put smoothed gains
into and use for calibration. (May be GAVER).
Random parameter array of datum.Regular portion of visibility data.Error oode: 0 »> OK,-1 -> end of data
>0 -> failed, abort prooess.Output in oommon /SELCAL/: The default values will be filled in if null values were speoified.

UVFREQ R*8 Frequenoy corresponding to u,v,w
CATBLK(256) 1*2 Catalogue header blook, desoribes the outputdate rather than input.Usage notes:

1) Inoludes DSEL.INC and CSEL.INC should be deolared in the main program or at a level that they will not be overlaid while UVGET is in use (ie. between the 'INIT' and 'CLOS' oalls)2) If no sorting is done UVGET uses AIPS luns 25, 28, 29 and 30
(1 map, 3 non map files). If sorting is done (usually possible)

TIMRNG(8) R*4
UVRNG(2) R*4
STOKES R*4
BCHAN 1*2
ECHANBIF 1*2

1*2
EIF
INTFN 1*2R*4

INTPRM(3) R*4

SMOTYP 1*2

DOCAL
ANTENS(50)

02 02
* *
1-3 H

FMVER 1*2
GAVER
GAUSE 1*21*2
;put:
RPARM(*) VIS(3,*) IERR

R*4R*4
1*2

DISK FILES
ROUTINES Page 6-52

7 May 85

then 8 map and 3 non map files are used (mostly on OPCODE-'INIT')
and LUNS 16,17,18,19,20,21,22,23,24,25, 28,29,30.3) OPCODE - 'INIT' does the following:
- The oatalogue data file is looated and the oatalogue header reoord is read.
- The souroe file (if any) is read.
- The index file (if any) is initilized.
- The flag file (if any) is initilized and sorted if neoessary (Must be in time order).
- The gain table (if any) is initilized and smoothed if neoessary- I/O to the input file is initilized.

The following LUNs may be used but will be olosed on return: 16, 17, 18, 19, 20, 21, 22, 23, 24
The following LUNs may be used but will be open on return: 25, 28, 29, 30
NO data are returned from this oall.4) OPCODE - 'READ' reads one visibility reoord properly seleoted,

transformed (e.g. I pol.), oalibrated and edited as requested in the oall with OPCODE - 'INIT'
5) OPCODE - 'CLOS' oloses all files used by UVGET whioh are still open. No data are returned.

6.6.31 UVINIT - sets up bookkeeping for the UV data I/O routine
UVDISK. I/O for these routines is double buffered (if possible) quiok return I/O. UVDISK will run muoh more efficiently if on disk LREC*NPIO*BP is an integral number of blooks. Otherwise partial writes or oversize reads will have to be done. Minimum disk I/O is
one blook. The buffer size should inolude an extra NBPS bytes for eaoh buffer for non tape read if NPIO reoords does not oorrespond to an integral number of disk seotors (NBPS bytes). 2*NBPS extra bytes required for eaoh buffer for write.

UVINIT (OP, LUN, FIND, NVIS, VISOFF, LREC, NPIO,* BUFSZ, BUFFER, BO, BP, BIND, IERR)
Inputs:OP R*4
LUN 1*2FIND 1*2
NVIS 1*4

VISOFF 1*4
LREC 1*2NPIO 1*2
BUFSZ 1*2
BUFFER() 1*2BO 1*4BP 1*2

OP oode, 'READ' or 'WRIT' for desired operation. Logioal unit number of file.
FTAB pointer for file returned by ZOPEN.
Total number of visibilities to read. NVIS+VISOFF must be no greater than the total number in the file.
Offset in vis. reo. of first vis. reo. from BO. Number of values in a visibility reoord.
Number of visibilities per oall to UVDISK. Determines blook size for tape I/O Size in bytes of the buffer.
If 32767 given, 32768 is assumed.Buffer
Blook offset to begin transfer from (1-relative) Bytes per value in the vis. reoord.

Page 6-53
7 May 85

1*2 For WRITE, the max. number of visibilities whioh oan be aooepted.1*2 Pointer in BUFFER for WRITE operations.1*2 Return error oode:0 - > OK
1 = > file not open in FTAB2 = > invalid input parameter.3 - > I/O error4 = > End of file.
7 = > buffer too smallNote: VISOFF and BO are additive.UVINIT sets and UVDISK uses values in the FTAB: FTABCFIND+O) - LUN1 - # Bytes per I/O2-3 # vis. reoords left to transfer. 1*4

For double buffer read, 1 more I/O will have been done than indioated.4-5 - Blook offset for next I/O. 1*46 - byte offset of next I/O7 - bytes per value8 - Current buffer #, -1 -> single buffering9 at OPoode 1 - read, 2 - write.10 - Values per visibility reoord.11 - # vis. reoords per UVDISK oall12 - max. # vis. per buffer.13 - # vis. prooessed in this buffer.14 Buffer pointer for start of ourrent buffer.(values) Used for WRIT only; inoludes any data oarried over from the last write.15 - Buffer pointer for oall (values)

6.6.32 UVPGET - The position in the reoord of the standard random parameters (u,v,w,t,b) and the order of the regular axes oan be obtained using the routine UVPGET. UVPGET determines pointers and other information from a UV oatalogue header reoord. These pointers are plaoed in a oommon whioh is obtained by the DUVH.INC and
CUVH.INC INCLUDES. The address relative to the start of a vis reoord for the real part for a given speotral ohannel (CHAN), IF (NIF) and stokes parameter (ICOR) is given by :

NRPARM+(CHAN-1)*INCF+(NIF-1)*INCIF+IABS (ICOR-(ICORO))*INCS
UVPGET (IERR)

Inputs: From oommon /MAPHDR/CATBLK(256) 1*2 Catalogue blook CAT4 R*4 same as CATBLK
CAT8 R*8 same as CATBLKOutput: In oommon /UVHDR/
SOURCE(2) R*4 Paoked souroe name.

DISK FILES
ROUTINES

Output:
NPIO
BIND
IERR

DISK FILES
ROUTINES

Page 6-54
7 May 85

ILOCU 1*2 Offset from beginning of vis reoord of UILOCV 1*2 VILOCW 1*2 WILOCT 1*2 TimeILOCB 1*2 11 BaselineILOCSU 1*2 Souroe id.JLOCC 1*2 Order in data of oomplex values Order in data of Stokes' parameters.JLOCS 1*2JLOCF 1*2 Order in data of Frequenoy.JLOCR 1*2 Order in data of RAJLOCD 1*2 Order in data of deo.JLOCIF 1*2 Order in data of IF.
INCS 1*2 Inorement in data for stokes (see above)INCF 1*2 Inorement in data for freq. (see above)INCIF 1*2 Inorement in data for IF.ICORO 1*2 Stokes value of first value.NRPARM 1*2 Number of random parametersLREC 1*2 Length in values of a vis reoord.NVIS 1*4 Number of visibilitiesFREQ R*8 Frequenoy (Hz)RA R*8 Right asoension (1950) deg.DEC R*8 Deolination (1950) deg.NCOR 1*2 Number of correlatorsI SORT C*2 Sort orderIERR 1*2 Return error oode: 0=>QK,

1, 2, 5, 7 : not all normal rand parms2, 3, 6, 7 : not all normal axes 4, 5, 6, 7 : wrong bytes/value

6.6.33 ZCLOSE - oloses file assooiated with LUN removing any EXCLusive use state and olears up the FTAB.
ZCLOSE (LUN, FIND, IERR)

Inputs: LUN logical unit numberFIND FTAB pointer from ZOPEN Output: IERR error oode: 0 -> no error
1 -> Deaooess or Deassign error2 -> file already closed in FTAB3 -> both errors
4 -> erroneous LUN

DISK FILES
ROUTINES

Page 6-55
7 May 85

6.6.34 ZCMPRS - releases unused disk spaoe from a non-map file. Will also allow "map11 files. File must be open. "Byte" defined as 1/2 of a small integer. Note: it is dangerous to oompress files written by TABIO unless the bookkeeping information kept in the first reoord of the file is ohanged to refleot the new size of the file. See the desoription of TABINI in the seotion on extension file I/O in this ohapter.

Inputs:

In/Out:
Outputs:

(IVOL, PNAME, :
IVOL 1*2PNAME R*4(6)LUN 1*2
LSIZE 1*4
SCRTCH 1*2(256)IERR 1*2

volume number,
physioal file namelogioal unit number under whioh file is open.
(In) desired final size in bytes.(out) aotual final size in bytes. Soratoh buffer
error oode: 0 *=> ok

1 => input data error
2 => oompress error FMGR

6.6.35 ZCREAT - oreates a disk file for reading/writing.
ZCREAT

Inputs: IVOL

PNAME
ISIZE
MAP

Outputs: ASIZE
SCRTCH IERR

(IVOL, PNAME, ISIZE, MAP, ASIZE, SCRTCH, IERR)
1*2 Disk drive unit number.

The disk drive name(volume) is enooded in the file name.
R*4(6) Physioal file name given by ZPHFIL.(ASCII) left justified, padded with blanks.
1*4 Requested size of the file in bytes. Will berounded to next higher granual.
L*2 True if map file.
1*4 Aotual number of bytes in the new file.1*2(256) Soratoh buffer.
1*2 Error return oode. The values mean0 - suooess.1 - file already exists.

2 - volume is not available.3 - spaoe is not available.4 - Other.

DISK FILES
ROUTINES Page 6-56

7 May 85

6.6.36 ZDESTR - destroys the file assooiated with PNAME. The file must already be olosed.
ZDESTR (IVOL, PNAME, IERR)Input:

IVOL 1*2 Volume number of disk.
PNAME R*4(6) Physioal file name. 24 oharaoters max.Output:
IERR 1*2 Completion oode. O=good.

l=file not found 2=failed

6.6.37file. ZEXPND - expands the spaoe allooated to a regular (non-map)

ZEXPND (LUN, IVOL, PHNAME, NREC, IERR)Inputs: LUN 1*2 IVOL 1*2
PHNAME R*4(6) In/Out: NREC 1*2 Output: IERR 1*2

LUN of file (already open) disk volume number of file physioal file name of file
256-integer reoords requested/reoeived error oode 0 »> ok

1 *> input error2 *> FMGR error

6.6.38 ZFIO - reads or writes one logioal reoord between oore and
devioe LUN. For disk devioes, the reoord length is always 512 bytes (a byte being defined as half of a short integer). NREC gives the random aooess reoord number (in units of 512 bytes). For non-disk devioes, NREC oontains the number of bytes.

(OPER, LUN, FIND, NREC, BUF, IERR)
Operation - 'READ' or 'WRIT' logioal unit number
pointer to file area in FTAB
reoord number in file: starts with 1 (DISKS) number of bytes (Sequential DEVICES)(256) array to hold reoord 1*2 error oode: 0 -> ok

1 -> file not open2 «> input error
3 -> I/O error

ZFIO (OPERInputs:OPER R*4LUN 1*2FIND 1*2NREC 1*4
BUF 1*2Output: IERR

DISK FILES
ROUTINES Page 6-57

7 May 85

4 -> end of file5 -> begin of medium6 -> end of medium

6.6.39 ZMIO - a low buffered devioe I/O. level random aooess, large reoord, double

ZMIO (OP, LUN, FIND, BLKNO, NBYTES, BUFF, IBUFF, IERR) Inputs:OP LUN FIND
BLKNO
NBYTES BUFF IBUFF

Outputs: IERR

R*4
1*2
1*21*4

Operation - 'READ', 'WRIT'. ASCII - 4 oharaoters. Logioal unit number of a previously opened map. Pointer to FTAB returned by ZOPEN.
One relative beginning blook number. The size of a blook is given by NBPS in COMMON/DCHCOM/.1*2 Number of bytes to transfer.The I/O buffer.
Buffer number to be used - 1 or 2.

R*4
1*2
1*2 Error return oode:

0 - Suooess.1 - File not open.
2 - Operation inoorreotly speoified.3 - I/O error.
4 - end of file (no messages)

6.6.40 ZOPEN - opens logioal files, performing full open files and sets up an FTAB entry for double buffering.
ZOPEN (LUN, IND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)

on disk

Inputs: LUN IVOL

MAP EXCL WAIT Output: IND IERR

1*2
1*2PNAME R*4(6)
L*2L*2L*2
1*2
1*2

Logioal unit number.
Disk volume oontaining file, 1,2,3,...
24-oharaoter physioal file name,left justified, paoked, and padded with blanks, is this a map file ? desire ezolusive use?I will wait?
Index into FTAB for the file oontrol blook. Error return oode:0 - no error

1 - LUN already in use

DISK FILES
ROUTINES

Page 6-58
7 May 85

2 - file not found3 - volume not found
4 - exol requested but not available5 - no room for lun6 - other open errors

6.6.41 ZPHFIL - oonstruots a physioal file name in PNAM from ITYPE, IVOL, NSEQ, and IVER. New version designed either for publio data
files or user speoifio files. This routine oontains the logioal assignment list for Graphios devioes. Numerioal values are enooded as hexideoimal numbers.

EXAMPLE: If ITYPE-'MA', IVOL-8, NSEQ-801, IVER-153, NLUSER-768 then PNAME-'DA08:MA832199;1' for publio data or PNAME-'DA08:MA832199.300;1' for private data ITYPE - 'MT' leads to speoial name for tapes ITYPE - 'TK' leads to speoial name for TEK4012 plotter CRT
ITYPE - 'TV' leads to speoial name for TV devioe ITYPE - 'ME' leads to speoial logioal for POPS memory files

ZPHFIL (ITYPE, IVOL, NSEQ, IVER, PNAM, IERR)Inputs:
ITYPE 1*2 Two oharaoters denoting type of file. For example, 'MA' for map file.IVOL 1*2 Number of the disk volume to be used.NSEQ 1*2 User supplied sequenoe number. 000-999.IVER 1*2 User suppplied version number. 00-255.Outputs:
PNAM R*4(6) >- 24-byte field to reoeive the physioal file name, left justified (paoked) and padded with blanks.IERR 1*2 Error return oode.

0 - good return. 1 - error.

6.6.42 ZTCLOS - oloses a text file.
ZTCLOS(LUN,FIND,IERR)

Inputs: LUN 1*2 logioal unit number.
FIND 1*2 Not used with this routine. Output: IERR 1*2 Error oode.

0 -> no error.1 -> RMS error.
2 -> file not open.

DISK FILES
ROUTINES Page 6-59

7 May 85

6.6.43 ZTOPEN - opens a text file.

Inputs:
ZTOPEN (LUN, * IERR)

LUN IVOL PNAME
MNAME
VERSON
WAITIERROutput:

FIND, IVOL, PNAME, MNAME, VERSON, WAIT,
1*2 logioal unit number.1*2 disk drive number
R*4(6) disk-file type. Only type ('HE' eot) used. Should be generated by ZPHFIL.R*4(2) file name.
R*4(5) Version (determines in whioh dir/subdir to look for the file).
L*2 T -> wait until file is available.1*2 error oode:

FIND 1*2 pointer to

0 -1 ■
2 -3 >4 ■5 -
6 ■ FTAB

No error.
LUN already in use. File not found.
Volume not found. File looked.No room for LUN
Other open errors, looation.

6.6.44
file. ZTREAD - reads the next sequential oard image from a text

ZTREAD (LUN, FIND, BUF, IERR)
logioal unit number FTAB pointer for LUN
array oard image.(> ■

Inputs: LUN 1*2FIND 1*2Output: BUF 1*2IERR 1*2 80 ohars paoked)
0 -> No error
1 -> File not open.2 -> End of file.4 -> Other.

6.6.45 ZWAIT - waits until I/O operation is oomplete
ZWAIT (LUN, IND, IBUF, IERR)

Inputs: LUN IND IBUF Output: IERR

1*2
1*2
1*2

logioal unit number Pointer to FTAB
Wait for 1st or 2nd buffer in double buffered I/O

1*2 Error return 0 -> ok1 -> LUN not open3 -> I/O error4 -> end of file

DISK FILES
ROUTINES Page 6-607 Hay 85

7 -> wait servioe error

CHAPTER 7
HIGH LEVEL UTILITY ROUTINES

7.1 OVERVIEW
There are a number of high level AIPS utility routines whioh merit speoial attention. Many of these routines do oomplex, but oommon operations on data or image files suoh as gridding uv data or doing 2-D PFTs. Sinoe many of the routines do a great deal of oomputation most use the array prooessor.
Many of these routines make heavy use of oommons or the values in oatalogue header reoords for oontrol and internal oommunioation. A number of these routines will oreate soratoh and/oror output files

if neoessary. Several general and somewhat overlapping oategories of routines are disoussed below.

7.2 DATA CALIBRATION AND REFORMATTING ROUTINES
The variety of different uv data formats, especially different polarization types, allowed in AIPS uv data bases oomplioates

handling of uv data. In addition, the new unoalibrated multi souroe uv data files need to have calibration, editing and seleotion oriterion applied. A pair of routines allows simplified read aooess to either single or multi souroe uv data files. A short description is given here and the details of the subroutine oalls are given at the end of this ohapter. These routins do not use the array prooessor.
- UVGET sets up, seleots, reformats, oalibrates, edits either single or xnultisouroe data files.
- CALCOP. After set up by UVGET, CALCOP oan be used to prooess the entire seleoted oontents of a file to another file.

HIGH LEVEL UTILITY ROUTINES
OPERATIONS ON IMAGES

Page 7-2
9 May 85

7.3 OPERATIONS ON IMAGES
These operations are those performed on entire image files. A short desoription is given here and the details of the subroutine oalls and interface COMMONS are given at the end of this ohapter.
- DSKFFT is a disk based, two dimensional FFT.
- GRDCOR normalizes and oorreots an image for the gridding

convolution used to grid the image. Used in oonjunotion with UVGRID and DSKFFT.

7.4 UV MODEL CALCULATIONS
A system of routines is available to compute the Fourier transform of a model, given as either CLEAN oomponents or an image, at the u,v and w looations of the data in a uv data file and to either subtraot the model values from the observed values or divide the model values into the observed values. These routines make heavy use of COMMONS and the array prooessor. A short desoription is given here and the details of the subroutine oalls and interfaoe COMMONS are given at the end of this ohapter.
- UVMDIV divides model visibilities derived from CLEAN oomponents or images into a uv data set.
- UVMSUB subtraots model visibilities derived from CLEAN oomponents or images ifrom a uv data set.

7.5 IMAGE FORMATION
A system of routines is available to form a dirty image from a uv data set. These routines make heavy use of COMMONS and the array prooessor. A short desoription is given here and the details of the

subroutine oalls and interfaoe COMMONS are given at the end of this ohapter.
- MAKMAP makes a image or a dirty beam given a uv data set.

The data may either oalibrated or unoalibrated (raw) data and calibration and various seleotion oriteria may be (optionally) applied.
- UVGRID grids a uv data file.
- UVUNIF applies the uniform weighting oorreotions to uv data.

OO
O

2S
O

O
O

- GRDCOR normalizes and oorreots an image for the griddingconvolution used to grid the image. Used in oonjunotion with UVGRID and DSKFFT.

HIGH LEVEL UTILITY ROUTINES Page 7-3
IMAGE FORMATION 9 Hay 85

7.6 INCLUDES
7.6.1 CFIL.INC

Inolude CFILCOMMON /CFILES/ RQUICK, NSCR, SCRVOL, SCRCNO, NCFILE, FVOL, FCNO, FRW, CCNO, IBAD, LUNS
End CFIL

7.6.2 CGDS.INC

Inolude CGDS Looal inolude for uv modelingCOMMON /MAPDES/ SCRBLK, KLNBLK,
* CELLSG, SCLUG, SCLVG, SCLWG, SCLUM, SCLVM,
* DXCG, DYCG, DZCG, FLUXG, TFLUXG, XPOFF, YPOFF, SSROT, CCROT,* FACGRD, OSFX, OSFY, PTFLX, PTRAOF, PTDCOF,* NCLNG, NSUBG,
* DOFFT, NONEG, DOPTMD, NGRDAT,
* MFIELD, FLDSZ, CCDISK, CCCNO, CCVER, CNOBEM, BEMVOL,* KSTOK, SCTYPE, VOFF, NSTOK

End CGDS.

.6.3 CMPR.INC

Inolude CMPR Looal inolude for gridding and oorreotion routines.COMMON /GRDCOM/ FREQUV,
* XFLD, YFLD, XPARM, YPARM, TAPERU, TAPERV, ZEROSP,* BMMAX, BMMIN, FLDMAX, FLDMIN,
* BEMMAX, XSHIFT, YSHIFT, BLMAX, BLMIN,* MNAME , MCLASS,* DOZERO, DOTAPE, DOUNIF,
* NXBEM, NYBEM, NXUNF, NYUNF, NXMAX, NYMAX, ICNTRX, ICNTRY,* CTYPX, CTYPY, NUVCH, CHUV1, NCHAVG, UNFBOX,* TVFLD, BORES, BOBEM, MDISK, MSEQ

End CMPR

HIGH LEVEL UTILITY ROUTINES
INCLUDES Page 7-4

9 May 85

7.6.4 CSEL.INC

CC
C

Inolude CSEL Common for UVGET use Data seleotion and oontrolCOMMON /SELCAL/ UVFREQ,* UNAME, UCLAS, USEQ, UDISK, UFILE,
* SOURCS, CALSOU, TIMRNG, UVRNG, STOKES, INTFN, INTPRM,* UVRA, TSTART, TEND, UBUFF,* SELFAC,* INXRNO, FSTVIS, LSTVIS,* DOSWNT, DOCWNT, DOAWNT, ALLWT,* GABUFF, FMBUFF, NXBUFF,
* IUDISK, IUSEQ, IUCNO, IULUN, IUFIND, IGLUN, IFLUN, IXLUN,* CATUV, ANTENS, NANTSL, NSOUWD, SOUWAN, NCALWD, CALWAN,* SUBARR, SMOTYP, CURSOU, NXKOLS, MVIS, JADR, PMODE, LRECIN,* UBUFSZ, BCHAN, ECHAN, BIF, EIF

C FLAG table infoCOMMON /CFMINF/ TMFLST, FLGTND,* IFMRNO,* DOFLAG, FLGPOL,
* FMVER, NUMFLG, FMKOLS, KNCOR, KNCF, KNCIF, KNCS,* FLGSOU, FLGANT, FLGBAS, FLGSUB, FLGBIF, FLGEIF, FLGBCH, FLGECH

C GAIN table infoCOMMON /CGNINF/ GMMOD, RANOD, DECNOD, CURCAL, LCALTM, CALTAB,* CALTIM,
* IGARNO, NGAINR, MAXGAR,* DOCAL,
* GAVER, GAUSE, NUMANT, NUMPOL, NUMIF, NUMNOD, INLEVL, GAKOLS,* LCLTAB, LCUCAL, ICALP1, ICALP2, POLOFF COMMON /MAPHDR/ CATBLK

C End CSEL

7.6.5 CUVH.INC

c Inolude CUVHCOMMON /UVHDR/ FREQ, RA, DEC, SOURCE, NVIS, ILOCU, ILOCV,* ILOCW, ILOCT, ILOCB, ILOCSU, JLOCC, JLOCS, JLOCF, JLOCR,
* JLOCD, JLOCIF, INCS, INCF, INCIF, ICORO, NRPARM, LREC, NCOR,* ISORT

C End CUVH

O
O

O

-a
O

O
O

HIGH LEVEL UTILITY ROUTINES
INCLUDES

Page 7-5
9 May 85

7.6.6 DFIL.INC

Inolude DFILINTEGER*2 NSCR, SCRVOL(20), SCRCN0(20), IBAD(IO), LUNS(IO), NCFILE, FV0L(50), FCNO(50), FRW(50), CCNO LOGICAL*2 RQUICK
End DFIL

7.6.7 DGDS.INC

*

Inolude DGDS Looal inolude for uv modeling INTEGER*2 SCRBLK(256), KLNBLK(256), HFIELD, FLDSZ(2,16),
CCDISK(16), CCCNOC16), CCVER(16), CNOBEM, BEMVOL,* KSTOK, SCTYPE, VOFF, NSTOK

LOGICAL*2 DOFFT, NONEG, DOPTMD, NGRDAT INTEGER*4 NSUBG(16), NCLNG(16)
REAL*4 CELLSG(2), FLUXG(16), TFLUXG, SSROT, CCROT,
* XPOFF(16), YPOFF(16), SCLUG(16), SCLVG(16), SCLWG(16),* SCLUM, SCLVH, FACGRD, DXCG(16), DYCG(16), DZCG(16),* OSFX, OSFY, PTFLX, PTRAOF, PTDCOF

End DGDS

.6.8 DHPR.INC

Inolude DMPR Looal inolude for gridding and oorreotion routines.INTEGER*2 NXBEM, NYBEH, NXUNF, NYUNF, NXHAX, NYMAX,
* ICNTRX(16), ICNTRY(16), CTYPX, CTYPY, NUVCH, CHUV1, NCHAVG,* UNFBOX, TVFLD, BORES(S,16), B0BEM(2), MDISK, MSEQ LOGICAL*2 DOZERO, DOTAPE, DOUNIF
REAL*4 XFLD(16), YFLD(16), XPARM(IO), YPARM(IO),* TAPERU, TAPERV, ZEROSP(6), BMMAX, BMMIN,* FLDMAX(16), FLDMIN(10), BEMMAX,
* XSHIFTCX6), YSHIFTC16), BLMAX, BLMIN, MNAME(3), MCLASS(g)REAL*8 FREQUV

C End DMPR

HIGH LEVEL UTILITY ROUTINES
INCLUDES

Page 7-6
9 Hay 85

7.6.9 DSEL.INC

CCC
Inolude DSEL Common for UVGET use

Data seleotion and oontrolINTEGER*2 ANTENS(50), NANTSL, NSOUWD, SOUWAN(30),* NCALWD, CALWANC30), SUBARR, SHOTYP, CURSOU, NXKOLS(6),* HVIS, JADR(2,1024), PMODE, LRECIN, UBUFSZ,* BCHAN, ECHAN, BIF, EIFLOGICAL*2 DOSWNT, DOCWNT, DOAWNT, ALLWT
INTEGER*4 INXRNO, FSTVIS, LSTVIS
REAL*4 SOURCS(2,30), CALSOU(2,30), TIHRNG(8), UVRNG(2),* STOKES, INTFN, INTPRH(3), UVRA(2), TSTART, TEND,* SELFAC(2,1024)
REAL*8 UVFREQ

C Flag table infoREAL*4 THFLST, FLGTND(IOO)INTEGER*4 IFHRNO
LOGICAL*2 DOFLAG, FLGP0L(4,100)
INTEGER*2 FHVER, NUHFLG, FHKOLS(13), KNCOR, KNCF, KNCIF, KNCS,* FLGSOU(IOO), FLGANT(IOO), FLGBAS(IOO), FLGSUB(IOO),* FLGBIF(IOO), FLGEIF(IOO), FLGBCH(IOO), FLGECH(IOO)

C GAIN table infoREAL*4 GHHOD, RANOD(25), DECN0D(25), CURCAL(2500), LCALTH,* CALTAB(2500,2), CALTIH(3)INTEGER*4 IGARNO, NGAINR, HAXGAR LOGICAL*2 DOCAL
INTEGER*2 GAVER, GAUSE, NUHANT, NUHPOL, NUHIF, NUMNOD, INLEVL,
* GAK0LSC32), LCLTAB, LCUCAL, ICALP1, ICALP2, P0L0FF(4,2)C File speoifioation.INTEGER*2 IUDISK, IUSEQ, IUCNO, IULUN, IUFIND, IGLUN, IFLUN,* IXLUN, CATUV(256), CATBLK(256)REAL*4 UNAHE(3), UCLAS(2), USEQ, UDISK, UFILE(6)

C I/O buffersINTEGER*2 GABUFF(512), FHBUFF(512), NXBUFF(512)REAL * 4 UBUFF(8192)
C End DSEL

7.6.10 DUVH.INC

c Inolude DUVHINTEGER*4 NVIS
INTEGER*2 ILOCU, ILOCV, ILOCW, ILOCT, ILOCB, ILOCSU, JLOCC,* JLOCS, JLOCF, JLOCR, JLOCD, JLOCIF, NRPARH, LREC, NCOR, ISORT,* INCS, INCF, INCIF, ICORO REAL*4 SOURCE(2)REAL*8 FREQ, RA, DEC

C End DUVH

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-7

9 Hay 85

7.7 ROUTINES
7.7.1 CALCOP - oopys seleoted data from one data file to another optionally applying oalibration and editing information. The input file should have been opened with UVGET. An output, soratoh file will be oreated if requested; both files will be olosed on return from CALCOP.
Note: UVGET returns the information neoessary to oatalogue the output file. The output file will be oompressed if neoessary at oompletion of CALCOP.

CALCOP (DISK, CNOSCR, BUFFER, BUFSZ, IRET)
Input:
DISK

CNOSCR

BUFFER(*) R*4
BUFSZ 1*2 Input via oommon:
CATBLK(256) 1*2NVIS 1*2LREC 1*2NRPARH 1*2 Output:
CNOSCR 1*2IRET 1*2

1*2 Disk number for oatalogued output file.
If .LE. 0 then the output file is a /CFILES/ soratoh file.

1*2 Catalogue slot number for if oatalogued file; /CFILES/ soratoh file number if a soratoh file,
IF DISK-CNOSCR-O then the soratoh is oreated. Work buffer for writing.
Size of BUFFER in bytes.
Catalogue header blook from UVGET (/UVHDR/) Number of vis. reoords.
(/UVHDR/) length of vis. reoord in R*4 words.
(/UVHDR/) number of (R*4) random parameters.
Soratoh file number if oreated.Error oode: 0 -> OK,

>0 «> failed, abort prooessOutput via oommon:
CATBLK(256) 1*2 NVIS 1*2Usage notes:

1) UVGET with OPCODE-'INIT' HUST be oalled before CALCOP to setup for oalibration, editing and data translation. If an output
oatalogued file is to be oreated this should be done after the oall to UVGET.

2) Uses AIPS LUN 24

Catalogue header blook with aotual no. reoords. (/UVHDR/) Aotual number of vis. reoords.

HIGH LEVEL UTILITY ROUTINES
ROUTINES

Page 7-8
9 May 85

7.7.2 DSKFFT - is a disk based, two dimensional FFT. If the FFT all fits in AP memory then the intermediate result is not written to
disk. Input or output images in the sky plane are in the usual form (i.e. oenter at the oenter, X the first axis). Input or output images in the uv plane are transposed (v the first axis) and the oenter-at-the-edges oonvention with the first element of the array the oenter pixel.
NOTE: Uses AIPS LUNs 23, 24, 25.

NOTE: this routine uses the array prooessor.
DSKFFT (NR, NO, IDIR, HERM, LI, LW, LO,
* JBUFSZ, BUFFI, BUFF2, SMAX, SHIN, IERR)

Inputs:
NR 1*2

NO

LI
LWLO

Output:
BUFFI
BUFF2 SHAX
SHIN IERR

1*2
IDIR 1*2

HERH L*2

1*21*2
1*2JBUFSZ 1*2

R*4
R*4R*4R*4
1*2

The number of rows in input array (# oolumns in output). When HERH is TRUE and IDIR— 1, NR is twioe
the number of oomplex rows in the input file.The number of oolumns in input array (# rows in output).
1 for forward (+i) transform, -1 for inverse (-i) transform.
If HERH - .TRUE, the follwing are reoognized:IDIR-1 keep real part only.
IDIR-2 keep amplitudes only.IDIR-3 keep full oomplex (half plane)

When HERH - .FALSE., this routine does a oomplex to oomplex transform.
When HERH - .TRUE, and IDIR - -1, it does a
oomplex to real transform. When HERH - .TRUE, and IDIR - 1, it does real to oomplex.File number in /CFILES/ of input.
File number in /CFILES/ of work file (may equal LI). File number in /CFILES/ of output.
Size of BUFFI, BUFF2 in bytes. Should be large at least 4096 R*4 words.
Working buffer
Working buffer
For HERH-.TRUE, the maximum value in the output file. For HERH-.TRUE, the minimum value in the output file. Return error oode, 0«>OK, otherwise error.

7.7.3 GRDCOR - normalizes and oorreots an image file for the gridding convolution funotion used in gridding uv data to make the image. Used in oonjunotion with UVGRID.Uses AIPS LUNs 18 and 19
NOTE: This routine uses the Array Prooessor

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-9

9 Hay 85

GRDCOR (IFIELD, DOGCOR, DISKI, CNOSCI, DISKO, CNOSCO,* MAPMAX, MAPMIN, JBUFSZ, BUFFI, BUFFS, BUFF3, IRET)
Input:
IFIELD 1*2 if - 1 the histogram is

DOGCOR DISKI
CNOSCI
DISKO
CNOSCO
JBUFSZ

From oommons: BEMMAX
CTYPX,CTYPY
XPARH(IO)

L*2
1*2
1*2
1*2
1*2
1*2

1* 2R*4

The subfield number, zero filled first.
If IFIELD « 0 the input is assumed to be a beam.
If TRUE, do gridding convolution oorreotion. Input file disk number for oatalogued files, .LE. 0 -> /CFILES/ soratoh file.
Input file oatalogue slot number or /CFILES/ soratoh file number.
Output file disk number for oatalogued files, .LE. 0 -> /CFILES/ soratoh file.
Output file oatalogue slot number or /CFILES/ soratoh file number.
Size in bytes of buffers. Dimension of BUFF1,2,3 must be at least 4096 R*4. (Inoludes DGDS, DMPR, PUVH, CGDS, CMPR, CUVH)

R*4 Sum of the weights used in gridding, used to normalize images.
Convolving funotion types for RA and Deo
Convolving funotion parameters for RA XPARM(l) - support half width.
Convolving funotion parameters for Deo.Blook offset desired in output file for an image, 1 per field. (1 rel.)
Blook offset desired in output file for an beam. (1 rel.)
If FALSE get map size, soaling eto. parms from the model map oat. header. If TRUE then the values filled in by GRDAT must already be filled into the oommon.The following must be provided if NGRDAT is .TRUE.

FLDSZ(2,*) 1*2 Dimension of map in RA, Deo (oells)ICNTRX,ICNTRY(*) 1*2 The oenter pixel in X and Y for eaohfield.Output:MAPMAX
MAPMIN BUFFI
BUFF2 BUFF 3 IRET

YPARM(IO) R*4 BORES(2,16) PI*4
BOBEM(2)
NGRDAT

P 1*4
L*2

R*4R*4R*4R*4R*4
1*2

The maximum value in the resultant image. The minimum value in the resultant image. Working buffer Working buffer Working buffer
Return error oode. 0“>OK, error otherwise.

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-10

9 Hay 85

7.7.4 HAKHAP - makes a image or a dirty beam given a uv data set.
The data may be either oalibrated or unoalibrated (raw) data and oalibration and various seleotion oriteria may be (optionally) applied. The weights of the data may (optionally) have the uniform weighting oorreotion made.

The visibilities are oonvolved onto a grid using the oonvolving funotion speoified by CTYPX,CTYPY,XPARH,YPARH. The defaults for
these values are filled in by a oall to GRDFLT. The gridded data is phase rotated so that the map oenter oomes out at looation ICNTRX, ICNTRY. If requested, a uv taper is applied to the visibility weights before gridding. If neoessary, a three dimension phase referenoe position shift is done in Q1GRD. If more than one
ohannels are to be gridded together, UVGRID loops over the frequenoy ohannels in an outer loop, reading the grid and uv data several times and writing the grid several times. This bandwidth synthesis
(BS) prooess will use the SCRWRK file. For bandwidth synthesis both the CNOSCO and SCRWRK files should be big enought for an extra m rows, where m is the half width of the X oonvolving funotion.

Zero spaoing flux densities are gridded if provided.
The final image will be normalized and (optionally) oorreoted for the effeots of the gridding convolution funotion.Input uv data in UV file CNOSGI, DISKI;Output image in image file CNOSCO, DISKO

Uses buffer UBUFF from the UVGET oommons (inolude C/DSEL.INC)
NOTE: This routine uses the Array Prooessor
HAKHAP (IFIELD, DISKI, CNOSCI, DISKO, CNOSCO,* SCRGRD, SCRWRK, CHANN,
* DOCREA, DOINIT, DOBEAM, DOSEL, DOGCOR,* JBUFSZ, BUFFER, IRET)

Inputs:
IFIELDDISKI 1*2

1*2
CNOSCI 1*2
DISKO 1*2
CNOSCO 1*2

SCRGRD 1*2
SCRWRK 1*2
CHANN 1*2
DOCREADOINIT L*2L*2

Field number to map, if 0 then make a beam. Input file disk number for oatalogued files, .LE. 0 »> /CFILES/ soratoh file.
Input file oatalogue slot number or /CFILES/ soratoh file number.
Output file disk number for oatalogued files, .LE. 0 -> /CFILES/ soratoh file.
Output file oatalogue slot number or /CFILES/ soratoh file number. If DOCREA is FALSE and
DISKO-O and CNOSCO-O a soratoh file is oreated Grid soratoh file number, will be set if the file is oreated, (DOINIT-TRUE)
Work soratoh file number, will be set if the file is oreated, (DOINIT-TRUE)
Channel number to grid. If DOSEL-TRUE then this is 1-rel wrt the seleoted data.
If TRUE, Create/oatalogue output image file.If TRUE, initilize soratoh files, set defaults

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-11

9 May 85

for convolving funotions. Should
be TRUE on first oall, and FALSE there after. If TRUE a grid the beam before gridding the field. See useage notes.
If true, data need to be reformatted to a
single Stokes' type. If TRUE, the oatalogued file NAME, CLASS eto should be filled into
UNAME, UCLAS, UDISK, USEQ in oommon /SELCAL/ If TRUE, oorreot image for gridding convolution oorreotion funotion.(Normally .TRUE.)
Size in bytes of buffers. Dimension of BUFFER must be at least 4096 R*4.From oommons: (Inoludes DGDS, DMPR, CGDS, CMPR)

DOBEAM
DOSEL

DOGCOR

JBUFSZ

L*2
L*2

L*2

1*2

MFIELD 1 * 2

FLDSZ(2,*) 1*2

The number of fields whioh are going to to be imaged (exoluding any beam).MUST be filled in.
Dimension of map in RA, Deo (oells) of eaoh
field. MUST be completely filled in before the DOINIT-TRUE oall if the output file (either image or soratoh) is to be oreated or zeroed if the files already exist.
If TRUE, apply Uniform weighting. Should be
TRUE on only the first oall, otherwise it will be applied again.
Number of ohannels to grid together for bandwidth synthesis.
Half width of unif. wt. oounting box size. Convolving funotion types for RA and Deo
Convolving funotion parameters for RA XPARM(l) - support half width.
Convolving funotion parameters for Deo.
Minimum and maximum baseline lengths in 1000's wavelengths. 0's -> all Shift in X (after rotation) in aseo. in projeoted coordinates. 1 Shift in Y (after rotation)
in projeoted coordinates. 1 Stokes types wanted.'I','Q','U','V','R','L'
If true then do zero spaoing flux.
Zero spaoing flux, l->flux density (Jy)5 -> weight to use.
polarization.
The total flux density removed from the data,
this will be subtraoted from the zero spaoing flux before gridding.
True if taper requested.TAPERU,TAPERV R*4 TAPER (to 30%) in u and v (kilolamda)

NXUNF,NYUNF 1*2 Dimension (oells) of the map in RA and Deo
to be used to set uniform weighting.(should be min. of FLDSZ)

“US* be V^ovlded if DOSEL is FALSE(oommon /MAPHDR/): CATBLK(256) I 2 Catalogue header for uv data input file.

DOUNIF

NCHAVG
UNFBOX CTYPX,CTYPY
XPARM(IO)
YPARM(IO)UVRNG(2)
XSHIFT(16)
YSHIFT(16)
STOKES
DOZEROZEROSP(5)

TFLUXG

DOTAPE

L*2

1* 2

1 * 2
1*2R*4
R*4R*4
R*4
R*4
R*4
L*2R*4

R*4

L*2

per field, in aseo. per field.

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-12

9 Hay 85

(only used on DOINIT-TRUE oall)The following must be provided if DOCREA is TRUE (inoludes D/CMPR, D/CGDS)
Output image name (12 ohar. paoked)Output image olass (6 ohar. paoked)(If more than 1 field the last 2 ohar are used to enoode the field number) Desired image file output disk
Desired image file output sequenoe no.The following must be provided if the output file is to be oreated; either by setting DOCREA-TRUE or DISKO-CNOSCO-O.

MNAME(3)
MCLASS(2)

MDISKMSEQ

R*4R*4

1*2
1*2

FLDSZ(2,*) NXBEM,NYBEM
CELLSG(2)
XSHIFT(16)

1*2
1*2R*4
R*4

YSHIFT(16) R*4

CCDISK(16)
CCCN0(16)

1*2
1*2

Dimension of map in RA, Deo (oells) Dimension (oells) of beam.
The oell spaoing in X and Y in aroseoonds. Shift in X (after rotation) in aseo. in projeoted coordinates. 1 per field.Shift in Y (after rotation) in aseo.
in projeoted coordinates. 1 per field. ICNTRX,ICNTRY(*) 1*2 The oenter pixel in X and Y for eaoh
field. 0 values oause the default.The following must be provided if DOCREA is FALSE and output files already exist. (Inoludes D/CGDS).

Disk numbers of the output images.(Must be zeroed if not filled in.)
Catalogue slot numbers of output images.(Must be zeroed if not filled in.)The following must be provided if DOSEL is true.(Inoludes D/CSEL.INC)
AIPS name of input file.
AIPS olass of input file.AIPS disk of input file.
AIPS sequenoe of input file.
FLAG file version number, if .le. 0 then NO flagging is applied.
Names (8 ohar) of desired souroe.
Start day, hour, min, seo, end day, hour, min,seo. O's -> all
Stokes types wanted.'I','Q','U','V','R','L'
First ohannel number seleoted, 1 rel. to first ohannel in data base. 0 => all Last ohannel seleoted. 0->all
First IF number seleoted, 1 rel. to first IF in data base. 0 -> all Last IF seleoted. 0->all If true apply oalibration, else not.

UNAME(3) R*4UCLAS(3) R*4UDISK R*4USEQ R*4FMVER 1*2
S0URCS(2,1) R*4TIMRNG(8) R*4
STOKES R*4
BCHAN 1*2
ECHAN 1*2BIF 1*2
EIF 1*2DOCAL L*2i following must :CALSOU(2,30) R*4

INTFN R*4

Names (8 ohar) of up to 30 calibrators,'*' or blank ->all, first oharaoter of name '-' -> all exoept those speoified.Interpolation funotion for gains
' ' -> Linear interpolation but no smoothing '2PT ' -> 2 point linear.
'BOX ' -> boxoar INTPRM(l) hours wide.

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-13

9 May 85

INTPRMC3) R*4

SMOTYP 1*2

ANTENS(50) 1*2
GAVER 1*2GAUSE 1*2
bput:
DISKI 1*2CNOSCI 1*2
DISKO 1*2

CNOSCO 1*2
SCRGRD 1*2
SCRWRK 1*2
DOSEL L*2DOBEAM L*2DOINIT L*2BUFFER(*) R*4IRET 1*2Sput in Common:DOUNIF L*2UBUFSZ 1*2MNAME(3) R*4
MCLASS(2) R*4
MDISK 1*2
MSEQ 1*2
FLDMAX(*) R*4FLDMIN(*) R*4

Parameters for interpolation funotion.(1) - smoothing time for amplitudes (Hrs)(2) - smoothing time for sine, oosine(3) - smoothing time for delay, rate.Note: smoothing with 0 time will oause Undefined values to be filled in.Smoothing type
1 - amplitude
2 - sine, oosine
3 - sine, oosine, delay, rate4 « delay, rate
List of antennas seleoted, 0->all,
any negative -> all exoept those speoifiedInput GAIN file version number.
GAIN file version number to put smoothed gains into and use for calibration. (May be GAVER).
UV data file disk if data reformatted.
Reformatted uv data soratoh file number to be used in subsequent oalls.
Output image file disk number if output file, oreated and/or oatalogued (DOCREA-TRUE or input DISKO-O and CNOSCO-O).
Output image file oatalogue slot number
or soratoh file number if output file oreated. Grid soratoh file number, will be set if the file is oreated, (DOINIT-TRUE)
Work soratoh file number, will be set if the file is oreated, (DOINIT-TRUE)Set to FALSE if data reformatted.Set to FALSE.Set to FALSE.Working buffer
Return error oode. 0“>OK, error otherwise.
Set to FALSE if uniform weighting applied. Buffer size for UBUFF (UVGET buffer)Output image name (12 ohar. paoked)(defaults applied)

(6 ohar. paoked)
output disk
output sequenoe no.

Output image olass
(defaults applied)Desired image file (defaults applied)Desired image file
(defaults applied)Maximum pixel value in field.Minimum pixel value in field.The following are filled in if a output file is oreated:

CCDISK(16; 1*2 Disk numbers of the output images.CCCN0(16) 1*2 Catalogue slot numbers of output images.Useage Notes:
1) The input uvdata file is, with one exoeption, assumed to be aoourately desoribed by the oontents of CAT4 and the oommon /UVHDR/ (inoludes DUVH, CUVH). The exoeption is that the u, v and

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-14

9 Hay 85

w may refer to a different frequenoy. The referenoe frequenoy for the u,v and w terms is taken from the input CATBLK in the DOINIT TRUE oall unless the data is reformatted (DOSEL-TRUE).In this latter oase this frequenoy is obtained from UVGET oall.If DOSEL - TRUE the input value of CATBLK is ignored.2) Information about the output image is obtained from the oatalogue header for the relevant file. If MAKHAP makes the
output file this information is filled in. If HAKMAP does not make the output image file then this information must be filled in before hand. Routine IHCREA will help do this. Note: even
soratoh files are oatalogued and thus have a oatalogue header.If HAKHAP does not oreate the output files, CCDISK(IFIELD) and CCCNO(IFIELD) should give their disk and oatalogue slot number before the oall to HAKHAP.
3) only one polarization oan be prooessed and the input datato the gridding routine is assumed to be in the desired Stokes' type (i.e. I, Q, U, V eto.).

If DOSEL - TRUE the input data will be seleoted, oalibrated and reformatted as speoified in oommon (inoludes D/CSEL).Only Stokes' types I,Q,U,V,R,L should be used.
Hultiple ohannels may be gridded together a la bandwidth synthesis by speoifying NCHAVG > 1. One ohannel of several ohannels may be gridded speoified by CHANN.

4) If DOSEL-FALSE on the first oall (i.e. the data is not
reformatted), the random parameters in the data should inolude,
in order, u, v, w, weight (optional), time (optional) and baseline (optional). While the last are optional and not used, the last words of random parameters are used as work spaoe and, if they are missing, u, v, and w may be olobbered. The weights are
required but may be passed either as random parameters or aspart of the regular data array, CAT4 should tell whioh.
If DOSEL-TRUE is used these oonditions will be satisfied.5) The neoessary image normalization oonstant for proper normalization of the FFTed image is produoed only by gridding the beam. If a beam is to be made, it should be done first; in this oase DOBEAH should be FALSE in all oalls. If a beam is not
desired then the first oall to HAKHAP should have DOBEAH TRUE and FALSE on subsequent oalls. Note HAKHAP sets DOBEAM to FALSE.6) Huoh of the oontrol information used by HAKHAP is passed to and
stored in oommons. The oalling routine should have the following inoludes:
DHDR.INC, DUVH.INC, DFIL.INC, DHPR.INC, DGDS.INC, DSEL.INC
CHDR.INC, CUVH.INC, CFIL.INC, CHPR.INC, CGDS.INC, CSEL.INC.NOTE: oare should be taken that the oontents of these oommons not be olobbered by overlaying.
7) If oalibration is applied then up to 8 map and 3 non map files will be open at onoe; this should be refleoted in the oall to
ZDCHIN and the dimension of FTAB in the main routine of the oalling program. HAKHAP may use AIPS LUNs 16, 17, 18, 19,20, 21, 22, 23, 24, 25, 28, 29, 30.

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-15

9 May 85

7.7.5 UVGET - obtains data from a data base with optional applioation of flagging and/or oalibration information. Reads data with a large variety of seleotion oriteria and will reformat the
data as neoessary. Does many of the startup operations, finds uv data file eto, reads CATBLK and updates the /UVHDR/ oommon to refleot the output rather than input data.

UVGET (OPCODE, RPARM, VIS, IERR)
Input: OPCODE R*4 Opoode 4 'INIT' - 'READ' -

'CLOS' -Inputs via oommon /SELCAL/ UNAME(3) R*4 UCLAS(3) R*4 UDISK R*4
USEQ R*4
SOURCS(2,30) R*4

CALS0U(2,30) R*4

TIMRNG(8) R*4
UVRNG(2)
STOKES
BCHAN
ECHANBIF
EIF
INTFN

R*4
R*4
1*2
1*21*2
1*2R*4

INTPRM(3) R*4

SMOTYP

DOCAL
ANTENS(50)

1*2

L*2
1*2

ohar.
Open files Initilize I/O.Read next speoified reoord.
Close files.
(Inoludes DSEL,CSEL.INC)AIPS name of input file.AIPS olass of input file.AIPS disk of input file.

AIPS sequenoe of input file.
Names (8 ohar) of up to 30 souroes, *->all First oharaoter of name '-' »> all exoept those speoified.
Names (8 ohar) of up to 30 oalibrators,'*' or blank «>all, first oharaoter of name '-' -> all exoept those speoified.Start day, hour, min, seo, end day, hour, min,seo. O's -> all
Minimum and maximum baseline lengths in 1000's wavelengths. O's -> all Stokes types wanted.
'I','Q','U','V','R','L','IQU','IQUV'
First ohannel number seleoted, 1 rel. to firstohannel in data base. 0 *> allLast ohannel seleoted. 0->all
First IF number seleoted, 1 rel. to firstIF in data base. 0 -> all
Last IF seleoted. 0«>all
Interpolation funotion for gains

' ■> Linear interpolation but no smoothing '2PT ' -> 2 point linear.
'BOX ' »> boxoar INTPRM(l) hours wide. Parameters for interpolation funotion.(1) - smoothing time for amplitudes (Hrs)(2) - smoothing time for sine, oosine(3) - smoothing time for delay, rate.Note: smoothing with 0 time will oause Undefined values to be filled in.Smoothing type
1 - amplitude2 - sine, oosine
3 - sine, oosine, delay, rate4 - delay, rate
If true apply oalibration, else not.
List of antennas seleoted, 0->all,

HIGH LEVEL UTILITY ROUTINES Page 7-16
ROUTINES 9 May 85

any negative -> all exoept those speoified FLAG file version number, if .le. 0 then NO flagging is applied.Input GAIN file version number.
GAIN file version number to put smoothed gains into and use for oalibration. (May be GAVER).
Random parameter array of datum.Regular portion of visibility data.Error oode: 0 -> OK,-1 -> end of data
>0 -> failed, abort prooess.

Output in oommon /SELCAL/: The default values will be filled in if null values were speoified.
UVFREQ R*8 Frequenoy corresponding to u,v,wCATBLK(256) 1*2 Catalogue header blook, desoribes the outputdate rather than input.Usage notes:

1) Inoludes DSEL.INC and CSEL.INC should be deolared in the main program or at a level that they will not be overlaid while
UVGET is in use (ie. between the 'INIT' and 'CLOS' oalls)2) If no sorting is done UVGET uses AIPS luns 25, 28, 29 and 30(1 map, 3 non map files). If sorting is done (usually possible) then 8 map and 3 non map files are used (mostly on OPCODE-'INIT') and LUNs 16,17,18,19,20,21,22,23,24,25, 28,29,30. These values should be refleoted in the oall to ZDCHIN and the dimension of FTAB.

3) OPCODE - 'INIT' does the following:
- The oatalogue data file is looated and the oatalogue header reoord is read.
- The souroe file (if any) is read.- The index file (if any) is initilized.
- The flag file (if any) is initilized and sorted if neoessary (Must be in time order).
- The gain table (if any) is initilized and smoothed if neoessary- I/O to the input file is initilized.

The following LUNs may be used but will be olosed on return: 16, 17, 18, 19, 20, 21, 22, 23, 24
The following LUNs may be used but will be open on return: 25, 28, 29, 30
NO data are returned from this oall.

4) OPCODE - 'READ' reads one visibility reoord properly seleoted, transformed (e.g. I pol.), oalibrated and edited as requested in the oall with OPCODE - 'INIT'
5) OPCODE - 'CLOS' oloses all files used by UVGET whioh are still open. No data are returned.

FMVER 1*2
GAVER 1*2GAUSE 1*2

Output:
RPARM(*) R*4VIS(3,*) R*4
IERR 1*2

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-17

9 May 85

7.7.6 UVGRID - convolves uv data onto a grid using AP routines. The visibilities are oonvolved onto the grid using the oonvolving funotion speoified by CTYPX,CTYPY,XPARH,YPARH. The defaults for these values must be filled in by a oall to GRDFLT. The gridded data is phase rotated so that the map oenter oomes out at looation ICNTRX, ICNTRY. If requested, a uv taper is applied to the
visibility weights before gridding. If neoessary, a three dimension
phase referenoe position shift is done in Q1GRD. If more than one ohannel is to be gridded together, UVGRID loops over the frequenoy
ohannels in an outer loop, reading the grid and uv data several times and writing the grid several times. This bandwidth synthesis
(BS) prooess will use the SCRWRK file. For bandwidth synthesis both the CNOSCO and SCRWRK files should be big enought for an extra m rows, where m is the half width of the X oonvolving funotion.Zero spaoing flux densities are gridded if provided.Uses AIPS LUNS 18, 20, 21
Input uv data file in UV file CNOSCI.Output grid file in image file CNOSCO.

NOTE: This routine uses the Array Prooessor

Inputs:
IFIELD 1*2SCRWRK 1*2
DISKI 1*2
CNOSCI 1*2
DISKO 1*2
CNOSCO 1*2
CAT4(128) R*4JBUFSZ 1*2

From oommons: (Inol'NVIS 1*4LREC 1*2
NCHAVG 1*2
FLDSZ(2,*) 1*2CELLSG(2) R*4CHUV1 1*2
FREQ R*8JLOCF 1*2
TFLUXG R*4

CTYPX,CTYPY 1*2

Field number to grid, if 0 then grid a beam. /CFILES/ file number for work file,(used for bandwidth synthesis)
Input file disk number for oatalogued files, .LE. 0 -> /CFILES/ soratoh file.
Input file oatalogue slot number or /CFILES/ soratoh file number.
Output file disk number for oatalogued files, .LE. 0 -> /CFILES/ soratoh file.
Output file oatalogue slot number or /CFILES/ soratoh file number.
UV data oatalogue header reoord.
Size in bytes of buffers. Dimension of BUFF1,2,3 must be at least 4096 R*4. les DGDS, DHPR, DUVH, CGDS, CHPR, CUVH)
Number of visibility reoords (/UVHDR/)
Number of (real) words per visibility reoord (/UVHDR/)
Number of oontinuum ohannels to grid together.
Dimension of map in RA, Deo (oells)
The oell spaoing in X and Y in aroseoonds. First ohannel number in file to grid (1 relative)
Referenoe frequenoy (Hz) (/UVHDR/)
0 relative number of the frequenoy axis, (/UVHDR/)
The total flux density removed from the data, this will be subtraoted from the zero spaoing flux before gridding.
Convolving funotion types for RA and Deo

HIGH LEVEL UTILITY ROUTINES
ROUTINES

Page 7-18
9 May 85

XPARM(IO) R*4
YPARM(IO)BLMAX R*4R*4
BLMIN R*4
DOZEROZER0SP(5) L*2R*4

DOTAPE L*2
TAPERU.TAPERV R*4 NXBEM,NYBEM 1*2
FREQUV R*8 NGRDAT L*2

XFLD,YFLD(*) DXCG,DYCG,DZCG

Convolving funotion parameters for RA XPARM(l) - support half width.Convolving funotion parameters for Deo.
Maximum baseline length allowed in 1000s of wavelengths.
Minimum baseline length allowed in 1000s of wavelengths.
If true then do zero spaoing flux.
Zero spaoing flux, l=>flux density (Jy)5 => weight to use.
polarization.
True if taper requested.
TAPER (to 30%) in u and v (kilolamda)The size of the BEAM in pixels.
Referenoe frequenoy of the u, v, w If FALSE get map size, soaling eto. parms from the model map oat. header. If TRUE
then the values filled in by GRDAT must already be filled into the oommon.The following must be provided if NGRDAT is .TRUE.

R*4 Field of view in RA and Deo (aroseoonds)R*4 2*pi*(delta ra, delta deo, and delta z) to be used in AP1GRD to shift positions.
(u,v and w are in oells). one per field. SCLUG,SCLVG,SCLWG R*4 Conversion faotors for u,v and w from
wavelengths at the referenoe frequenoy to oells. one set per field.ICNTRX,ICNTRY(*) 1*2 The oenter pixel in X and Y for eaohfield.

The following must be provided if NGRDAT is .FALSE.
Disk numbers of the output images.Catalogue slot numbers of output images.
Working buffer Working buffer
Working buffer (buffers should be oontigious in memory)
Return error oode. 0=>0K, error otherwise.
Sum of weights - normalization faotor

1) The input uvdata file is, with one exoeption, assumed to be
aoourately desoribed by the oontents of CAT4 and the oommon /UVHDR/ (inoludes DUVH, CUVH). The exoeption is that the u, v and w may refer to a different frequenoy. The oommon input variable FREQUV gives the referenoe frequenoy for the u, v, and w.2) the oontents of oommon /UVHDR/ (-inoludes DUVH, CUVH)
are filled in by UVPGET from the oatalogue header; UVPGET should be oalled before oalling UVGRID.
3) if NGRDAT is .FALSE, then the properties (e.g. shift) of the desired output image are assumed to be desoribed in the oatalogue header of the existant file pointed to by CCDISK,CCCN0(IFIELD).4) only one polarization will be prooessed and the input data is assumed to be in the desired Stokes' type (i.e. I, Q, U, V eto.)

CCDISK(16) 1*2CCCN0(16) 1*2Output:BUFFI R*4BUFF2 R*4BUFF 3 R*4
IRET 1*2Output via oommon:BEMMAX R*4Useage Notes:

HIGH LEVEL UTILITY ROUTINES
ROUTINES

In the general oase this will require reformatting the data.This oan be aooomplished via CALCOP to do the whole file or UVGET or SET1VS & GET1VS whioh work a reoord at a time.Multiple ohannels may be gridded together a la bandwidth
synthesis by speoifying NCHAVG > 1. One ohannel of several ohannels may be gridded using CHUV1 > 1.
5) the random parameters in the data should inolude, in order,
u, v, w, weight (optional), time (optional) and baseline
(optional). While the last are optional and not used, the last
words of random parameters are used as work spaoe and, if they are missing, u, v, and w may be olobbered. The weights are required but may be passed either as random parameters or as part of the regular data array, CAT4 should tell whioh.
6) The neoessary image normalization oonstant for proper normalization of the FFTed image is produoed only by a oall with IFIELD-0 to grid the sampling funotion. Therefore,
UVGRID must be oalled to grid the sampling funotion IRREGARDLESS of whether or not a beam will be produoed.
7) The gridding convolution funotion parameters must be completely speoified. The defaults should be filled in by a oall to GRDFLT before oalling UVGRID.

7.7.7 UVMDIV - divides model visibilities derived from CLEAN
components or images into a uv data set. The weights of the data returned will be the input values multiplied by the model amplitude.

A variety of model computation methods are available; if a single pass thru VISDFT, the DFT routine, is not sufficient then the data is oopied to a soratoh file whioh has spaoe for a seoond oopy
of the data, the model values are oomputed and summed in these looations and finally then model is divided into the data and written to the output file.

Extensive use is made of oommons to oommunioate with UVMDIV, in particular /MAPDES/ (inoludes DGDS.INC and CDGS.INC) oontains most of the oritioal information about the CLEAN oomponents files or images to be used. Common /UVHDR/ (filled in by UVPGET) is presumed to desoribe the uv data files.
If the data is not sorted 'X*' and MODEL-1 then UVMSUB will use the DFT irregardless of the value of METHOD.
NOTE: This routine uses the Array Prooessor
UVMDIV (DISKI, CNOSCI, DISKO, CNOSCO, MODEL, METHOD,
* DOMSG, CHANNEL, NCHAN, CATBLK, JBUFSZ, BUFFI, BUFF2, BUFF3,* IRET)

Inputs:
DISKI 1*2 Input disk number, if .LE. 0 then input is asoratoh file.

Page 7-19
9 May 85

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-20

9 May 85

DISKO
CNOSCO

MODEL
METHOD
DOMSGCHANNEL
NCHAN

1*2
1*2L*2
1*2

CNOSCI 1*2 Input file oatalogue slot number or /CFILES/ soratoh file number.
1*2 Output disk number, if .LE. 0 then output is a soratoh file.
1*2 Output file oatalogue slot number or /CFILES/ soratoh file number, if .LE. 0 then one of the internal soratoh files will be used. l-> olean oomponents, 2->image.1=>gridded, -1»>DFT, 0=>ohose.

If true give peroent done messages for DFT.First uv data ohannel to subtraot.
1*2 Number of frequenoy ohannels to subtraot. CATBLK(256)I*2 Uv data oatalogue header reoord.

JBUFSZ 1*2 Size of BUFFI,2,3 in bytes, must be at least 4096 real words.BUFFI,2,3 R*4 Work buffers.Inputs from COMMON /MAPDES/:
Number of fields
Number of oomponents already sub.Number of oomponents per field.Disk numbers for CC files
Catalogue slot numbers for CC files.CC file version number for eaoh field.Value to multiply olean oomponent fluxes by before subtraotion (negative for sum).
Stop reading oomps. from a file past the first negative oomponent. (DFT modeling ONLY)Use the point model speoified by PTFLX, PTRAOF, PTDCOF (DFT modeling ONLY)
Point model flux density (Jy) (I pol. only)
Point model RA offset from uv phase oenter (aseo)
Point model Deo. offset from uv phase oenter

MFIELD NSUBG(*)
NCLNG(*) CCDISK(*)
CCCNO(*) CCVER(*)
FACGRD
NONEG
DOPTMD
PTFLX
PTRAOF
PTDCOF

1*21*4
1*4
1*2
1*2
1*2R*4
L*2
L*2
R*4
R*4
R*4Input from COMMON /UVHDR/:LREC

NVIS NRPARM
Output:

CNOSCO

IRET

1*2
1*4
1*2

Length of visibility reoord.
Number of visibility reoords.
"Random" parameters before data, oan be used to skip observed values when oomputing model.

1*2 Output file oatalogue slot number or /CFILES/ soratoh file number. Value returned if not speoified in oall.
1*2 Return error oode. 0«>OK, otherwise failed.

7.7.8 UVMSUB - subtraots a olean model or an image from a set of uv
data. Extensive use is made of oommons to oommunioate with UVMSUB, in partioular /MAPDES/ (inoludes DGDS.INC and CDGS.INC) oontains most of the oritioal information about the CLEAN oomponents files or images to be subtraoted. Common /UVHDR/ (filled in by UVPGET) is presumed to desoribe the uv data files.

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-21

9 Hay 85

If the data is not sorted 'X*' and HODEL-1 then UVHSUB will use the DFT irregardless of the value of HETHOD.
NOTE: This routine uses the Array Prooessor
UVHSUB (DISKI, CNOSCI, DISKO, CNOSCO, HODEL, HETHOD,* CHANNEL, NCHAN, DOSUH, DOHSG, CATBLK, JBUFSZ, BUFFI, BUFF2,* BUFF3, IRET)

Inputs: DISKI 1*2 Input disk number, if .LE. 0 then input is a soratoh file.
1*2 Input file oatalogue slot number or /CFILES/ soratoh file number.
1*2 Output disk number, if .LE. 0 then output is a soratoh file.

Output file oatalogue slot number or /CFILES/ soratoh file number.
l-> olean oomponents, 2->image. l->gridded, -1=>DFT, 0«>ohose.

1*2 First uv data ohannel to subtraot.
1*2 Number of frequenoy ohannels to subtraot.If true then sum oomponent fluxes in FLUXG,TFLUXG.

If true give peroent done messages for DFT. CATBLK(256)I*2 Uv data oatalogue header reoord.
JBUFSZ 1*2 Size of BUFFI,2,3 in bytes, must be at least 4096 real words.Inputs from COHHON /HAPDES/:

CNOSCI
DISKO
CNOSCO
HODELHETHOD
CHANNEL
NCHANDOSUH
DOHSG

1*2
1*2
1*2

L*2
L*2

HFIELD
NSUBG(*) NCLNG(*) CCDISK(*)
CCCNO(*) CCVER(*)
FACGRD

1*21*41*4
1*2
1*2
1*2R*4

Number of fields
Number of oomponents already sub.Number of oomponents per field.Disk numbers for CC files
Catalogue slot numbers for CC files.CC file version number for eaoh field.Value to multiply olean oomponent fluxes
by before subtraction (negative for sum).Stop reading oomps. from a file past the first negative oomponent. (DFT modeling ONLY)
Use the point model speoified by PTFLX, PTRAOF, PTDCOF (DFT modeling ONLY)
Point model flux density (Jy) (I pol. only) Point model RA offset from uv phase oenter (aseo)
Point model Deo. offset from uv phase oenter Input from COHHON /UVHDR/:

LREC 1*2 Length of visibility reoord.
NVIS 1*4 Number of visibility reoords.
NRPARH 1*2 "Random" parameters before data, oan be used

to skip observed values when oomputing model. BUFFI,2,3 R*4 Work buffers.Output:
IRET 1*2 Return error oode. 0->0K, otherwise failed.

NONEG
DOPTHD
PTFLX
PTRAOF
PTDCOF

L*2
L*2
R*4R*4
R*4

HIGH LEVEL UTILITY ROUTINES Page 7-22
ROUTINES 9 May 85

7.7.9 UVUNIF - oomputes uniform weighting oorreotions and applies them to the weights in the visibility data base. The visibility weights are divided by the number of visibilities ooouring in oells within a box of half width UNFBOX oentered on the oell in whioh a given visibility resides. Does the uniform weighting oorreotion for the uv oellsize defined by CELLSG, NXUNF, NYUNF and UNFBOX Input uv data file in uv file DISKI, CNOSCI.
Output uv data file in uv file DISKO, CNOSCO.
Uses AIPS LUNs 18, 20, 21 (all files olosed on suooessful return)

NOTE: This routine uses the Array Prooessor
UVUNIF (DISKI, CNOSCI, DISKO, CNOSCO, SCRWRK, CAT4,* JBUFSZ, BUFFI, BUFF2, IBUFF3, IRET)

Inputs: SCRWRK DISKI
CNOSCI
DISKO
CNOSCO
CAT4(128)
JBUFSZ

From oommons UNFBOX NVIS LREC
NCHAVG

CHUV1
FREQUVNGRDAT

The following
CELLSG(2) NXUNF,NYUNF

The following
CCDISK(16)
cccno(i6)

1*2
1*2 /CFILES/ file number for work file,

Input file disk number for oatalogued files, if .LE. 0 -> soratoh file.
Output file oatalogue slot number or /CFILES/ soratoh file number.
Output file disk number for oatalogued files, if .LE. 0 -> soratoh file.
Output file oatalogue slot number or /CFILES/ soratoh file number.
UV data oatalogue header reoord.
Size in bytes of buffers. Dimension of BUFFI,2,IBUFF3 must be at least 4096 R*4. (Inoludes DGDS, DMPR, DUVH, CGDS, CMPR, CUVH)1*2 Half width of unif. wt. oounting box size.
Number of visibility measurments. (/UVHDR/)
Number of (real) words per visibility reoord (/UVHDR/)
Number of oontinuum ohannels to grid
together. (Used to determine number of weights per visibility to oorreot.)
First ohannel number in file to oorreot weight (1 relative) (first oh. to be gridded)Referenoe frequenoy of the u, v, w If FALSE get map size, soaling eto. parms from the model map oat. header. If TRUE
then the values filled in by GRDAT must already be filled into the oommon. must be provided if NGRDAT is .TRUE.

R*4 The oell spaoing in X and Y in aroseoonds.1*2 Dimensions (oells) of the map in RA and Deo
to be used to determine uniform wt. oounting box must be provided if NGRDAT is .FALSE.

1*2 Disk numbers of the output images.
1*2 Catalogue slot numbers of output images.

1*2
1*2
1*2
R*4
1*2

1*4
1*2
1*2

1*2
R*8L*2

Output:
BUFFI R*4 Working buffer
BUFF2 R*4 Working buffer

HIGH LEVEL UTILITY ROUTINES
ROUTINES Page 7-23

9 May 85

IBUFF3 1*2 Working buffer
IRET 1*2 Return error oode, 0->OK, error otherwise.Useage Notes:
1) The input uvdata file is, with one exoeption, assumed to be aoourately desoribed by the oontents of CAT4 and the oommon
/UVHDR/ (inoludes DUVH, CUVH). The exoeption is that the u, v and w may refer to a different frequenoy. The oommon input variable
FREQUV gives the referenoe frequenoy for the u, v, and w.2) the oontents of oommon /UVHDR/ (-inoludes DUVH, CUVH)
are filled in by UVPGET from the oatalogue header; UVPGET should be oalled before oalling UVGRID.
3) if NGRDAT is .FALSE, then the properties (e.g. oellsize) of the desired output image are assumed to be desoribed in the oatalogue
header of the existant file pointed to by CCDISK,CCCNO(IFIELD).4) the random parameters in the data should inolude, in order, u, v, w, weight (optional), time (optional) and baseline (optional). The weights are required but may be passed
either as random parameters or as part of the regular data array, CAT4 should tell whioh.
5) The uniform oorreotion made is to divide the weight of eaoh visibility by the number of ooourrenoes in its oounting box
irregardless of the weights of the visibilities.

CHAPTER 8
WAWA ("EASY") I/O

8.1 OVERVIEW
We have oreated a fairly ooherent set of routines whioh attempt to hide most of the nasty details mentioned in the previous seotions. They perform most oatalog file operations for the

programmer and hide the details of oalls to COMOFF, MINIT, MDISK, ZCREAT, et al. In many oases these oost oore spaoe and/or speed,
but for oomputation-bound algorithms these are probably not important.

Any task whioh uses the wawa paokage and oreates soratoh files should inolude the /CFILES/ oommon given in the INCLUDES DFIL.INC and CFIL.INC. The values of IBAD should be filled in using the
oontents of AIPS adverb BADDISK. This allows the soratoh file oreation routine to avoid putting files on user seleotable disks.

8.2 SALIENT FEATURES OF THE WAWA I/O PACKAGE

1. Eaoh main task oalls a single setup routine whose name
refleots the number of simultaneous map type file the programmer wants open.

2. All the parameters needed to speoify a oatalogued file are gathered into a single array, oalled a namestring.
3. The Wawa paokage hides the interfaoe between the parameter

passing subroutines (e.g., GTPARM) and the I/O routines so that fewer format oonversions are needed.

WAWA ("EASY") I/OSALIENT FEATURES OF THE WAWA I/O PACKAGE Page 8-2
8 May 84

4. Many subroutine oalls are oombined so that e.g., ZPHFIL, CATDIR, CATIO, and MINIT, more or less disappear from sight.
5. Soratoh files are oatalogued along with regular maps, whioh makes destroying them easier, either within the task or externally.
6. A general olean-up subroutine for olosing files and destroying soratoh files is provided.
7. "Hidden" buffers large enough to hold a 2048-point Real*4

map row are provided. These make double buffered I/O look more like FORTRAN I/O on the large mainframes.
8. I/O to "map" type files is always in R*4 format as seen by the user. On input automatio soaling from 1*2 ooours. A separate routine oan be used to find the min/max of an

output file, but it may be more oonvenient for the programmer to aooumulate these as his algorithm progresses. A separate subroutine may be oalled to oonvert output R*4 maps to 1*2.

8.3 NAMESTRINGS
In order to reduoe the many arguments required for the

fundamental AIPS I/O routines needed to speoify the desired file the WaWa paokage uses a namestring. With a namestring it is possible to refer to any oatalogued file by a real array of length 9, e.g.,
REAL*4 NAMS (9)
where NAMS(1:3) oontain the file NAME as 12 paoked oharaoters

NAMS(4:5) oontain the file CLASS as 6 paoked oharaotersNAMS(6) oontains SEQ as a real number
NAMS(7) oontains the disk volume as a real number
NAMS(8) oontains the file physioal type as A2NAMS(9) oontains the file USID number as a real number

The formats matoh those provided by GTPARM. If you speoify an [INPUTS] file with INNAME, INCLASS, INSEQ, INDISK, INTYPE and USERID the parameters will be inserted into your input array suoh that it forms a valid namestring.
Some null values are allowed that oause defaults to be invoked.

WAWA ("EASY”) I/O
NAMESTRINGS

1. A leading double blank in NAMS(l) means "any NAME".
2. A leading double blank in NAMS(4) means "any CLASS".
3. A 0.0 in NAMS(6) means "any SEQ".
4. A 0.0 in NAMS(7) means "any DISK".
5. A leading double blank in NAMS(8) means "MA". a physioal type of

6. A 0.0 in NAMS(9) means USID of NLUSER i. A 32,000.0 in NAMS(9) means "any USID" e. the task user.

A value of "SC" for the leading oharaoters in NAMS(8) means "soratoh". In this oase all the paokage subroutines substitute internally (they do not alter the oalling namestring) a NAME, CLASS,
and USID unique to the main task and AIPS initiator (i.e. interactive AIPS 1, 2 or BATCH AIPS 6, 7, ...) : NAME « TSKNAMI NPOPS CLASS - 'SCRTCH' USID - NLUSER

8.4 SUBROUTINES
The following is a list of the Wawa paokage of routines with a

short desoription of eaoh. Detailed desoriptions of the funotion and oall sequenoe of these routines oan be found at the end of thisohapter.
1. IOSETn - Setup I/O for n simultaneous map files.
2. FILOPN - Open a file, particularly assooiated files.
3. OPENCF - Open a oatalogued file.
4. FILIO - Do I/O to a non-map file.
5. MAPWIN - Set a multi-dimensional window on an open map.
6. MAPXY - Set a 2-dim window on top plane of a map.
7. MAPIO - Read or write to a map.
8. FILCLS - Close a map or non-map file.
9. FILCR - Create a non-map file.
10. MAPCR - Create a map file.
11. FILDES - Destroy either a map or non-map file.

Page 8-3
8 May 84

WAWA ("EASY") I/O
SUBROUTINES Page 8-4 8 May 84

12. UNSCR - Destroy all soratoh files.
13. CLENUP - Call UNSCR and olose any still open files.
14. MAPFIX -

map. Convert a oatalogued R*4 map to a oatalogued 1*2

15. MAPMAX -
oatalog. Find MAX & MIN of an Ft*4 map and enter into

16. GETHDR -
file. Retrieve oatalog header for an open oatalogued

17. HDRINF - Retrieve speoified items from map header.
18. TSKBEn -

ohores. Combination of IOSETn and some task startup

19. TSKEND - Some task oleanup ohores.

8.5 THINGS WAWA CAN'T DO WELL OR AT ALL
There are several applioations for whioh the vawa routines are inadequate. The non-map I/O routines are much inferior to the standard AIPS non-map I/O routines. Other applioations suoh as uv data handling and plotting are not provided for at all. History files may be written in tasks using wawa I/O but it required digging

in the the wawa oommons. The following seotions suggest possible oourses of aotion.

8.5.1 Non-map Files.
The wawa paokage is not overly useful for non-map I/O at the moment. The user will want to oonsult the ohapter on disk I/O and the routines EXTINI and EXTIO for more useful software.

8.5.2 UV Data Files.
No help here. See the ohapter on disk I/O.

8.5.3 Plotting
The wawa paokage has no plotting oapability. See the ohapter in this manual on plotting.

WAWA ("EASY") I/O
THINGS WAWA CAN'T DO WELL OR AT ALL Page 8-5

8 May 84

8.5.4 History
The wawa paokage has no oapaoity to oopy or write into history files. See the ohapter on tasks and in partioular the routines HISCOP and HIADD. In addition, you will need to determine the oatalogue slot numbers of the relevant files from the /WAWAIO/ oommon variable FILTAB(POCAT,) (file must be open to do so).

8.5.5 More Than 5 I/O Streams At A Time.
If a task may need to have more than 5 map or non-map I/O streams open at the same time then serious restructuring of the wawa oommons is needed. You are better off ignoring wawa I/O and using the standard I/O desoribed in the ohapter on disk I/O.

8.5.6 I/O To Tapes.
No help here. See the ohapters of disk and devioe I/O.

8.6 ADDITIONAL GOODIES AND "HELPFUL" HINTS
A number of features have been added to the Wawa paokage to inorease it usefulness. These will be disoussed in the following seotions. Also on oooasion the programmer will have to find some of the things the Wawa paokage has hidden; a disoussion of where Wawa hides useful information is also given in the following seotions.

8.6.1 Use Of LUNs
The LUN used does oonvey meaning. Legal values range from 9 through 30. However, values 16 through 25 oonvey an implication that the file is a map file, value 9 is reserved for the TV, and

values 10 through 15 may get you into trouble. Use 26 - 30 for non-maps.

8.6.2 WaWa Commons
The Wawa paokage hides many things in several oommons.Frequently the programmer needs to know the oontents of theseoommons. The following seotions desoribe the oontents of the oommons.

WAWA ("EASY") I/O
ADDITIONAL GOODIES AND "HELPFUL" HINTS

Page 8-6
8 May 84

8.6.2.1 Information Common - The primary oommon in the WaWa paokage is obtained by the inoludes DITB.INC and CITB.INC. The text of these and other relevant inoludes are shown at the end of this ohapter. The name of the primary Wawa I/O oommon is /WAWAIO/ and its oontents are as follows:

WRIT R*4 'WRIT'REED R*4 'READ'CLWR R*4 'CLWR'CLRD R*4 'CLRD'REST R*4 'REST'OPEN R*4 'OPEN'CLOS R*4 'CLOS'SRCH R*4 'SRCH'INFO R*4 'INFO'UPDT R*4 'UPDT'FINI R*4 'FINI'CSTA R*4 'CSTA'INDEF R*4 'INDE'
SUBNAM(3,8) 1*2

LINT 1*2LREAL 1*2NFIL 1*2EFIL 1*2
QUACK 1*2
POLUN 1*2POFIN 1*2
POVOL 1*2POCAT 1*2POIOP 1*2
POASS 1*2
POBPX 1*2PODIM 1*2PONAX 1*2
POBLC 1*2POTRC 1*2PODEP 1*2

I/O oontrol strings
Catalogue oontrol strings

POBL 1*2

I/O oontrol string
Catalogue oontrol string
Blanked floating point pixel

Subroutine names: CATDIR, CATIO, MINIT,
MDISK, ZCLOSE, ZCREAT, ZDESTR, ZOPEN in the form of 2 ohar/word for error messages
Number integer values in one 10 buffer Number real values ine one 10 buffer
Number simultaneous open map files Size of FILTAB (5 + NFIL) - number of simultaneous files of all types 0 -> restart AIPS at end, 1 => already done
FILTAB pointer for LUN value (1)FILTAB pointer for I/O table pointer value(2)
FILTAB pointer for disk number value (3) FILTAB pointer for oat looation value (4)
FILTAB pointer for opoode number (5):
values 1 -> write, 2=> read, <0 -> new win FILTAB pointer for is it assooiated file (6): 1 => assoo, 0 «> main file FILTAB pointer for bytes/pixel oode (7) FILTAB pointer for # axes (8)FILTAB pointer for # points on eaoh of 7 axes (9;
FILTAB pointer for Bottom left oorner (16) FILTAB pointer for Top right oorner (23)
FILTAB pointer for ourrent depth in I/O on axes 2 - 7 (30), Area (36) used for integer map (input) blanking oode.
FILTAB pointer for blook offset start I/O in the ourrent plane (37)

FILTAB(38,EFIL) 1*2 Table to hold all the values pointed

WAWA ("EASY1') I/O
ADDITIONAL GOODIES AND "HELPFUL" HINTS Page 8-7

8 Hay 84

at by the PO... pointers above: (e.g., the oat number is - FILTAB (POCAT, n) where n is found by finding that FILTAB (POLUN, n) whioh - desired LUN (Only for open files!I)

8.6.2.2 Catalogue And Buffer Commons. - There are 2 other oommons
whioh are used heavily. They are /MAPHDR/ whioh is a work area for map headers oontaining the equivalenoed arrays CAT2, CAT4, and CAT8. The oontents of this oommon are ohanged frequently by the basio WaWa
I/O routines, but it oan be used, for example, to get the oatalogue header reoord after a oall to FILOPN or OPENCF. This oommon may be obtained by the inoludes DCAT.INC, CCAT.INC, and ECAT.INC. The other oommon, oalled /WAWABU/, oontains:

RMAX(IO) R*4
RMIN(IO) R*4WBUFF(256) 1*2RBUF(n*2048) R*4

1-5 used by MAPIO for soale faotor 1-5 used by MAPIO for offset
soratoh buffer for oatalogue aooess I/O buffers for map I/O.

The areas RMAX and RMIN for subsoripts 6 through 10 oould be used by
a programmer, for example, to keep traok of max/min. If no map file is ourrently open, RBUF is a large and useful soratoh area of oore.

8.6.2.3 Deolaration Of Commons. - If a WaWa I/O task (or any other task for that matter) is to be overlayed on some oomputers, then all oommons must be deolared in the main program. For the WaWa system, this may be done by the following list of inoludes:
Declarations:INCLUDE

INCLUDEINCLUDEINCLUDEINCLUDEINCLUDEINCLUDEINCLUDECommons:INCLUDE
INCLUDEINCLUDEINCLUDEINCLUDEINCLUDEINCLUDEEquivalences:INCLUDEINCLUDE

'INCS'INCS'INCS
'INCS'INCS'INCS'INCS'INCS
'INCS'INCS'INCS'INCS'INCS'INCS'INCS

ZFT5,
IBUn,IITB
IDCH,DHDR,
DMSG.DCAT,
DFIL,
CBUF. CITB. CDCH. CHDR.
CMSG. CCAT, CFIL.

INC'INC'
INC'INC'
INC'INC'INC'
INC'
INC'INC'INC'INC'INC'INC'INC'

File table spaoe
WaWa buffer/table sizes WaWa I/O oommon System parms
Header pointers
Messages, POPS #, ... Catalogue header
Gives BADDISK

'INCS:EBUF.INC' 'INCS:ECAT.INC'

WAWA ("EASY") I/O
ADDITIONAL GOODIES AND "HELPFUL" HINTS Page 8-8

8 Hay 84

8.6.3 Error Return Codes.
A uniform system of error oode numbers has been adopted in the WaWa I/O paokage. These oode are oonsistent with the error oodes used by many I/O routines, but not with the other error oodes in the multitudinous oolleotion of AIPS routines. They are:1 -> File not open2 «> Input parameter error3 -> I/O error ("other")4 => End of file (hardware generated, see 9)5 -> Beginning of medium6 -> End of medium7 => buffer too small8 -> Illegal data type9 -> Logioal end of file (software generated, not hardware)10 -> Catalogue operation error11 -> Catalogue status error12 -> Hap not in oatalogue13 -> EXT file not in oatalogue14 -> No room in header/oatalogue16 -> Illegal window speoifioation17 «> Illegal window speoifioation for writing a file21 -> Create: file already exists22 -> Create: volume unavailable23 -> Create: spaoe unavailable24 -> Create: "other"25 -> Destroy: "other"26 -> Open: "other"

WAWA ("EASY") I/O
INCLUDES

Page 8-9
8 Hay 84

8.7 INCLUDES
There are several types of INCLUDE file whioh are distinguished by the first oharaoter of their name. Different INCLUDE file types oontain different types of Fortran deolaration statments as desoribed in the following list.

Dxxx.INC. These INCLUDE files oontain Fortran type (withdimension) deolarations.
Cxxx.INC. These files oontain Fortran COMMON statments.
Exxx.INC. These oontain Fortran EQUIVALENCE statments.
Vxxx.INC. These oontain Fortran DATA statments.
Ixxx.INC. Similar to Dxxx.INC files in that they oontain
type deolarations but the deolaration of some varaible is omitted. This type of inolude is used in the main program
to reserve spaoe for the omitted variable in the appropriate oommon. The omitted variable must be deolared and dimensioned separately.

- Zxxx.INC. These INCLUDE files oontain deolarations whioh may ohange from one oomputer or installation to another.

8.7.1 IBU1.INC

c Inolude IBU1REAL*4 RMAX(IO), RMIN(IO), RBUF(2048)INTEGER*2 WBUFF(256), IBUF(l)INTEGER*2 FILTAB(38,6)
C End IBU1

8.7.2 IBU2.INC

c Inolude IBU2REAL*4 RMAX(IO), RMIN(IO), RBUF(4096)INTEGER*2 WBUFF(256), IBUF(l)
INTEGER*2 FILTAB(38,7)

C End IBU2

WAWA ("EASY") I/O
INCLUDES Page 8-10

8 Hay 84

8.7.3 IBU3.INC

Inolude IBU3REAL*4 RHAX(IO), RHIN(IO), RBUF(6144)INTEGER*2 WBUFF(256), IBUF(l)INTEGER*2 FILTAB(38,8)
End IBU3

8.7.4 IBU4.INC

Inolude IBU4REAL*4 RHAX(IO), RHIN(IO), RBUF(8192)INTEGER*2 WBUFF(256), IBUF(l)INTEGER*2 FILTAB(38,9)
End IBU4

8.7.5 IBU5.INC

Inolude IBU5REAL*4 RHAX(IO), RHIN(IO), RBUF(10240)INTEGER*2 WBUFF(256), IBUF(l)INTEGER*2 FILTAB(38,10)
End IBU5

8.7.6 IITB.INC

Inolude IITBREAL*4 WRIT, REED, CLWR, CLRD, REST, OPEN, CLOS, SRCH,* INFO, UPDT, FINI, CSTA, INDEF
INTEGER*2 SUBNAH(3,8), LINT, LREAL, NFIL, EFIL, QUACK,* POLUN, POFIN, POVOL, POCAT, POIOP, POASS, POBPX,* PODIH, PONAX, POBLC, POTRC, PODEP, POBL

End IITB.

WAWA (“EASY") I/O
INCLUDES Page 8-11

8 Hay 84

8.7.

C

C

8.7.

C

C

8.7.

C
C

8.7.

C

C

8.7.

C

DCAT.INC

Inolude DCATINTEGER*2 CAT2(256)REAL*4 CAT4(128)REAL*8 CAT8C64)
End DCAT.

DFIL.INC

Inolude DFILINTEGER*2 NSCR, SCRVOL(20), SCRCNO(20), IBAD(IO), LUNS(IO),* NCFILE, FVOL(50), FCNO(50), FRW(50), CCNO LOGICAL*2 RQUICK
End DFIL

CBUF.INC

Inolude CBUFCOMMON /WAWABU/ RMAX, RMIN, WBUFF, RBUF
End CBUF.

CFIL.INC

Inolude CFILCOMMON /CFILES/ RQUICK, NSCR, SCRVOL, SCRCNO, NCFILE, FVOL, FCNO,* FRW, CCNO, IBAD, LUNS
End CFIL

CITB.INC

Inolude CITBCOMMON /WAWAIO/ WRIT, REED, CLWR, CLRD, REST, OPEN, CLOS,* SRCH, INFO, UPDT, FINI, CSTA, INDEF, SUBNAM,* LINT, LREAL, NFIL, EFIL, QUACK,
* POLUN, POFIN, POVOL, POCAT, POIOP, POASS, POBPX,* PODIM, PONAX, POBLC, POTRC, PODEP, POBL, FILTAB

WAWA ("EASY") I/O
INCLUDES Page 8-12

8 May 84

End CITB.

8.7.12 CCAT.INC

C Inolude CCATCOMMON /MAPHDR/ CAT2
c End CCAT.

8.7.13 EBUP.INC

c , Inolude EBUFEQUIVALENCE (RBUF(l), IBUF(l))
c End EBUF.

8.7.14 ECAT.INC

I&oludd ECATEQUIVALENCE (CATS(l), CAT4(1), CAT8(1))
C End ECAT.

8.7.15 ZFT5.INC

^ Inolude ZFT5INTEGER*2 FTAB(310)
C End ZFT5.

WAWA ("EASY") I/O
DETAILED DESCRIPTIONS OF THE SUBROUTINES. Page 8-13

8 Hay 84

8.8 DETAILED DESCRIPTIONS OF THE SUBROUTINES.
8.8.1 CLENUP - Close all files opened with FILOPN. Destroy soratoh. files.

CLENUP
no arguements

8.8.2 FILCLS - Close a file and olean up any I/O pending to it.
FILCLS (LUN)Inputs:

LUN 1*2 Logioal unit number

8.8.3 FILCR - Create a non-map of "file" type file assooiated with the oatalogued file NAMS, and modify oatalog blook aooordingly.
FILCR (NAMS, TYPE, NBLOCK, VER, ERROR)Inputs:

NAMS(9) R*4 Speoifies oatalog slot
TYPE R*4 Extension file type (2 oharaoters)NBLOCK 1*2 Number of 512-byte blooks requestedVER R*4 Version of newly oreated file

8.8.4 FILDES - Destroy a oatalogued or extension file and modify oatalog appropriately.
FILDES (NAMS, EXT, TYPE, VER, ERROR)Inputs:

NAMS(9) R*4 Speoifies oatalog entry
EXT L*2 Is file an extension file?
TYPE R*4 IF(EXT) what is extension type? (2 ohar)VER R*4 IF(EXT) what is extension version?

8.8.5 FILIO - Transfer a speoified 512 byte reoord between an open file assooiated with LUN, and the array DATA.
FILIO (OP, LUN, NREC, DATA, ERROR)Inputs:

OP R*4 "READ" or "WRIT"
LUN 1*2 Logioal unit numberNREC 1*2 reoord number

WAWA ("EASY") I/O
DETAILED DESCRIPTIONS OF THE SUBROUTINES. Page 8-14

8 May 84

Inputs/Output:
DATA(256) 1*2 data area

8.8.6 FILOPN - Find a oatalogued or extension open file and assooiate it with the LUN. file in oatalogue,

FILOPN (LUN, Inputs:LUN
NAMS(9)EXT
TYPEVER

NAMS, EXT, TYPE, VER, ERROR)
1*2R*4L*2
C*2R*4

logioal unit number
namestring speoifying oatalogue Desired file is an extension of file?
if EXT is true, EXT file TYPE
if EXT is true, EXT file version number(VER - 0.0 -> latest version)

oatalogued

8.8.7 GETHDR - Fetoh the header blook of a oatalogued, open file.
GETHDR (LUN, HDR, ERROR)Inputs:

LUN 1*2 Logioal Unit. No. of an open mapOutputs:
HDR(256) 1*2 Map header of that map

8.8.8 HDRINF - Fetoh a NUMBER of oonseoutive entries from the map header of an open map.
HDRINF (LUN, TYPE, START, NUMBER, DATA, ERROR)Inputs:

LUN 1*2 Logioal Unit. No. of an open mapTYPE 1*2 'bYP© of header information wanted
l-> 1*2; 2-> R*4; 3-> R*8 6-> Ch*8 START 1*2 Index of 1st item requested, in the systemspeoified by TYPE

1*2 Number of items requestedNUMBER Outputs: DATA(*) * * * Reoeiving array; type speoified by TYPE

WAWA (“EASY") I/O
DETAILED DESCRIPTIONS OF THE SUBROUTINES. Page 8-15

8 May 84

8.8.9 IOSET1, IOSET2, IOSET3, I0SET4, And IOSET5 - These routines initialize the I/O tables; oall ZDCHIN; allooate buffer spaoe for map I/O to n files adequate for 2048 real or 1024 oomplex pixels per line where n is the last oharaoter of the name.
IOSETn
no oalling arguments

8.8.10 MAPCR - Create and oatalog a map-type file. oomplex*8 maps will be oreated.
MAPCR (ONAMS, NAMS, HDR, ERROR)Input/output:

NAMS(9) R*4

Only R*4 and

Input:
ONAMS(9) R*4

HDR(256) 1*2

Namestring NAME:CLASS:SEQ:VOL:TYPE;USID
of map to be oreated and may oontain blanks (null values) or wildoards.
Namestring of a related file to be used to
oomplete the defaults in NAMS. This is typioally the input file namestring. The aotual values must be filled in before oall Catalog blook speoifying enough
information to determine file size: speoifioally # of axes and # of pixels on eaoh axis.

8.8.11 MAPFIX - Convert a oatalogued (inoluding soratoh) R*4 map to a oatlogued 1*2 map. If MAX & MIN are filled in in the R*4 header, they they will be used to determine soaling. If not, or if they are inoorreot and oause an overflow, a new Max and Min will be determined and entered in header.
MAPFIX (NAMIN, NAMOUT, ERROR)Inputs:

NAMIN(9) R*4 Input oatalog string
NAME0UT(9) R*4 Output oatalog string

8.8.12 MAPIO - Transfer one line of data between oore area DATA and
a disk map-type file. On READ, data are oonverted from 1*2 to R*4 if neoessary and are soaled using the header soaling and offset
faotors. Integer "blanked" values are replaoed with the R*4 value numerioally equivalent to the string "INDE".

WAWA ("EASY") I/O
DETAILED DESCRIPTIONS OP THE SUBROUTINES.

Page 8-16
8 May 84

On WRIT data output is unsoaled R*4, only. When you start writing MAX and MIN in the header will be marked as "INDE" or indefinite. If you want an 1*2 map, you should make an R*4 soratoh
map and then oall MAPFIX. If Max and Min are still indefinite at
this time MAPFIX will figure them out with an extra pass through the map. You oan also set them yourself in the map (oatalogued on disk) header and save some time. You oan switoh from "READ" to "WRIT" at any time.

MAPIO (OP, LUN, DATA, ERROR)Inputs:OP R*4 "READ" "WRIT"
LUN 1*2 Logioal unit number
DATA(*) R*4 data area

8.8.13 MAPMAX - Determine the maximum and minimum values of an R*4
map and enter values into map header.

MAPMAX (LUN, MAX, MIN, ERROR)
Inputs:LUN 1*2 Logioal Unit No. of an open map
Outputs:MAX R*4 Map maximum value

MIN R*4 Map minimum value

8.8.14 MAPWIN - Seleot a subarray of the (up to) 7-dimensional map array hyperoube so that MAPIO (of. above) only reads a subset of
the hyperoube. If MAPWIN is not oalled the entire map will be delivered, line by line, by MAPIO. If it is, the lines in the subarray will be delivered line by line.

When WRITing you oannot window in the x-direotion (fastest
varying ooordinate) beoause of disk addressing problems, but you oan window in the other dimensions.

MAPWIN oan be oalled any number of times after opening a file, even if a previous WIN has not been oompletely transferred.
MAPWIN (LUN, BLC, TRC, ERROR)Inputs:

LUN 1*2 Logioal unit numberBLC(7) R*4 Bottom left oorner of subarray
TRC(7) R*4 Top Right Corner of subarray

WAWA ("EASY") I/O
DETAILED DESCRIPTIONS OF THE SUBROUTINES.

Page 8-17
8 Hay 84

8.8.15 MAPXY - Does the same as MAPWIN but assumes you only want to talk to part or all of the top 2-dimensional plane of a possibly multidimensional map. If WIN(l) - 0.0, you get the entire top plane.
MAPXY (LUN, WIN, ERROR)Inputs:LUN 1*2 Logioal unit numberWIN(4) R*4 A 2-dimensional window

8.8.16 OPENCF - Same as FILOPN but restrioted to oatalogued files (i.e. no assooiated files) to simplify oall sequenoe.
OPENCF (LUN, NAMS, ERROR)Inputs:

LUN 1*2 Logioal unit numberNAMS(9) R*4 File namestring

8.8.17 TSKBE1, TSKBE2, TSKBE3, TSKBE4, And TSKBE5 - For n - 1....5 this subroutine does several task startup ohores:
1. Calls IOSETn to initialize I/O2. Calls GTPARM to get parameters
3. If DOWAIT is false , oalls RELPOP

TSKBEn (PRGNAM, NPARM, RPARM, ERROR)Inputs:
PRGNAM(3) 1*2 Name of task we are starting up
NPARM 1*2 Number of R*4 parameters we expeot initiatorto passRPARM(*) R*4 Array to reoeive passed parameters

8.8.18 TSKEND - Combines some task ending ohores:
1. Calls CLENUP to destroy soratoh files Gf olose other files2. If DOWAIT was true, oalls RELPOP with return oode IRET

TSKEND (IRET)Inputs:
IRET 1*2 return oode baok to initiator if DOWAIT is true0 -> ok, > 0 -> troubles

WAWA ("EASY") I/O
DETAILED DESCRIPTIONS OP THE SUBROUTINES.

Page 8-18
8 May 84

8.8.19 UNSCR - Destroy all soratoh files oreated by this task.
UNSCR

no arguments

Page Index- 1

INDEX

AIPS batch., 3-19, 4-2, 4-11 to4-12, 4-17 -ARC, 5-16 AXEFND, 5-10, 5-22
BADDISK, 3-18
CALCOP, 6-17, 6-20, 6-30, 7-1,7-7
CANDY, 2-1, 2-9, 2-14 to 2-15,2-17, 3-3 CAPL.INC, 4-31
oatalogue, 3-10 to 3-11, 5-1, 5-5,

5-10, 5-27, 6-18, 6-20, 6-37,6-49, 6-53, 8-1CATDIR, 5-2, 5-10, 5-22, 6-4 to
6-6 , 8-2

CATIO, 5-10, 5-23, 6-4, 8-2 CBAT.INC, 4-31 CBUF.INC, 8-11 CBWT.INC, 4-32
CCAT.INC, 8-12 CCON.INC, 4-32
CDCD.INC, 3-23 CDCH.INC, 6-2, 6-8 to 6-9 CERR.INC, 4-10, 4-32 CFIL.INC, 3-24, 7-3, 8-11
/CFILES/, 3-11, 3-18 to 3-19, 5-2,6-3, 6-5, 6-13, 6-43 to 6-44,

7-8, 8-1, 8-11 CGDS.INC, 7-3 CHCOMP, 3-4, 3-26 CHCOPY, 3-4, 3-26
CHDR.INC, 5-19 CHFILL, 3-4, 3-26 CHLTOU, 3-4, 3-26 CHMATC, 3-4, 3-27 CHNDAT, 6-18, 6-30 CHPAC2, 3-4, 3-27 CHPACK, 3-4, 3-27 CHWMAT, 3-4, 3-27 CHXPN2, 3-4, 3-28
CHXPND, 3-4, 3-28 CIO.INC, 4-32 CITB.INC, 8-11 CLENUP, 8-4, 8-13
CLOC.INC, 5-20 CMPR.INC, 7-3 CMSG.INC, 3-24 COMOF3, 6-12, 6-31 CONVRT, 6-16, 6-31

CPOP.INC, 4-32CSEL.INC, 7-4CSMS.INC, 4-33CTVC.INC, 5-20
CUVH.INC, 3-11, 3-24, 5-27 to5-28, 6-20, 6-53, 7-4
DAPL.INC, 4-33
data struotures, 1-8DBAT.INC, 4-34
DBWT.INC, 4-34DCAT.INC, 8-11/DCHCOM/, 5-14
DCON.INC, 4-34
DDCH.INC, 3-24, 6-8 to 6-9DEC-, 5-15
DERR.INC, 4-10, 4-34 DEVTAB, 6-7 to 6-8 DFIL.INC, 3-25, 7-5, 8-11 DGDS.INC, 7-5 DHDR.INC, 5-20
DIE, 3-2, 3-8, 3-11, 3-19, 3-28,6-2, 6-5
DIETSK, 3-2, 3-8, 3-19, 3-29differential precession, 5-18DIO.INC, 4-34
DLOC.INC, 5-21DMPR.INC, 7-5DMSG.INC, 3-25DOWAIT, 1-4
DPOP.INC, 4-35DSEL.INC, 7-6DSKFFT, 7-2, 7-8
DSMS.INC, 4-35DTVC.INC, 5-21
DUVH.INC, 3-11, 3-25, 5-27, 6-20, 6-53, 7-6
EBUF.INC, 8-12 ECAT.INC, 8-12 ECON.INC, 4-35 ELAT, 5-15
ELON, 5-15
EXTCOP, 3-14, 3-29, 6-26 EXTINI, 3-14, 6-26, 6-32, 8-4 EXTIO, 3-14, 6-26, 6-33, 8-4
FILAIP, 5-11
FILCLS, 8-3, 8-13 FILCR, 8-3, 8-13 FILDES, 8-3, 8-13

Page Index-2

FILIO, 8-3, 8-13 FILOPN, 8-3, 8-14 FITS, 1-5, 5-1, 6-17
FM table, 6-17 FNDX, 5-16, 5-25 FNDY, 5-16, 5-25 FTAB, 1-12FUDGE, 2-1 to 2-3, 2-5, 3-3
GET1VS, 6-20, 6-34 GETHDR, 8-4, 8-14
GETVIS, 6-20, 6-34 GLAT, 5-15
GLON, 5-15
GN table, 6-17 GRDCOR, 7-2, 7-8GTPARM, 3-1, 3-7, 3-19, 3-30, 8-1 to 8-2
HAIDD, 3-1HDRINF, 8-4, 8-14/HDRVAL/, 5-12
HIAD80, 3-13, 3-30HIADD, 3-13, 3-30, 8-5
HICLOS, 3-1, 3-13, 3-31HICREA, 6-3HIINIT, 3-13, 3-31HISCOP, 3-1, 3-13, 3-31, 6-3, 8-5
history, 3-2, 3-13
IBU1.INC, 8-9IBU2.INC, 8-9IBU3.INC, 8-10IBU4.INC, 8-10IBU5.INC, 8-10ICINIT, 5-13, 5-24
ICOVER, 5-13, 5-24ICREAD, 5-13, 5-24ICWRIT, 5-13, 5-24IDCH.INC, 3-25IF, 6-18
IITB.INC, 8-10
image oatalogue, 5-2, 5-11INCLUDE, 3-2, 3-8 to 3-10IOSET1, 8-15
IOSET2, 8-15IOSET3, 8-15I0SET4, 8-15IOSETn, 8-3
KEYIN, 6-26, 6-35
/LOCATI/, 5-16
logioal unit number, 6-6 to 6-7,8-5

MAKMAP, 7-2, 7-10
MAKOUT, 3-12, 3-32
MAPCLS, 5-10, 5-25, 6-7, 6-10, 6-36MAPCR, 8-3, 8-15 MAPFIX, 8-4, 8-15 /MAPHDR/, 5-28, 6-2 to 6-3, 6-20, 6-37, 6-43 to 6-44, 6-49,6-53
MAPIO, 8-3, 8-15 MAPMAX, 8-4, 8-16
MAPOPN, 5-10, 5-26, 6-6 to 6-7,

6-10, 6-20, 6-36 MAPSIZ, 6-4, 6-35
MAPWIN, 8-3, 8-16 MAPXY, 8-3, 8-17 MCREAT, 3-1, 6-2 to 6-3, 6-37
MDESTR, 6-5, 6-37 MDIS3, 6-7, 6-11, 6-13, 6-20,6-38 MDISK, 6-11
MINI3, 6-7, 6-11, 6-13, 6-20 to 6-21, 6-38 MINIT, 6-11, 8-2 MINS3, 6-15, 6-39, 6-42 MSCALE, 6-16, 6-40 MSCALF, 6-16, 6-41
MSCALI, 6-16, 6-42 MSGWRT, 3-2, 3-14
MSKI3, 6-15, 6-39, 6-42
multisouroe files, 6-16
-NCP, 5-16 NX table, 6-17
OPENCF, 8-3, 8-17
pain, 3-3 PFPL, 3-3PLNGET, 6-16, 6-43
PLNPUT, 6-16, 6-44 POPS, 1-4
POPSGN, 4-2, 4-10, 4-19 preoession, 5-18 PRPLn, 2-1 PSFORM, 3-32
Quiohe Eaters, 8-1
RA— , 5-15
RELPOP, 3-1, 3-8, 3-17, 3-32 rotation, 5-18 ROTFND, 5-10, 5-26

LUN, 6-8, 8-5

Page Index-

soratoh files, 3-18, 8-2 to 8-3
SCREAT, 3-1, 3-18, 3-33, 6-2 to 6-3, 6-6
SET1VS, 6-20, 6-45 SETLOC, 5-16, 5-27 SETPAR, 3-9, 5-2
SETVIS, 6-20, 6-44 -SIN, 5-16 SNDY, 6-5
sort order, 6-19 souroe number, 6-18
STOP, 3-19
SU table, 6-17

TABCOP, 3-14, 3-33
TABINI, 6-3, 6-6 to 6-7, 6-26,6-46, 6-55
TABIO, 6-1, 6-7, 6-26, 6-48, 6-55 TAFFY, 2-1 to 2-2, 2-5, 3-3 -TAN, 5-16 TSKBE1, 8-17
TSKBE2, 8-17 TSKBE3, 8-17 TSKBE4, 8-17 TSKBE5, 8-17 TSKBEn, 8-4
TSKEND, 8-4, 8-17 /TVCHAR/, 5-13 TVFIND, 5-13, 5-27

UNSCR, 8-4, 8-18
UVCREA, 3-1, 6-2 to 6-3, 6-49 UVDISK, 6-7, 6-20 to 6-22, 6-49 to 6-50 UVDISK,, 6-22
UVFIL, 2-1, 2-9 to 2-10, 2-14, 3-3

UVGET, 6-17, 6-20, 6-50, 7-1,7-15
UVGRID, 7-2, 7-8, 7-17 /UVHDR/, 5-28, 6-20, 6-22, 6-53
UVINIT, 6-7, 6-20 to 6-22, 6-49 to 6-50, 6-52 UVMDIV, 7-2, 7-19 UVMSUB, 7-2, 7-20
UVPGET, 3-34, 5-10, 5-27, 6-20,6-53
UVUNIF, 7-2, 7-22
VERBS, 4-12, 4-17 VERBSB, 4-12, 4-17 VERBSC, 4-12, 4-17
VHDRIN, 3-1, 5-5, 5-7, 5-12
XYPIX, 5-16, 5-28
XYVAL, 5-16, 5-29
ZCLOSE, 6-10, 6-54
ZCMPRS, 6-5, 6-55 ZCREAT, 6-3 to 6-4, 6-55
ZDCHIN, 3-1 to 3-2, 3-9, 3-20,3-35, 5-7 ZDESTR, 6-5, 6-56
ZEXPND, 6-5, 6-56
ZFIO, 6-29, 6-56
ZFT5.INC, 8-12 ZMATH4, 3-5, 3-35 ZMIO, 6-28, 6-57
ZOPEN, 6-6, 6-10, 6-27, 6-57 ZPHFIL, 5-2, 6-6, 6-10, 6-58, 8-2 ZR8P4, 3-5, 3-35
ZTCLOS, 6-26 to 6-27, 6-58 ZTOPEN, 6-6, 6-26 to 6-27, 6-59
ZTREAD, 6-26 to 6-27, 6-59 ZTTYIO, 3-3, 3-17, 3-36 ZWAIT, 6-28, 6-59

