Going AIPS:
A Programmers Gulde to the NRAQ
Astronomical Image Processing System

¥W. D. Cotton and a cast of AIPS

Version 15 July 85

VOLUME 2

ABSTRACT

This is the second of a two-volume manual for persons
wishing to write programs using the NRAO Astronomiocal
Image Processing System (AIPS). This volume contains

information about some of the more detailed features
of the AIPS system.

Page 2
15 July 85

CONTENTS

CHAPTER 9© DEVICES
9.1 OVERVIEV . . 9-1
9.2 TAPE DRIVES 9-1
9.2.1 Opening Tape Files . . 9-2
9.2.2 Positioning Tapes . 9-2
9.2.3 I/0 To Tape Files . . . 9-3
9.2.3.1 MINI3/MDIS3 And UVINIT/UVDISK . -3
9.2.3.2 ZFIO0 . . e . . 9-3
9.2.8.3 VBOUT . . . 9-3
9.2.4 Tape Data Struoture . 9-3
9.3 GRAPHICS DISPLAYS . . . 9-4
9.3.1 Opening The Graphilocs Terminal . . 9-4
9.3.2 ¥riting To The Graphios Terminal . 9-5
9.3.3 Activating And Reading The Cursor . 9-8
9.3.4 Updating The Image Catalog . 9-6
9.3.5 An Example . . 9-6
9.4 INCLUDES . . 9-8
9.4.1 CTKS.INC . . 9-8
9.4.2 CTVC.INC . . 9-8
89.4.3 DTKS.INC . . 9-8
9.4.4 DTVC.INC . . 9-9
9.5 ROUTINES . 9-9
9.5.1 ICINIT . . 9-9
9.5.2 ICWRIT . . 9-9
9.5.3 MDIS3 910
9.5.4 MINIS ¢« . « « ¢ v v v v v v e « .« « 9-10
9.5.5 TEKFLS « « o v v v v v v v v v« . 911
9.5.8 TEKVEC« . « v v v v v v v v v v v v« 9-12
9.5.7 TRCHAR« v v v v v v v v o v v v v v o 9-12
9.5.8 TECLR v v v v v v v v e e e e e e . 9-12
9.5.9 TRCURS + v o v v v v v v v v« . 9-13
9.5.10 TEDVEC« « « + v v v v v v v « o« v « . 9-13
9.5.11 UVDISK« . +« v v v v v v v v v v v« v « .« 9-13
9.5.12 UVINIT ¢« v v v v v v v e v s e v v o+ 9-14
9.5.13 VBOUT ¢ ¢ ¢ v v v v v o« .« . 9-18
9.5.14 YIVCIN v v v v v v v v v « v o . 9-18
9.5.15 ZOPEN « v v v v v o s « 4 v e o v . . 9-18
9.5.16 ZPHFIL v v v v v v e v vt e e e e 917
9.5.17 ZTAPE . . .« v v v v i e e e e e e e e e e 91
CHAPTER 10 USING THE TV DISPLAY
10.1 OVERVIEW . . . A (o ES
10.1.1 Why Use (or Not Use) The TV Display? « + .« .« . 101
10.1.2 The AIPS Model Of A TV Display Device 10-2
10.2 FUNDAMENTALS OF THE CODING 10-8
10.2.1 The Parameter Commons And Their Maintenanoe . 10-5
10.2.2 The I/ORoutines 10-6

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

10.
10.
10.
10.
10.
10.

(RGN N N R | UIUIOIUJWUIOIOIOIOIUIOIU!OIOIU'IUICJl0101010'10101'##P#@GGGGGGGGCRGGG&!\)N.&)NE\)

oI (CRSEORSESESE VRSV NN SR N T S RS g g

NGGGCRG
GGCANI—'

HEOQONOOMD ORI -

0
1

DA~

O®-20 0k N

PTRHA DD =

The Y Routines .
Level O
Level 1
Level 2 . . .
IIS Models 70 And 75 .

.1
.8 DeAnza .
U

CURRENT APPLICATIONS .

Status Setting . . .

Load Images, Label .

UVMAP . . .

APCLN, VM, MX Et Al

Plot Files (TVPL) .
Transfer Funotion Modifioation Zooming
Objeot Location, Window Setting .
Blotoh Setting, Use .

Roam

Movie, Blink . .

Non- standard Tasks .

INCLUDES .

Y-

Ay
V=~ O

Ah A

DTVC.INC .
CTVC.INC .
DTVD.INC .
CTVD.INC . .
ROUTINE PRECURSOR REMARKS
Level O . e e e e
YCHRW
YCNECT .
YCUCOR .
YCURSE .
YGRAPH .
YLNCLR .
YSLECT .
YTVCIN .
YZERO .
YTVCLS .
YTVMC .
YTVOPN .
Level 1 .
YCRCTL .
YIMGIO .
YINIT
YLUT .
YOFM . .
YSCROL .
YSPLIT .
YZ00MC .

Level 2 (Used As Level 1 In Non—standard .

Tasks) .
YALUCT .
YFDBCK .
YGYHDR .
YIFM . .
YRHIST
Selected Applications Subroutines

Page 3
15 July 85

10-7

10-8

10-9
10-10
10-10
10-11
10-11
10-11
10-12
10-15
10-18
10-19
10-19
10-21
10-23
10-24
10-24
10-25
10-26
10-26
10-26
10-26
10-28
10-27
10-27
10-27
10-27
10-28
10-28
10-29
10-29
10-30
10-30
10-30
10-31
10-31
10-31
10-32
10-32
10-32
10-33
10-33
10-33
10-33
10-34
10-34

10-38
10-358
10-38
10-36
10-38
10-37
10-37

CHAPTER

2’)12')1;}1;}101UGGGNGGCRGUCRGGCRCRU&Z\)!\)NZ\)NN&NNNZ\)NH

0O DO OD OO0 DM~ 2T D G

E0.0'J\'IO)(D#GIOH

(R RoRO N RGN RO RO NN R RO N6]

AABRBRBARABRBARBR

QOO

QAN ARNARNARNAARAND -
OO AN+

TVOPEN .
TVCLOS .
TVFIND .
TVWIND .
TVLOAD .
TVFIDL .
IMANOT .
IMCHAR .
IMVECT .

.10 IENHNS .
.11 DLINTR .
.12 RNGSET .
.13 DECBIT .
.14 MOVIST .

PLOTTING

OVERVIEVW .
PLOT FILES .
General Comments .o .
Structure Of A Plot File .o .
Types Of Plot File Logiocal Reoords .
Initialize Plot Record. .
Initialize For Line Drawing Reoord
Initialize For Grey Scale Record.
Position Record. . .
Draw Veoctor Record. .
¥rite Charaoter String Reoord
W¥rite Pixels Record.

End Of Plot Record.
PLOT PARAFORM TASKS

Introduction . .

Getting Started .

Labeling The Plot

Plotting . .

Map I/0 . .

Cleaning Up .

The Three Paraform Plot Tasks
PFPL1 .
PFPL2
PFPL3

Routines .

PLEND

PLPOS

PLVEC .
PLMAKE .
PLGRY .
MAKNAM .
INTMIO .
REIMIO .
GETROVW .

[V RV

Write Misc. Info To Image Catalog Reoord.

Page 4
15 July 85

10-3%7
10-37
10-38
10-38
10-39
10-39
10-40
10-40
10-41
10-41
10-41
10-42
10-42
10-42

11-1
11-2
11-2
11-2
11-3
11-3
11-4
11-4
11-5
11-5
11-85
11-8
11-6
11-6
11-6
11-6
11-%7
11-8
11-8
11-8
11-10
11-10
11-10
11-12
11-13
11-13
11-13
11-13
11-14
11-14
11-14
11-14
11-15
11-18
11-186

CHAPTER 12

12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.

Qb)b)b)(ﬂob(’ﬁl\)l—‘l—'l—'

VWYY YYIYLIIIIAIIAIIIIIIIILODOONORPOIRARRANRNANNANR WD

OO A

Od A+

QO RAANAANNANRAARANADDHPEP P
DOTIONP A

USING THE ARRAY PROCESSORS

OVERVIEVW .
¥hy Use The Array Prooessor? e
¥hen To Use And Not To Use The AP

THE AIPS MODEL OF AN ARRAY PROCESSOR :

HOW TO USE THE ARRAY PROCESSOR .
AP Data Addresses .

.1 Q Routine Arguments .
.2 Array Processor Memory Size

Assigning The AP . .
Data Transfers To And From The AP
Loading And Exeouting AP Programs
Timing Calls . . .
¥riting AP Routines

.1 Microcoding Routines.
.2 Veotor Function Chailner.

FFTs . . .
PSEUDO- ARRAY PROCESSOR .. .
EXAMPLE OF THE USE OF THE AP .
INCLUDES

CAPC.INC .

CBPR.INC .

CDCD.INC .

DAPC.INC .

DBPR.INC .

DDCH.INC .

EAPC.INC .

IDCHE.INC .

ROUTINES

Utility Routines .

APIO . .

QROLL .

DSKFFT .

PEAKFN .

PLNGET
Array Prooessor Routines .
AP Routine Call Sequenoes

QGET

QGSP .

QPUT .

QRFT .

QWAIT

QWD

QWR . .

QBOXSU .

QINIT

.10 QRLSE

.11 QCFFT .
.12 QCRVMU .
.13 QCSQTR .
.14 QCVCMU .
.15 QCVCON .
.16 QCVEXP .

Page B
18 July 88

12-1
12-1
12-2
12-2
12-4
12-4
12-4
12-5
12-5
12-6
12-%7
12-7
12-8
12-9
12-9
12-9
12-10
12-10
12-13
12-13
12-13
12-14
12-14
12-14
12-14
12-15
12-15
12-16
12-16
12-18
12-17
12-18
12-18
12-19
12-20
12-23
12-23
12-24
12-24
12-24
12-25
12-25
12-25
12-25
12-25
12-28
12-26
12-28
12-28
12-2%7
12-2%7
12-2%

CHAPTER

12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.

13

13.
13.

S N

IPCPERCPC PR PEPL P PUPCRR PRPCPC PR PRI RL PRI R R R B R R R Bt B BX QX RE R RL S B - B RX P L I L B B
€3 €A CA G 63 07 62 C3 A 3 G G G A G €3 €A €A CA G € G € €A 6 G 64 64 63 63 G2 A G €3 G G €A €3 G G G € G CA G 64 G4 &3

.17
.18
.19
.20
.21
.22
.23
.24
.28
.26
.7
.28
.29
.30
.31
.32
.33
.34
.35
.36
.37
.38
.39
.40
.41
.42
.43
.44
.45
.46
.47
.48
.49
.50
.51
.52
.B3
.54
.58
.56
.57
.58
.59
.60
.61
.62
.63
.64

TABLES IN AIPS

QCVJAD .
QCVMAG .
QCVMMA .
QCVMOV .
QCVMUL .

QCVSDI
QCVSMS

QDIRAD .

QHIST
QLVGT

QMAZMI .

QMAXV
QMINV

QMTRAN .
QPHSRO .
QPOLAR .

QRECT
QRFFT
QSVE .

QSVESQ .

QVABS
QVADD

QVCLIP .

QVCLR
QVCOS
QVDIV
QVEXP

QVFILL .

QVFIX
QVFLT

QVIDIV .

QVLN .
QVMA .
QVMOV
QVMUL
QVNEG

QVRVRS .
QVSADD .

QVSIN
QVSMA

QVSMAFX
QVSMSA .
QVSMUL .

QVSQ .

QVSQRT .

QVSUB

QVSWAP .
QVTRAN .

OVERVIEV .

GENERAL TABLES ROUTINES

Page 6
15 July 85

12-28
12-28
12-28
12-29
12-29
12-29
12-30
12-30
12-31
12-31
12-31
12-32
12-32
12-32
12-38
12-33
12-33
12-34
12-34
12-34
12-34
12-385
12-35
12-35
12-36
12-36
12-36
12-3%
12-37
12-37
12-38
12-38
12-38
12-39
12-39
12-39
12-40
12-40
12-40
12-40
12-41
12-41
12-42
12-42
12-42
12-43
12-43
12-43

CHAPTER

13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.

14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14,
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.

(o W Ko Ko KXo Ko Ko Ko K o Ko Ko N N6 le e I Y N N - SET ET
OCOIOADA

QOO PRRANANRTNRNARNNRD -

DO

O A

QDL

QDO

SPECIFIC TABLES ROUTINES .
THE FORMAT DETAILS .

Row Data . .

Physical File Format

Control Information

Keyword/value Records

I/0 Buffers

Fundamental Table Aooess Subroutines
ROUTINES

CCINI .

CHNDAT .

FLGINI .

FNDCOL .

GAINI .

GETCOL .

INDXIN .

SOUINI .

TABCOP .

.10 TABGA

TABINT .

.12 TABIO .
.13 TABKEY .
.14 TABFLG .
.18 TABNDX .
.18 TABSOU .
.17 TABSRT .

FITS TAPES

OVERVIEW .
PHILOSPHY .
IMAGE FILES .
Overall Struoture
Header Records
Keywords
History . .
AIPS Nonstandard Image File Keywords
Coordinate Systems .
Example Image Header .
Units . . .
Data Records . .
RANDOM GROUP (UV DATA) FILES
Header Record
Data Records . . .
Weights And Flagging .
Antennas And Subarrays .
Coordinates . .

(o N NN I SR

DA

Sort Order
Typical VLA Reocord Struoture .
EXTENSION FILES . . .
Standard Extension .
Tables Extension .

.1 Tables Header Reoérd :

Page 7
15 July 88

13-2
13-2
13-3
13-3
13-4
13-6
13-8
13-8
13-7
13-7
13-7
13-8
13-8
13-9
13-10
13-10
13-11
13-11
13-12
13-13
15-14
13-156
13-185
13-16
13-1%7
15-18

CHAPTER

14.
14.
14.
14.
14,
14,
14,
14,
14.
14,
14.
14.
14,
14.
14.
14.
14.
14.
14.
14.
14.
14.

15.
15.
15.
15.
15.
15.
15.
15.
15.
16.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
156.
15.
15.
15.

[R VRN EN R A R Eo N RO RO RO RO RO NG RO R R RN N

DOV ODODODOVDODOOPOOOEPEEINDOP AN

OGO A

WA =~ OO A

Ok A+

AW ARDDW

B QA=

S e
OO P A

Table Data Records . .
Example Table Header And Data
Older AIPS Tables . . .
General Form Of Header .
Data Records
CC Files .
AN Flles . . .
AIPS FITS INCLUDES
DFUV.INC
DFIT.INC .
EFUV.INC .
EFIT.INC .
VFUV.INC .
VFIT.INC
AIPS FITS PARSING ROUTINES
FPARSE . . .
GETCRD .
GETLOG .
GETNUM .
GETSTR .
GETSYM .
REFERENCES

QW

THE Z ROUTINES

OVERVIEW . . .
Device Charaoteristios Common
FTAB . . . e e e e e e e
Disk Files

.1 Binary (data) Files
.2 Text Files

DATA MANTPULATION ROUTINES

DISE I/0 AND FILE MANIPULATION ROUTINES

SYSTEM FUNCTIONS . . .
DEVICE (NON-DISK) I/0 ROUTINES .o
DIRECTORY AND TEXT FILE ROUTINES .
MISCELLANEOQUS . .o
INCLUDES .
CDCH.INC .
CMSG.INC .
DDCH.INC .
DMSG.INC .
IDCH.INC .
ROUTINES . . .
Data Manipulation
ZBYTFL . .
ZCLC8
ZC8CL
ZMCACL .
ZDM2DL .
ZGETCH .
ZGTBIT .
ZGTBYT .

Page 8
15 July 85

14-21
14-22
14-23
14-23
14-23
14-24
14-24
14-25
14-25
14-26
14-26
14-26
14-26
14-28
14-29
14-29
14-30
14-30
14-31
14-31
14-31
14-32

15-1
15-2
15-3
15-4
15-4
15-4
15-5
15-%
15-8
16-9
15-10
15-10
15-11
16-11
15-12
16-12
15-12
15-12
15-13
15-13
15-13
16-13
15-13
16-14
15-14
15-15
15-18
15-18

15.
15.
18.
185.
18.
18.
185.
18.
15.
15.
18.
15.
15.
18.
15.
18.
18.
18.
15.
18.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
18.
15.
15.
15.
15.
15.
15.

15.
18.
15.
18.
15.
15.
15.
15.
15.
16.
15.
15.
18.
15.
15.
15.

OO(O(O(D(O(O(O(O(OCD(D(O(DO(D(O(O(O(O(O(O(OO(O(O(OCOSDSOSOSOSOSOSDSOSOSOSOSOSDSOEOSOPSDSOSOSOEDSO?OSO(O

Ul(ﬂlh;hbb#@#ﬁ#&aaauﬁauumuuﬂuGGCANNNNNZ\)N&N&N&?\)NM!—‘r‘t—'!—'!—'!—‘:—':—‘i—'l—'t—'

&)m-@o:mrhcnwoa :

b(b-ad)m»hcnu>w

[
[

O

Z2I16IL .
Z2I321L .
ZI8L8 .
ZILIl6 .
ZpP4lI4 .
ZPTBIT .
ZPTBYT .
ZPUTCH .
ZRDMF .
ZRM2RL .
ZR8P4 .
Disk I/O .
ZCMPRS .
ZCREAT .
ZDESTR .
ZEXIST .
ZEXPND .
ZFIO .
ZMIO . .
ZMSGCL .
ZMSGDK .

-
o

T e o ol
OCOYOWP AN

.10 ZMSGOP .
.11 ZOPEN .
.12 ZPHFIL .
.13 ZRENAM .
.14 ZWAIT

System Functions .
ZACTVS8 .
ZCPU .
ZDATE
ZDELAY .
ZGNAME .
ZMYVER .
ZPRIO
ZPRPAS .
ZTACTQ .
ZTIME
ZFREE .
ZSTAIP .
ZTKILL .
ZTQSPY .
ZWHOMI
Non-disk I/O Routilnes
ZDOPRT
ZENDPG .
ZQMSIO .
ZTAPE .
ZTKBUF .
ZTKCLS .
ZTKOPN .
ZTTYIO .
ZPRMPT

[
(@

=
Ok A

= OO0+

ZTCLOS .

Direotory.Aﬁd.Téxt fiie.

Page ©
156 July 88

18-186
18-16
18-16
16-17
16-17
18-17
16-17
15-18
15-18
18-19
15-19
15-19
16-19
18-20
15-20
15-21
16-21
15-21
16-22
18-22
16-23
15-23
18-23
15-24
16-25
15-25
15-26
15-26
16-26
15-26
16-27
18-2%7
158-27
16-27
158-28
15-28
156-28
15-28
15-29
15-29
15-29
18-29
18-30
16-30
18-30
16-30
15-31
18-31
18-32
18-32
18-32
18-32
15-33
15-33

15.
15.
15.
15.
15.
15.
15.
15.
15.

QOOOOOOOO
(oNoNoNoRo RO RN RS

Od A

R

ZTOPEN .
ZTREAD .
ZTXMAT .
ZGTDIR .
Miscellaneous
ZDCHIN .
ZMATH4 .
ZKDUMP .
ZTFILL .

Page 10
18 July 85

15-33
156-33
15-34
15-34
15-35
15-35
15-35
15-35
15-36

CHAPTER 9

DEVICES

©.1 OVERVIEVW

Programs in the AIPS system occasionally need to talk to
peripheral devices. This chapter disousses such devices other than
disk drives, TV displays, array processors, and plotters which are
covered elsewhere. Many of the same routines used for disk I/0O are
also used for I/0 to other devices but their use may be modified to
suit the physiocal properties of the partioular device. The details
of the call sequence for the relevant routines disocussed in this
chapter are given at the end of the chapter.

9.2 TAPE DRIVES

Tapes are used in AIPS primarily for long term storage of data,
images or text files. The principle differences in the AIPS system
between use of tape and disk 1is that tapes, by +their physical
nature, are sequential acocess devices and the physical block size of
data depends on the program writing the tape. In addition, AIPS
batch Jobs are forbidden to talk to tape drives.

The usual problems of Fortran I/O apply to tapes, i.e. it is
not predioctable from one machine and/or operating system to another.
For this reason standard AIPS programs do not use Fortran I/O for
tapes. Also, some versions of Fortran cannot read or write some
file structures such as those containing variable 1length, blocked,
unspanned records.

Since AIPS tasks work direotly from I/0 buffers a program using
tape must take account of the details of the way data is written on
tape. One exception to this is writing wvariable length, blocked,
but unspanned records; such records may be assembled and written
using the AIPS utility routine VBOUT.

DEVICES Page 9-2
TAPE DRIVES 10 May 85

9.2.1 Opening Tape Files

Tape files are opened using ZOPEN in a way similar to disk
files. Details about ZOPEN and examples of its use can be found in
the chapter on disk I/0. However, to tell the AIPS routines that
the file is on a tape drive and to specify which tape drive, the LUN
and file name are different from those used for disk files. The LUN
for tape files must be 31 or 32. When construocting the name of the
file using ZPFIL use 'MT’' as the file type and the (one relative)
tape drive number as the volumn number, the rest of the values sent
to ZPHFIL are ignored by ZOPEN and are arbitrary.

9.2.2 Positloning Tapes

Once the file has been opened in AIPS the tape may be
positioned, mounted or dismounted, or EOFs may be written using
ZTAPE. NOTE: mounting and dismounting are generally done only by
the AIPS program itself. Details of the call sequence to ZTAPE are
given at the end of this chapter. The following 1list gives the
opcodes recognized by ZTAPE.

1. 'ADVF' = advance file marks

2. 'ADVR’ = advance reocords

3. 'BAKF’' = backspace file marks.

4. 'BAKR’ = backspace records.

5. 'DMNT’ = dismount tape.

6. 'MONT’' = mount tape.

7. 'REWI' = rewind the tape on unit LUN

8. 'WEOF' = write end of file on unit LUN: writes 4 EOFs,
positions tape after first ome

9. 'MEOF' = write 4 EOF marks on tape, position tape before

the first omne

DEVICES Page 9-3
TAPE DRIVES 10 May 85

9.2.3 I/0 To Tape Files

The same routines to write to disk files can be used to talk to tape
files although several call arguments have altered meanings for tape
files.

9.2.3.1 MINI3/MDIS3 And UVINIT/UVDISK - Double buffered I/O can be
done using MINI3/MDIS3 and UVINIT/UVDISK. For these pairs of
routines the primary difference between their use on disk and tape
is +that the physical blooks on the tape are: 1) a single logiocal
record of an image (a row, or the first dimension) if written usin
MINI3/MDIS3 or 2) the number of logical records (visibilities
requested in a single call (NPIO) to UVINIT. Sinoce these routines
know or care little about the internal structure of the data read or
written, 1in practice, any format records can be processed.

9.2.3.2 2FIO - Single buffered I/O can be done using ZFIO but the
input variable used for to block number becomes the byte count for
the transfer.

9.2.3.3 VBOUT - The utility routine VBOUT will oolleot variable
length records and block them, unspanned, into IBM format physiocal
blocks up to 4008 bytes long. The tape must be opened with ZOPEN as
& non-map file. The principle use of this routine is to write VLA
"EXPORT" format tapes. Details of the oall sequence as well as
other important useage notes are found at the end of this chapter.

9.2.4 Tape Data Structure

In order to make efficient use of tape storage a number of logiocal
records may be grouped into a single physiocal record. In general
these logiocal records may be fixed or variable length and may or mnay
not span physical blocks. In addition, 1logical records may be
formatted (text, usually ASCII) or binary. Such details need to be
determined before attempting to read or write such files.

Filxed length logical records are packed into physical records
as defined by the record size and bloock length. Since the order and
size of these records 1s well defined there is no need for
additional ocontrol information.

For variable length logical records, control bytes are added to
the record to determine the boundaries of 1logical records.
Unfortunately, the detalls of the of variable length record
structure varies from computer to computer and from operating system
to operating system. If you wish to read or write one of these

DEVICES Page 9-4
TAPE DRIVES 10 May 88

tapes you have to find the details of the formats for the machines
in question.

9.3 GRAPHICS DISPLAYS

The graphios devices currently supported in AIPS fall into
three oategories: TV display devices such as the IIS, hardcopy
devices such as the Versateo printer/plotter, QMS Lasergraphiocs
printer and interactive graphics terminals such as the Tektronix
4012. This section deals with the Tektronios type graphios

terminals. The other devices are discussed in the chapter on
plotting.
A graphics terminal can be used in two major modes: as a

temporary display device, or as an interactive graphiocs device.
When used as a temporary display device, a task will read graphiocs
commands from a plot file, convert these device independent commands
to the form needed by the devioe, and finally write to the device.
The AIPS task that does this is TKPL. A programmer wishing to write
a task to intepret a plot file for another type of graphiocs
terminal, would start with TKPL and convert the routines TKDVEC,
TKCHAR, and TKCLR to send the proper commands to the device.

When using a graphics terminal in the 4interactive mode, the
programmer probably will go straight from the data file to the
graphios terminal without going through a plot file. In general, an
interaotive task or verb will open the display device, display the
data, activate the oursor, read the cursor position in the absolute
device ocoordinates, oonvert these ooordinates into more useful
units, and then perform some useful funotion with <the oconverted
units, such as display them.

Current AIPS use of graphics is quite primative. In the future
ve will probably convert to use of the GKS graphios system which may
invalidate most of the following discussion.

9.3.1 Opening The Graphios Terminal

The graphios terminal is opened as a non map file using ZOPEN.
AIPS 1logical unit 7 is reserved for this device type, and should be
used in the call to ZOPEN. VWhen constructing the device name with
ZPHFIL, a devioce type of 'TK’ must be used. A volume number of 1
and zero values for the other auguments should be used to remain
consistent with other tasks. On the VAX, each AIPS is assigned a
graphios terminal on start up acocording to a set of logical names.
Thus, ZOPEN on the VAX ignores everything in the name exocept TK.

DEVICES Page 9-5
GRAPHICS DISPLAYS 10 May 85

8.3.2 VWriting To The Graphios Terminal

Before writing to the graphios terminal, the programmer must
set some values in common. Common INCS:CTVC.INC can be initialized
by calling routine YTVCIN. Most values in this common are for the
TV display, but array MAXXTK contains the maximum X and Y values in
devioce units (for the Tektronix 4012, these values range from 1 to
1024 for X and 1 to 780 for Y). In common INCS:CTKS.INC, the
graphics buffer size, TKSIZE, should be set to 20. The ourrent
position 1in use in the buffer, TKPOS, should be set to zero. Socale
faotors SCALEX and SCALEY and offsets RX0 and RYO must be caloulated
and assigned. If a subroutine is told to scale a value then the X
value in absolute device units will be equal to

SCALEX * value_input_for_X + RXO.

Usually the first thing a programmer will want to do when
writing to the terminal is to oclear the soreen. This can be done
with subroutine TKCLR.

Setting the beginning of the line (sometimes called drawing a
dark vector) and drawing lines from the ocurrent position to a new
position (a bright vector) are done with routine TEKVEC. TEKVEC is
given an X and Y position and a control code which tells it if it
should draw a dark veotor or a bright vector, and if it should
consider X and Y to be in absolute device units or if the values
should be scaled. TEKVEC will automatically truncate vectors that
run off the plot and write the buffer when it fills up.

Characters can be written to a Teoctronix terminal by oalling
routine TKCHAR. TKCHAR allows the programmer to write characters
either horizontally or vertically. TKCHAR uses the hardware
character generator in the Tektronlos, so the characters only ocome
in one size. Choosing the starting position of the ocharacters
involves a oombination of TEKVEC and TKCHAR. First, a veotor
position on the plot is chosen by ocalling TEKVEC with the ‘’dark

vector’' option. Then an offset from the vector position in
ocharacter sizes 1is chosen by use of the DCX and DCY parameters in
TKCHAR. Programmers who need a character generator can find one in

task PRTPL that can be adapted to a graphios terminal.

Before closing the graphios terminal, the programmer should
write any remaining buffers to the graphios device by calling
TEKFLS.

9.3.3 Aotivating And Reading The Cursor

Subroutine TEKCURS will aotivate the oursor on the Tektronix
4012 and wait for a response from the 4012 keyboard. After the user
positions the cursor and presses any key, the oursor will disappear
and TKCURS will return the last coordinate position in absolute
Tektronix units. The programmer will probably have to convert this
position into plot ocoordinates by using information in the image

DEVICES Page 9-6
GRAPHICS DISPLAYS 10 May 85

catalog.

9.3.4 TUpdating The Image Catalog

The image catalog should be updated when an image is written to
the graphics terminal. This is essentlal when one task (or verb)
writes an image to the devioce, and another task (or verb) needs
information about +the plot on the soreen. For example, task TKPL
can be used to display a contour map on the terminal, and verb TKPOS
can be used to print map coordinate values at seleoted positions on
the plot. The TKPOS uses information in the image header to convert
an absolute Teoctronix ocursor position into the map axis units such
as RA and DEC. The routines ICINIT and ICWRIT can be used to set up
the 1image catalog for +the graphics terminal. See the chapter on
catalogues for a detailed descoription of the image catalog and the
example below for making a minimum image catalog entry.

9.5.5 An Example

This example code shows how <to open the graphics terminal,
clear the soreen, draw a box, and write some text in the center of
the box. Opening the map, getting parameters from AIPS, etc., are
not shown. In a non-trivial example, ocaloculating <the scaling
parameters and updating the 1image catalog would be much more
involved.

INTEGER*2 TK, NO, N1, ITKLUN, ITKIND, IERR, TKSIZE, TKPOS,

* IPOS, IDRAW, NCHAR, IHORZ, IPLANE, BUFFER(256), VOL, CNO,
* CATBLK(256), LINE(40)

LOGICAL*2 T,F

REAL*4 DEVNAM(8), BLCX, BLCY, TRCX, TRCY, CENTER, DCX, DCY

INCLUDE ‘INCS:DHDR.INC’
INCLUDE 'INCS:DDCH.INC'’
INCLUDE ‘INCS:DTVC.INC'’
INCLUDE 'INCS:DTKS.INC’
INCLUDE ‘INCS:CHDR.INC'
INCLUDE ‘INCS:CDCH.INC'
INCLUDE ‘INCS:CTVC.INC'
INCLUDE 'INCS:CTKS.INC’

c Open the Tektronix device.
ITKLUN = 7
CALL ZPHFIL (TK, N1, NO, NO, DEVNAM, IERR)
IF (IERR.NE.O) GO TO 900
CALL ZOPEN (ITKLUN, ITKIND, N1, DEVNAM, F, T, T, IERR)
IF (IERR.NE.O) GO TO 900

DEVICES Page 9-7
GRAPHICS DISPLAYS 10 May 85

Q Qa o

Q

Qaaa aaa

Set variables in common.
CALL YTVCIN
TKSIZE = 20
TKPOS = 0
Make screen be 100 by 100
units.
SCALEX = MAXXTK(1l) / 100.0
SCALEY = MAXXTK(2) / 100.0
RX0 = 0.0
RYO = 0.0
Clear screen.
CALL TEKCLR (ITKIND, IERR)
IF (IERR.NE.O) GO TO 900
Set corners

BLCX = 25.0
BLCY = 25.0
TRCX = 75.0
TRCY = 78.0
1l is the code for socale
X and ¥ and position veotor.
IPOS = 1
2 1s the oode for scale X and
Y and draw vector.
IDRAW = 2

Draw a box.

CALL TEKVEC (BLCX, BLCY, IPOS, ITKIND, IERR)

CALL TEKVEC (BLCX, TRCY, IDRAW, ITKIND, IERR)

CALL TEKVEC (TRCX, TRCY, IDRAW, ITKIND, IERR)

CALL TEKVEC (TRCX, BLCY, IDRAW, ITKIND, IERR)

CALL TEKVEC (BLCX, BLCY, IDRAVW, ITKIND, IERR)

IF (IERR.NE.O) GO TO 900
¥rite some charaoters in
the center of the box.

NCHAR = 14

ENCODE (NCHAR, 1000, LINE)
Position at center.

CENTER = 50.0

CALL TEKVEC (CENTER, CENTER, IPOS, ITKIND, IERR)

IF (IERR.NE.O) GO TO 900
Compute offset to start
writing charaoters.

DCX = - NCHAR / 2.0

DCY = - 0.8

IHORZ = O
¥rite message

CALL TKCHAR (NCHAR, IHORZ, DCX, DCY, LINE, ITKIND, IERR)

IF (IERR.NE.O) GO TO 900
¥rite any remaining buffer to
soreen.

CALL TEKFLS (ITKIND, IERR)
Update image catalog although
for this example plot has mno
relation to map.
Calculate image plane. These

DEVICES Page 9-8

GRAPHICS DISPLAYS 10 May 85
C values are found in common
c set up in CDCH.INC.

IPLANE = NGRAY + NGRAPH + NTKDEV
CALL ICINIT (IPLANE, BUFFER)
C CATBLK, VOL and CNO were
c found when map was opened.
CATBLK(I2VOL) = VOL
CATBLK(I2CNO) = CNO
Cc Set plot type to MISC
CATBLK(I2PLT) = 1
CALL ICWRIT (IPLANE, NO, CATBLK, BUFFER, IERR)
c Close graphios terminal.
CALL ZCLOSE (ITKLUN, ITKIND, IERR)

1000 FORMAT ('This is a test’)

9.4 INCLUDES
9.4.1 CTKS.INC

C Inolude CTKS
COMMON /TKSPCL/ TKBUFF, SCALEX, SCALEY, RX0, RYO, RXL, RYL,
* TKPOS, TKSIZE

C End CTKS

9.4.2 CTVC.INC

C Include CTVC

COMMON /TVCHAR/ NGRAY, NGRAPH, NIMAGE, MAXXTV, MAXTINT, SCXINC,
SCYINC, MXZOOM, NTVHDR, CSIZTV, GRPHIC, ALLONE, MAXXTK,
CSIZTK, TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS, TVZOOM,
TVSCRX, TVSCRY, TVLIMG, TVSPLT, TVSPLM, TVSPLC, TYPMOV,
YBUFF

C End CTVC

* OH R

9.4.3 DTKS.INC

C Include DTKS
REAL*4 TKBUFF(20), SCALEX, SCALEY, RXO, RYO, RXL, RYL
INTEGER*2 TKPOS, TKSIZE

C End DTKS

DEVICES Page 9-9
INCLUDES 10 May 85

9.4.4 DTVC.INC

Cc Inolude DTVC

INTEGER*2 NGRAY, NGRAPH, NIMAGE, MAXXTV(2), MAXINT, SCXINC,
SCYINC, MXZOOM, NTVHDR, CSIZTV(2), GRPHIC, ALLONE, MAXXTK(2),
CSIZTK(2), TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS(?),
TVZOOM(3), TVSCRX(16), TVSCRY(18), TVLIMG(4), TVSPLT(2),
TVSPLM, TVSPLC, TYPMOV(18), YBUFF(168)

C End DTVC

* % B »

9.5 ROUTINES
9.5.1 ICINIT - Initializes image catalog for plane IPLANE
ICINIT (IPLANE, BUFF)

Input:

IPLANE I*2 Image plane to initialize
Output:

BUFF(258) 1I*2 Working buffer

9.5.2 ICWRIT - writes image ocatalog block from ICTBL into image
catalog.

ICWRIT (IPLANE, IMAWIN, ICTBL, BUFF, IERR)

Inputs:
IPLANE I*2 image plane involved
IMAWIN(4) I*2 Corners of image on soreen
ICTBL I*2(286) Image ocatalog bloock
Outputs:
BUFF I*2(288) working buffer
IERR I*2 error ocode: 0 => ok

1l => no room in catalog
2 => IO problems

DEVICES
ROUTINES

9.5.3 MDIS3 -

Page 9-10
10 May 85

reads or writes image data to/from disks and other

devices. MDIS3 and MINI3 are pseudo I*4 versions of yet to be
written replacements MDISK and MINIT which will use true I*4.

MDIS3 (OP, LUN, FIND, BUFF, BIND, IERR)

Inputs:
(0) 4 I*q
LUN I*2
FIND 1I*2

Op code char string ‘WRIT’, ‘READ', ‘FINI’
logical unit number
Pointer to FTAB returned by ZOPEN

Input and/or output:

BUFF ?7?
Output:
BIND I*2

IERR 1I*2

Buffer holding data, you better know speoification

Polnter to position in buffer of first pixel in window
in the present line
Error return: 0 => ok

1l -> file not open

2 => input error

3 => I/0 error

4 => end of file

8 => beginning of medium

6 => end of medium

MDIS3 sets array index to the start of the next line wanted.
NOTE: the line sequence is set by the WIN parameter in MINI3,
if the vaules of WIN(2) and ¥Win(4) are switched then the file
will be acoessed backwards.

A call with

OP = 'FINI' flushes the buffer when writing.

MINI3 MUST be ocalled before MDIS3.

9.5.4 MINI3 -

initializes the I/0 tables for MDIS3.

MINI3 (OP, LUN, IND, LX, LY, WIN, BUFF, BFSZ, BYTPIX,

* BLKOF,
Inputs:
OP R*4

LUN 1I=*2
IND 1I*2
LX I*2

LY I*2

IERR)

Operation code character string: ‘READ’, 'WRIT'

logical unit number

pointer to FTAB, returned by Z0PEN when file is opened
Number of pixels per line in X-direction for whole
plane

Number of lines in whole plane.

WIN I*2(4) ZXZmin,Ymin,Xmax,Ymax defining desired subrectangle in

BFSZ I*2

the plane. A subimage may NOT be specified for 'WRIT'.

Size of total available buffer in bytes, should be even
Special oase: BUFSZ=32767 is treated as though
BUFSZ=-32768 to allow double buffering of 16Kbyte
records.

BYTPIX I*2 Number of bytes per pixel in stored map
BLKOF I*2(2) Pseudo I*4 block number, 1 relative, of first map

Outputs:

pixel in the desired plane. Use COMOF3 + ZMATH4
to set.

DEVICES Page 9-11
ROUTINES 10 May 85

IERR I*2 Error return: 0 => ok

-»> f£ile not open

=> input error

=> Buffer too small

=> I/0 error on initialize
=> end of fille

=> beginning of medium

=> end of medium

(o Yo ISR B S I

MINI3 sets up special seotion of FTAB for quick return, double
buffered I/0. N.B. This routine is designed to read/write images
one plane at a time. One can run the planes together iff the rows
are not blooked: i.e. iff NBPS / (LX * BYTPIX) ¢« 2.
Usage notes: For map I/0 the first 16 words in each FTAB entry
contain & user table to handle double buffer I/O, the rest
ocontaln system-dependent I/O tables. A "major line" is 1 row or
1l seotor 1f more than 1 line fits in a sector. FTAB user table
entries, with offsets from the FIND pointer are:

FTAB + O => LUN using this entry
=> No. of major lines transfered per I/0 op
=> No. of major times a buffer has been acessed
=> No. of major lines remaining on disk
=> Output index for first pixel in window
=> No. pixels to increment for next major line
=> Vhich buffer to use for I/0; -1 => single buffer
=> Blook offset in file for next operation (lsb I*4)
=> msb of pseudo I*4 block offset
=> Blook incorement in file for each operation
10 => No. of bytes transferred
11 => I/0 op code 1=> read, 2 => write.
12 => BYTPIX
13 => % rows / major line (>= 1)
14 => 4 times this major line has been accessed
18 => # pixels to increment for next row (= LX)

OO0 N A

9.5.85 TEKFLS - writes the output buffer TEKBUFF to the TEKTRONIX
4012.

TEKFLS (FIND,IERR)
Inputs:
FIND I*2 FTAB position assigned to TEK 4012.
Outputs:
IERR I*2 error flag. O=ok, .GT. l=write error from ZFIO

DEVICES Page 9-12
ROUTINES 10 May 85

9.5.6 TEKVEC -~ puts control ocharacters, and X and Y ooordinates
into the TEKTRONIX output buffer.

TEKVEC (XX, YY, IN, FIND, IERR)

Inputs:
XX I*2 X coordinate value.
YY I*2 Y ocoordinate value.
IN I*2 ocontrol value:

l = Scale XX and YY and precede coordinates
by ’'write dark veotor’ ocontrol character

& = Scale XX and YY, put in buffer; will write
bright vector.

8 = XX and YY are not soaled, ’‘write dark
veotor’ control character is put into
the buffer.

4 = no scale, write bright vector.

FIND I*2 FTAB position of TEKTRONIX deviocs.
Output:

IERR I*2 error ocode, O=0k, l=write error.
Common variables modified:

TKBUFF

TKPOS

RXL, RYL

9.5.7 TKCHAR - wrltes charaocters to a TEKTRONIX 4012.

TKCHAR (INCHAR, IANGL, DCX, DCY, TEXT, ITFIND, IERR)

Inputs:

INCHAR I*2 number of charaocters.

IANGL I*2 O=horizontal, other = vertical.

DCX R*4 X distance in characters from ocurrent position.

DCY R*4 ¥ distance in charaocters from ourrent position.

TEXT R*4(??) packed characters.

ITFIND R*4 FTAB index of open TEK.
Outputs:

IERR I*3 error indicator. 0 = ok.

9.56.8 TKCLR - will clear the soreen for a Tektronix 401n.

TKCLR (DEVFND, IERR)
Inputs:
DEVFND 1I*2 FTAB index of an open devioce.
Output:
IERR I*2 Error code from the last I/0 routine. O=0k.

DEVICES Page 9-13
ROUTINES 10 May 85

9.8.9 TKCURS - aotivates the oursor on the TEKTRONIX 4012 and walts
for a response from the 4012 keyboard. After the response the
cursor will disappear and TEKCUR will return the coordinate
positions. The TEKTRONIX must have opened (by ZOPEN) before this
routine is ocalled.

TRCURS (IFIND, IOBLK, IX, IY, IERR)
Inputs:
IFIND I*2 index into FTAB for open TEKTRONIX devioce.
IOBLKE I*2(258) I/O blook for TEKTRONIX device.

Outputs:
IX I*2 x oursor position.
IY I*2 y ocursor position.

IERR I*2 O=0k, 1=TEK write error. 2=TEK read error.

WARNING: This routine assumes a normal interface to a TEK 401n.
Thus it may not work on all CPUs.

9.5.10 TKDVEC - converts TEK4012 vectors to actual commands to the
TK buffer. Positions are assumed to be in bounds.

TKDVEC (IN, X, Y, FIND, IERR)
Inputs:
IN I*2 1l => dark vector, 2 => bright veotor
X I*2 X coordinate value.

Y I*2 Y coordinate value.
FIND I*2 FTAB position of TEKTRONIX devioce.
Outputs:

IERR I*2 error code, O=0k, l=write error.
Common variables modified:

TKBUFF

TKPOS

9.5.11 UVDISK - reads and writes records of arbitrary length,
especlally uv visibility data. Operation is faster if blocks of
data are 1integral numbers of disk blocks. There are three
operations which ocan be invoked: READ, WRITE and FLUSH (OPcodes
READ, VWRIT and FLSH).

READ reads the next sequential block of data as specified to
UVINIT and returns the number of visibilities in NIO and the pointer
in BUFFER to the first word of this data.

VRIT arranges data in a buffer until it is full. Then as many
full blocks as possible are written to the disk with the remainder
left for the next disk write. For tape I/O data is always written
with the blook size specified to UVINIT; one I/0 operation per ocall.
For disk writes, left-over data is transferred to the beginning of

DEVICES Page 9-14
ROUTINES 10 May 85

buffer 1 1f that 1s the next buffer to be filled. Value of NIO in
the call is the number of vis. reoc. to be added to the buffer and
may be fewer than the number specified to UVINIT. On return NIO is
the maximum number which may be sent next time. On return BIND 1is
the pointer in BUFFER to begin f£illing new data.

FLSH writes integral numbers of blooks and moves any data left
over to the beginning of buffer half 1. One exception to this is
wvhen NIO => -NIO or O, in which case the entire remaining data in
the buffer is written. After the ocall BIND is the pointer in BUFFER
for new data. The principal difference between FLSH and WRIT is
that FLSH always forces an I/0 transfer. This may cause trouble if
a transfer of less than 1 Dblook is requested. A oca8ll with a
nonpositive value of NIO should be the last call and corresponds to
a call to MDIS3 with opcode 'FINI’.

NOTE: A ocall to UVINIT is REQUIRED prior to calling UVDISK.
UVDISK (OP, LUN, FIND, BUFFER, NIO, BIND, IERR)

Inputs:

OoP R*4 Opocode 'READ’, 'WRIT', ‘'FLSH’' are legal

LUN I*2 Logical unit number

FIND I*2 FTAB pointer returned by ZOPEN

BUFFFER() I*2 Buffer for I/0

NIO I*2 For writes, the number of visibilites added to the
buffer; not used for reads.

Output:

NIO I*2 For reads, the number of visibilities ready in the

buffer;

For writes, the maximum number which can be added to
the buffer. If zero for read or write then the file
is completely read or written.

BIND I*2 The pointer in the buffer to the first word of the
next record for reads, or the first word of the next
record to be copied into the buffer for writes.

IERR I*2 Return error code.

0 => OK

1l => file not open in FTAB

2 => input error

3 => I/0 error

4 => end of file

7 => attempt to write more vis than speocified
to UVINIT or will fit in buffer.

9.5.12 UVINIT - sets up bookkeeping for the UV data I/O routine
UVDISK. I/0 for these routines is double buffered (if possible)
quick return I/O. UVDISK will run much more efficiently if on disk
LREC*NPIO*BP is an integral number of blocks. Otherwise partial
writes or oversize reads will have to be done. Minimum disk I/0 is
one blook. The buffer size should include an extra NBPS bytes for
each buffer for non tape read if NPIO records does not correspond to

DEVICES
ROUTINES

Page 9-15
10 May 85

an integral number of disk sectors (NBPS bytes). 2*NBPS extra bytes
required for each buffer for write.

LUN, FIND, NVIS, VISOFF, LREC, NPIO,

* BUFSZ, BUFFER, BO, BP, BIND, IERR)

UVINIT (OP,
Inputs:
OP R*4
LUN I*2
FIND I*2
NVIS I*q

VISOFF I*q

LREC I*2
NPIO I*2
BUFSZ I*2

BUFFER() I*2

BO I*4
BP I*2
Output:

NPIO I*2
BIND I*2
IERR I*2

OP code, 'READ’ or ’'WRIT' for desired operation.
Logical unit number of file.

FTAB polinter for file returned by ZOPEN.

Total number of visibilities to read. NVIS+VISOFF
must be no greater than the total number in the
file.

Offset in vis. rec. of first vis. rec. from BO.
Number of values in a visibility record.

Number of visibilities per ocall to UVDISK.
Determines block size for tape I/O

Size in bytes of the buffer.

If 32767 given, 32768 is assumed.

Buffer

Block offset to begin transfer from (l-relative)
Bytes per value in the vis. record.

For WRITE, the max. number of visibilities
which can be aoccepted.
Pointer in BUFFER for WRITE operations.
Return error ocode:

0 => OK

l => file not open in FTAB

2 => invalid input parameter.

3 => I/0 error

4 => End of file.

7 => buffer too small

Note: VISOFF and BO are additive.
UVINIT sets and UVDISK uses values in the FTAB:

FTAB(FIND+0) =
1 =
2-3 =

4-

(o le o N JS)

[
o
LI I I B B R RO B B

LUN
Bytes per I/0
vis. records left to transfer. I*4

For double buffer read, 1 more I/O will have

been done than indiocated.

Blook offset for next I/0. 1I*4

byte offset of next I/0

bytes per value

Current buffer #, -1 => single buffering

OPcode 1 = read, 2 = write.

Values per visibility reoord.

vis. records per UVDISK ocall

max. % vis. per buffer.

vis. proocessed in this buffer.

Buffer pointer for start of ourrent buffer.(values)
Used for WRIT only; inocludes any data carried over
from the last write.

Buffer pointer for call (values)

DEVICES Page 9-16
ROUTINES 10 May 85

9.5.13 VBOUT - VBOUT writes variable blocked records of I*2 data to
tape. Maximum block size on the tape is 4008 bytes. Tape must be
opened (non-map) before first call. For overlaid programs COMMON
/VBCOM/ should be kept in a segment whioch is core-resident from the
first call to the last call to VBOUT. A ocall with N = O will ocause
all data remaining in the buffer to be written. Character data must
be in ASCII two characters per integer as local integers: le ocall
ZCLC8 followed by 2I16IL on such data before calling VBOUT.

VBOUT (N, IDATA, LUN, NUM, IERR)

Inputs:
N I*2 Number of I*2 words in array IDATA
If N = O the buffer is flushed.
IDATA 1I*2 Array containing data to be written.
LUN I*2 LUN of tape to be written on.
NUM I*2 The record number to be written, must be 1 on
the first and only the first record in a fils.
Output:
IERR I*2 Return error code 0 => OK
1 => LSERCH error (tape not open)
2 => ZFIO error.

9.6.14 YTVCIN - initializes the common vhich desoribes the
charaocoteristics of the interactive display devices and the common
which has the ourrent status parameters of the TV.

9.5.15 20PEN - opens logical files, performing full open on disk
files and sets up an FTAB entry for double buffering.

ZOPEN (LUN, IND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)

Inputs:
LUN I*2 Logical unit number.
IVOL I*2 Disk volume oontaining file, 1,2,3,...

PNAME R*4(8) 24-charaoter physical file name,left jJustified,
packed, and padded with blanks.

MAP L*2 is this a map file ?
EXCL L*2 desire exoclusive use?
WAIT L*2 I will wait?
Output:
IND I*2 Index into FTAB for the file control bloock.
IERR I*2 Error return code:

0O = no error
LUN already in use
file not found

1
2
3 volume not found

DEVICES Page 9-17
ROUTINES 10 May 85

4 = exol requested but not available
85 = no room for lun
68 = other open errors

9.5.16 ZPHFIL - construots a physical file name in PNAM from ITYPE,
IVOL, NSEQ, and IVER. New version designed either for public data
files or user specifioc files. This routine oontains the 1logiocal
assignment 1list for Graphiocs devices. Numeriocal values are encoded
a8 hexidecimal numbers.

EXAMPLE: If ITYPE='MA’, IVOL=8, NSEQ=801, IVER=153, NLUSER=768 then
PNAME='DAQO8 :MA832199;1' for publioc data or
PNAME='DAO8:MA832199.300;1' for private data

ITYPE = ‘MT’ leads to speclal name for tapes

ITYPE = 'TK’ leads to special name for TEK4012 plotter CRT
ITYPE = 'TV’' leads to special name for TV devioce

ITYPE = 'ME’ leads to special logical for POPS memory files

ZPHFIL (ITYPE, IVOL, NSEQ, IVER, PNAM, IERR)
Inputs:
ITYPE I*2 Two charaoters denoting type of file. For example,
‘MA’ for map file.
IVOL I*2 Number of the disk volume to be used.
NSEQ I*2 User supplied sequence number. 000-999.
IVER I*2 User suppplied version number. 00-2585.
Outputs:
PNAM R*4(6) >= 24-byte field to receive the physical file name,
left Justified (packed) and padded with blanks.
IERR I*2 Error returan oode.
0 = good return. l = error.

8.5.17 ZTAPE - Performs standard tape manipulating funotions.
ZTAPE (OP, LUN, FIND, COUNT, IERR)

Inputs:
OP R*4 Operation to be performed. 4 characters ASCII.

‘ADVF' = advance file marks

"ADVR’' = advanoe reoords

'BAKF’' = backspace file marks.

'BAKR' = backspace records.

‘DMNT’ = dismount tape. Works for VMS 3.0 & later.
'MONT’' = mount tape. Works for VMS 3.0 and later.
‘REWI’' = rewind the tape on unit LUN

'WEOF' = write end of file on unit LUN: writes 4

EOFs, positions tape after first one

DEVICES Page 9-18
ROUTINES 10 May 85

'MEOF’' = write 4 EOF marks on tape, position tape
before the first omne
LUN I*2 logical unit number
FIND I*2 FTAB pointer. Drive number for MOUNT/DISMOUNT.
COUNT I*2 Number of records or flle marks to skip. On MOUNT
this value is the density.
Outputs:
IERR I*2 Error return: 0O =»> ok
= File not open
= Input specification error.
I/0 error.
End Of File
Beginning Of Medium
End Of Medium

Cubhu-
[]

CHAPTER 10
USING THE TV DISPLAY

10.1 OVERVIEVW

The most useful implementations of the AIPS system inolude one
or more oomputer peripheral devices capable of displaying images
with multiple levels of gray and/or color. We refer to such devices
ags TV displays since most are implemented via large binary memories
and standard television monitors. The main program AIPS and some
tasks (e.g. BLANK) use the TV display as an interactive input, as
well as display, device. Other tasks (e.g. UVMAP, MX, APCLN) use
the TV display simply to show the stages of the data processing.
All use of the TV is optional and the AIPS system will run without
such a device. The number of TV displays in the local system is
parameterized (under control of the stand alone program SETPAR) and
all programs are told which TV display (if any) is assigned to the
ocurrent user.

10.1.1 Why Use (or Not Use) The TV Display?

There are numerous reasons to use the TV display in writing
AIPS routines. Gray scale images provide a more realistio view of
image data allowing the eye to integrate over noilsy regions and to
separate olosely spaced features. Contour images require much more
elaborate software to generate and they make unreasonably definitive
assertions about the intensity 1levels. The TV may be used to
display intermediate results which are never stored on disk. And
the TV may be used to interaot with the user in a very wide variety
of ways. Current interactive usages include modification of the
black and white transfer function, modification of pseudo coloring,
seleotion of features of interest, seleotion of subimage ocorners,
dynamio, multi-image displays, and ocommunication to the task of
simple information. The last is used primarily to tell iterative
tasks that they may stop at the current iteration.

Despite these desirable features, an AIPS programmer should not
put the TV in a task unless it 4is truly useful. A TV option
requires some, potentially oconsiderable extra ocoding effort and,
during execution, some significant extra real and CPU time. Many TV
devices also require a high rate of I/0 in order to load an image

USING THE TV DISPLAY Page 10-2
OVERVIEW 10 May 85

and, espeocially, to interact with <the user. If an algorithm is
based on the TV display, then it will not be availlable at those AIPS
sites which do not have one. Although TV displays can funotion as
graphios devioces, many of them are very slow in that mode. Finally,
tasks which use the TV will interfere with the interaotive AIPS
user’'s other uses of the display by replacing ourrent images in the
TV memory or modifying the zoom, soroll, transfer funotions, et al.

10.1.2 The AIPS Model Of A TV Display Device

As AIPS vas being designed, it was realized that there was
already a wide variety of TV display devices on the market and that
the market would not hold still. The NRAO initially purchased two
International Imaging Systems (IIS) Model 70/E displays. However,
that company changed rapidly to Model 70/F and now sells only a
Model 78. Our initial choice undoubtedly colors our image of what a
TV display device does and how it does it. Nonetheless, we have
attempted to design the code to be very general and to account for
the range of options available on individual models of display and
for the range of different manufacturers.

We regard the TV display as being a oomputer peripheral device
which accepts the basioc I/0 operations of open, olose, initialize,
read, and write. §$Special Z routines are provided in AIPS since we
do not assume that these I/0 operations are identiocal, for all TVs
and host operating systems, to those for disks, tapes, or Fortran
devices. We assume that the TV display may be subdivided logically
into a variety of sub-units which control the various functions of
the display. Special libraries of subroutines, subdivided by model
of TV display, are provided for communicating to these sub-units.
These subroutines are called "Y routines" because all of them have
names beginning with the letter Y. The NRAO has, at this tinme,
developed the Y routines for IIS Models 70/E and 7Y0/F. In addition,
we store, distribute, and attempt to maintain sets of Y routines
developed by other institutions for other models of displays. At
the moment, we have Y routines for DeAnza, developed by Walter Jaffe
at the STSoI, and for IIS Model 75, developed by IIS.

AIPS also uses, at both the Y and non-Y programming levels, a
TV device parameter oommon. This oommon 1s initialized by a Y
routine (YTVCIN) and is maintained via a disk file and a stand alone
Program (SETTVP). The ocommon contains both fundamental parameters
(i.e. number of memories, display size, maximum intensity, maximum
zoom, eto.) and parameters desoribing the ocurrent state of the TV
(1.e. which planes are on, ourrent zoom and soroll, eto.).

In order to provide the full funotionality of the basioc AIPS
verbs and tasks, a TV display device needs to contain the following
Sub-units. Note, these subunits are logiocal devices. They may be
implemented as control registers in the device or in numerous other
fashions. It is only necessary that the Y routines impose on the
device a control that forces it to this gemeral struoture.

USING THE TV DISPLAY Page 10-3
OVERVIEVW 10 May 85

1. IMAGE MEMORIES: These are one or more memories n bits deep
wvhich hold the gray-scale images to be displayed. All n bits
of the image contribute to the display. The memory is assumed
to have a fixed number of pixels on each axis and to be
addressable at the individual pixel level. The addresses are
assumed to be one-relative and to begin at the lower left of
the display. The number of bits, the dimensions of each axis,
and the number of memories are parameters inside AIPS. It is
also assumed that each memory may be turned on and off in each
of the three colors individually.

2. GRAPHICS MEMORIES: These are one or more memories each 1 bit
deep used to display graphical information such as axis labels
or line drawings on top of the gray-scale images. It 1is
assumed that the overlay planes have the same number of pixels
on each axis as the image memories and that each overlay plane
may be enabled or disabled individually. It is nice to be able
to assign unique colors to each of the overlay planes. AIPS
will want to use four overlay planes, but all standard programs
will work more or less normally with only one. The number of
graphios memories is a parameter.

3. CURSOR AND BUTTONS: The oursor is some form of marker whioch
may be enabled or disabled and which is under the positional
ocontrol of some mechanical device (e.g. trackball, joy stick,
thumb wheels). The position of the ocursor on the TV soreen may

be read at any time it i1s enabled. The “"buttons" are some
device to signal oconditions to the programs such as “this is
the desired position" or "time to quit*“. AIPS assumes that

there are four such buttons returning to the program a value
between O and 15. Simultaneity of more than one button is
never used, however.

4. LOOK UP TABLES: These are tables of numbers which convert the
stored n-bit image intensities to the desired display
intensities. AIPS assumes that there is one n-bit in, n-bit
out look up table ("LUT") for each color of each image memory.
AIPS also assumes that there is a second set of three look-up
tables, ocalled the output funotion memory ("OFM"), which
converts the sums of all enabled memories to +the final
displayed intensities. In practise, AIPS uses the individual
channel LUTs for black and white enhancement (most of the time)
and the OFM for pseudo-color enhancement. There are
algorithms, such as TVHUEINT, which utilize the full ocapability
of the two sets of look-up tables. Arrays inside AIPS are
likely to be dimensioned for 8-bit image planes and a 10-bit
OFM. ; (These assumptions probably should be generalized in
time.

8. SCROLL: It is assumed that each image memory may be displayed
on the TV soreen shifted along both axes by varying amounts.
AIPS assumes that each memory may be sorolled independently and
that the graphios memories may be sorolled together independent
of the image memories. The minimum inorements of soroll along

USING THE TV DISPLAY Page 10-4
OVERVIEW 10 May 85

each axis are parameters. Note that AIPS does not make heavy
use of soroll except for the TVROAM display and, of ocourse,
TVSCROLL.

6. SPLIT SCREEN: It is assumed that the soreen may be divided
into quadrants and different image channels enabled in each
quadrant. There is a ocontrol parameter specifying the degree
to which the 1local TV display has this capability. AIPS
currently uses split soreen primarily in +the TVROAM display,
but also uses it during image enhancement in the channel blink
routines.

7. 200M: AIPS assumes that the display of an image may be blown
up about any pixel by automatic pizxel replication by integer
powers of two without affect on the images stored in the image
memories. The highest power of two avallable is a parameter.
Zoom is important to the TVMOVIE algorithm and is used in many
of the image enhancement routines.

The most important TV operations of AIPS could be implemented
on a TV device having one image memory, appropriate LUTs, and a
ocursor with buttons. Additional image memories, graphics memories,
an OFM, scoroll, split soreen, and zoom are needed primarily for less
important aspects of the basic operations and for some interesting,
but esoteric operations.

There are several other sub-units in the IIS Model 70 which are
supported by the Y routines in that sub-library. They inolude an
input function memory (translates input to the TV from the host and
from the ALU), a histogram generator, a feedback arithmetic logio
unlt, shift and min/max registers, and the like. Although there are
no standard routines in AIPS which use these units, there are two
newv nonstandard tasks for histogram equilization which make some use
of themn. The speocial Y routines used by these two tasks will be
desoribed below, but they should not (yet) be required for other
kinds of TV devices - if they are even possible on them.

USING THE TV DISPLAY

Page 10-5
FUNDAMENTALS OF THE CODING

10 May 85

10.2 FUNDAMENTALS OF THE CODING

10.2.1 The Parameter Commons And Their Maintenanoce

All application routines must open the TV device via a call to
IVOPEN and close it via a call to TVCLOS. TVOPEN opens a disk file
called ID1000On with exclusive use requested, where n is the number
of the assigned TV device. From the first record of this file, it
reads a 256-word reocord containing parameters which desoribe the
struoture and ourrent status of the assigned TV device. The
parameters are stored in a common called /TVCHAR/ which is obtained
by 4nocluding DIVC.INC and CTVC.INC. TVCLOS puts back to the disk
the time variable portions of this common and then ocloses the Ffile.
In this way, several users/programs may share the TV in sequence and
all will know the ourrent status information. The disk file may be
initialized and the individual parameters set by using the stand
alone program SETTVP. The parameters are important to the ocorreot
functioning of the local TV devioe and must be set and maintained
carefully.

The fixed portion of /TVCHAR/, namely that portion not written
by TVCLOS, includes the parameters:

NGRAY The number of n-bit image memories.

NGRAPH The number of 1-bit graphics overlay memories.

NIMAGE The number of images which may be stored
simultaneously in a gray-socale image plane (affeots
the image catalogue mostly).

MAXXTV(2) The number of pixels in the X and Y directions.

MAXINT The highest gray-scale intensity = 2 ** n - 1.

SCXINC The minimum inorement in soroll in the X direotion.

SCYINC The minimum inorement in scroll in the Y direction.

MXZOOM The highest power of two for zooming.

NTVHDR The number of integer words in the TV I/0 header
(probably no longer used).

CSIZTV(2) The slze of ocharacters in pixels in the X, Y
direotions.

GRPHIC The bit pattern representing the set of graphiocs
overlay memories (normally -32768).

ALLONE The bit pattern representing all bits on (-1).

MAXXTK(2) The number of pilxels in the X, Y direotions on the
TEK graphios devioce.

CSIZTK(2) The size of characters on the TEK graphiocs devioce in
pixels in the X, Y directions.

TYPSPL Type of split soreen: O none, 1 vertical division
only, 2 horizontal division only, 3 either, 4 both.

TVALUS Number of TV arithmetic logio units.

TVXMOD Mode for loading TV in X direction: O none, 1 ok in
AIPS order (to right), 2 ok in reverse direotion.

TVYMOD Mode for loading TV in Y direotion: O none, 1 ok in
AIPS order (to top), 2 ok in reverse direction.

TVDUMS(?) Spare room

TVZOOM(3)

The time variable portion of the /TVCHAR/ common is:

Current zoom: power of two, X, Y zoom ocenter

USING THE TV DISPLAY Page 10-6
FUNDAMENTALS OF THE CODING 10 May 85

TVSCRX(18) Current X soroll for 15 image planes and graphiocs.

TVSCRY(16) Current Y soroll for 15 image planes and graphios.

TVLIMG(4) Bit pattern for which images are on by quadrant:
quadrants are numbered CCW from top right and the
1sb is for gray plane one and NGRAY+NGRAPH bits are

used.

TVSPLT(2) Current split soreen position in X, Y.

TVSPLM 10 * (number planes in X) + (number planes in Y) in
Roam mode.

TVSPLC Roam mode: digits imply which channels in which
order.

TYPMOV(18) Movie loop code: 2 * (magnification power of two) +
8 * (number frames remaining). Add 1 if this is the
first plane of the movie.

YBUFF(168) Machine dependent parameters.

There is a second TV include which controls I/0, but is 1little
used elsewhere. It is obtained by including DTIVD.INC and CTVD.INC
and contains:

TVLUN LUN of open TV device.

TVIND Position of TV device in FTAB for I/0.

TVLUN2 LUN of open TV parameter disk.

TVIND2 Position of parameter disk in FTAB.

TVBFNO Not used (map style I/0 no longer supported).
TVMAP Not used.

10.2.2 The I/0 Routines

Four basioc I/O operations for TV devices are supported: open,
close, I/O reset ("master clear"), and data transfer (read/write).
The actual Z subroutines which perform these operations are both TV
device and host operating system speclifio. The subroutines are
stored in the subdirectory appropriate for the host operating system
with names refleocting the TV device type. To insure that the
correct Z routines are 1link edited, a layer of Y routines is
interposed between these 2 routines and all other non-Y AIPS
routines. No non-Y subroutine or program should oall these 2
routines. These Z subroutines have names of the form ZMMMOO, where
MMM is the TV model (i.e. M70 for IIS Models 70 and %5, DEA for
DeAnza) and OO0 is the type of operation (OP for open, CIL for olose,
MC for I/O reset, and XF for data transfer).

Note that the four Z routines may have TV device specific ocall
sequences. The ourrent implementations are

2...0p :

ZM700P (LUN, IND, IERR)

ZDEAOP (LUN, IND, IERR)
Performs the needed channel assignment and opens a
non-map entry in the FTAB. The DeAnza version also
calls ZDEAXF ('DAT ',...) to initialize the I/O.

USING THE TV DISPLAY Page 10-7
FUNDAMENTALS OF THE CODING 10 May 85

2...CL :

ZM70CL (LUN, IND, IERR),

ZDEACL (LUN, IND, IERR),
Performs a simple olose (deassign) via a call to
ZCLOSE and olears the FTAB entry. The DeAnza version
ocalls ZDEAXF ('DET ’',...) to perform a deallocation
before calling ZCLOSE.

Z...MC :

ZM70MC (FTAB(channel)) - Vax version
Performs a "rewind" QIO operation causing the IIS to
reset its I/0 status.

ZM70OMC - Modoomp version
Performs a "home" I/O operation causing the IIS to
reset 1ts I/0 status.

ZDEAMC
Null subroutine.

Z...XF :

ZM70XF (OPER, NBYTES, HEADER, BUFFER, IERR)
¥Vrites an eight-word command HEADER to the IIS after
preparing the checksum word of the header. Then
reads from or writes to the IIS NBYTES of BUFFER.
Issues a master clear on error.

ZDEAXF (OPER, BUFFER, NBYTES, EPl, EP2, WAIT, IERR)
“"Calls to ZDEAXF map one to one to ocalls to IP8 routines
in the DeAnza IP8500 level 0O software package." Does
requested I/0 operation using opocode definitions
contained in IP8IOF.MAR (supplied by DeAnza, not NRAO).

10.2.3 The Y Routines

The Y routines may be divided into three groups which we call
levels O through 2. Level O routines do not perform I/O to the TV
device. Instead, they prepare data to be fed to 1lower level Y
routines and/or handle ocommon parameters and various conversions.
It has been found that this level of Y routine often needs 1little
alteration from one model of TV to the next. Level 1 routines do
call 2...XF to perform I/O to the TV device. They may be called by
both Y and non-Y routines and hence must be implemented for all TV
devices. Level 2 routines also perform I/0 in general, but are only
called by Y routines. Henoce, these do not have to be implemented
for all TV devices. The reader should note that the division of Y
routines into these three levels is not quite so clear as the above
desoription would indicate. For one, some level 2 routines may have
to graduate to 1level 1 as new application code is developed. For
another, some of the level O routines are actually TV independent as
coded for the IIS Models 70 and 75. They are called Y routines
simply to allow more efficient, level O or 1 implementations for
other TV devioces.

USING THE TV DISPLAY Page 10-8
FUNDAMENTALS OF THE CODING 10 May 85

On normal AIPS systems, the Y subroutines are stored in
subdirectories separated by type of TV device. On our Vax, the
subdirectories are [AIPS.reldate.APL.YSUB.xxx] with 1logical names
APLxxX: wvhere xxx 1is IIS for IIS Model 70, M?5 for IIS Model 75,
and DEA for DeAnza and where reldate is the date of the current AIPS
release. The complle procedures select the value of xxx appropriate
to the local TV device and write +the objeoct ocode into the 1link
editor library in the [AIPS.reldate.APL] area. This library is then
used for link editing all programs and tasks. The ocareful reader
will note that this method does not allow for more than one kind of
TV device on a given host computer. To date, we have been able to
get away with this deficienoy. In the future, we may have to
improve the AIPS start-up procedure and the task activation
subroutine (ZACTV8) so that the number of the assigned TV device is
used to determine from which 1library the executable modules are
taken.

The following seotions provide a brief overview of the ourrent
Y routines. The precursor comments of most of the Y routines are
reproduced near the end of this chapter.

10.2.3.1 Level O

- YCHRY writes characters into an image or graphics plane.
The M70 version 1is TV independent and uses & 7 x 9 pixel
area per character. The backround intensity is set to 1
for multi-bit channels and O for graphiocs.

- YCNECT writes a line segment in an image or graphics plane
at a specified intensity. The M70 version is TV
independent.

- YCUCOR converts cursor positions and obtains the
corresponding image header. It is a speclalized version of
YCURSE to avoid any TV I/0 and to do the image oatalog
work. M70 and DeAnza versions are identical.

- YCURSE enables/disables cursor and cursor blink and reads
oursor position and buttons value. The main compliocations
come from corrections for zoom and soroll. The IIS Model
70/E is tricky, the Model 70/F and DeAnza are easier.

- YGRAPH enables/dlsables graphios overlay planes by altering
the graphlios color look up tables. A non-essential nicety
is the use of oomplimentary o¢olors when two or more
graphios planes are enabled at the same pixel.

- YLNCLR oomputes a plecewise 1linear OFM with gamma,
correction. Called a Y routine solely because of the use
of a 10-bit OFM.

USING THE TV DISPLAY Page 10-9©
FUNDAMENTALS OF THE CODING 10 May 85

- YSLECT enables/dilsables gray and graphios channels setting
the proper values into TVLIMG.

- YTVCIN provides initial values for the TV ocharacteristios
commons.

- YZERO oclears a gray or graphios memory by the fastest
possible method.

- YTVCLS olose the TV device. Actually is just an interface
to the appropriate Z...CL subroutine.

- YTVMC reset the TV 1I/0 status. Actually 1s Jjust an
interface to the appropriate Z...MC subroutine.

- YTVOPN Open the TV device. Actually is just an interface
to the appropriate Z...0P subroutine.

10.2.3.2 Level 1

- YCRCTL reads/writes the oursor/traockball ocontrol register
including position, enable/disable on each axis, blink
control.

- YIMGIO reads/writes a line of image data from/to a
gary-scale or graphios plane. It will perform buffer swaps
i1f needed to get the desired angle and bit-level
corrections when graphics planes are read. This is the
most heavily used Y routine.

- YINIT initializes all subunits of the TV, olears the TV
memories, resets the image oatalog, and resets status
parameters in common.

- YLUT reads/writes the full channel-level lookup table for
one or more image channels and colors.

- YOFM reads/writes the full OFM lookup table for one or more
colors.

- YSCROL writes the soroll control registers for omne or more
channels.

- YSPLIT reads/writes the split soreen ocontrol registers.
This is the aotual control of the split soreen center and
of whioh channel(s) are enabled/disabled in each quadrant.

- YZ00MC writes the zoom ocontrol registers giving
magnification and zoom center.

USING THE TV DISPLAY Page 10-10
FUNDAMENTALS OF THE CODING 10 May 85

10.2.3.3 Level 2
10.2.3.3.1 1IIS Models 70 And 75

- YALUCT reads/writes the IIS arithmetioc logic unit ocontrol
registers. No actual funotion is performed until a
feedback operation is done via YFDBCK. This routine 1is
very IIS speoific and we doubt that its funotions can be
implemented on other TVs.

~ YCONST reads/writes the constant "biases" whioch are added
to the sums of the individual enabled channels before the
signals are sent to the OFM.

- YFDBCK causes a feedback operation to ocour. The ALU does
its thing with one or more channels and returns an 8 or 16
bit result to one or two channels. A magic bit causes the
function to be a simple zeroing of a channel.

-~ YGGRAM reads/writes the lookup table used for graphiocs
planes.

-~ YGRAFE reads/writes the graphios oontrol register which
assigns & graphiocs plane as the "blotoh" plane and another
as the "status" plane. No use is made of this.

- YGYHDR prepares a basio I/0 control header for
writing/reading image data to/from the IIS.

- YIFM reads/writes a portion of the input funotion memory.
This lookup table ocan be used in writing data to the TV
memory and in the feedback operation. AIPS does not do the
former and only one non-standard task does the latter.

- YMAGIC (Model 75 only) initializes graphiocs, zoom, and
soroll subunits (ocalled by YINIT only).

- YMKHDR prepares a basio I/0 control header for the IIS.

- YMNMAX reads the min and max output from the sum of all
enabled gray-scale planes for each color.

- YRHIST reads a portion of the histogram of the output of
the OFM for a seleoted color. The IIS can do this on the
fly if properly equipped.

- YSHIFT reads/wrltes the shift registers which shift the
13-bit output of the sum of all enabled channels before the
data get to the OFM.

- YSTCUR reads/writes the IIS cursor array. This 64 x 64 bit
array provides a wide choice of patterns for the display
"oursor". AIPS uses only a simple plus sign with a blank

USING THE TV DISPLAY Page 10-11
FUNDAMENTALS OF THE CODING 10 May 85

pixel at the center.

10.2.3.3.2 DeAnza

- YGGRAM reads/writes the lookup table used for the graphiocs
planes.

- YLOWON finds lowest channel number in & channel mask.

~ YMKCUR oreates and loads the ocursor pattern memory with a
specified shape. Only the AIPS plus sign i1s implemented.

- YTCOMP performs logical tests on parameter values. It 1is
used to minimize I/O to the DeAnza control registers.

- YDEA.INC 1Include file giving parameter definitions to
specify positions in YBUFF whioh correspond to the various
registers in a DeAnza TV devioce.

10.3 CURRENT APPLICATIONS

This section is devoted to a generally brief overview of the
ourrent application code. Primarily it will be used simply to point
out which routines do what, with some comment on the methods. This
should suffice as an introductory guide to the code for appliocations
programmers wishing to include the TV display in their programs. 1In
a oouple of ocases, some of the actual code will be reproduced in
order to olarify the use of the various service routines. The
precursor remarks for some of the most commonly used, non-Y service
routines are reproduced at the end of this chapter.

10.3.1 Status Setting

By "status setting", we mean initializing the TV devioce,
clearing memory ochannels, enabling and disabling portions of the
display, and the like. Many of the applications whioh involve
loading images to the TV display will zero the relevant memories
(via YZERO) and olear the oorresponding portions of the image
catalog (via ICINIT) before carrying out their primary funoctionms.
However, the simplest examples of status setting are those performed
by various AIPS verbs. The subroutine AUS performs the verbs TVINIT
(via YINIT), TVCLEAR (as follows), GRCLEAR (like TVCLEAR without the
MOVIST oall), TVON, TVOFF, GRON, GROFF (via ocalls to YSLECT),
TV3COLOR (use YSLECT to turn off all channels, then YSLECT to turn
on ochannels 1 through 3 in red, green, blue, resp.), and CURBLINK

USING THE TV DISPLAY Page 10-12
CURRENT APPLICATIONS 10 May 85

(via YCURSE).

The verb TVCLEAR is coded as follows. The ohannel number is
picked up a8 an integer, +the decimal code is converted to a bit
pattern (via DECBIT), the movie status parameters are reset (via
MOVIST), and +then a loop over all selected gray planes is done to
Zero t%e memory (via YZERO) and olear the image ocatalogue (via
ICINIT).

c Open TV device
CALL TVOPEN (CATBLK, JERR)
IF (JERR.EQ.O) GO TO 50
POTERR = 101

GO TO 980
200 ICHAN = ABS(TVCHAN) + EPS
C oconvert to channel bit mask
CALL DECBIT (NGRAY, ICHAN, ICHAN, ITEMP)
Cc olear movie parameters

CALL MOVIST (ONCODE(2), ICHAN, NO, NO, NO, IERR)
DO 210 IP = 1,NGRAY
c is plane requested
IF (IAND(ICHAN,N2**(IP-1)).EQ.0) GO TO 210

C clear image catalogue
CALL ICINIT (IP, INBUF)
c clear TV memory
CALL YZERO (IP, JERR)
IF (JERR.NE.O) GO TO 975
210 CONTINUE
GO TO 900
c normal TV close
900 CALL TVCLOS (CATBLK, JERR)
GO TO 999

10.3.2 Load Images, Label

Images are loaded to the TV by a wide variety of tasks (e.g.
APCLN, TVPL, BLANK) and by several verbs (TVLOD, TVROAM, TVMOVIE).
TIVILOD will be illustrated 1in this subsection and the others
mentioned in later subsections.

The full code from subroutine AUSA for TVLOD, exoept the
declarations, formats, error branches, and the like, ig reproduced
below. It begins by opening the TV control file and device (via
TVOPEN) . It moves the user adverbs to local variables to avoid
changing their (global) values and opens the map file (via MAPOPN).
It oonverts the user’'s PIXRANGE adverdb using standard defaults (via
RNGSET) and fills in some of the image catalogue parameters in +the
header. It sets the window parameters (via TVWIND), seleots a
single gray scale memory plane (via DECBIT), and olears the movie

USING THE TV DISPLAY Page 10-13
CURRENT APPLICATIONS 10 May 85

parameters (via MOVIST). Finally, it finishes up the image
catalogue parameters, puts the header in the image catalogue, and
reads, socales, and loads the 4image to the TV memory (all via
TVLOAD). Afterwards, it oloses the map file (via MAPCLS) and the TV
device and disk file (via TVCLOS).

INTEGER*2 NO, N1, N6, N7, N12, N6176, MA

INCLUDE ’'INCS:DHDR.INC’

INCLUDE ‘INCS:CHDR.INC'

DATA MA /'MA'/, NO, N1, N6, N7, N12, N6176 /0,1,6,7,12,8176/
¢ open TV

CALL TVOPEN (INBUF, IERR)

IF (IERR.NE.0) GO TO 980

c Map open junk: TVLOD, TVROAM
IF (BRANCH.GT.2) GO TO 20

C adverbs -> local variables
c Adverbs used:
C TVCHAN = tv channel
c INNAM = File name
¢ INCLS = File olass
c INSEQ = File sequence number
C INDSK = Disk number
c USERID = User ID number
c TVBLCO = TV bottom left cormer
c TVTRCO = TV top right ocorner
c TVXINC = TV x pixel increment
c TVYINX = TV y pixel increment
c PXRANG = Range of pixel values
c TVCORN = BLC on TV soreen for
c image

ICHAN = IROUND(TVCHAN)

IVOL = INDSK + EPS

USID = ABS(USERID) + EPS

SEQNO = INSEQ + EPS

IF (USID.EQ.O) USID = NLUSER

IF (USID.EQ.MAGIC) USID = 0O

CALL CHCOPY (N12, N1, INNAM, N1, SNAME)

CALL CHCOPY (N6, N1, INCLS, N1, SCLAS)

CALL RCOPY (N7, TVBLCO, LBLC)

CALL RCOPY (N7, TVTRCO, LTRC)

INC(1) = TVXINC + EPS

INC(2) = TVYINC + EPS

IMA = MA
c open map file

CALL MAPOPN (READ, IVOL, SNAME, SCLAS, SEQNO, IMA, USID,

* DLUN, DIND, CNO, CATBLK, INBUF, IERR)

POTERR = 33

IF (IERR.GT.1) GO TO 975
c CATBLK, CT4, CT8 equivalenced
C Image ocat: fill in some
c set image soaling too

CALL RNGSET (PXRANG, CT4(K4DMX), CT4(K4DMN), CT8(K8BSC),
* CT8(K8BZE), CT4(I4RAN))

USING THE TV DISPLAY Page 10-14
CURRENT APPLICATIONS 10 May 85

CATBLK(I2VOL) = IVOL
CATBLK(I2CNO) = CNO
CALL CHCOPY (N2, N1, FUNTYP, N1, CATBLK(IRTRA))
ITVC(1) = TVCORN(1) + EPS
ITVC(2) = TVCORN(2) + EPS
POTERR = 49
TVLOD
load one image plane
set windows

QQQ

100 TYPE = -1
CALL TVWIND (TYPE, INC, LBLC, LTRC, ICHAN, ITVC, IWIN, IERR)
IF (IERR.NE.O) GO TO 970

c convert channel number
110 CALL DECBIT (NGRAY, ICHAN, ICHAN, I)
ICHAN = I
CALL DECBIT (NGRAY, ICHAN, ICHAN, I)
Cc clear movie parameters
CALL MOVIST (OFF, ICHAN, NO, NO, NO, IERR)
Cc do the TV load, img catlg

CALL TVLOAD (DLUN, DIND, I, INC, ITVC, IWIN, N61768, IERR)
IF (IERR.EQ.O) POTERR = O

GO TO 970

é'. Close down ops

970 CALL MAPCLS (READ, IVOL, CNO, DLUN, DIND, CATBLK, F, INBUF,
* IERR)

Cc
975 CALL TVCLOS (INBUF, IERR)

The verbs TVWEDGE, IMWEDGE, and IMERASE load step wedge or pure
zero images to the TV. They ocour in subroutine AUSC. This routine
calls TVFIND and possibly TVWHER to determine which image 1is
desired. It then oomputes a buffer of appropriate values calling
ISCALE (as TVLOAD does). AUSC then does a lot to set an appropriate
image ocatalogue header and writes that to the catalogue via ICWRIT.
Finally it loads the TV rows via calls to YIMGIO.

The image labeling verbs TVLABEL and TVWLABEL are implemented
from subroutine AUSB. This routine calls TVFIND to determine which
image is to be labeled and IAXIS1 to do the labeling. Subroutines
IAXTS1 and ITICS are very similar to the standard axis labeling
routines used to make plot files and to write direotly to the TEK
graphios device. Characters are written to a graphios memory with a
black background by calls to IMANOT and lines are writtem to the
graphios memory by calls to IMVECT. (See the precursor comments of
these routines at the end of this chapter.)

USING THE TV DISPLAY Page 10-15
CURRENT APPLICATIONS 10 May 85

10.3.3 TUVMAP

UVMAP uses the TV display for a falrly simple purpose --- to
show the pattern of sampled uv cells (after convolution of the data
to the grid). 1In principle, the algorithm is simple: assoclate uv
cells with TV pixels and display O on the TV when the uv cell 1is
unsampled (0.00) and display MAXINT on the TV when the oell 1is
sampled (not 0.0). Unfortunately, the uv grid may be larger than
the TV display and the disk file contains the grid 1in +transposed,
quadrant—-swapped order. The first problem is solved by decimation
(examine only every n’'th cell in X and m‘'th cell in Y. The quadrant
swapping 1is solved by addressing the TV beginning in the middle and
by starting in the middle of the buffer which is written to the TV.
The +transposition 1is solved by writing the rows of the file as
columns on the TV. The subroutine in UVMAP which does this (UVDISP)
uses the image writing mode parameters (TVYMOD and TVXMOD) to handle
this correotly when possible and to leave the display in transposed
order when not (i.e. TVYMOD = 0).

10.3.4 APCLN, VM, MX, Et Al.

Iterative map analysis programs can make good use of the TV
display. The user may, for example, request that the CLEAN task
(APCLN) display the residual map after each major oyocle. APCLN does
this, then turns on the cursor and waits up to 15 seconds for the
user to push Button D to signify that sufficlent iterations have
been performed. Several tasks (currently MX, VM, APGS, REGLR) use
code similar to that in APCLN for loading the image to the TV and
requesting the user input. Given below 1s the TV subroutine from
APCLN. Note that 1t uses the array processor to scale the data for
YIMGIO. This is reasonable, but only for tasks which are already
using the array processor for more important ocomputations. The
costs of opening and olosing the AP device and performing the I/O to
it make any I1mprovement in oomputational speed marginal for
computations such as these. Note also the scaling parameters used
here. The lowest displayed intensity gets TV wvalue 1.01 and the
highest gets MAXINT+0.99 (after the 0.5 for rounding is added and
before the integers are truncated by routine VFIX). This socaling is
assumed (primarily by CURVALUE) for all linear transfer funotions.
TV value zero is reserved for "blanked" (indefinite) pixels and
should glways be given zero intensity on the display (by the LUTs
and OFMs).

SUBROUTINE DISPTV (TVPASS)
DISPTV displays the ourrent residual map on the TV, showing inner
portion only if that’'s all that will fit.
Inputs: TVPASS I*2 oode: 0O => clear soreen, else don't
0,1 => don’t question the user about
quitting
Output: TVPASS I*2 oode: 32700 => user wants to quit oleaning

aaaQaaaaQ

USING THE TV DISPLAY Page 10-18
CURRENT APPLICATIONS 10 May 85

INTEGER*2 TVPASS, JROW(1), WIN(4), MY, FIND, BIND, IERR,
* ICH, CATBLK(256) szn(zse) IQ, IB, IBLANK, I
INTEGER*4 MX, ZERO, ONE, TWO, THREE, FOUR

INTEGER*2 IWIN(4), IY, MAXO, MINO

INTEGER*2 NO, N1, N2, N3, N4, N5, N6, N256

REAL*4 xN(4) XBUFF(l) REED sex(lze) TD, RPOS(2), ON, OFF
REAL*4 WRIT, XFLUX, pREFIx(z) TVLMAX, TVLMIN, ARG,

* AMIN1, AMAX1

LOGICAL*2 MAP, EXCL, WAIT, LERR, F

REAL*8 S8H(6B4)

INCLUDE ‘INCS:DCLN.INC'

INCLUDE ‘INCS:DFIL.INC’

INCLUDE ‘INCS:DTVC.INC’

INCLUDE 'INCS:DMSG.INC’

INCLUDE ’'INCS:DHDR.INC'

INCLUDE ‘INCS:DTVD.INC'’

INCLUDE 'INCS:CMSG.INC'

INCLUDE ‘INCS:CCLN.INC’

INCLUDE 'INCS:CPIL.INC'’

INCLUDE ‘INCS:CTVC.INC’

INCLUDE ‘INCS:CHDR.INC’

INCLUDE ‘INCS:CTVD.INC'

COMMON /MAPHDR/ CATBLK

EQUIVALENCE (JROW(1l), BUFF2(1)), (BUFF1(1), XBUFF(1))
EQUIVALENCE (S2H, S4H S8H, BUFF1(513))

DATA MAP, EXCL, WAIT / .TRUE., 2*.TRUE./

DATA WRIT. REED, ON, OFF /'WRIT’.'READ’,'ONNN',

* 'OFFF'/
DATA NO, N1, N2, N3, N4, N5, N6, N256 /0,1,2,3,4,5,6,256/
DATA F, IBLANK /. FALSE oy

DATA ZERO ONE, T%O, THREE, FOUR /0, 1, 2, 3, 4/
C ___________________________________ —_— ———— —— e s . e e o P S e
ICH = 1
CALL TVOPEN (BUFF1l, IERR)
IF (IERR.EQ.0) GO TO 10
ENCODE (80,1000,MSGTXT) IERR
CALL MSGWRT (N8&)
GO TO 999
10 IF (TVPASS.NE.O) GO TO 20
CALL YZERO (ICH, IERR)
IF (IERR.EQ.0) GO TO 15
ENCODE (80,1010,MSGTXT) IERR
CALL MSGWRT (N6)
GO TO 998
18 CALL ICINIT (ICH, XBUFF)
20 IF (TVFMAX.GT.TVFMIN) GO TO 25
TVFMAX = TVREMX
TVFMIN = TVREMN
28 IF (TVREMX.GT.TVFMAX) TVFMAX = TVREMX
IF (TVREMN.LT.TVFMIN) TVFMIN = TVREMN
TVLMAX = TVFMAX - TVFMIN
IF (0.1*TVLMAX.LE.TVREMX-TVREMN) GO TO 30
ARG = 0.1 * TVFMIN
TVFMIN = AMIN1 (ARG, TVREMN)

USING THE TV DISPLAY
CURRENT APPLICATIONS

30

80
60
70

*

ARG = TVFMIN + 0.1 * TVLMAX

TVFMAX = AMAX1 (ARG, TVREMX)

TVLMAX = TVFMAX - TVFMIN
XN(1) = TVFMIN
XN(2) = TVFMAX
XN(3) = (MAXINT - 0.02) / TVLMAX
XN(4) = 0.51 - TVFMIN * XN(3)
CALL QPUT (XN, ZERO, FOUR, TWO)

Write scaling faotor

XFLUX = TVLMAX
CALL METSCA (XFLUX, PREFIX, LERR)
TVLMIN = TVFMIN * XFLUX / TVLMAX
TVLMAX = TVFMAX * XFLUX / TVLMAX
ENCODE (80,1020,MSGTXT) TVLMIN, TVLMAX, PREFIX
CALL MSGWRT (N1)

WIN(1l) = (WINM(3,1) + WINM(1,1)) / 2 - MAXXTV(l) / 2 + 1
WIN(1) = MAXO (N1, WIN(1))

WIN(2) = (WINM(4,1) + WINM(R,1)) / 2 - MAXXTV(2) / 2 + 1
WIN(2) = MAXO (N1, WIN(2))

WIN(3) = (WINM(3,1) + WINM(1,1)) / 2 + MAXXTV(1l) / 2
WIN(3) = MINO (NX, WIN(3))

WIN(4) = (WINM(3,1) + WINM(1,1)) / 2 + MAXXTV(R) / 2

WIN(4) = MINO (NY, WIN(4))

DO 70 I = 1,2
IWIN(I) = (MAXXTV(I) - WIN(I+2)
IF (IWIN(I).GE.1) GO TO 50

+

WIN(I) + 1)/2

IVINC(I) = 1
VIN(I) = (WIN(I+2) + WIN(I) - MAXXTV(I) + 1)/2
GO TO 60

IVIN(I+2) = IWIN(I) + WIN(I+2) - WIN(I)
IF (IWIN(I+2).LE.MAXXTV(I)) GO TO 70
IWIN(I+2) = MAXXTV(I)
WIN(I+2) = WIN(I) + IWIN(I+2) - IWIN(CI)
CONTINUE
Prepare to read map.

CALL ZOPEN (LUNRES, FIND, RESVOL, RESFIL, MAP, EXCL, WAIT, IERR)

CALL MINI3 (REED, LUNRES, FIND, NX, NY, WIN, XBUFF, BUFSZ1,
BPRES, BORES, IERR)
MX = WIN(3) - WIN(1l) + 1
MY = WIN(4) - WIN(2)+ 1
loop, passing map to IIS.
DO 100 I = 1,MY
IY = I + IVIN(R) -1
CALL MDIS3 (REED, LUNRES, FIND, XBUFF, BIND, IERR)
IF (IERR.NE.O) GO TO 110
CALL QPUT (XBUFF(BIND), FOUR, MX, TWO)
CALL QWD
CALL QVCLIP (FOUR, ONE, ZERO, ONE, FOUR, ONE, MX)
CALL QVSMSA (FOUR, ONE, TWO, THREE, FOUR, ONE, MX)
CALL QVFIX (FOUR, ONE, FOUR, ONE, MX)
CALL QWR
CALL QGET (JROW, FOUR, MX, ONE)
CALL QWD
Send row to IIS.

Page 10-17
10 May 85

USING THE TV DISPLAY Page 10-18
CURRENT APPLICATIONS 10 May 85

c

c

100
110

120

130
135

140

150

CALL YIMGIO (WRIT, ICH, IWIN, IY, NO, MX, JROW, IERR)
IF (IERR.NE.O) GO TO 110
CONTINUE

CALL ZCLOSE (LUNRES, FIND, IERR)

Release the AP

CALL QRLSE

Image catalog

CALL COPY (N258, CATBLK, S2H)
S2H(I2VOL) = O

S2H(I2CNO) = O

CALL FILL (N5, N1, S2H(I2DEP))
CALL COPY (N4, IWIN, S2H(I2COR))
CALL COPY (N4, WIN, S2H(I2WIN))
S2H(I2TRA) = IBLANK

S8H(K8BSC) = 1.0DO

S8H(K8BZE) = 0.0DO

S4H(I4RAN) = TVFMIN

S4H(I4RAN+1) = TVFMAX
S4H(K4DMN) = TVREMN

S4H(K4DMX) = TVREMX

CALL ICWRIT (ICH, IWIN, S2H, XBUFF, IERR)

IF

IF

(IERR.EQ.0) GO TO 120
ENCODE (80,1110,MSGTXT)
CALL MSGWRT (N6)
Ask user to quit?
(TVPASS.LT.2) GO TO 998
ENCODE (80,1120, MSGTXT)
CALL MSGWRT (N1)
ENCODE (80,1121, MSGTXT)
CALL MSGWRT (N1)
RPOS(1) = MAXXTV(1)/2.0
RPOS(2) = MAXXTV(2)/2.0
TD = 0.2
CALL YCURSE (ON, F, F, RPOS, IQ, IB, IERR)
IF (IERR.NE.O) GO TO 998
DO 130 I = 1,75
CALL ZDELAY (TD, IERR)
CALL YCURSE (REED, F, F, RPOS, IQ, IB, IERR)
IF (IB.GT.7) GO TO 140
IF (IB.GT.0) GO TO 135
IF (IERR.NE.O) GO TO 135
CONTINUE
ENCODE (80,1135,MSGTXT)
CALL MSGWRT (N1)
GO TO 150
Vants to quit
TVPASS = 32700
ENCODE (80,1140, MSGTXT)
CALL MSGWRT (N3)
Off ocursor
CALL YCURSE (OFF, F, F, RPOS, IQ, IB, IERR)

998 CALL TVCLOS (BUFFl, IERR)

999 RETURN

USING THE TV DISPLAY Page 10-19
CURRENT APPLICATIONS 10 May 85

1000 FORMAT
1010 FORMAT

('CANT OPEN TV IER=',I6)

('IMCLEAR ERROR =',I8)

1020 FORMAT ('TVDISP: DISPLAY RANGE =',2F8.3,1X,A4,Al, 'JY’)

1110 FORMAT (‘'CAN’'’'T UPDATE IMAGE CATALOG IER=',I8)

1120 FORMAT ('HIT BUTTON D WITHIN 15 SECONDS TO STOP CLEANING NOVW')
1121 FORMAT ('HIT BUTTONS A, B, OR C TO CONTINUE SOONER')

1135 FORMAT ('CONTINUING')

1140 FORMAT ('TV BUTTON D HIT: HAVE DONE ENOUGH I GUESS')

END

10.3.5 Plot Files (TVPL)

Plots in AIPS are usually produced as device independent plot
files (see the chapter on plotting). The task which interprets such
flles and writes on the TV display is called TVPL. It will socale
line drawings to fill the TV scoreen or, at the user's option, plot
them at the original pixel socaling (oconverted to TV pizxels).
Grey-socale plot files are always done at pixel scaling. The
character and veotor portions of the plot are written to one of the
graphics planes (chosen by the user) via subroutines IMVECT and
IMCHAR. Grey-scale records, if any, are written via YIMGIO to the
user-specified grey-scale memory. TVPL also updates the image
catalogue as needed.

10.3.6 Transfer Function Modification, Zooming

Subroutine AU6A carries out the verbs OFFTRAN, TVTRAN, TVLUT,
and TVMLUT which perform modifications on the black and white (or
single color) LUTs of the speocified gray-scale memories. OFFTRAN
simply writes a linear, O through MAXINT array to the LUTs via YLUT.
IVIRAN is implemented by the subroutine IENHNS whioch is also used by
other verbs and tasks (e.g. TVFIDDLE, BLANK, TVMOVIE, TVBLINK).
IENHNS allows a linear LUT with the ocursor position controlling the
slope and intercept and buttons allowing a switoh in the sign of the
slope and a continually updated plot of the LUT. TVLUT and TVMLUT
allow the user to plot his own LUT funotion on a graphios plane with
the ocursor and the buttons. They both use the subroutine GRLUTS.

Subroutine AUS implements the verbs OFFPSEUD, OFFZOOM, and
OFFSCROL to olear the OFM, the zoom setting, and the soroll(s). It
also implements interaotive setting of the zoom factor and oenter
(verb TVZOOM), of individual channel sorolls (TVSCROLL), and of the
pseudo-color OFM (TVPSEUDO). OFFPSEUD simply sends a linear OFM to
all oolors via YOFM; OFFZO0M sends a 0 zoom factor via YZOOMC, and
OFFSCROL sends & O soroll via YSCROL. TVZOOM makes considerable use
of YCURSE and YZOOMC, while TVPSEUDO uses YCURSE and alternately
IMLCLR (RGB oolor triangle), IMPCLR (circle in hue), and IMCCLR
(color ocontours). AU6 also implements a much more complicated

USING THE TV DISPLAY Page 10-20
CURRENT APPLICATIONS 10 May 85

enhancement algorithm in which one gray-scale channel is used to set
the Iintensity and another to set the hue. This algorithm requires
the TV to have both LUTs for each channel and an OFM for the sum of
the enabled ochannels. A log function is put in the LUTs and an
exponential in the OFM which carries out the required multiplication
of the two signals. Subroutines HIENH and HILUT aotually carry out
most of the algorithm inocluding interactive enhancements (via an
algorithm similar to IENHNS) and switohing of the roles of the two
channels.

One of the most commonly used image enhancement routines is
TVFIDL. It 1is called by the verb TVFIDDLE via subroutine AUBC and
task BLANK. It is a deliberately 1limited interactive routine
designed to provide easy to use enhancement in black and white (via
IENHENS) or pseudocolor (via IMCCLR with a single type of color
contour). A simple zoom procedure is also provided. During image
enhancement the cursor position controls slope and intercept and
during zoom the oursor position oontrols zoom center. Button A
(value 1) alternately seleots color and black and white enhancement,
button B/C increments/decrements the zoom and selects zoom mode. As
in all interactive algorithms, button D (values >= 8) terminates the
function.

The algorithm for TVSCROLL is a good example to present in
detail since the aotion required when the cursor moves is quite
simple. The most important thing to notice below 18 the routine
DLINTR. This routine tests the output of YCURSE to see if anything
has changed. If not, it delays the program by some period of time
whioh inoreases slowly as the time since the last change inoreases.
Without this algorithm, the tight loop on reading the TV cursor is
capable of jamming the CPU and I/O channels especially when the user
does not move the ocursor.

c open TV devioe
CALL TVOPEN (BUFFER, IERR)
Cc get start time
CALL ZTIME (ITW)
IF (IERR.EQ.0) GO TO 10
POTERR = 101
GO TO 980
(o) TVSCROL
C usger instructions
500 ENCODE (80, 1800,MSGTXT)
CALL MSGWRT (N1)
ENCODE (80,1505, MSGTXT)
CALL MSGWRT (N1l)
C find channel(s) to scroll
c soroll graphics too ?
IC = ABS(TVCHAN) + EPS
CALL DECBIT (NGRAY, IC, IC, J)
IF (ABS(GRCHAN).GT.EPS) IC = IOR (IC, GRPHIC)
IF (IC.NE.O) GO TO 5058
IC = MOD (TVLIMG(1), N2**NGRAY)

USING THE TV DISPLAY Page 10-21
CURRENT APPLICATIONS 10 May 85

IF (IC.NE.TVLIMG(1)) IC = IOR (IC, GRPHIC)
805 IX = O
IY = O
RPOS(1) = MAXXTV(1)/2
RPOS(2) = MAXXTV(2)/2
C turn on cursor
CALL YCURSE (ON, F, F, RPOS, QUAD, IBUT, IERR)
IF (IERR.NE.O) GO TO 900
C foroe soroll
810 CALL YSCROL (IC, IX, IY, T, IERR)
IF (IERR.NE.O) GO TO 900
PPOS(1) = RPOS(1)
PPOS(2) = RPOS(2)

Cc read until ocursor moves
820 CALL YCURSE (READ, F, F, RPOS, QUAD, IBUT, IERR)

IF (IERR.NE.O) GO TO 900
C test for change

CALL DLINTR (RPOS, IBUT, F, QUAD, PPOS, ITW, DOIT)
IF (.NOT.DOIT) GO TO 520
C cursor moved, change soroll
IX = RPOS(1l) - MAXXTV(1)/2
IY = RPOS(2) - MAXXTV(2)/2

C any button => done
IF (IBUT.EQ.O0) GO TO 510
POTERR = O
GO TO 900
C close down
C cursor off, TV closed

900 IF (BRANCH.GE.4) CALL YCURSE (OFF, F, F, RPOS, QUAD, IBUT, JERR)
910 CALL TVCLOS (BUFFER, JERR)

10.3.7 Objeot Location, Window Setting

Subroutine AU5S performs the verbs TVPOS, IMXY, IMPOS (see
below), and TVNAME (via TVFIND) as well as a variety of status
setting verbs. IMPOS is implemented as follows. It ocalls TVWHER to
find the oursor position indicated by the user. Then it ocheoks all
enabled memories via ICREAD to see if there is an image displayed at
that pixel position. Finally, i1t ocalls MP2SKY to set up the
ooordinate commons and get the primary positions and goes through
some other messy stuff to display the results to the user.

CALL TVOPEN (CATBLK, JERR)
IF (JERR.EQ.O0) GO TO 50
POTERR = 101
GO TO 980
C IMPOS
c read cursor to get position
600 CALL TVWHER (IQUAD, RPOS, IBUT, JERR)
IF (JERR.NE.O) GO TO 978

USING THE TV DISPLAY Page 10-22
CURRENT APPLICATIONS 10 May 85

c image pix -> map pixel pos
625 IX = RPOS(1l) + EPS
IY = RPOS(2) + EPS
C Find lowest plane with x,y
IN2 = NGRAY + NGRAPH
DO 630 IP = 1,IN2

Cc skip off channels

IF (IAND (TVLIMG(IQUAD), N2**(IP - N1)).EQ.0) GO TO 630
c get img cat block

CALL ICREAD (IP, IX, IY, CATBLK, IERR)
c loop if x,y not in image

IF (IERR.EQ.N1) GO TO 630
IF (IERR.EQ.0) GO TO 650
GO TO 975
630 CONTINUE
c X,y not in on image
ENCODE (80,1630,MSGTXT) IX, IY
CALL MSGWRT (N6)
GO TO 900
c image -> map positions
650 CALL IMA2MP (RPOS, RPOS)
ENCODE (80, 1650,MSGTXT) RPOS
CALL MSGWRT (N5)
C map -> sky positions
660 CONTINUE
CALL MP2SKY (RPOS, SKYPOS)

c 3rd axis pairs w lst or 2nd
IF ((AXTYP.EQ.2) .OR. (AXTYP.EQ.3)) CALL AXSTRN (CTYP(1,3),
* SKYPOS(3), KLOCA, NCHLAB(1l), SAXLAB(1,1))
C Primary axes
C Tell user results via MSGWRT.
ENCODE (80, 1660, MSGTXT)
ICH = 8

DO 665 I = 1,2
CALL AXSTRN (CTYP(1l,I), SKYPOS(I), I-N1, ILEN, RSTR)
CALL CHPACK (ILEN, RSTR, ICH, MSGTXT)
ICH = ICH + ILEN
CALL CHFILL (N2, RBLANK, ICH, MSGTZXT)
ICH = ICH + 2
665 CONTINUE
ILEN = 81 - ICH
CALL CHFILL (ILEN, RBLANK, ICH, MSGTXT)
CALL MSGWRT (N5)
Cc Secondary axes values
IF ((NCHLAB(1).LE.O) .AND. (NCHLAB(2).LE.O0)) GO TO 900
ICH = 8
DO 670 I =1,2
IF (NCHLAB(I).LE.O) GO TO 670
CALL CHPACK (NCHLAB(I), SAXLAB(1,I), ICH, MSGTXT)
ICH = ICH + NCHLAB(I)
CALL CHFILL (N2, RBLANK, ICH, MSGTXT)
ICH = ICH + 2
670 CONTINUE
ILEN = 81 - ICH

USING THE TV DISPLAY Page 10-23
CURRENT APPLICATIONS 10 May 85

CALL CHFILL (ILEN, RBLANK, ICH, MSGTXT)
CALL MSGWRT (NB5)
GO TO 900
C normal TV oclose
900 CALL TVCLOS (CATBLK, JERR)
GO TO 999

The interactive window setting verbs TVWIN, TVBOX, TVSLICE, and
REBOX are initlated from subroutine AUSC and performed primarily by
subroutine GRBOZXS. This routine is another instance of
interactivity via YCURSE and 1line drawing via IMVECT. It uses
YCUCOR at the end to obtain the image ocatalogue header and thence,
to correot the cursor positions to map pixel locationmns.

CURVALUE 1s an interactive verb which displays on a TV graphios
channel +the position and image value of the pixel ocurrently under
the TV cursor. It is implemented by subroutine AU6B. The image
values are read from the original map files on disk, if possible,
using MAPOPN, MINI3, and MDIS3. However, the intensities of step
wvedges and temporary images (d.e. intermediate residual maps
displayed by APCLN) are read from the TV memory via YIMGIO. The
routine makes extensive use of IMCHAR and, although too long to
reproduce here, is an interesting example of AIPS image plus TV
coding.

10.3.8 Blotch Setting, Use

A "blotcoch" is a region within an image over which some action
is to be performed. Pixels outside the blotoh are ignored or have
some alternative action performed on them. At present, AIPS has two
functions which generate and use blotches: the verb TVSTAT which
returns image statistics within the blotch area and the <task BLANK
which blanks out all pixels outside the blotch. In both, the user
uses the TV ocursor to set the vertices of omne or more polygonsal
areas and the routines draw lines on a graphios plane between the
vertices. When the user is done, the routines fill in the blotch
areas on the TV gdraphios and then read and act on the map file.
Subroutine AU6D implements TVSTAT for whatever image is +visible on
the TV, obtaining the polygons through subroutine GRPOLY. AU6D
itself does the data reading, determination of whether a pixel is
inside or outside the blotch, and the ocomputation and display of the
image statistios. Task BLANK uses internal subroutines BLNKTV and
BLKTVF to display the 1image (via TVLOAD), allow transfer
modification (via TVFIDL), to obtain the polygons (BLKTVF), and to
use them to blank the output image (BLNKTV). The subroutine BLTFIL
does the filling of the polygons on the TV graphios soreen for both
TVSTAT and BLANK.

USING THE TV DISPLAY Page 10-24
CURRENT APPLICATIONS 10 May 85

10.3.9 Roam

Roam 1s mode of display which requires multiple gray-scale
memories and the capability to do split soreen and soroll. Adjacent
portions of the image are loaded into separate image memories. Then
the soreen is split horizontally and/or vertically and the
appropriate memories are enabled in each quadrant each with soroll.
This allows the wuser to view a screen-size portion of a rather
larger image. By shifting the soroll and split point interactively,
the user may select which portion is viewed. Roam is implemented in
AIPS from the subroutine AUSA. This routine loads the image to the
TV memories in a manner similar to TVLOD (above). However, it uses
TVWIND to determine a much more complicated window and must ditself
play with windows further before calling TVLOAD. The interactive
portion of the Roam i1s ocarried out by AUBA ocalling subroutine
TVROAM. That routine can handle images of up to 1 x 4, 4x 1, or 2
X 2 planes and uses YCURSE for interactive input, ¥YSCROL to set the
soroll (identical for all planes), and YSPLIT to set the split point
and enable the appropriate ochannels. A zoom option is also
available.

10.3.10 Movie, Blink

The verb TVMOVIE is a very interesting algorithm implemented
via subroutines AUSD and TVMOVI. A movie is a method of displaying
a 3-dimensional image as a time sequence of 2-dimensional planes.
Each gray-scale TV memory is subdivided into a 2 x 2, 4 x4, or 8 x

8 matrix of images of consecutive planes of the oube. During the
display phase, the zoom factor is set to 2, 4, or 8, respectively,
so that only one plane is visible at a time. The =zoom o¢enter is

moved from frame to frame at a user controlled rate to simulate a
movie. Subroutine AUSD determines which zoom factor and windows to
use, zeros the gray-scale memories, loads the planes to the TV (via
TVLOAD), transfers the LUT of the first TV memory to the other TV
memories, draws border lines around each plane (via IMVECT),
annotates each plane with the 3rd coordinate axis value, and puts a
small pointer in the image as well. TVMOVI exeoutes an interactive
alogorithm in which the ocursor controls +the frame rate and the
buttons allow a single frame at a time mode and interactive
enhancement of the LUTs (via IENHNS) or the OFM (via IMCCLR). The
verb REMOVIE 1s also done by AUS5D and TVMOVI using the stored
parameters whioch describe how the movie was loaded to the TV
memories (parameter TYPMOV in the /TVCHAR/ common).

The subroutines AUBA and TVBLNK implement the verbs TVBLINK and
TVMBLINK. Blinking is simply enabling one gray-scale memory for a
while, then disabling it and enabling another for a second period of
time, then disabling the second channel and re-enabling the first,
and so on. These two verbs allow manual as well as timed switohing
between the two planes and transfer funoction modification via the
subroutine IENHNS (see above).

USING THE TV DISPLAY Page 10-25
CURRENT APPLICATIONS 10 May 85

10.3.11 Non-standard Tasks

There are a number of tasks in AIPS whioch are seriously
non-standard in their ocoding and in their use of various devioces.
Among these are several which use the TV display. We will list them
here brilefly. Programmers should not use these tasks as models of
how to code in AIPS and should not assume that they can even be made
to run on non-VMS, non-IIS systems.

- IMLHS uses up to 3 maps to create a false oolor image on
the TV. It uses the first map to modulate the brightness
of the image, the 2nd to modulate the hue and the 3rd to
modulate the saturation. If any of the images are omitted
the corresponding parameter is set to a oconstant. (Note:
verb TVHUEINT is standard and does a similar funotion with
two images.)

- TVHLD loads up to 13-bit image to two TV memories and
performs an interactive histogram equilization of the
display. Can feed the result back to & 3rd TV memory.
This task wuses YRHIST, YALUCT, YFDBCK, YIFM, and the
dual-channel mode of the IIS and will be hard to implement
on TV display devices other than the IIS.

- TVHXF does an interactive histogram equilization of the
image which is currently displayed. This task uses YRHIST
whioch is ourrently IIS specific. However, a TV-independent
(but SLOW) YRHIST can be coded is someone wishes to do the
work.

- TVSLV loads an image, prepared by tasks TVCUB and TVSLD, to
the TV. The image 1s a 3-dimensional representation of a
data cube.

- UVDIS attempts to take an FFT of an image and display the
oomplex results on the TV as intensity and color-encoded
phase.

USING THE TV DISPLAY Page 10-26
INCLUDES 10 May 85

10.4 INCLUDES
10.4.1 DTVC.INC

c Include DTVC

INTEGER*2 NGRAY, NGRAPH, NIMAGE, MAXXTV(2), MAXINT, SCXINC,
SCYINC, MXZOOM, NTVHDR, CSIZ2TV(2), GRPHIC, ALLONE, MAXXTK(R),
CSIZTK(2), TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS(?),
TVZOOM(3), TVSCRX(16), TVSCRY(16), TVLIMG(4), TVSPLT(2),
TVSPLM, TVSPLC, TYPMOV(16), YBUFF(168)

C End DTVC

* N N *

10.4.2 CTVC.INC

C Include CTVC
COMMON /TVCHAR/ NGRAY, NGRAPH, NIMAGE, MAXXTV, MAXINT, SCXINC,

* SCYINC, MXZOOM, NTVHDR, CSIZTV, GRPHIC, ALLONE, MAXXTK,
* CSIZTK, TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS, TVZOOM,
* TVSCRX, TVSCRY, TVLIMG, TVSPLT, TVSPLM, TVSPLC, TYPMOV,
* YBUFF

C End CTVC

10.4.3 DTVD.INC

c Inolude DTVD
INTEGER*2 TVLUN, TVIND, TVLUN2, TVIND2, TVBFNO
LOGICAL*2 TVMAP

C End DTVD

10.4.4 CTVD.INC

C Include CTVD
COMMON /TVDEV/ TVLUN, TVIND, TVLUN2, TVIND2, TVBFNO, TVMAP
C End CTVD

USING THE TV DISPLAY Page 10-27
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.8 Y-ROUTINE PRECURSOR REMARKS:

10.5.1 Level O

10.5.1.1 YCHRW - wrltes characoters into image planes of the TV.
The format is 5 by 7 with one blank all around: net 7 in X by 9 in

Y This version will work on all TVs which allow horizontal writing

to the =right. It 1is a Y routine to allow for hardware character
generators on some TVs.

YCHRW (CHAN, X, Y, COUNT, STRING, SCRTCH, IERR)

Inputs: CHAN I*2 channel select (1 to NGRAY + NGRAPH)
X I*2 X position lower left corner first char.
Y I*2 Y position lower left corner first char.
COUNT I*2 number of characters in STRING
STRING R*4 character string

Output: SCRTCH 1I*2(>) soratoh buffer (dim = 1l4*count+8 <« 1031)
IERR I*2 error code of Z...XF:0 - ok

2 - input error

10.5.1.2 YCNECT - writes a line segment on the TV. This version
will work on all TVs. It is called a Y routine to allow the use of
hardware vector generators on those TVs equiped with them.

YCNECT (X1, Y1, X2, Y2, IC, BUFFER, IERR)

Inputs: X1 I*2 start X position
Yl I*2 start Y position
X2 I*2 end X position
Y2 I*2 end Y position
IC I*2 Channel (1 to NGRAY+NGRAPH)

BUFFER I*2(512) BUFFER(1 - 512) contains desired
intensity (size here for I28)
Output: IERR I*2 error code : 0 => Ok

USING THE TV DISPLAY Page 10-28
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.1.3 YCUCOR - takes a ocursor position (corrected for zoom, but
not soroll) ocorreots it for soroll, determines the quadrant of the
TV, and gets the corresponding image header in common /MAPHDR/ and
returns the image coordinates.

YCUCOR (RPOS, QUAD, CORN, IERR)

Inputs: RPOS R*4(2) X,Y soreen pos before 3zoom & scroll
Output: QUAD I*2 TV quadrant to use for sorolls
Out: if in=-1, no scroll, else find
quadrant (needs real TV pos)
CORN R*4(7) Image coordinates (pixels)
IERR I*2 error code of 2...XF : 0 - ok
2 - input error

10.5.1.4 YCURSE - reads ocursor positions and controls the blink and
visibility of the TV ocursor.

YCURSE (OP, WAIT, CORR, RPOS, QUAD, EVTMOD, IERR)

Inputs: OP R*4 'READ’ read oursor position
'ONNN’ place cursor at RPOS & leave on
'OFFF' turn ocursor off
'BLNK’' reverse sense of cursor blink

WAIT L*2 walt for event & return RPOS & EVTMOD
(done on all OPs)
CORR L*2 T => ocorrect RPOS for zoom & scoroll
In/Out: RPOS R*4(2) X,Y soreen pos before zoom & scoroll
QUAD I*2 TV quadrant to use for sorolls

In: if <1 >4, no scoroll
Out: if in=-1, no soroll, else find
quadrant (needs real TV pos)

Output: EVIMOD I*2 event # (O none, 1-7 low buttons,
8-15 the "quit" button)
IERR I*2 error code of Z...XF : 0O - ok

2 - input error

USING THE TV DISPLAY Page 10-29
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.1.5 YGRAPH - is used to turn graphios overlay planes on and
off by altering the graphiocs color look up table. The color pattern
is:

CHAN = 1 insert yellow drawing plots
2 insert green+.05 red axls labels
3 insert blue + 0.6 green blotch
+ red
4 insert black label backgrounds
5-7 add nothing null channels
8 insert purple oursor

YGRAPH (OP, CHAN, SCRTCH, IERR)

Inputs: OP R*4 ‘ONNN’' or 'OFFF’

CHAN I*2 channel number (1 - 8)
Output: SCRTCH 1I*2(256) soratch buffer

IERR I*2 error code of 2...XF: 0 => 0k

2 => lnput error

10.5.1.86 YLNCLR - computes a pilecewise linear OFM and writes it to
the TV. If NEND(NPOINT) is 256 (512) then the OFM is repeated 4 (2)
times.

YLNCLR (COLOR, NPOINT, NEND, SLOPE, OFFSET, GAMMA, BUFFER, IERR)

Inputs: COLOR I*2 color bit mask: RGB = 421
NPOINT 1I*2 *+ of segments
NEND I*2 end points of segments

SLOPE R*4(NPOINT) slopes of segments
OFFSET R*4(NPOINT) offsets of segments

GAMMA R*4 power applied to colors (1 /gamma)
Output: BUFFER I*2(1024) soratoch buffer
IERR I*2 error code of Z2...XF : 0O - ok

Form is G = (i-1)*SLOPE + OFFSET with O <= C <= 1.0.

USING THE TV DISPLAY Page 10-30
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.1.7 YSLECT - enables and disables gray and graphiocs planes.
YSLECT (OP, CHAN, COLOR, BUFFER, IERR)

Inputs: OP R*4 'ONNN’ or 'OFFF'
CHAN I*2 channel number (1 to NGRAY+NGRAPH)
COLOR I*2 0 - all, 1,2,3 = R,G,B, resp.
Output: BUFFER 1I*2(256) soratch buffer (for graphics only)
IERR I*2 error code of Z...XF: 0 - ok

2 - input err
YSLECT sets TVLIMG in the TV device parms common /TVDEV/

10.5.1.8 YTVCIN - initializes +the oommon which describes the
characteristics of the 4interactive display devices and the common
which has the current status parameters of the TV.

NOTE: These are default values only. They are reset to the ocurrent
true values by a call to TVOPEN.

NOTE: YTVCIN resets the common values of TVZOOM and TVsoroll, but
does not call the TV routines to force these to be true. A separate
call to YINIT or YZOOMC and YSCROL is needed.

YTVCIN
(no arguments)

10.5.1.9 YZERO - fills an TV memory plane with zeros the fast way.
Note: this is equivalent to YINIT, but avoids linking with all the
routines called by the main parts of YINIT.

YZERO (CHAN, IERR)
Inputs: CHAN I*2 channel # (1 - NGRAY+NGRAPH), O => all

Outputs: IERR I*2 error code of Z...XF: 0 - ok
2 - input error

USING THE TV DISPLAY Page 10-31
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.1.10 YTVCLS - closes TV device associated with LUN removing
any EXCLusive use state and olears up the FTAB.

YTVCLS (LUN, IND, IERR)

Inputs: LUN logical unit number
IND pointer into FTAB
Output: IERR error code: 0O -> no error
1 -> Deaccess or Deassign error
2 -> file already closed in FTAB
3 -»> both errors
4 -> erroneous LUN

10.5.1.11 YTVMC - issues a "master clear" to the TV. This resets
the TV I/0 system (if necessary) to expect a command record next.
YTVMC gets all needed parameters from the TV device common. The TV
must already be open.

YTVMC
(no arguments)

10.5.1.12 YTVOPN - performs a system “OPEN" on the TV device. It
is a Y routine in order to call the appropriate Z routine only.

YTVOPN (LUN, IND, IERR)

Inputs: LUN I*2 Logical unit number to use
Output: 1IND I*2 Pointer to FTAB entry for open device
IERR I*2 Error code: 0 => ok
1 = LUN already in use
file not found
volume not found
exol requested but not available
no room for lun
other open errors

oG
L I I I A

USING THE TV DISPLAY Page 10-32
Y-ROUTINE PRECURSOR REMARKS: 10 May 85
10.5.2 Level 1

.tp 19

10.5.2.1 YCRCTL - reads/writes the cursor/trackball control
register of TV.

YCRCTL (OP, ON, X, Y, LINKX, LINKY, RBLINK, BUTTON,
* VRTRTC, IERR)

Inputs: OP R*4 ‘READ' from TV or 'WRIT' to TV
VRTRTC L*2 T => do on vertical retrace only

In/Out: ON L*2 T => oursor visible, P => off
X I*2 X position cursor center (1-512, 1 => LHS)
Y I*2 Y position cursor center (1-512, 1 => bot)
LINKX L*2 T => trackball moves cursor in X
LINKY L*2 T => trackball moves ocursor in Y

RBLINK I*2 rate of cursor blink: 0-3 no-fast blink
Output: BUTTON I*2 button value (0 - 15)
IERR I*2 error oode of 2...XF : 0 => 0Ok
2 => input error

10.5.2.2 YIMGIO - reads/writes a line of image data to the TV
soreen. For graphics overlay planes, the data are solely O’'s and
l’s in the least significant bit of IMAGE after a READ. For VWRIT,
all Dbits of each word should be equal (i.e. all l's or all O's for
graphiocs).

NOTE***** on WRIT, the buffer may be altered by this routine for
some IANGLsS.

YIMGIO (OP, CEAN, X, Y, IANGL, NPIX, IMAGE, IERR)

Inputs: OP R*4 ‘READ’ from TV or 'WRIT' to TV
CHAN I*2 channel number (1 to NGRAY+NGRAPH)
X I*2 start pixel position
Y I*2 end pixel position
JANGL I*2 = 0 => horizontal (to right)

= 1 => vertical (up the soreen)
= 2 => horizontal (to left)
= 3 => vertical (down the screen)

NPIX I*2 number of pixels
In/Out: IMAGE I*2(NPIX) data (only no header)
Output: IERR I*2 error code of Z...XF - 0 => ok

2 => input err

USING THE TV DISPLAY

Page 10-33

Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.2.3 YINIT - initializes the TV subunits: doing everything.

YINIT (SCRTCH, IERR)

Output: SCRTCH 1I*2(1024) soratoh buffer (can be 2568 for CHAN &

IERR I*2

1 for ZERO & REST)
error code of Z2...XF - 0 => ok
2 => input error

10.5.2.4 YLUT - reads/writes full channel look up tables to TV.

YLUT (OP, CHANNL, COLOR, VRTRTC, LUT, IERR)

Inputs: OP R*4 'READ’' from TV, 'WRIT’ to TV
CHANNL 1I*2 channel select bit mask
COLOR I*2 color seleot bit mask (RGB <-> 421)
VRTRTC L*2 T => do 1t only during vertical retrace
In/Out: LUT I*2(256) 1look up table (ls 9 bits used)
Out: IERR I*2 error code of 2...XF : O =>» ok

10.5.2.85 YOFM - reads/writes full OFM look up tables to TV.

YOFM (OP, COLOR, VRTRTC, OFM, IERR)

Inputs: OP R*4 'READ’ from TV, 'WRIT' to TV
COLOR I*2 color select bit mask (RGB <-> 421)
VRTRTC L*2 T => do it only during vertical retrace
In/Out: OFM I*2(1024) 1look up table (1ls 10 bits used)
Out: IERR I*2 error code of Z...XF : 0 => ok

10.5.2.6 YSCROL - writes the soroll registers on the TV.

YSCROL (CHANNL, SCROLX, SCROLY, VRTRTC, IERR)

Inputs: CHANNL I*2
VRTRTC L*2
In/Out: SCROLX I*2
SCROLY 1I*2
Output: IERR I*2

bit map channel seleot

T => do it on vertical retrace only
amount of X soroll (>0 to right)
amount of Y soroll (>0 upwards)
error from Z...XF : 0 => ok

YSCROL updates the soroll variables in /TVDEV/ common

USING THE TV DISPLAY Page 10-34
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.2.7 YSPLIT - reads/writes the 1look up table/ split soreen
control registers of the TV.
Quadrants are numbered CCW from top right.

YSPLIT (OP, XSPLT , YSPLT , RCHANS, GCHANS, BCHANS,
* VRTRTC, IERR)

Inputs: OP R*4 'READ’ from TV, 'WRIT' to TV
VRTRTC L*2 T => do on vertical retrace only
In/Out: XSPLT I*2 X position of split (1-512, 1 => LHS)
YSPLT I*2 Y position of split (1-512, 1 => bot)

RCHANS 1I*2(4) ohan select bit mask 4 quadrants : red
GCHANS 1I*2(4) ochan select bit mask 4 quadrants : green
BCHANS 1I*2(4) ochan select bit mask 4 quadrants : blue
Output: IERR I*2 error code of Z...XF: O => ok
& => 1input error

10.5.2.8 YZOOMC - writes (ONLY!) the zoom control registers of the
TV.

YZOOMC (MAG, XZ0OM, YZOOM, VRTRTC, IERR)

Inputs: MAG I*2 0-3 for magnification 1,2,4,8 times, resp.
XZOOM I*2 X ocenter of expansion (1-512, 1 => LHS)
YZOOM I*2 Y center of expansion (1-512, 1 => bot)
Output: IERR I*2 error code of 2...XF: O -> ok
2 —> input error
YZO0MC updates the /TVDEV/ common TVZOOM parameter

USING THE TV DISPLAY Page 10-35
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.6.3 Level 2 (Used As Level 1 In Non-standard Tasks)
10.5.3.1 YALUCT - reads / writes the TV arithmetic logic unit
control registers. The actual feedback-ALU computation is performed

only upon a ocall to YFDBCK.

YALUCT (OP, ARMODE, BFUNC, NFUNC, CONSTS, OUTSEL,
* EXTOFM, ESHIFT, SHIFT, CARYIN, CARRY, EQUAL, IERR)

Inputs: OP R*4 ‘'READ’ from TV or 'WRIT' to TV

In/Out: ARMODE L*2 T => arithmetic mode F => logioc mode
BFUNC I*2 funotion number (1-16) in blotoch
NFUNC I*2 funoction number (1--18) outside blotoh

CONSTS I*2(8) oomnstant array (may seleot as ALU output)
OUTSEL 1I*2(8) lookup table seleots output based on ocarry
(1sb), equal, ROI (msb) input. values -
O - 7 : constants 1 - 8

8 : accumulator channel pair

> : seleoted OFM

10 : ALU

11 : external
EXTOFM L*2 T => extend sign of OFM on input to ALU
ESHIFT L*2 T => extend sign of ALU output if SHIFT
SHIFT L*2 T => right shift ALU output
CARYIN L*2 T => add one to arithmetic results

Output: CARRY L*2 T => carry condition ococurred in frame

EQUAL L*2 T => equal condition ocourred in frame

IERR I*2 error code of Z...XF : 0 - ok
2 - input error

10.5.3.2 YFDBCK - sends a feedback command to the TV.

YFDBCK (COLOR, CHANNL, BITPL, PIXOFF, BYPIFM, EXTERN,
* ZERO, ACCUM, ADDWRT, IERR)

Inputs: COLOR I*2 bit map of ocolor to be fedback (RGB = 4,2,1)
CHANNL 1I*2 bit map of channels to receive feedback
BITPL I*2 bit map of bit planes to receive feedback
PIXOFF 1I*2 offset fedback image to left by O - 1 pixels
NOTE: I2S literature oclaims only 1 bit here not the three
that thelr software (NOT this routine) uses.
BYPIFM L*2 F => image goes thru IFM lookup before store
EXTERN L*2 T => image from external input (ledigitizer)
ZERO L*2 T => feed back all zeros
ACCUM L*2 T => use 16-bit accumulator mode
then CHANNL must give even-odd pair lsbyte
goes to even (lower) # channel
ADDWRT L*2 T => additive write F => replace old data
Outputs: IERR I*2 error code of 2...XF: 0 -> ok
2 —-> l1lnput error

USING THE TV DISPLAY Page 10-36
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.3.3 YGYHDR - builds an TV header to write image data. The
actual I/0 must be done by calls to Z...XF.

YGYHDR (OP, NPIXEL, XINIT, YINIT, IANGLE, CHANNL,
* PLANES, PACKED, BYPIFM, BYTE, ADDWRT, ACCUM, VRTRTC, HEADER,

* IERR)
Inputs: OP R*4 ‘READ’ from TV or '‘WRIT' to TV
NPIXEL 1I*2 number of pixel values to I/O
XINIT I*2 first pixel X coordinate (1-512, 1 -> LHS)
YINIT I*2 first pixel Y coordinate (1-512, 1 -> bot)
IANGLE 1I*2 (0 => data I/0 horizontal to right, 1 =»
up, 2 => to left, 3 => down)
CHANNL 1I*2 channel select bit mask
PLANES 1I*2 bit plane select bit mask
PACKED L*2 T => 2 values/word, F => 1 value/word
BYPIFM L*2 F => IFM lookup applied to data (write)
BYTE L*2 T => 8 values/byte (needs XINIT = 8*n+l)
ADDWRT L*2 T => OR data with present memory ocontents
ACCUM L*2 T => use 16-bit acoumulator mode
VRTRTC L*2 T => do it omnly during vertical retrace

Output: HEADER 1I*2(8) header to be sent to TV
IERR I*2 error code of 0 => ok
& => input error

10.5.3.4 YIFM - reads/writes a section of TV input funotion memory.
This look up table takes 13 bits in and gives 8 bits out.

YIFM (OP, START, COUNT, PACK, VRTRTC, IFM, IERR)

Inputs: OP R*4 'READ’' from TV or ‘WRIT' to TV
START I*2 start address of IFM (1 - 8192)
COUNT I*2 # elements of IFM to transfer (1-8192)
PACK L*2 T => 2 values/word, F => 1 value/word
VRTRTC L*2 T => do it only on vertiocal retrace
In/Out: IFM I*2(>) funotion values (0-288)
Output: IERR I*2 error ocode of Z2...XF: 0 - ok

2 - input error

USING THE TV DISPLAY Page 10-37
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.3.5 YRHIST - reads the histogram of the output of &a selected
OFM of the TV.

**** Varning: +the results are 18-bit integers stored in a standard
AIPS pseudo I*4 order (1ls 16 bits in first word).

YREIST (MODE, COLOR, INITI, NINT, HISTOG, IERR)

Inputs: MODE I*2 selects area to histogram: 0 blotch,
1 not blotch, 2 all, 3 external bltch
COLOR I*2 bit map of single ocolor (RGB - 4,2,1)
INITI I*2 first intensity to histo (1 - 1024)
NINT I*2 ¥ values to get
Output: HISTOG TI*2(2*NINT) histogranm
IERR I*2 error code of Z...XF : 0 => ok

2 => lnput err

10.5.4 Selected Applications Subroutines

10.5.4.1 TVOPEN - opens the TV, passing pointers through ocommon
/TVDEV/.

TVOPEN (BUF, IERR)
OUTPUTS: BUF I*2(256) Scratch buffer

IERR I*2 Error return from ZOPEN
= 10 TV unavallable to this version

10.5.4.2 TVCLOS - ocloses the TV device and the TV status disgk file,
updating the information on the disk.

TVCLOS (BUF, IERR)
Outputs: BUF I*2(2568) Soratch buffer

IERR 1I*2 Error code : 0 => ok
else as returned by ZFIO

USING THE TV DISPLAY Page 10-38
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.4.3 TVFIND - determines which of the visible TV images the
user wishes to seleot. 1If there is more than one visible image, it
requires the user to point at it with the ocursor. The TV must
already be open.

TVFIND (MAXPL, TYPE, IPL, UNIQUE, CATBLK, SCRTCH,

* IERR)
Inputs: MAXPL I*2 Highest plane number allowed (i.e. do
graphios count?)
TYPE I*2 2-char image type to restrict search
Output: IPL I*2 Plane number found
UNIQUE L*2 T => only one image visible now

(all types)
CATBLK 1I*2(256) Image catalog block found
SCRTCH 1I*2(256) Soratch buffer
IERR I*2 Error code: 0 => ok
1l => no image
2 => I/0 error in image catalog
3 => TV error

10.5.4.4 TVVIND - sets windows for normal and split soreen TV
loads.

TVWIND (TYPE, PXINC, BLC, TRC, ICHAN, ITVC, IWIN,
* IERR)

In/out : TYPE I*2 In: <0 -> 1 plane, other -> split method
Out: O -> 1 plane, other = 10 * (#planes
in X) + (# planes in Y)
PXINC 1I*2(2) X, Y increments
BLC R*4(7) User requested bot left corner
TRC R*4(7) User requested top right corner
ICHAN 1I*2 User requested TV chan (decimal form)
ITVC I*2(4) IN: first 2 user req. TVCORN
Out: full “"pseudo-TV" corners
Output: IWIN I*2(4) Window into map
IERR I*2 error code: 0 -> ok, else fatal
Common: /MAPHDR/ CATBLK image header used extensively, the
depth array is set here

USING THE TV DISPLAY Page 10-39
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.4.5 TVLOAD - loads a map from an already opened map file to
one TV memory plane. TVLOAD puts TV and map windows in the image
header and writes it in the image ocatalog. It assumes that the

other parts

of the 1image header are already filled in (and uses

them) and that the windows are all computed.

TVLOAD (LUN, IND, IPL, PXINC, IMAVIN, WIN, BUFSZ,

* IERR)

Inputs:
LUN
IND
IPL
PXINC
IMAWIN
VIN
BUFS2

Outputs
IERR

I*2 Logiocal unit # of map file

I*2 FTAB pointer for map file

I*2 Channel to load

I*2(2) Inorement in x,y between included pixels
I*2(4) TV oormers: BLC x,y TRC x,y

I*2(4) Map window: ""

I*2 Buffer size in bytes

I*2 Error code: 0 => ok
1l => input errors
2 => MINI3 errors
3 => MDIS3 errors

Commons: /MAPHDR/ CATBLK image header

/IMBUF / BUFF work spaoce for I/0

10.5.4.6 TVFIDL - does an interactive run with button A selecting
alternately TVTRANSF and TVPSEUDO (color ocontour type 2 omly),
button B inorementing the zoom and C decrementing the zoom.

TVFIDL (ICHAN, NLEVS, IERR)

Inputs: ICHAN I*2 Selected gray-scale channel
NLEVS I*2 Number of gray levels (usually MAXINT+1)
OUTPUT: IERR I*2 Error code: 0 -»> ok

else set by 2...XF

USING THE TV DISPLAY

Page 10-40

Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.4.7 TIMANOT - is used to annotate an image by writing the
string 4into the lettering plane (usually graphiocs plane 2) and, if
possible writing a block of ones NEDGE pixels wider than the string
into graphics plane 4 to force a black background.

IMANOT (OP, X, Y, IANGL, CENTER, COUNT, STRING,

* SCRTCH, IERR)

Inputs: OP R*4
X I*2
Y I*2
IANGL I*2
CENTER 1I*2
COUNT I*2

STRING R*4()
Output: SCRTCH I*2(>)
IERR I*2

‘ONNN’ enables the 2 graphics planes
'OFFF' disables the 2 planes
‘INIT' zeros and enables the 2 planes
‘WRIT’' writes strings to the planes
X position of string
Y poglition of string
0 - horizontal, 3 - vertical (DOWN)
0 - XY are lower left first character
1l - XY are center of string
2 - XY are top right of last character
number of characters in STRING
character string
soratch buffer (256, l4*count)
error code of Z2...XF : 0 - ok

2 - input error

10.5.4.8 IMCHAR - causes characters to appear on the TV by ocalling

IMCHRY.

IMCHAR (CHAN, X, Y, IANGL, CENTER, COUNT, STRING,

* SCRTCH, IERR)
Inputs: CHAN I*2

X I*2
Y I*2
JANGL I*2
CENTER I*2
COUNT I*2

STRING R*4()
Output: SCRTCH I*2(>)
IERR I*2

channel number (1 - NGRAY+NGRAPH)
X position of string
Y position of string
O - horizontal (to right), 3 - vertical
(down) ONLY ones supported.
0 - XY are lower left of first character
l - XY are center of string
2 - XY are upper right of last character
number of characters in STRING
character string to go to TV
soratoh buffer (l4*count)
error code of Z...XF: O - ok
2 - 1nput error

USING THE TV DISPLAY Page 10-41
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.4.9 TIMVECT - writes a conneoted sequence of line segments on a
IV channel calling YCNECT

IMVECT (OP, CHAN, COUNT, XDATA, YDATA, SCRTCH, IERR)

Inputs: OP R*4 'ONNN’ line of ones (max intensity)
‘OFFF’ line of zeros (min intensity)
CHAN I*2 channel number (1 to NGRAY+NGRAPH)
COUNT I*2 number of X,Y pairs (> 1)

XDATA I*2(COUNT) X coordinates X1,X2,...
YDATA I*2(COUNT) Y coordinates Y1,Y2,...
Output: SCRTCH I*2(512) soratch buffer
IERR I*2 error code of 2...XF - 0 => ok
2 => input error

10.5.4.10 TIENHNS - performs an interactive linear enhancement of TV
LUTs. X oursor => intercept, Y oursor => slope, high button => quit

IENENS (ICHAN, ICOLOR, ITYPE, RPOS, BUFFER, IERR)

Inputs: ICHAN I*2 channel select bit mask
ICOLOR 1I*2 ocolor select bit mask
In/Out: ITYPE I*2 on in: 1 => do plot, A, B switch plot

C switoh sign of slope
2 => no plot, A, B return
C switch sign of slope
3 => no plot, return any button
on out - button value

RPOS R*4(2) Cursor position: initial -> final
Output: BUFFER I*2(>768) soratch buffer
IERR I*2 error code of Z...XF: 0 => ok

10.5.4.11 DLINTR - is called bg interactive routines to delay the
task when nothing is happening (i.e. the user is thinking or out to
lunch.) It also prevents oursor wrap around.

DLINTR (RP, IEV, DOCOR, QUAD, PP, IT, DOIT)

Inputs: IEV I*2 not = 0 => event has ocourred
DOCOR L*2 Soroll ocorrection parameter for YCURSE
QUAD 1I*2 quadrant parameter for YCURSE

In/out: RP R*4(2) oursor position read (fixed on wraps)
PP R*4(2) previous ocursor position

IT I*2(3) time of last action
Output: DOIT L*2 T => spomething has happened.

USING THE TV DISPLAY Page 10-42
Y-ROUTINE PRECURSOR REMARKS: 10 May 85

10.5.4.12 RNGSET - calculates range parameters for displaying a map
using the TIRANGE adverb supplied by POPS plus scaling information
derived from the map header.

RNGSET (IR, MMAX, MMIN, BSC, BZE, RANG)

INPUTS:
IR(2) R*4 Range values specified by user
MMAX R*4 Map maximum value from header
MMIN R*4 Map minimum value
BSC R*8 Map scaling faoctor from header
BZE R*8 Map zero offset from header
OUTPUTS:

RANG(2) R*4 Output range values ocalculated using
defaults and map scaling

10.5.4.13 DECBIT - translates a decimal based channel number into &
binary ochannel no. e.g. 1453 => 2**0 + 2**3 + 2**4 + 2**2 A
maximum of nine channels are addressable (8 at a time)

DECBIT (NMAX, ICHAN, IPL, LOW)

INPUTS:
NMAX I*2 Maximum allowed channel number
ICHAN I*2 Input channel decimal number
OUTPUTS:
IPL I*2 Binary channel # pattern
LOwW I*2 Lowest of specified channels

10.8.4.14 MOVIST - sets and resets the movie status parameters in
the TV common.

MOVIST (OP, ICHAN, NFR, NFRPCH, MAG, IERR)

Inputs: OP R*4 'ONNN’ when turning on a movie
‘OFFF' when olearing ohannel(s)
ICHAN 1I*2 Bit pattern of channels involved (OFFF)
Actual first channel number (1-NGRAY, ONNN)

NFR I*2 Number of frames in movie total (ONNN)
NFRPCH 1I*2 Number of frames per TV channel (ONNN)
MAG I*2 Magnifiocation number (0O - 3, ONNN)

Output: IERR I*2 Error = 2 => bad input, else ok

CHAPTER 11

PLOTTING

11.1 OVERVIEW

Plotting in AIPS is usually a two step process. First a task
or a verb creates an AIPS "plot file" which consists of plot device
independant "commands" that tell a device how to draw the plot. As
of the +time this ochapter was written, this file is always an
extension file assooclated with a cataloged file. However, the plot
file could itself be a cataloged file. The second step in obtaining
a plot is to run a task to read the plot file and write it to a
specifio device, such as a TV, or a hardcopy plotter. This two step
method greatly reduces the number of plot programs that must be
written and maintained. For instance, if a new graphios devioce is
added to the system then only one new program that reads the plot
file and writes to the new device is needed. All the other plotting
programs work with no modification. Another advantage is that a
plot file may exist for an extended period of time, thus allowing
plots to be written to different devices, and copies to be generated
at later times without duplicating the caloulations needed in making
the plot.

There are exceptions to the two step proocess. For example,
slices of map files can be plotted directly on the Tektronios 4012.
This is done to simplify matters in interactive situations such as
gaussian fitting of slices.

AIPS contalns some very powerful routines for plotting in an
varlety of ocoordinate systems in use in astronomy. The complexity
of these routines is commensuate to their power. Fortunately, a set
of plot program templates exist to provide a starting point. These
routines are described in a latter seotion in this chapter.

PLOTTING Page 11-2
PLOT FILES 10 May 85

11.2 PLOT FILES
11.2.1 General Comments

Plot files are a generalized representation of a graphios
display. They contain scaling information and commands for drawing
lines, pixels, and ocharacters, and a ocommand for putting
miscellaneous information 1in the image catalog. The image catalog
is used by programs that must know details about an image ocurrently
displayed on the graphics device in order to allow user interaction
with the device. For example a program may want to read a oursor
position and translate i1t to the coordinate system of the image
displayed on the graphics device.

The records in plot files do not include a record length value.
This means that 1t is inconvenient to invent new types of records
(i.e. new opcodes) or to add new values on to the end of records of
existing types because all of the programs must be changed. On the
other hand, the rigid format definitions aided in debugging the code
several years ago and continue to assure the integrity of I/O
systems (AIPS device plotting programs refuse to proceed if they
encounter an unknown opoode). So far, the increased flexibility
supplied by length values seems not to have been absolutely required
in AIPS.

The character drawing record includes neither a size value nor
an angle value. This is because character plotting capabilities are
device dependent. Orientations are either vertical or horizontal
(and not backwards) and the position offsets for plotting character
strings are specified in units of the device charaoter size,
permitting the device plotting program to position strings nicely no
matter what size it chooses to use. It also follows that most plots
produced by AIPS have only omne size of ocharacter. One AIPS
appliocation program (PROFL) draws its own characters by using the
line drawing ocommands in order to plot characters with arbitrary
size, orientation, and even perspective.

11.2.2 Structure Of A Plot File

The first physical record (256 words) in the plot file contains
information about the task which oreated the file. It is not
logically part of the "plot file", but 4is there +to provide
doocumentation of the file's origins. This record is ignored by the
programs that actually do the plotting. The primary use of this
information is by the the verb EXTLIST that lists all the plot files
assoclated with a cataloged file. When new types of plots are added
to AIPS, an experienced programmer should update the verb EXTLIST
(found in subroutine AUBA) to list useful +things about the plot.
Otherwise the verb will print a line telling the user that he has a
plot file of type UNKNOWN. A novice AIPS programmer should leave
this code alomne.

PLOTTING Page 11-3
PLOT FILES 10 May 85

The oontents of the first physical record are task-dependent
and have the form:

FIELD TYPE DESCRIPTION
1. I*2(3) Task name (2 chars / word)
2. I*2(6) Date/time of file oreation YYYY,MM,DD,HH,MM,SS
3. I*2 Number of words of task parameter data
4. R*4(*) Task parameter block as transmitted from AIPS
(preferably with defaults replaced by the values
used).

The rest of the plot file contalns a generalized representation
of & graphiocs display. This representation is in the form of
scaling information and commands for drawing lines, pixels, and
characters and a ocommand for putting miscellaneous information in
the image ocatalog.

The lowest level plot file I/0O routines read and write 258 word
blocks. The applications programmer will be concerned with routines
that read and write logical records.

The logiocal records are of 6 types and vary in length. ¥ith
the exoception of the ‘draw pixels’ record, logical records do not
cross the block boundaries. Unused space at the end of & blook
oconsists of dinteger zeros. All values in the plot file are I*2
variables or ASCII characters. This aids in exporting plot files to
other ocomputers via tape. Unfortunately, this also limits the
values that can be stored in the plot file, thus foroing us to use a
scaling faotor and offset for some plots to prevent integer
overflow. The socaling faotor and offset are not in the plot file.
This ocauses problems for interactive tasks that read positions from
a graphios device and then try to convert them to the original
coordinates. These interactive tasks must make do with information
from the map header and data from the “miscellaneous information"
record.

Plot files have names of the format PlLdsssvv, where d is the

disk volume number, sss is the Catalog slot number of the assooiated
map, and vv is the version number.

11.2.3 Types Of Plot File Logiocal Records

11.2.3.1 Initialize Plot Record. - The first logical record in a
plot file must be of this type.

FIELD TYPE DESCRIPTION
1. I*2 Opoode (equal to 1 for this record type).
2. I*2 User number.
3. I*2(3) Date: yyyy, mm, dd
4. I*2 Type of plot: 1 = miscellaneous

2 = contour
3 = grey scale

PLOTTING Page 11-4

PLOT FILES 10 May 85
4 = 3D profile
5 = slioce
6 = contour plus polarization lines
7 = histogram

11.2.3.2 1Initlalize For Line Drawing Record. - This record provides
scaling information needed for a plot. The plot consists of a ’'plot
window’ in which all lines are drawn and a border (defined in terms
of ocharacter size) in whioh labeling may be written. The second
record in a plot file must be of this type.

FIELD TYPE DESCRIPTION
1. I*2 Opoode (equal to 2 for this record type).
2. I*2 X Y ratio * 100. The Ratio between units on the X

axis and units on the Y axis (X / ¥). For example
if the deorement between pixels in the X direotion
on a map is twioce the decrement in the Y direction
the X Y ratio can be set to 2 to provide proper
scaling. Some programs may ignore this field. For
example IISPL when writing grey scale plots to the
IIS.

3. I*2 Scale factor (ourrently 16383 in most applications).
This number is used in scaling graph positions before
they are written to disk. BLC values in field 4 are
represented on disk by zero and TRC values are
represented by integers equal to the socale faotor).

4. I*2(4) The bottom left hand corner X and Y values and the top
right hand X and Y values respectively in the plot
window (in pixels).

5. I*2(4) 1000 * the fractional part of a pixel allowed to ocour
outside the (integer) range of BLC and TRC (field 4
above) in line drawing commands

8. I*2(4) 10 * the number of character positions outside the
pPlot window on the left, bottom, right, and top
respectively

7. I*2(5) Loocation of the X Y plane on axes 3,4,5,8,7. This
fleld is valid only for plots associated with a map.

11.2.3.3 TInitlalize For Grey Scale Record. - This record if needed
must follow the ’'init for line drawing’ record. This record allows
proper lnterpretation of pixels for raster type display devioes.
Programs that write to 1line drawing type devices ge.g. the
TEKTRONIX 4012) ignore this record.

FIELD TYPE DESCRIPTION
1. I*2 Opocode (equals 3 for this record type).
2. I*2 Lowest allowed pixel intensity.
3. I*2 Highest allowed pixel intensity.
4. I*2 Number of pixels on the X axis.
5. I*2 Number of pixels on the Y axis.

PLOTTING Page 11-5
PLOT FILES 10 May 85

11.2.3.4 Position Record. - This record tells a device where to
start drawing a line, row/column of pixels or character string.

FIELD TYPE DESCRIPTION
1. I*2 Opoode (equals 4 for this record type).
2. I*2 soaled x position i.e. a value of O represents the

BLC values defined in the ’‘init for line drawing’
record, and a value equal to the scale factor
represents the TRC value.

3. I*2 Scaled Y position.

11.2.3.5 Draw Vector Record. - This record tells a device to draw a
line from the ourrent position to the final position specified by
this record.

FIELD TYPE DESCRIPTION
1. I*2 Opcode (equals 5 for this record type).
2. I*2 Scaled final X position.
3. I*2 Scaled final Y position.

11.2.3.6 Write Charaoter String Record. - This record tells a
device to write a character string starting at the current position.

FIELD TYPE DESCRIPTION
1. I*2 Opcode (equals 6 for this record type).
2. I*2 Number of characters.
3. I*2 Angle oode: 0 = write characters horizontally.
1l = write characoters vertically.
4. I*2 X offset from current position in characters * 100
5. I*2 Y offset from current position in characters * 100

(net position refers to lower left corner of 1st char)
I*2(n) ASCII characters (n = INT((field2 + 1) / 2))

»

11.2.3.7 Write Pixels Record. - This record tells a raster type
device to write an n-tuple of pixel values starting at the ourrent
position. Programs that write to line drawing type devices ignore
reoords of this type.

FIELD TYPE DESCRIPTION
1. I*2 Opoode (equals 7 for this record type).
2. I*2 Number of pixel values.
3. I*2 Angle ocode: O = write pixels horizontally.
1 = write pixels vertiocally zup).
4. I*2 X offset in characters * 100.
5. I*2 Y offset in charaocters * 100.
6. I*2(n) n (equal to field 2) pixel values.

PLOTTING Page 11-6
PLOT FILES 10 May 85

11.2.3.8 VWrite Misc. Info To Image Catalog Record. - This record
tells +the programs that write to interactive devices (TEKPL, IISPL)
to put up to 20 words of miscellaneous information in the image
catalog starting at word IRTRA + 2. This information is interpreted
by routines such as AUSA (TKSKYPOS, TKMAPPOS, ect.). Routines that
write to non-interactive graphiocs devices (PRTPL) ignore this
record.

FIELD TYPE DESCRIPTION
1. I*2 Opocode (equals 8 for this record type).
2. I*2 Number of words of information.

3. I*2(n) Miscellaneous info (n=value of field 2).

11.2.3.9 End Of Plot Record. - This record marks the end of a plot
file.

FIELD TYPE DESCRIPTION
1. I*2 Opcode (equals 32767 for this record type).

11.3 PLOT PARAFORM TASKS
11.3.1 Introduction

Three paraform tasks (PFPL1, PFPL2 and PFPL3) are available in
AIPS for developing plot +tasks that read a map and oreate a plot
file to be associated with the map. These tasks use the standard
AIPS defaults for adverb values such as IMNAME, BLC, TRC, XYRATIO,
PIXRANGE, eto., and work for both integer and floating point maps.
The programs are heavily commented and modular.

The three tasks correspond to the three types of plots that can
be found in AIPS. The first type is a plot of an X Y plane of the
map or a subimage of the map. In this case the X and ¥ axis of the
plot are the same as the X and Y axis of the map. Examples of this
type are produced by tasks CNTR and GREYS. A second type of plot is
when the X axis of the plot is a slice of the X and Y axis of the
map and the Y axis of the plot is some other value such as
intensity. Task SL2PL will coreate a plot of this type from & slice
of a map. The third type of plot is when the axis of the plot has
no real relation to the map axis. An example of this type of plot
is the histogram produced by task IMEAN.

The structure of all three paraform tasks are very similar.
The major differences are in subroutine PLINIT (the subroutine that
initializes the ocommons used in labeling the plot), PLLABL (this
routine does +the actual labeling), and in the example plots in
subroutine PLTTOR. The adverbs received from AIPS also differ
slightly. The tasks will be discussed individually in a following
section, but first we will describe the general structure of all
three programs. The tasks perform the following steps:

PLOTTING Page 11-7
PLOT PARAFORM TASKS 10 May 85

1. Open a map file corresponding to the users inputs from
AIPS.

2. Create an extension file of type PL (plot) to be assoociated
with +the map file. The header of the map file will be
updated to include this new extension file.

3. Write the plot file records to draw the borders and 1labels
of the plot. The programmer can customize this section of
the program by ohanging data statements and assignment
statements in the main program.

4. VWrite the rest of the plot file records to the plot file.
This is done by subroutine PLTTOR. The programmer will
have to modify the code in PLTTOR for his needs.

5. Do the neoessary olean up funotions, write end of plot
records, olose all files, eto.

11.3.2 Getting Started

The first step is choosing a new name and making copies, using
the new name, of the source code file and the help file. On the
Vax, one should copy files NOTPGM:PFPLn.FOR, and HLPFIL:PFPLn.HLP
("n" stands for 1, 2 or 3) to a user direoctory and work with the
program there. Useful information on running a task from a user’'s
direotory, and on ocompiling and 1linking tasks and on modifying
skeleton tasks ocan be found in other chapters of this manual.

¥hen a task is renamed, some souroce code must be changed. The
first line of the program
PROGRAM PFPLn

and the data statement

DATA PRGNAM /'PF’','PL’,’'mn '/

should be changed to use the new name. The name in the HELP file
should also be changed.

Next, the programmer should oompile and link the task in his
direotory and try running it from AIPS by using adverb VERSION.
This will assure the programmer that the task does work, and also
demonstrate the current output of the task.

PLOTTING Page 11-8
PLOT PARAFORM TASKS 10 May 85

11.3.3 Labeling The Plot

The labeling of the plot takes place in two subroutines oalled
by subroutine PLTTOR. PLINIT will set a number of variables in
oommon that give the labeling routines and the plot drawing routines
information about the ocorners of the plot, the types of the axes,
the type of labeling, the size of the plot borders in characters,
and other details.

Subroutine PLLABL uses the information provided by PLINIT to
actually write the oommands in the plot file to draw the labels,
borders, and tic marks.

The programmer can oustomize the labeling somewhat without
changing either PLINIT or PLLABL by setting values in an array
PCODE, and ochanging data statements in the main program.

Optional text can be printed at the bottom of a plot by setting
values NTEXT (number of 1lines of text), and TEXT (an array
containing the actual text lines). These values are currently set
in data statements in the main program. The programmer can choose
to set NTEXT to 2zero to suppress all of the lines. If the
programmer wishes to wuse more than two lines, then the second
dimension of array TEXT must be changed in all the routines in which
TEXT 1s declared.

See the seotion on +the individual programs for details on
setting PCODES.

11.3.4 Plotting

Plotting oconsists of reading the map, collecting the data, and
then drawing lines or writing grey scale pixels. All of these steps
are usually done in subroutine PLTTOR. Reading a map is usually
done with routine GETROW (see below). Setting a starting point of a
line is usually done with routine PLPOS. Setting the end point of a
line is dome with PLVEC. Grey scale pixels are written with
subroutine PLGRY.

11.3.5 Map I/O

This program does not use the Easy I/O (WaWa) package, but
instead uses the standard AIPS 1I/0 package grouped into a few
subroutines. This approach attempts to make 1life a little easier by
hiding a few of the messy details, but not to eliminate the
flexibllity of the standard I/O by hiding it under a complex system.
These routines wuse the "copy mode" approach to I/O in that data is
read into a large buffer and then ocopied with scaling from the large
I/0 Dbuffer to a smaller buffer when a row is needed. This is less
efficient than using the bare AIPS I/O routines but frees the

PLOTTING Page 11-9
PLOT PARAFORM TASKS 10 May 85

programmer from having <to deal with indexes into the large array,
and handling both floating and integer maps in the upper level
program.

There are four I/O routines in this program, MAKNAM (£fills in a
real array with all the data items that go into specifying a map),
INTMIO (initializes the I/0 routines to read or write a cataloged
map), REIMIO (initializes counters for reading a different subimage
or making another pass through a map opened by INTMIO) and GETROW
(reads a row of a map, and converts the values to floating point
numbers, if necessary). MAKNAM and INTMIO are used in straight
forward ways to open the map. The programmer can usually ignore
these two routines unless a second map must be opened. If the
program must make more than one pass through the data REIMIO can be
used to reset all of the counters. REIMIO assumes that the map is
already opened in INTMIO and that a second pass 1s being made
through the data. This routine can NOT be used %o read different
subimages from the same map at the same time. GETROW must be used
(usually in subroutine PLTTOR) to read data from the map, one row at
a time.

The I/0 routines in this program use a ocommon named MAPHDR.
This name was ohosen to interface with several of the plotting
routines which expeot this common to have the map header as the
first 256 words. Besldes the map header, this common contains an
array, IMSTUF, which has several data items of interest. IMSTUF(9)
is of particular interest since it ocontaing the number of data
values (pixels) in each row of the map. This number is usually the
upper limit of a loop which operates on each element in the map row.
A desoription of all the elements of IMSTUF are listed in the
following table:

1. AIPS I/0 Logical unit number
FTAB index
Integer (1) or real (2) flag.
Blanked value for integers O=no blanking.
Catalog slot of image.
Size of I/0 buffer in bytes.
Disk volume number of image.

Number of dimensions in image.

© 0O T O O b AN D

Number of values read per row of image.

10-16. Number of values along all 7 axes

PLOTTING Page 11-10
PLOT PARAFORM TASKS 10 May 85

17-30. VWindow in BLC TRC pairs along all 7 axes.
31-38. Current position on last six axes.
37 1 1if read forward -1 if backward read on 2nd axis.

Minor modifications in the I/0 routines could be made to
produce routines for reading UV data, but this has not yet been
domne.

11.3.6 Cleaning Up

Some of the adverbs passed from AIPS may not be used for some
types of plots. The programmer can make things easier for the AIPS
user by removing them from the help file. The programmer must then
remove them from the common /INPARM/, which can be found in the main
program and in several of the subroutines. The variable NPARMS 1is
initialized in an assignment statement in the main program. This
must be changed to correspond to the new number of floating point
numbers received from AIPS.

11.3.7 The Three Paraform Plot Tasks

11.3.7.1 PFPL1 - This task should be used when developing a
plotting task in which the X and Y axls of the plot are the same as
the X and Y axis of the map.

Much of the labeling is controlled by values of array PCODE.
The values for the elements of PCODE are summarized in the following
table.

If PCODES(1l) equals

1 then the plot axis consists of an unlabeled
rectangular border.

2 then draw a rectangular border plus
the title and text at the bottom.

3 then draw a reotangular border, labels,
and border tick marks
indicating absolute coordinates (r.a., decl., etc.).

4 then draw a recotangular border, labels, and border tick marks
indicating coordinates relative to the coordinates
of the image reference pixel (units usually in
arc seconds).

5 draw border, labels, and border tick marks
indicating coordinates relative to the center of

PLOTTING Page 11-11
PLOT PARAFORM TASKS 10 May 85

the subimage plotted (units usually in arc seconds).

6 draw border, labels, and border tick marks
indicating image pixzel numbers.

If PCODES(2) equals

0 then label the X axis with the X axis value found in the
rap header.

other then label the X axis using variable XUNIT which is set in
a data statement in the main progran.

If PCODES(3) equals

0] then label the Y axis with the Y axis value found in the
map header.

other then label the Y axis using variable YUNIT whioh is set in
& data statement in the main program.

If PCODES(4) equals

0 then use the "standard" title consisting of map name,
source name, and frequenocy.

other then use the +title given in data statement for
variable TITLE in the main program.

If PCODES(5) equals

0 then no grey socale pixels are to be written for the
plot.

other then grey scale pixels with a range given by PIXRNG
(these values are usually passed from AIPS in adverd
PIXRANGE) can be written to the plot. This code value
causes an ‘init for grey socale’ record to be written
to the plot file.

Usually a task will let the AIPS user ochoose the value of
PCODES(1) by setting adverb LTYPE, e.g., PCODES(1l) is set to LTYPE
after the task gets this adverb value from AIPS.

Vhen using PLPOS and PLVEC the positions for this type of plot
are given in pixels.

The unmodified version of PFPL1 contains code in PLTTOR to read
the map, and drav a grey scale plot. The user should remove this
example found between comment lines “** Plot specifioc code" and “**
End plot specifio code” and insert the code for his own appliocation.

PLOTTING Page 11-12
PLOT PARAFORM TASKS 10 May 85

11.8.7.2 PFPL2 - This task should be used when developing a
plotting task in which +the X axis of the plot is a slice of some
plane of the map, and the Y axis 1is some other value such as
intensity. The PCODE usage 1s descoribed below.

PCODES(1) equals

The label type of the X axis. The codes are the same
as for PFPL1.

If PCODES(2) equals

0] then label the X axis with the units determined by the
"standard" slice labeling algorithm.

other then label the X axls using variable XUNIT which is set in
a data statement in the main program.

If PCODES(3) equals

0 then label the Y axis with the units found in the
map header for the map intensity.

other then label the Y axis using variable YUNIT which is set in
a data statement in the main program.

If PCODES(4) equals

0 then use the "standard" title consisting of map name,
source name, and frequency.

other then use the title given in data statement for
variable TITLE in the main program.

If PCODES(5) equals

0 then use the "standard" slice message at the bottom of
the plot. This message will give the center of the slice.
This message ooours above the message found in TEXT
as described above.

other then do not print the “standard slice message"

The example program in PFPL2 will plot & s&lice of the X Y
plane. The user should remove the example found between ocomment
llnes "** Plot specific code" and "** End plot specific ocode" and
insert the ocode for his own application. This example uses no
interpolation (it uses the value of the nearest pixel) and is NOT
adequate for a producotion program. See the code in task SLICE for a
good set of interpolation routines and a "rolling buffer" scheme.

PLOTTING Page 11-13
PLOT PARAFORM TASKS 10 May 85

11.3.7.3 PFPL3 - This task should be used when developing a
plotting task in whioch the X and Y axis have no relation to the map
X and Y axis. The plot ocould be of a funotion, a histogram of some
values, or a table.

The only PCODES value used are PCODES(4) and PCODES(5). If
PCODES(4) 4is O then the program plots the "standard" title line.
Otherwise, it uses whatever string is in variable TITLE. If
PCODES(8) is mnot zero then this signals the existence of grey scale
pixels. The program automatiocally wuses whatever strings are in
variables XUNIT and YUNIT to label the units for X and Y. Thus, the
programmer will have to edit the data statements for these variables
in the main program, or f£ill them in by some other means.

The example program in the unmodified version of PFPL3 will
plot a simple histogram of map intensities. The subroutine PLTTOR
reads the map to determine the histogram values and the range of the
Y axis (number of pixels). Then the standard initializing routine
(PLINIT) and labeling routine (PLLABL) are oalled. Finally the
histogram is plotted. The programmer must remove the two sections
of example code found between two sets of ocomment 1lines "** Plot
speoific ocode" and "** End plot specific code" and insert the code
for his own application.

11.3.8 Routines

11.3.8.1 PLEND - Do some plotting cleanup funotions. Write "end of
plot" record, olose plot file, check for vectors that were off the
plot.

PLEND (IOBLK, ISTAT)

In/Out:
IOBLK 1I*2(256) Work I/O buffer
ISTAT 1I*2 O=successful completion, other~dies unnaturally.

11.3.8.2 PLPOS - This routine will put a ’‘position vector’ ocommand
in an AIPS plot file.

PLPOS (X, ¥, IERR)

Inputs:
X R*4¢ X value.
Y R*4 Y wvalue.
COMMON /PLTCOM/
Output:

IERR I*2 Error code. O means OK.

PLOTTING Page 11-14
PLOT PARAFORM TASKS 10 May 85

11.3.8.3 PLVEC - This routine will put a ‘draw vector’ ocommand in
an AIPS plot file.

PLVEC (X, Y, IERR)

Inputs:
X R*4¢ X wvalue.
b 4 R*4 Y value.
COMMON /PLTCOM/
Output:

IERR I*2 Error code. O means OKX.

11.3.8.4 PLMAKE - This routine will coreate and open & plot file,
put it in +the map header and write the first record into the plot
file.

PLMAKE (NP, RPARM, IERR)
Inputs:
NP I*2 Number of floating point words in parameter list
recelved from AIPS.
RPARM R*4(NP) AIPS parameters.
Output:
IERR I*2 Error code. two digit, first digit indi-
cates subroutine: 1: MAPOPN, 2: MADDEX,
3: ZPHFIL, 4: GINIT, second digit indi-
cates error code of that subroutine.

11.3.8.5 PLGRY - This routine will put draw grey scale commands in
the plot file.

PLGRY (IANGLE, NVAL, VALUES, IERR)

Inputs:
IANGLE I*2 Angle code. O = horizontal, 1 = vertiocal.
NVAL I*2 The number of grey scale pixel values.
VALUES R*4(?) Grey socale values.

Output:
IERR I*2 Error oode. O=ok.

11.5.8.6 MAKNAM -~ This routine will oconstruct & VWaWa I/O name
string, given the values that make up the thing.

MAKNAM (INAME, INCLAS, SEQ, VOL, TYPE, USER, NAMSTR)
Inputs:
INAME R*4(3) file name
INCLAS R*4(2) file oclass

SEQ R*4 flile sequence number.
VoL R*4 file disk volume.
TYPE R*4 file type.

USER R*4 file user number.

PLOTTING Page 11-15
PLOT PARAFORM TASKS 10 May 85

Output:
NAMSTR R*4(9) "Name string" in the tradition of WaWa I/O.
NAME(1:3) name, NAME(4:5) olass, NAME(6) seq,
NAME(7) volume, NAME(8) type, NAME(9) user.

11.3.8.7 INTMIO - This routine will open a map flle, set values in
common for wuse with olose down routine DIE and set up two arrays
containing all the values and counters needed by reading and writing
routines compatible with this one.

INTMIO (ILUN, ACCESS, NAME, BLC, TRC, IBSIZE, IHD, IMSTUF, DSCAL, IERR
Inputs:
gLUN I*2 Logical unit number to use for the map file.
ACCESS R*4¢ 'READ’ or 'WRITE' status to mark catalog.
NAME R*4(9) "Name string" in the tradition of WaWa I/O.
NAME(1:3) name, NAME(4:5) olass, NAME(6) seq,
NAME(7) volume, NAME(8) type, NAME(9) user.

BLC R*4(7) Bottom left corner of map.

TRC R*4(7) Top right corner of map

IBSIZE 1I*2 Size of I/0 buffer in INTEGER*2 values.
Outputs:

COMMON /CFILES/ Values updated so that subroutine DIE will
close this file.
IHD I*2(256) Map header.
IMSTUF 1I*2(37) I/0 pointers and stuff that are needed by other
I/0 routines oompatible with this one. They are:
LUN
FTAB index
integer (1) or real (2) flag.
Blanked value for integers O=no blanking.
Catalog slot of image.
Size of I/O buffer in bytes of all things.
Volume number of image.
Number of dimensions in image.
- Number of values read per row of image.
10-16. Number of values along all 7 axis
17-30. Window in BLC TRC pairs along all 7 axis.
381-36. Current position on last six axis.
37 1 if read fwd -1 is backwrd read on 2nd axis.
DSCAL R*8(2) Scale factors to use with this image.
IERR I*2 Error ocode. O=0k.

VOO QAN+

11.3.8.8 REIMIO - This routine will reinitialize the oounters in
IMSTUF for reading another subimage of a map opened and set up with
INTMIO. All IMSTUF values that can be found 4in the header are
re-initialized even i1f they are not changed by the standard
routines.

REIMIO (BLC, TRC, IBSIZE, IHD, IMSTUF, DSCAL, IERR)
Inputs:

PLOTTING Page 11-16

PLOT PARAFORM TASKS 10 May 85
BLC R*4(7) Bottom left corner of map.
TRC R*4(7) Top right corner of map
IBSIZE I*2 Size of I/0 buffer in INTEGER*2 values.
IHD I*2(256)Map header.
IMSTUF(1) I*2 LUN
IMSTUF(2) I*2 FTAB index
IMSTUF(7) I*2 Volume number of image.
IMSTUF(8) I*2 Catalog slot of image.
IMSTUF(6) I*2 Size of I/0 buffer in bytes of all things.
Outputs:
IMSTUF(3) I*2 Integer (1) or real (2) flag.
IMSTUF(4) I*2 Blanked value for integers O=no blanking.
IMSTUF(8) I*2 Number of dimensions in image.
IMSTUF(9) I*2 Number of values read per row of image.
IMSTUF(10-16) Number of values along all 7 axis
IMSTUF(17-30) ¥indow in BLC TRC pairs along all 7 axis.
IMSTUF(31-36) Current position on last six axis.
IMSTUF(37) I*2 1l if read fwd -1 is bokwrd read on 2nd axis.
DSCAL R*8(2) Scale factors to use with this image.
IERR I*2 Error code. O=o0k.

11.3.8.9 GETROW - This routine will read a row of an image file
that has been opened with and initialized with INTMIO. The routine
will copy the row from the I/O buffer to the user buffer, converting
integer values to floating point, if necessary.

GETROW (IMSTUF, DSCAL, IOBLK, ROW, EOF, IERR)
Inputs:
IMSTUF I*2(37) I/O pointers, LUNs, counters and such. They are
set in INTMIO.
DSCAL R*8(2) Aotual value = DSCAL(1) * disk value + DSCAL(2)
In/Out:
IOBLK I*2(?) 1I/0 buffer.

Outputs:
ROV R*4(?) Soaled output row of image.
EOF L*2 TRUE means last row specified in INTMIO by the

BLC, TRC arguments has been read.
IERR I*2 Error code, O=0k, others from MDISK.

CHAPTER 12
USING THE ARRAY PROCESSORS

12.1 OVERVIEW

Many of the more important of the AIPS tasks do a great deal of
computation while the cpu of the host computer of most AIPS systems
is rather slow. The traditional approach to inoreasing the
performance of a opu is by means of hardware arithmetic units called
Array Processors. These array processors (or APs) have their own
memory and high speed, pipelined arithmetlic hardware enabling them
to run much faster than the host for certain specialized operations.
Since not all ocomputers running AIPS will have, or need array
processors attached there is a library of Fortran routines which
emulate the funotions of the array processor; these routines and a
common in the host memory constitute the "pseudo-array processor".
Since the details of the implementation of these routines will
depend on the hardware on which the software is run these routines
are explioitly machine dependent and have names beginning with the
letter "Q"; thus the "Q-routines". This ochapter will describe the
use AIPS makes of array processors and explain how to use APs. At
the end of this chapter is a list of the major Q routines with
detailed comments on the call sequence.

12.1.1 Vhy Use The Array Processor?

The principle reason for using an array processor is speed.
The design of most array prooessors optimizes its performance for
repetitive arithmetioc operations making it mush faster at veotor
arithmetio than the host CPU. §Since most APs operate asynchronously
from the host CPU they constitute a co-proocessor which incoreases the
capacity of the system.

A second advantage of using an array processor is that 1t
contains its own 1local memory. On systems with limited physical
memory or address space this ocan be an important consideration. It
will be possible in the near future to get array processors, or fast
CPUs with many megawords of local memory. Such large memories will
allow the use of more efficient methods of processing data.

USING THE ARRAY PROCESSORS
OVERVIEVW

12.1.2 VWhen To Use And Not To Use

The array prooessor 1s most efficient at very
operations such as doing FFTs and multiplying large vectors.
efficlency is greatly degraded for non-repetitive
operations requiring a great number

results of computations.

computations.

Since the APs have thelr own program and data memory,

instructions and the data must
transfered from the AP. These I/O
than the amount saved by using the

As a general rule, use of the
when multiple or complex (such as
reptitious are going to be domne omn

Page 12-2
15 April 85

The AP

repetitive
Its
operations or
of decisions Dbased on the

In fact, most array processors have very
limited ocapability to make decisions based on the

results of

the AP

be transfered to and the results
operations may cost more opu time
array processor.

AP 1s more efficient than the CPU
FFTs) operations which are highly
relatively large amounts of data

(thousands of words or more). In other cases using the AP will
probably not help much and will keep other prooesses from using this
valuable resource.

12.2 THE AIPS MODEL OF AN ARRAY PROCESSOR

The model of an array processor used is colored strongly by our
use of Floating Point Systems FPS AP-120B array processors.
However, expressed in general terms, this model can be emulated on
other real or virtual (pseudo) array processors. It should be noted
that use of the APs requires veotorized programming, henoce,
implementation on super computers or other vector machines should be

relatively efficient. The following desoribes the fundamental
features of the AIPS model of array processors.
- AIPS currently uses APs essentially as vector arithmetio

units. That 1s, data is sent into the AP, some (usually
vector) operation is done, and the reults is returned to
the host CPU. The principle difficulty 41in the
implementation of AIPS on other array or vector processors
is that our ooncept of a vector operation is rather more
general than that of most computing hardware manufactures.
Many of the more complex of the AIPS operations are better
desoribed as pipelined scalar operations. In the AIPS
useage, most high level control and use of disk storage is
done in the host CPU and only arithmetic operations are
done in the AP.

- AIPS oonsiders the AP to be a device which can be assigned
via QINIT and deassigned via QRLSE. Basically, this means
that data will not dissappear from the task’'s assigned AP
data memory between these ocalls. This oconcept has little
meaning for virtual AP except that the data memory is
cleared after a QINIT call.

USING THE ARRAY PROCESSORS Page 12-3
THE AIPS MODEL OF AN ARRAY PROCESSOR 158 April 85

- An AP should have a relatively large local data memory.
The size of the AP data memory is obtained from a common
set by ZDCHIN which reads it from a disk file. The value
in this disk file ocan be modified by the AIPS utility
program SETPAR. In the case of pseudo (virtual) AP's, this
memory is physically in the host CPU. A similar
implementation ocould be done for an AP with significantly
less capacity than an FPS AP-120B.

- In addition to data memory, the AP is assumed to have an
array of 16 integer registers (SPAD) which can be read from
the host CPU. These are used to communicate the addresses
of maxima, minima, etc. This capability is not extensively
used.

- AIPS assumes that the array proocessor is programmable in
that funotions are used which are not now or likely ever to
be in a standard library. If the AP is not programmable or
is otherwise incapable of emulating one of the AIPS
funotions, then these functions must be performed in the
host CPU and hidden from the AIPS routines. Alternately,
these funotions may be reformulated in terms of the
functions available; this will be necessary for efficient
implementation of long vector super computers and the new,
cheap APs.

- Communication with the AP by AIPS is via Fortran ocall
statements which specify the data in the AP memory and
other control information, transfer data between the AP and
host CPU, or synchronize the operation of the AP and host
CPU.

- Data in the AP memory is specified by a base address and an
inorement. In current implementations these addresses are
absolute but this is not assumed. The calling process is
assumed to have absolute ocontrol over an address space
beginning at address O and extending to the address
indicated in the device ocharacteristic oommon (inolude
CDCH.INC) as (1024KAPWRD-1). Word addressing only is used.

- Many of the most orucial funotions used by AIPS routines
depend on data dependent address generation and logic flow.
As mentioned above, implementation of AIPS on an array
processor without this capability will require
reformulation of several of the algrothyms (especially
gridding and the in-core CLEAN) in terms of veotor
operations. This reformulation will likely require vector
logical operations, Gather, Soatter, Merge and Compress
operations.

- AIPS assumes that the AP can handle either integer or real
data values (with the same word size). Complex values
oongist of a pair of real values in adjacent loocations, the
first Dbeing the real part and the second being the

USING THE ARRAY PROCESSORS Page 12-4
THE AIPS MODEL OF AN ARRAY PROCESSOR 15 April 85

iraginary part.

12.3 HOW TO USE THE ARRAY PROCESSOR

Since the array processors used by AIPS have their own program
and data memories the instruotions must be loaded in to the AP and
data sent to, and results returned from the AP. Since the AP runs
asynchronously from the host opu there most also be ways to
synchronize the operations. Then general operations are given in
the following list with the name of the subroutine AIPS uses for the
given operation:

l. Assign / Initilalize the AP. (QINIT)
Transfer data to the AP. (QPUT)
Wait for transfer to ocomplete. (QWD, QWAIT)
Load and execute the AP program. (many)
Wait for computations to finish. (QWR, QWAIT)
Transfer data back to host opu. (QGET)

Wait for transfer to complete. (QWD, QWAIT)

® =2 O O » KO D

Release AP. (QRLSE)

12.3.1 AP Data Addresses

The AIPS convention for specifying data in the AP memory, which
follows the Floating Point Systems (FPS) conventions, is to speoify
data by the zero relative memory address of the first element in an
array, the memory address inorement between the elements of an
array, and the number of elements in the array. On FPS APs the
memory address is an absolute address but in implementations on
other APs the address may be a relative address but this should be
hidden from the programmer.

12.3.1.1 Q Routine Arguments - The call arguments to the Q routines
(AP-routines) are local long integers (Integer4). The exceptions to
this are the host array names passed in QPUT and QGET. The FPS Q
routines convert these to 16 bit unsigned integers.

USING THE ARRAY PROCESSORS Page 12-5
HOW TO USE THE ARRAY PROCESSOR 18 April 85

12.3.1.2 Array Processor Memory Size - Since different array
processors will have different memory sizes the memory size of the
AP 1is carried in the Device Characteristiocs Common which is obtained
by the inoludes DDCH.INC and CDCH.INC. The size of the AP is in the
I*2 value KAPWRD as the multiple of 1024 words of AP data memory.
Any operation with the AP should check that enough data memory is
available and if possible scale the operation to make full use of
the available memory.

12.3.2 Assigning The AP

The array processor is assigned to the calling task using the
AIPS routine QINIT. QINIT incorporates the AIPS priority system and
provides for smooth use of the AP for batch tasks. The AIPS AP
priority scheme is to give tasks with lower Pops numbers (the number
at the end of the task name when it is running) higher priority.
This is done by keeping a list of AP tasks in QINIT. When a task
asks for an AP, QINIT then cheoks to see 1f any AP tasks with a
lower pops number are running; if so then QINIT suspends the task
for a short period and then checks again. The number of times a
task goes through the check - suspend loop before asking for the AP
at the next opportunity is proportional to its Pops number.

QINIT also sets values in common /BPROLC/ (inoludes DBPR.INC
and CBPR.INC) which control the AP roller subroutine QROLL. The
text of these inocludes is shown at the end of this chapter and the
use of the values are desoribed in the detailed desoription of QROLL
given at the end of this chapter.

On some systems batch AIPS tasks present more of a problem.
AIPS Dbatoh tasks are usually run at lower priority than interactive
tasks so they may grab the AP and then not get enough opu oyoles to
finish that AP operation for a wvery 1long time. To avoid this
problem, QINIT increases the priority of the batch task to that of
an interactive task while it has the AP.

QRLSE is used to deassign the AP. QRLSE also 1lowers the
priority of batch tasks after the AP is released.

In the interest of a smooth and friendly system for users, it
is important not to hog +the AP for long periods of time. The
priority system should then work to give lower Pops numbered AIPS
users a larger fraction of the time if they need the AP. A task
should in general not keep the AP tied up for more than B to 10
minutes at a time, less 1f that is practical. For tasks which nay
need to keep the same data in the AP for long periods of time, guch
a8 tasks which ocompute models based on CLEAN components, there is an
AP roller subroutine QROLL.

QROLL determines if it is time to roll out the AP based on
values set by QINIT, will oreate a soratch file (using the /CFILES/
system), oopy the specified contents of the AP memory to & soratch

USING THE ARRAY PROCESSORS Page 12-6
HOW TO USE THE ARRAY PROCESSOR 15 April 85

file, release the AP, walt a short period of time, re-assign the AP
and load the previous contents back into the AP memory. Details of
the ocall sequence to QROLL are found at the end of this chapter.
IMPORTANT NOTE: QROLL (and APROLL) work properly only for f£loating
point data. Integer values rolled will not be restored correctly.

12.3.3 Data Transfers To And From The AP

The fundamental routines for getting data to and from the Array
Processor memory are QPUT and QGET; detalls of the call sequences
can be found at the end of +this ochapter. In addition, for
image-like data there is the routine APIO.

APIO transfers image-like data between disk files and the array
processor. The file open and close and initialization logic are all
contained in this routine. Information about the file and the the
desired properties of the I/O are passed to APIO in the array FLIST.
APIO ocan acocess eilther catalogued °‘MA’' type files or soratch files
using the /CFILES/ ocommon system. APIO can handle arbitrary row
lengths. This is done by breaking up the logical records if they
are larger than 16384 bytes or the buffer size.

NOTE: it is important that data read with APIO either have a
logical record length of 16384 bytes or less or have been written by
APIO with the same buffer size; this may be a problem for catalogued
files if the row length is greater that 4096 for real format data or
8192 for scaled integers. The problem is that APIO will break up
logical records if they are longer than 16384 bytes or the buffer
size and MDISK may leave blank space on the disk if +the shorter
logical record does not fill a disk sector. For this reason it is
good to use a buffer size of 16384 bytes or greater when reading or
writing oatalogued files with APIO. It is IMPORTANT to always use
the same size buffer when accessing a given file.

Useage notes for APIO:

1. Opening the file.

If APIO determines that the file is not open it will
do =so0. The file ocan be either a catalogued file or a
soratoh file using the /CFILES/ common system. If the
catalogue slot number given in FLIST is O or less the file
is assumed to be a soratch file. File open assumes that
the file type is 'MA’ (if ocatalogued), file is opened
patiently without exclusive use.

USING THE ARRAY PROCESSORS Page 12-7
HOW TO USE THE ARRAY PROCESSOR 18 April 85

2. Initlalizatlon.

APIO initializes the I/0 using the values in FLIST
when 1t opens the file. It may be initialized again at any
time using OPCODE ‘INIT'. Also switoching between ‘READ'’
and ‘WRIT' will force flushing the buffer (’'WRIT') and
initialization. Any 1initialization when the current
operation is ‘WRIT' will cause the buffer to be flushed.

3. Closing the file.

The file may be olosed with a call with opcode ‘CLOS’.
If the file i1s being written and a 'CLOS’ call 1s issued,
APIO will flush the buffer. This means that 1f APIO is
being used to write to a disk it MUST be called with
OPCODE='CLOS’, ‘READ’, or 'INIT’' to flush the buffer. NOTE:
All pending AP operations MUST be complete before calling
APIO with opcode 'CLOS'.

4. AP tinming calls.

APIO calls QWD before getting data from or sending
data to the AP but does not call QWR. The calling routine
should call QWR as appropriate.

More detalls about the call arguments are found at the end of this
chapter and an example of the use of APIO is given in a later
section.

12.3.4 Loading And Executing AP Programs

Loading and executing AP programs is done in a single ocall to
the relevant routine. The oall argument also 4includes the
specification of the data, location of the output array, and any
prooessing flags. A list of the AP routines ourrently supported in
AIPS is found at the end of this chapter. If the funotion desired
is not available then it 1s possible to write it for the AP.

12.3.56 Timing Calls

Sinoe array processors normally run asynchronously from the
host CPU timing ocalls are necessary. The subroutine calls basically
suspend the operation of the calling program until the specified AP
operation is oompleted. FPS olaims that data transfers and
computations (not involving the same AP memory) may be overlapped;
however, the results of doing this are erratio and this practioce
should be avoided. On occasion there appear to be timing problems
wvhose symptoms are erratioc and very wrong results which go away when
apparently unnecessary timing calls are added; such as calls to QWR
between calls to computation routines.

USING THE ARRAY PROCESSORS Page 12-8
HO¥W TO USE THE ARRAY PROCESSOR 18 April 85

We use three timing calls:

- QWD suspends the calling program until data transfers to or
from the AP are complete.

— QWR suspends the calling program until the AP completes all
computations.

- QWAIT suspends the calling program until all data transfers
and computations are complete.

12.3.6 Vriting AP Routines

If the current library of AP routines does not ocontain the
desired funotion there are two possibilities for ooding the
funotion: 1) microcoding the routine or 2) using the Veoctor Functor
Chainer (or equivalent on non-FPS APs) to combine existing functioms
to oreate the desired function. If either of these is ohosen the
programmer should also write the corresponding pseudo-AP routines if
the task is likely to have general use. The name of the routine
should start with the 1letter Q and be placed in the appropriate
libraries.

In order to use miocrocode or Veotor Function Chainer (VFC)
routines the following steps must be performed:

1. Compile VFC (or other high 1level language routines) to
agssembly (miorocode) language. For FPS code this is done
by the FPS routine VFC.

2. Assemble miorocode into machine code. For FPS ocode this is
done using APAL.

3. Link edit miocrocode routines together to make an exeocutable
module. For FPS o©ode this is done using APLINK. APLINK
oreates a Fortran or host assembly language routine with
the exeocutable module in a data statment.

4. Compile/assemble the Fortran/assembly language module and
put in the appropriate subroutine link edit library.

It 1s beyond the scope of this manual to desoribe the use of the FPS
or other AP software, the reader is referred to the appropriate
manual provided by the AP vendor.

USING THE ARRAY PROCESSORS Page 12-9
HOW TO USE THE ARRAY PROCESSOR 15 April 85

12.3.6.1 Mioroooding Routines. - It is beyond the scope of this
manual to give details about mioroooding for array processors, see
the AP manuals for these detalls. The general principles of
effiolent miorocoding are that several of the hardware units,
address oomputation, floating add, floating multiply, and memory
acoess, may be given instructions in a given oyole. 1In addition,
the floating point hardware is pipelined. That is, even though it
takes several oycles for an operation, it is broken up into several,
single oycle steps and a new operation can be initiated each cycle.

This architecture allows for very effioclent loops. The 1loop
may be broken into several sections and one section from each of
several passes through the loop may be processed in parallel.
Effiolent ooding of loops may become very oomplicated but careful
coding may speed up the process by a factor of several. The source
code for NRAO written miorocode is kept in the file FPSSUB:WDC.AP.

12.3.6.2 Veotor Funotion Chainer. - The principle purpose of the
Vector Funotion Chainer is to ocombine a number of miorocoded
routines into a single AP ocall. This ocan greatly reduce the
overhead of the host cpu talking to the AP; and, if the individual
AP operations are relatively numerous and short ohaining routines
can make a dramatic improvement in the speed of the overall process.

The Veotor Function Chalner uses source code that looks vaguely
like Fortran but has very limited capabilities and essentially no
acocess to the data memory. Hopefully, in the future there will be
efficient Fortran oompilers for APs. (FPS has such a compiler for
the 120B but NRAO doesn’t have a copy).

12.3.7 FFTs

One of the more common operations using the array processor is
the Fast Fourier Transform (FFT). We have adopted the FPS
conventlon for real-to-complex FFTs in packing the imaginary part of
the 1last complex value into the real part of the first value in the
array. This is allowed because the imaginary part of the first
value and the real part of the last value are always zero. Thig
convention allows the use of the same AP memory or disk space for
the input and output arrays from a real-to-complex FFT,

We also adopt the convention for FFTs that the second half of a
one dimensional array ocome first and that the center is N/2+1 where
N is the number of elements in the array (always a power of two).
In two dimensions this means basically that the center of the array
is at the oorners with the first element of an NX x NY array being
(NX/2+1,NY/2+1). An exception to this 1s that the AIPS +two
dimensional FFT routine DSKFFT expeots the normal order when
transforming from the sky plane to the aperature plane (reverse
transform).

USING THE ARRAY PROCESSORS Page 12-10
HOW TO USE THE ARRAY PROCESSOR 15 April 85

The AIPS utility routine DSKFFT will FFT a two dimensional
array kept 1in a /CFILES/ system soratch file. Real-to-complex,
complex-to-real, or full complex transforms can be done in either
direotion. For real-to-complex or complex-to-real transforms the
maximum and minimum values in the output array and real-to-complex
transforms ocan return either complex, the real part of the result,
or the amplitude of the result. Details of the o0all sequence for
DSKFFT are given at the end of this chapter.

The FFT routines require REAL format data without blanking in
an array which is a power of two on a side. In addition, the center
of an image in a ocatalogued file may not be in the required
(NX/2+1,NY/2+1) position which will produce a phase ramp in the
transformed array. Two AIPS utility routines are useful in this
oase 1) PEAKFN whioh finds the location of the peak of an image near
the center (say of a dirty beam) and 2) PLNGET which will subimage a
catalogued file, float scaled integer input, zero fill the excess,
and rotate the center of the image. Detalled descriptions of these
routines are given at the end of this chapter.

12.4 PSEUDO-ARRAY PROCESSOR

Since not all systems have array processors and many AIPS
systems are running on VAXes which have very large address spaoces
and virtual memory, there is a set of Fortran and assembly language
routines which emulate the functions of an array processor, ie. the
"pseudo-array processor". The pseudo-AP consists of a Common,
obtained by the INCLUDEs DAPC.INC, CAPC.INC, and EAPC.INC, which
serves as the AP data memory and a set of routines which operate on
data in +this common. There are pseudo-AP routines duplicating all
of the funotions of the true array processor so that & task 1is
simple 1linked with the appropriate library to use either a true or
the pseudo-AP. Listings of the pseudo-AP includes appear at the end
of this ochapter. Since Fortran requires one relative indexing
whereas the AP addressing is zero relative, pseudo AP routines must
add 1 to addresses.

12.5 EXAMPLE OF THE USE OF THE AP

In the following example of the use of the array processor, the
elements of two soratoh files oontaining arrays N x M using the
/CFILES/ system (numbers ISCRA and ISCRB) are added and returned to
the file ISCRC. This makes very i1nefficient use of the AP but
illustrates the basioc features. This example also illustrates use
of APIO.

SUBROUTINE FILADD (ISCRA, ISCRB, ISCRC, N, M, IRET)

C FILADD adds two REAL N x M arrays in the /CFILES/ soratoch files
C ISCRA and ISCRB and writes the result in soratch file ISCRC.

USING THE ARRAY PROCESSORS Page 12-11

EXAMPLE OF THE USE OF THE AP 18 April 85
4 Inputs:

C ISCRA I*2 /CFILES/ soratch file number of first input file.
c ISCRB I*2 /CFILES/ soratch file number of second input file.
C ISCRC I*2 /CFILES/ soratoch file number of output file.

C N I*2 Length of a row in the array

c M I*2 Number of rows in the array.

c Output:

C IRET I*2 Return error code 0=>0K, otherwise APIO error

C code.

o e e e e e e e e e e e

INTEGER*2 N, M, INCR, FLIST(22,3), LOOP, IRET,

* ISCRA, ISCRB, ISCRC,

* NO, N22

INTEGER*4 APLOCA, APLOCB, APLOCC, LEN, KAP, BO4,

* ZERO, ONE, TWO

REAL*4 BUFF1(4096), BUFF2(4096), BUFF3(4096), READ, WRITE, CLOSE
INCLUDE ‘'INCS:DDCH.INC’

INCLUDE 'INCS:CDCH.INC'

DATA READ, VWRITE, CLOSE /'READ’, 'WRIT', 'CLOS'/

DATA NO, N22 /0,22/, ZERO, ONE, TWO /0,1,2/

e e e

C Setup for APIO
CALL FILL (N22, NO, FLIST)

C Pixel type = floating
FLIST(4,1) = 0

c Size of array
FLIST(5,1) = N
FLIST(8,1) = M

o] Buffer size (4096 reals)
FLIST(13,1) = 4096 * 2 * NWDPFP

C Copy for other files

CALL COPY (N22, FLIST(1,1), FLIST(1,2))
CALL COPY (N22, FLIST(1,1), FLIST(1,3))

C Set LUNs
FLIST(1,1) = 18
FLIST(1,2) = 17
FLIST(1,3) = 18

C Set /CFILES/ file numbers
FLIST(2,1) = ISCRA
FLIST(2,2) = ISCRB
FLIST(2,3) = ISCRC

c Set AP pointers,
APLOCA = O
LEN = N

C Address for B flle
APLOCB = APLOCA + LEN

C Address for C file
APLOCC = APLOCB + LEN

C Grab AP
CALL QINIT (ZERO, ZERO, KAP)

C Start loop.
DO 100 LOOP = 1, M

Cc File A to AP

CALL APIO (READ, FLIST(1,1), APLOCA, BUFFl, IRET)

USING THE ARRAY PROCESSORS Page 12-12
EXAMPLE OF THE USE OF THE AP 15 April 85
C Check for error
IF (IRET.NE.O) GO TO 999
C File B to AP
CALL APIO (READ, FLIST(1,2), APLOCB, BUFF2, IRET)
C Check for error
IF (IRET.NE.O) GO TO 999
C Vait for data transfer
CALL QWD
C Add
CALL QVADD (APLOCA, ONE, APLOCB, ONE, APLOCC, ONE, LEN)
c Wait for opertaion to finish
CALL QWR
C ¥rite result to disk.
CALL APIO (WRITE, FLIST(1,3), APLOCC, BUFF3, IRET)
C Check for error
IF (IRET.NE.O) GO TO 999
100 CONTINUE
C Release the AP
CALL QRLSE
C Close files.
CALL APIO (CLOSE, FLIST(1,1), APLOCA, BUFF1l, IRET)
C Check for error
IF (IRET.NE.OQ) GO TO 999
CALL APIO (CLOSE, FLIST(1,2), APLOCB, BUFF2, IRET)
C Check for error

IF (IRET.NE.O) GO TO 999
CALL APIO (CLOSE, FLIST(1,3), APLOCC, BUFF3, IRET)
999 RETURN

. o i T — — — —— S D . = G G ——————" f— — ———— — T o e ot i o B T ———— o ——— ——] ——— — — S, " o o e} S AR P A S b e S P

USING THE ARRAY PROCESSORS Page 12-13
INCLUDES 15 April 85

12.6 INCLUDES

There are several types of INCLUDE file which are distinguished
by the first character of their name. Different INCLUDE file types
contain different types of Fortran declaration statments as
described in the following list.

- Dxxx.INC. These INCLUDE files contain Fortran type (with
dimension) deoclarations.

- Cxxx.INC. These files contain Fortran COMMON statments.
- Exxx.INC. These ocontain Fortran EQUIVALENCE statments.
- Vxxx.INC. These ocontain Fortran DATA statments.

- Ixxx.INC. Similar to Dxxx.INC files in that they ocontain
type declarations but the declaration of some varaible is
omitted. This type of include is used in the main program
to reserve space for the omitted variable in the
appropriate common. The omitted variable must be declared
and dimensioned separately.

- 2xxx.INC. These INCLUDE files contain declarations which
may change from one computer or installation to another.

12.6.1 CAPC.INC

C Include CAPC
COMMON /APFAKE/ RWORK, APCORE

COMMON /SPF/ SPAD
c End CAPC

12.6.2 CBPR.INC

c Inoclude CBPR
COMMON /BPROLC/ XTLAST, DELTIM, DELAY, TRUEAP

(o End CBPR

USING THE ARRAY PROCESSORS Page 12-14
INCLUDES 15 April 85

12.6.3 CDCD.INC

C Include CDCH

COMMON /DCHCOM/ NVOL, NBPS, NSPG, NBTB1l, NTABl, NBTB2, NTAB2,
NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR,
CSIZPR, NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP, NBITWD,
NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, XPRDMM, XTKDMM,
NTVACC, NTEKACC, UCTSIZ, BYTFLP, SYSNAM, VERNAM, USELIN,
IFILIT, RLSNAM

COMMON /FTABCM/ DEVTAB, FTAB

C End CDCH.

* % * % ¥

12.6.4 DAPC.INC

C Inolude DAPC
REAL*4 APCORE(1), RWORK(4096)
INTEGER*4 APCORI(1), IWORK(40869), SPAD(186)
COMPLEX CWORK(2048)

c End DAPC

12.6.5 DBPR.INC

C Include DBPR
REAL*4 DELAY
REAL*8 XTLAST, DELTIM
LOGICAL*2 TRUEAP

C End DBPR

12.6.8 DDCH.INC

C Include DDCH
REAL*4 XPRDMM, XTKDMM, SYSNAM(S5), VERNAM, RLSNAM(2)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTABl, NBTB2, NTABZ2,
NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP,
NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC,
NTKACC, UCTSIZ, BYTFLP, USELIM, IFILIT,
DEVTAB(50), FTAB(1)
C End DDCH.

* W K W W

USING THE ARRAY PROCESSORS Page 12-15
INCLUDES 15 April 85

12.8.7 EAPC.INC

c Include EAPC
EQUIVALENCE (APCORE, APCORI), (RWORK, IWORK, CWORK)
End EAPC
12.6.8 IDCH.INC
C Include IDCH

REAL*4 XPRDMM, XTEKDMM, SYSNAM(S), VERNAM, RLSNAM(2)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1l, NTABl, NBTB2, NTAB2,
NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP,
NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC,
NTKACC, UCTSIZ, BYTFLP, IFILIT,
USELIM, DEVTAB(S0)

C End IDCH.

* W N ¥ N

USING THE ARRAY PROCESSORS Page 12-16
ROUTINES 15 April 85

12.7 ROUTINES
12.7.1 Utility Routines

12.7.1.1 APIO - transfers image-like data between disk files and
the array processor. The file open and close and initialization
logic are all contained in this routine. Information about the file
and the the desired properties of the I/0 are contained in the array
FLIST. APIO can access either catalogued 'MA‘ type files or soratoh
files using the /CFILES/ common system.

APIO (OPCODE, FLIST, APLOC, BUFFER, IRET)

Inputs:

OPCODE R*4 Code for the desired operation.

"INIT' forces the initialization of the I/O.

‘READ’' reads a logical record from the disk and
sends it to the specified AP location.

'WRIT' Gets data from the AP and writes it to
disk.

'CLOS’ Closes the file and flushes the buffer if
necessary.

FLIST(22) I*2 An array containing information about the file
and the I/0. Parts are to be filled in by the
calling routine and are for use by APIO.

1l = LUN, must be filled in,

2 = disk number for catalogues files or
/CFILES/ number for scoratch files.

3 = ocatalogue slot number for ocatalogued files,

.LE. O indicates that the file is a scratch

file.

pizxel type. O=>floating, l=scaled integer.

Length of a logical record (row) in pixels.

Number of rows in a plane.

= P I*4 value to be added to 1 for the

block offset.

-12 = the window desired in the image, O's=>
all of image. The logiocal records must fit
in the buffer and be smaller than 16384
bytes to subimage rows. Reversing the
order of FLIST(10) and FLIST(12) will
cause the rows to be accessed in the
reverse order.

13 = Buffer size in bytes. 32767 => 32768.
Used by APIO:
14 = FTAB pointer
15 = Number of MDISK calls per logiocal record.
16 =~ Current OPCODE,
O = none, INIT on next call
1 = READ
2 = WRITE
17-18 = actual length of logical row as I*4
19-22 = Spare.
APLOC I*4 Base address in AP for data.

(o= 2 BN N |

4
5
6
7
9

USING THE ARRAY PROCESSORS Page 12-17
ROUTINES 15 April 85

BUFFER(*) R*4 Working buffer.
Output:

IRET I*2 Return code, 0 => OK oxr
1 = Bad OPCODE,
2 = Attempt to window too large

a file.

8 = Buffer too small (<NBPS bytes)
MDISK error codes + 10, or
MINIT error codes + 20, or
ZOPEN error codes + 30.

12.7.1.2 QROLL - checks if it is time to roll the AP as determined
by values bet by QINIT, copies the first NWORDs of AP main data
memory to a soratch file, gives up the AP, does a task delay for
DELAY, goes back into the AP queue and loads the scratch file back
into the AP. If NWORD .le. O then the AP is not rolled but the AP
is given up and the task goes back into the AP queue.

NOTE: APROLL is called by QROLL and uses common /CFILES/ for the
soratch file. A soratoh file of "type" 'AR’ oreated by APROLL and
then destroyed by QROLL after use.

NOTE: LUN 8 i1s used for I/O and a AIPS "map" I/O slot is opened 1if
the AP memory is actually rolled.

IMPORTANT NOTE: QROLL (and APROLL) work properly only for floating
point data. 1Integer values rolled will not be restored correotly.

QROLL (NWORD, BUFFER, BUFSZ, IRET)

Inputs:

NWORD I*4 Number of words of AP memory to save.
If .le. O the contents of the AP memory are not
saved.

BUFFER(*) R*4 Work buffer.

BUFS2 I*2 Size of BUFFER in bytes.

Inputs from COMMON /BPROLC/ (set by QINIT)

TRUEAP L*2 True if a real AP (to be rolled)

XTLAST R*8 Real time AP assigned (min).

DELTIM R*8 Time interval between rolls (min).

DELAY R*4 Time to delay task (seconds).

Outputs:
IRET I*2 Return error code, O=>0K

2 => ocouldn’t reload AP.

USING THE ARRAY PROCESSORS Page 12-18
ROUTINES 15 April 85

12.7.1.3 DSKFFT - a disk based, two dimensional FFT. If the FFT
all fits in AP memory then the intermediate result is not written to
disk. Input or output images in the sky plane are in the usual form
(1.e. center at +the ocenter, X the first axis). Input or output
images in the uv plane are transposed (v the first axis) and the
center-at-the-edges oconvention with the first element of the array
the ocenter pixel.

DSKFFT (NR, NC, IDIR, HERM, LI, LW, LO,
* JBUFSZ, BUFFl, BUFF2, SMAX, SMIN, IERR)

Inputs:

NR I*2 The number of rows in input array (# columns in
output). When HERM is TRUE and IDIR=-1, NR is twioce
the number of complex rows in the input file.

N I*2 The number of columns in input array
(# rows in output).

IDIR I*2 1 for forward (+1i) transform, -1 for inverse (-i)
transform.

If HERM = .TRUE. the follwing are recognized:
IDIR=1 keep real part omnly.
IDIR=2 keep amplitudes only.
IDIR=3 keep full complex (half plane)

HERM L*2 When HERM = .FALSE., this routine does a ocomplex to
ocomplex transform.

When HERM = .TRUE. and IDIR = -1, it does a
complex to real transform. VWhen HERM = .TRUE. and
IDIR = 1, it does real to complex.

LI I*2 File number in /CFILES/ of input.
LW I*2 File number in /CFILES/ of work file (may equal LI).
Lo I*2 Flle number in /CFILES/ of output.

JBUFSZ I*2 §Size of BUFF1l, BUFF2 in bytes. Should be large
at least 4096 R*4 words.

Output:

BUFF1l R*4 Vorking buffer

BUFF2 R*4 Working buffer

SMAX R*4 For HERM=.TRUE. the maximum value in the output file.
SMIN R*4 For HERM=.TRUE. the minimum value in the output file.
IERR I*2 Return error ocode, 0=>0OK, otherwise error.

NOTE: Uses AIPS LUNs 23, 24, 25.

12.7.1.4 PEAKFN - pearches a region around the center of an image
to loocate the pixel loocation of the maximum. Will handle data oubes
and either integer or floating images.

PEAKFN (LUN, VOL, CNO, IDEPTH, CATBLK, IBUFF,
* BUFFER, JBUFSZ, PEAKX, PEAKY, IRET)

Inputs:
LUN I*2 Logical unit number to use.

USING THE ARRAY PROCESSORS Page 12-19

ROUTINES 18 April 85
VOL I*2 Disk on which image resides.
CNO I*2 Catalog slot number of image.

IDEPTH(B) I*2 Depth in image of desired plane.

CATBLK(256) I*2 Catalog header bloock for image.

IBUFF(*) I*2 Integer work buffer.

BUFFER(*) R*4 Real work buffer should be physically the same as

IBUFF.
JBUFS2Z I*2 §Size of the IBUFF/BUFFER in bytes
Output:
PEAKX R*4 X coordinate of peak pixel location.
PEAKY R*4 Y ocoordinate of peak pixel location.
IRET I*2 Return code, O=> OK, otherwise error.

12.7.1.5 PLNGET - reads a selected portion of & selected plane
parallel +to the front and writes it into a specified scratoh file.
The output file will be zero padded and a shift of the center may be
speocified. Output flle 1s REAL*4¢ but the input may be either
INTEGER*2 of REAL*4. If the input window is unspecified (0’'s) and
the output file is smaller than the input file, the NX x NY region
about position (MX/2+1-OFFXK, MY/2+1-OFFY) in the input map will be
used where MX,MY is the size of the input map. NOTE: If both XOFF
and/or YOFF and a window (JWIN) which does not contain the whole map
are given, XOFF and YOFF will still be used to end-around rotate the
region inside the window.

PLNGET (IDISK, ICNO, CORN, JWIN, XOFF, YOFF,
* NOSCR, NX, NY, BUFFl, IBUFFl, BUFF2, BUFSZ1l, BUFSZ2,
* LUN1, LUN2, IRET)

Inputs:

IDISK I*2 Input image disk number.

ICNO I*2 Input image catalogue slot number.

CORN(?) I*2 BLC in input image (1 & 2 ignored)

JVIN(4) I*2 Window in plane.

XOFF I*2 offset in cells in first dimension of the
center from MX/2+1 (MX 1lst dim. of input win.)

YOFF I*2 offset in cells in second dimension of the
center from MY/2+1 (MY 2nd dim. of input win.)

NOSCR I*2 Scoratch file number in common /CFILES/ for
output.

NX, NY I*2 Dimensions of output fils.

BUFF1(*) R*4 VWork buffer

IBUFF1(*) I*2 VWork buffer (should be the same as BUFF1)
BUFF2(*) R*4 Work buffer.

BUFSZ1 I*2 Size in bytes of BUFF1/IBUFF1
BUFSZ2 I*2 §Size in bytes of BUFF2

LUN1, LUN2 I*2 Log. unlt numbers to use.
Output:

IRET I*2 Return error code, 0 => OK,

1 = cgouldn’t ocopy input CATBLK
2 = wrong number of bits/pixel in input map.

USING THE ARRAY PROCESSORS Page 12-20

ROUTINES 15 April 85
3 input map has inhibit bits.
4 couldn’t open output map file.
5 couldn’t init input map.
6 couldn’t init output map.

read error input map.

write error output map.
error computing block offset
O = output file too small.

7
8
9
1

Useage notes:
CATBLK in COMMON /MAPHDR/ is set to the input file CATBLK.

12.7.2 Array Processor Routines

The names and funotions of the general purpose AP routines are given

in the following brief 1list. A number of specialized routines for

CLEANing, gridding uv data and model computations have been omitted.
~ QGET (HOST, AP, N, TYPE) Transfer data from AP to host

-~ QGSP (I, NREG) Reads the value of an SPAD register (FPS and
pseudo)

~- QPUT (HOST, AP, N, TYPE) Transfer data from host to AP.

~ QRFT (UDATA, UFT, UPHO, NFT, NDATA) Computes real, inverse
Fourier transform from arbitrarily spaced data.

~ QWAIT (no arguments) Suspends host until all transfers and
computations are complete.

-~ QWD (no arguments) Suspends host until all transfers of
data are complete.

- QWR (no arguments) Suspends host until all computations are
complete.

- QBOXSU (A, I, NB, C, J, N) Does a boxoar sum on a veotor.
~ QINIT (Il, I2, I3) Assigns and initializes AP.

- QRLSE (no arguments) Releases the AP

- QCFFT (C, N, F) Complex FFT.

- QCRVMU (A, I, B, J, C, K, N) Complex - real veotor
nultiply.

USING THE ARRAY PROCESSORS Page 12-21
ROUTINES 15 April 85

- QCSQTR (CORNER, SIZE, ROW) In-place transpose of square
complex matrix.

- QCVCMU (A, I, B, C, J, N) Multiplies a complex socalar times
the oomplex conjugate of a complex veotor producing a real
veotor.

- QCVCON (A, I, C, K, N) Take complex oonjugate of ocomplex
vector.

- QCVEXP (A, I, C, K, N) Complex vector exponentiation.

- QCvJaD (A, I, B, J, C, K, N) Adds a complex vector to the
complex oonjugate of another complex vector.

- QCVMAG (A, I, C, K, N) Complex veotor magnitude squared.

- QCVMMA (A, I, C, N) Finds the maximum square modulus of a
complex vector.

- QCVMOV (A, I, C, K, N) Copy one complex vector to another.

- QCVMUL (A, I, B, J, C, K, N, F) Multiply two ocomplex
vectors.

- QCVSDI (A, I, B, C, J, N) Divide a weighted complex veotor
by a ocomplex socalar, weight is multiplied by the amplitude
of the scalar.

- QCvsMs (A, I, B, C, J, D, K, N ,LFLAG) Subtract a real
veorot tiems a oomplex scalar from a complex vector.

- QDIRAD (A, IA, B, N) Complex directed add.

- QHIST (A, I, C, N, NB, AMAX, AMIN) Compute histogram of a
vector.

- QLVGT (A, I, B, J, C, K, N) Logical vector greater than.

- QMAXMI (A, I, MAX, MIN, N) Find maximum and minimum values
in a vector.

- QMAXV (A, I, C, N) Find maximum in an array.
- QMINV (A, I, C, N) Find minimum in an array.
- QMTRAN (A, I, C, K, MC, NC) Matrix transpose.

- QPHSRO (A, I, B, J, PHASO, DELPHS, N) Imposes a phase
gradient on a complex vector.

- QPOLAR (A, I, C, K, N) Rectangular to polar conversion.

USING THE ARRAY PROCESSORS Page 12-22
ROUTINES 15 April 85
- QRECT (A, I, C, K, N) Polar to rectangular conversion.

- QRFFT (C, N, F) Real to complex or vice versa fast Fourier
transform.

- QSVE (A, I, C, N) Sum of vector elements.

- QSVESQ (A, I, C ,N) Sum of the square of the elements of a
vector.

- QVABS (A, I, C, K, N) Vector absolute value.
- QVADD (A, I, B, J, C, K, N) Vector add.

- QVCLIP (A, I, B, C, D, L, N) Vector olip.

- QVCLR (C, N) Vector oclear.

- QVDIV (A,

K,

- QVCOos (A, I, C, K, N) Vector cosine.
I, B, J, C, K, N) Vector division.
I,

- QVEXP (A, C, K, N) Vector exponentiation.
- QVFILL (A, C, K, N) Vector fill.

- QVFIX (A, I, C, K, N) Veotor real to integer.
- QVFLT (A, I, C, K, N) Vector integer to real.

- QVIDIV (A, I, D1, D2, B, J, N) Divide a vector by the
product of two scalar integers.

- QVLN (A, I, C, K, N) Veotor natural logarithm.

- QVMA (A, I, B, J, C, K, D, L, N) Veotor multiply and add.
- QVMOV (A, I, C, K, N) Copy one vector to another.

- QVMUL (A, I, B, J, C, K, N) Veotor multiply.

- QVNEG (A, I, C, K, N) Take negative of a vector.

- QVRVRS (C, K, N) Reverse a vector.

- QVSADD (A, I, B, C, K, N) Vector scalar add.

- QVSIN (A, I, C, K, N) Vector sine.

- QVsMA (A, I, B, C, K, D, L, N) Vector scalar multiply and
add.

USING THE ARRAY PROCESSORS Page 12-23
ROUTINES 15 April 85

- QVSMAFX (A, I, B, C, D, L, N) Vector scalar multiply, add
and fix.

- QVSMSA (A, I, B, C, D, L, N) Veotor scalar multiply, scalar
add.

- QVSMUL (A, I, B, C, K, N) Vector scalar multiply.
- QvSQ (A, I, C, K, N) Veotor square.

- QVSQRT (A, I, C, K, N) Vector square root.

- QVSUB (A, I, B, J, C, K, N) Subtract two vectors.
- QVSWAP (A, I, C, K, N) Swap two vectors.

- QVTRAN (M, N, IAD, LV) Transpose a row stored M x N array
of row vectors of length LV.

12.7.3 AP Routine Call Sequences

A note should be made about the conventions used in the
description of the routines. Data addresses are normally denoted by
A, B, C, or D and their increments (stride) by I, J, K, L and an
element ocount by N. In the desoriptions of the routines, many of
the values in AP memory are referred by the name given to the
varlable giving the address, e.g., A(mI) is used to denote the value
in memory location A + m*I. All input variables are I*4 unless
otherwise marked.

12.7.3.1 QGET - Transfer data from AP memory to host core.
QGET (HOST, AP, N, TYPE)

Inputs:
AP I*4 Target area in AP; O-relative, inorement=1
N I*4 Number of elements
TYPE I*q Data type:
0 data is I*4 in host
1 data is I*2 in host
2 data is R*4 in host
Output:

HOST(*) R*4/I*2 Data array in "host"

USING THE ARRAY PROCESSORS Page 12-24
ROUTINES 15 April 85

12.7.3.2 QGSP - Read contents of SPAD register. FPS and Pseudo AP
only.

QGSP (I, NREG)
Inputs:
NREG 1I*4 SPAD register number desired

Outputs:
I I*4 Contents of the SPAD register.

12.7.3.83 QPUT - Transfer data from host memory to AP memory.
QPUT (HOST, AP, N, TYPE)

Inputs:
AP I*q Target area in AP; O - relative, inorement=1.
N I*4 Number of elements
TYPE I*4 Data type:

0 data is I*4 in host

1 data is I*2 in host

2 data 1s R*4 in host
HOST(*) R*4/I*2 Data array in "host"

12.7.3.4 QRFT - Computes a real, inverse fourier transform from
arbitarily but uniformly spaced data.

QRFT (UDATA, UFT, UPHO, NFT, NDATA)

Inputs:
UDATA AP base address of input data.
UFT AP base address of output F. T.

UPHO AP base address of phase information for F. T.
0=COS((TWOPI/(NG*NFT))*(1-ICENT)(1-BIAS))
1=SIN((TWOPI/(NG*NFT))*(1~-ICENT)(1~BIAS))
2=COS((TWOPI/(NG*NFT))*(1-ICENT))
3=SIN((TWOPI/(NG*NFT))*(1-ICENT))
4=COS((TWOPI/(NG*NFT))*(1-BIAS))
5=SIN((TWOPI/(NG*NFT))*(1-BIAS))
6=COS((TWOPI/(NG*NFT)))
7=SIN((TWOPI/(NG*NFT)))

ICENT = center pixel of grid
BIAS = center of data array (1 rel)
NG = No. tabulated points per cell.
NFT Number of FT points
NDATA Number of data points.

USING THE ARRAY PROCESSORS Page 12-25
ROUTINES 18 April 85

12.7.3.8 QVWAIT - Suspend host task until all AP I/0 and
computations are complete.

QWAIT

12.7.3.6 QWD - Suspend host task until all AP I/O is complete.
QWD

12.7.3.7 QWR - Suspend host task until all AP ocomputations are
complete.

QWR

12.7.3.8 QBOXSU - Do a boxcar sum on a vector; values at the ends
of the veotor are the sum of the values within one boxcar length of
the ends.

QBOXSU (A, I, NB, C, J, N)

Inputs:
A input vector base address
I input vector increment
NB boxcar width
C output vector base address; output veotor
should not overlap input
J output inocrement
N number of elements

12.7.3.9 QINIT - Implements AIPS AP priority for true AP, inoreases
the task priority for AIPS batoh tasks using a true AP and asslgns
an AP.

QINIT (Il, I2, I3)

Inputs:

Il I*2 Dummy

I2 I*2 Dumny

Outputs:

I3 I*2 AP number (Neg. to indicate virtual AP, ie. not
to be rolled.

USING THE ARRAY PROCESSORS Page 12-26
ROUTINES 15 April 85

12.7.3.10 QRLSE - Releases the AP, lowers task priority for AIPS
batch tasks using a true AP.

QRLSE

12.7.3.11 QCFFT - Do an in-place complex fast Fourier tasnsfornm.

QCFFT (C, N, F)

Inputs:
C Base address (0O-rel) of complex array to transform
N Number of points in array (must be power of two.)
F Transform direction; 1 -» Forward

-1 -> Backward

12.7.3.12 QCRVMU - Multiply the elements of a complex vecotor by the
elements of a real veotor.
C(mK)+iC(mK+1) = (A(mI)*B(mJ)) + 1(A(mI+1)*B(mJ))
m=0 to N-1

QCRVMU (A, I, B, J, C, K, N)

Inputs:
Source complex vector base address.
Increment of A
Sourge real vector base address
Inorement of B
Destination vector base address
Inorement of C
Element count

ZRQWH>

12.7.3.13 QCSQTR - Do an inplace transpose of square matrices of
complex values.

QCSQTR (CORNER, SIZE, ROW)

Inputs:

CORNER AP location of first ocorner of matrix encountered.
SIZE Size (number of reals) of a row or column.

ROW Number of loocations in AP between beginnings

of the rows.

USING THE ARRAY PROCESSORS Page 12-27
ROUTINES 16 April 85

12.7.3.14 QCVCMU - Multiply a socalar ocomplex value times the
complex conjugate of a vector producing a real veoctor.

C(K) = REAL(B)*A(K)+IMAG(B)*A(K+l) K = 1,N
QCVCMU (A, I, B, C, J, N)

Source complex vector base address.
I Incorement of A
B Address of scalar (real part)
C Destination real vector base address.
J Inorement of C
N Element count (reals)

12.7.3.15 QCVCON - Take complex conjugate of a veotor.

C(k) = Re(A(k)) - 1 * Im(A(k)
for X = O,N-1
QCVCON (A, I, C, K, N)

A Source vector base address.

I Increment of A

C Destination vector base address
K Inorement of C

N Element count

12.7.3.16 QCVEXP - Exponentiate a complex vector.

C(mK) + i1C(mEK+1) = COS (A(mI)) + i SIN (A(mI))
m =0 to N-1

QCVEZXP (A, I, C, K, N)

A Source veoctor base address.

I Increment of A

C Destination veotor base address
K Inorement of C

N Element count

USING THE ARRAY PROCESSORS Page 12-28
ROUTINES 16 April 85

12.7.8.17 QCVJAD - Add the elements of one complex veoctor to the
complex conjugate of the elements of another complex vector.

C(k) = Re(A(k))+Re(B(k))+i (Im(A(k))-Im(B(k)))
for k = Q,N-1

QCvJgaD(A,I,B,J,C,K,N)

Inputs:

Source vector base address.

Increment of A

Source veotor base address (conjugate)
Increment of B

Destination vector base address
Increment of C

Element count

ZROGEHD

12.7.3.18 QCVMAG - Square the magnitude of the elements of a
complex vector.

C(mK) = A(mI)**2+A(mI+1)**2 for m = O,N-1
QCVMAG (A, I, C, kK, N)

Inputs:

Source vector base address

A address inorement
Destination veotor base address
C address increment

Element count

ZHRAQH>»

12.7.3.19 QCVMMA - Find the maximum of the square modulus of a
complex vector.

QCVMMA (A, I, C, N)

Inputs:
A Source veotor base address
I Inorement of A
C Destination vector.
0 = MAX(A ** 2) (real)
1l = location of max
(integer)
N Element ocount
Also:
SPAD(15) = index of max.

USING THE ARRAY PROCESSORS Page 12-20
ROUTINES 15 April 85

12.7.3.20 QCVMOV - Copy one complex vector to another.
QCVMOV (A, I, C, K, N)

Inputs:

Source vector base address

A address inorement

Destination veotor base address
C address linorement

Element count

ZRAQHD>

12.7.3.21 QCVMUL - Multiply the elements of two complex vectors.

(C(mK)+iC(mK+1)) = (B(mJ)+iB(mJ+1)*(A(nI)+1A(mI+1)) if F=1
(C(mK)+iC(mK+1)) = (B(mJI)+iB(mJ+1)*(A(mI)-1A(mI+1)) if F=-1

QCvMUL (A, I, B, J, C, K, N, F)

Inputs:

Source vector base address

A address increment

Source veotor base address

B address increment

Destination veotor base address

C address incorement

Element ocount

Conjugate flag, 1 => normal complex multiply
-1 => multiply with oconj of A

H2ERQaUUWH>

12.7.3.22 QCVSDI - Divide the elements of a oomplex vector with
wvelghts by a complex socalar. The complex vector is expeocted to have
data in the order real, imaginary, weight. The weight is multiplied
by the amplitude of the complex scalar. This is used for AIPS uv
data.

C(md) = (1./(B(1)**2+B(2)**2))*(A(nI)*B(1)+A(mI+1)*B(2))
C(md+1) = (1./B(1)**2+B(2)**2))*(A(mI+1)*B(1)-A(mI)*B(2))
C(mJ+2) = A(mI+R) * SQRT(B(1)**2+B(2)**2) for m = 0, N-1

QCvVsDI (A, I, B, C, J, N)
Inputs:

A Source veotor base address.
I Increment of A

USING THE ARRAY PROCESSORS Page 12-30

ROUTINES 15 April 85
B Source scalar address.
C Destination vector base address
J Increment of C
N Element count

12.7.3.23 QCVSMS - Subtract the elements of a real vector times the
elements of a oomplex scalar from a complex vector, alternately i
(SQRT(-1)) times +the real veotor times the ocomplex socalar is
subtracted from the ocomplex vector. Since the element count is
expected to be small the looping is not very efficient.

If FLAG > O
D(mK) = A(mI) - B(1l) * C(mJ)
D(mK+1) = A(mI+1) - B(2) * C(mJ) for m=0, N-1

If FLAG < O
D(mK) = A(mI) - i * B(1l) * C(mJ)
D(mE+1) = A(mI+l) - 1 * B(2) * C(mJ) for m=0, N-1

QCvsMs (A, I, B, C, J, D, K, N ,FLAG)

Inputs:

A Source complex vector base address.

I Increment of A

B Source ocomplex scalar address.

c Source real veotor base address

J Increment of C

D Destination complex vector base address
K Increment of D

N Element ocount

FLAG Flag, i1f < O multiply complex scalar by i

12.7.3.24 QDIRAD - Do & complex directed add.

B(A(IA*J)) = B(A(IA*J))+A(IA*J+1) for J = O,N-1
B(A(IA*J)+1) = B(A(IA*JI)+1)+A(IA*T+2)

QDIRAD (A,IA,B,N)

Inputs:
A Source veotor base address

0 => address (integer) to be added to
(address is zero relative)

1,2 => complex value (reals)

IA Inorement for A

B Destination vector base address

N Element count

USING THE ARRAY PROCESSORS Page 12-31
ROUTINES 16 April 85

12.7.3.25 QHIST - Compute the histogram of a veoctor. Histogram
element (NB-1)*(DATA-MIN)/(MAX-MIN) where DATA is the data value is
inoremented.

QHIST (A, I, C, N, NB, AMAX, AMIN)

Inputs:
A Source veotor base address.
I A address inorement.
C Histogram base address
Histogram must be oleared before first call.
N Element count for A
NB Number of bins in histogram
AMAX Address of histogram maximum.
AMIN Address of histogram minimum.

12.7.3.26 QLVGT - Logical veotor greater than.

C(mk) = 1.0 if A(rI)>B(mJ)
C(mk) = 0.0 if A(mI)=<B(nJ) for m = O,N-1

QLVGT (A, I, B, J, C, K, N)

Inputs:

Source vector base address

A address increment

Source vector base address

B address inorement

Destination veotor base address
C address increment

Element count

ZRQaGH>

12.7.3.27 QMAIMI - Search the given vector for maximum and minimum
values.

QMAXMI (A, I, MAX, MIN, N)

Inputs:

A Source vector base address
I Inorement of A

MAX Loocation for maximun.

MIN Location for minimum.

N Element count.

USING THE ARRAY PROCESSORS Page 12-32
ROUTINES 15 April 85

12.7.3.28 QMAXV - Find maximum value of a vector and address of the
maximum.

QMAXV (A, I, C, N)

Inputs:
A Source vector base address
I A address inorement
C Destination base address
C(0) = Max (A(mI)) m = 0 to N-1
C(1) = address. also in SPAD 15.
N Element count

12.7.3.29 QMINV - Find minimum value of a vector and address of the
ninimum.

QMINV (A, I, C, N)

Inputs:
A Source vector base address
I A address inorement
C Destinatlion base address

C(0) = Max (A(mI)) m = 0 to N-1
C(1) = address. also in SPAD 15
N Element count

12.7.3.30 QMTRAN - Transpose a matrix.
C((p+qMC)K) = A((g+pNC)I)
p = 0 to MC-1
qg = 0 to NC-1

QMTRAN (A, I, C, K, MC, NC)

Inputs:
A Source matrix base address
I A address lncrement
C Destination matrix base address
K C address inorement

MC Number of columns of A
NC Numbers of rows of A

USING THE ARRAY PROCESSORS

ROUTINES

12.7.3.31

Page 12-33
16 April 85

QPHSRO - Add a phase gradient to a complex array.

B(J) = A(J)*EXP(-1i*(PHASO+J*DELPHS)) for j = O,N-1

QPHSRO (A, I, B, J, PHASO, DELPHS, N)

Inputs:
A

I

B

J
PHASO

DELPHS
N

Source vector base address.
Inorement of A

Destination base address.

Increment of B

Address of complex unit vector with
phase PHASO

Address of ocomplex unit vector with
phase DELPHS

Element ocount

12.7.3.32 QPOLAR - Rectangular to polar conversion.

C(mK) = SQRT (A(mI)**2 + A(mI+1)**2)
C(mK+1) = ARCTAN (A(mI+1l) / A(mI)) for m = O to N-1

QPOLAR (A, I, C, K, N)

Inputs:

ZHROQH>»

Source vector base address

A address inocrement

Destination veotor base address
C address inorement

Element count

12.7.3.33 QRECT - Polar to rectangular vector oconversion.

C(mkK) = A(mI) * COS (A(mI+1))
C(mE+1) = A(mI) * SIN (A(mI+l)) for m = O to N-1

QRECT (A, I, C, K, N)

Inputs:

ZRAQHA>

Souroce vector base address

A address inorement

Destination veotor base address
C address lincrement

Element count

USING THE ARRAY PROCESSORS Page 12-34
ROUTINES 15 April 85

12.7.3.34 QRFFT - Does an in-place real-to-complex forward or
complex-to-real inverse FFT.

QRFFT(C, N, F)

Inputs:
C Base address of source and destination vector
N Real element count (power of 2)

F flag, l=>forward FFT, -1=> reverse FFT.

12.7.3.35 QSVE - Sum the elements of a vector
C = SUM (A(mI)) m = 0 to N-1
QSVE (A, I, C, N)

Inputs:

A Source vector base address.
I Increment of A

C Destination socalar address
N Element count

12.7.3.36 QSVESQ - Sum the squares of the elements of a veator
C - SUM (A(mI) * A(mI)) for m=0 to N-1

QSVESQ (A, I, C ,N)

Inputs:

A Source vector base address.
I Increment of A

C Destination scalar address
N Element ocount

12.7.3.37 QVABS -~ Take the absolute value of the elements of a
vector.

C(mkK) = ABS (A(mI)) for m = 0 to N-1
QVABS (A, I, C, K, N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address increment

USING THE ARRAY PROCESSORS Page 12-35
ROUTINES 15 April 85

N Element count

12.7.3.38 QVADD - Add the elements of two veotors.
C(mK) = A(mI) + B(mJ) for m = O to N-1
QvADD (A, I, B, J, C, K, N)

Inputs:

First source vector base address
A address inocrement

Second source vector base address
B address increment

Destination vector base address

C address increment

Element count

ZRQuEHH>

12.7.3.39 QVCLIP - Limits the values in a veotor to a specified

range.
D(mL) ~ B if A(mI) < B
= A(mI) if B <= A(mI) ¢ C
= C if C <= A(mI) for m = O to N-1
QVCLIP (A, I, B, C, D, L, N)
Inputs:

Source vector base address

A address increment

Address of lower limit

Address of upper limit
Destination veotor base address
D address inorement

Element count

ZPoawH>»

12.7.3.40 QVCLR - Fill & veotor with zeroes.
C(mK) =0 form=0 to N-1

QVCLR (C, K, N)
Inputs:
C Destination vector base address
K C address inorement
N Element count

USING THE ARRAY PROCESSORS Page 12-36
ROUTINES 15 April 85
12.7.8.41 QVCOS - Take the cosine of elements in a veoctor.

C(mK) = COS (A(mI)) for m = 0 to N-1

QvCos (A, I, C, K, N)

Inputs:
A Source vector base address
I A address increment
C Destination vector base address
K C address inocrement
N Element count

12.7.3.42 QVDIV - Divide the elements of two vectors.
C(mK) = B(nJ) / A(mJ) for m = O to N-1
QvDIV (A, I, B, J, C, K, N)

Inputs:
A First source vector base address
I A address inocrement
B Second source vector base address
Jd B address inorement
C Destination vector base address
K C address increment
N Element count

12.7.3.43 QVEXP - Exponentiate the elements of a veoctor.
C(mK) = EXP (A(mI)) for m = O to N-1
QVEXP (A, I, C, K, N)

Inputs:
A Source vector base address
I A address inocrement
C Destination vector base address
K C address inorement
N Element count

USING THE ARRAY PROCESSORS Page 12-37
ROUTINES 16 April 85

12.7.3.44 QVFILL - Fill a veoctor with a constant.
C(mK) = A form=0, N-1
QVFILL (A, C, K, N)

Inputs:
A Source scalar base address
C Destination vector base address
K C address increment
N Element count

12.7.3.45 QVFIX - Convert the elements of a vector from real
integer.

C(mkK) = FIX (A(mI)) for m = 0 to N-1
QVFIX (A, I, C, K, N)

Inputs:
A Source vector base address
I A address inorement
C Destination veotor base address
K C address increment
N Element count

12.7.3.46 QVFLT - Convert the elements of a vector from integer
real.

C(mK) = FLOAT (A(mI)) for m = 0 to N-1
QVFLT (A, I, C, K, N)

Inputs:

Source vector base address

A address inorement

Destination vector base address
C address inocrement

Element count

ZHRHQH>

to

to

USING THE ARRAY PROCESSORS Page 12-38
ROUTINES 15 April 85

12.7.3.47 QVIDIV - Divide the given vector by the product of two
integers.
B(nJ) = A(mI)/(D1*D2) for m = O,N-1
QVIDIV (A, I, D1, D2, B, J, N)

Inputs:

A Source vector base address.

I Increment for A

Dl first dividend. Actual value, not an address.
D2 Second dividend. Actual value, not an address.
B Destination vector base address.

J Increment for B

N Element ocount.

12.7.3.48 QVLN - Take the natural logrithm of the elements of a
vector.

C(mK) = LOGe (A(mI)) for m=0 to N-1
QVLN (A, I, C, K, N)

Inputs:

A Source vector base address.

I Increment of A

C Destination vector base address
K Increment of C

N Element count

12.7.3.49 QVMA - Multiply two vectors and adds a third.
D(mL) = (A(mI) * B(mJ)) + C(mK) for m = 0, N-1
QvMA (A, I, B, J, C, K, D, L, N)

Inputs:

First source vector base address
A address increment

Seocond source vector base address
B address inorement

Third source vector base address
C address inocrement

Destination vector base address
D address inorement

Element count

ZHoRQuWH D>

USING THE ARRAY PROCESSORS Page 12-39

ROUTINES

15 April 85

12.7.3.80 QVMOV - Copy the elements of one veotor to another.

C(mK)

= A(mI) for m = 0, N-1

QVMOV (A, I, C, K, N)

Inputs:

ZRaQHD>

12.7.3.51
C(mK)

Source vector base address.
Increment of A

Destination vector base address
Increment of C

Element count

QVMUL - Multiply the elements of two vectors.

= A(mJ) * B(mJ) for m = 0 to N-1

QVMUL (A, I, B, J, C, K, N)

Inputs:

ZrRaqgHH>

12.7.3.82

First source vector base address
A address inorement

Second source vector base address
B address inorement

Destination vector base address

C address increment

Element count

QVNEG - Take the negative of the elements of a veotor.

C(mkK) = - A(mI) for m = 0 to N-1

QVNEG (A, I, C, K, N)

Inputs:

ZRQH>

Souroce vector base address

A address inocrement

Destination veotor base address
C address inorement

Element ocount

USING THE ARRAY PROCESSORS Page 12-40
ROUTINES 15 April 85
12.7.3.53 QVRVRS - Reverse the elements in a vecotor.

C(mK) = C((N-m)XK) for m = O, N-1

QVRVRS (C, K, N)

Inputs:
C Source and destination vector base address
K C address inorement
N Element count

12.7.3.54 QVSADD - Add a scalar to the elements of a vector.
C(wK) = B + A(mI) for m = 0, N-1
Qvsabp (A, I, B, C, K, N)

Inputs:
A Source veotor base address
I A address increment
B Adding scalar address
C Destination vector base address
K C address inorement
N Element ocount

12.7.3.85 QVSIN - Take the sine of the elements of a vector.
C(mK) = SIN (A(mI)) for m = 0,N-1 (A in radians)
QVSIN (A, I, C, K, N)

Inputs:
A Source vector base address
I A address inorement
C Destination vector base address
K C address increment
N Element count

12.7.3.56 QVSMA - Multiply the elements of a vector by a scalar and
adds to the elements of snother vector.

D(mL) = (A(mI) * B) + C(mK) for m = 0, N-1
QVSMA (A, I, B, C, K, D, L, N)

USING THE ARRAY PROCESSORS Page 12-41
ROUTINES 186 April 85

Inputs:

First source vector base address
A address increment

Source scalar base address

Seocond source veotor base address
C address increment

Destination veotor base address

D address increment

Element count

ZrorRQuHE>»

12.7.3.87 QVSMAFX - Multiply the elements of a vector by a scalar,
add a scalar and round to an integer.

D(mL) = FIX (ROUND((A(mI)*B)+C)) for m = O,N-1
QVSMAFX (A, I, B, C, D, L, N)

Inputs:

Source vector base address

A address increment

Multiplying scalar address
Adding scalar address
Destination vector base address
D address inorement

Element count

ZPruQuH»

12.7.3.58 QVSMSA - Multiply the elements of a vector by a scalar
and add a second scalar.

D(mL) = (A(mI)*B)+C for m=0,N-1
QVSMSA (A, I, B, C, D, L, N)

Inputs:

Souroce veoctor base address

A address inorement

Multiplying scalar address
Adding scalar address
Destination veotor base address
D address lncrement

Element ocount

ZUroaoawH>»

USING THE ARRAY PROCESSORS

ROUTINES

Page 12-42

15 April 85

12.7.3.59 QVSMUL - Multiply the elements of a vector by a scalar.

C(mK)

= A(mI) * B for m = 0, N-1

QVSMUL (A, I, B, C, K, N)

Inputs:

ZrRQuUH>

12.7.3.60
C(mK)
QVsQ
Inputs:

ZROHY>

12.7.3.61
vector.

Source vector base address

A address inorement

Multiplying scalar address
Destinatlion vector base address
C address lnorement

Element count

QVSQ - Square the elements of a vector.
= A(mI)**2 for m = 0 to N-1

(A, I, C, K,)

Source vecotor base address

A address increment

Destination vector base address

C address increment
Element ocount

QVSQRT - Take the square root of the elements

C(mkK) = SQRT (A(mI)) for m = O,N-1

QVSQRT (A, I, C, K, N)

Inputs:

ZROQH>

Source vector base address

A address increment

Destination vector base address
C address inorement

Element count

of a

USING THE ARRAY PROCESSORS Page 12-43
ROUTINES 15 April 85

12.7.3.62 QVSUB - Subtract the elements of two veotors.
C(mK) = B(mJ) - A(mI) for m = O to N-1
QVSUB (A, I, B, J, C, K, N)

Inputs:

First source vector base address
A address increment

Second source vector base address
B address increment

Destination veoctor base address

C address increment

Element count

ZrRagH>

12.7.3.63 QVSWAP - Swap the elements of a vector.
A(nI) = C(mK) and C(mK) = A(mI) for m = 0, N-1
QVSWAP (A, I, C, K, N)

Inputs:
A FPirst source/destination vector base address
I A address increment
C Second source/destination veotor base address
X C address increment
N Element count

12.7.5.64 QVTRAN - Transpose a (row-stored) M X N array of rTow
veotors of 1length LV. The starting address is given by IAD. The
algorithm works in place. It is adapted from Boothroyd‘s CACM
ALG. #302. Other, probably better, algorithms, are CACM #'S 380 and
467, but they’'re not as simple to program.

QVTRAN (M, N, IAD, LV)

Inputs:
M First dimension of the vector array
N Second dimension of the veotor array
IAD Base address of the array

Lv Length of the vectors.

CHAPTER 13
TABLES IN AIPS

13.1 OVERVIEVY

This chapter is an attempt to desoribe the use of AIPS tables
extention files and to describe the format design for these files.
The next section describe general tables utility routines followed
by routines which simplify the access to specific types of AIPS
tables. The final section descoribes the structure of the tables
files and the fundamental routines to access AIPS tables.

Table files oonsist of an extensive and rather flexible header
and a table organized as rows and ocolumng. Each column has a
specified format and is stored in the appropriate binary form for
the local ocomputer. The o¢olumns are ordered on disk in an order
appropriate to computer addressing, but are accessed in any desired
logiocal column order via a look up list.

The extension file oontains not only the rows and columns, but
also a variety of other information. Each column has an associated
24-character column "title" and an 8-character "units" field. Each
row has a “"selection" flag which allows the user to aoccess
temporarily a subset of his table. The strings used to specify the
current selection are stored in the file for display. The file may
also contain general information applying to the full table in the
form of keyword/value pairs. This information will be ocalled the
table "header" data.

13.2 GENERAL TABLES ROUTINES

There are a number of utility routines which perform operations
of AIPS tables. Hopefully there will be may more of these as the
use of tables in AIPS inoreases. The following list gives a short
desoription of these routines; detalls of the call sequences are
given at the end of this ochapter. Also of interest to the

programmer is the AIPS task PRTAB for printing the contents of a
table file.

TABLES IN AIPS Page 13-2
GENERAL TABLES ROUTINES 10 May 85

- TABCOP coplies the entire contents of one or more tables of
a given type.

- TABKEY reads or writes keyword value pairs to a table
header.

- TABSRT sorts the rows in a table file using up to 4 keys.

13.3 SPECIFIC TABLES ROUTINES

Because of the generality of the tables routines, the low level
use of tables 1s rather cumbersome. For this reason there are a
number of specialized routines which simplify the access to a given
type of table. In general, these routines come in pairs; one to
create/initilize the I/0 and the other to read or write to the file.
If there are keyword/value pairs associated with a given table type
they are processed by the initilization routine. These specialized
routines wusually return the contents of a row into properly named
variables which avoids the use of equivalenocing in the calling
routine. These routines are briefly described in the following
list; details of the call sequences are given at the end of this
chapter.

- CCINI creates/initilizes CC (CLEAN component or gaussian
model files).

- CHNDAT reads/writes/creates +the c¢ontents of CH (IF
descoriptor) tables.

- FLGINI and TABFLG access FM (Flag) tables.
- GAINI and TABGA access GA (Gain) tables.
- NDXINI and TABNDX access NX (Index) tables.

- SOUINI and TABSOU access SU (Source) tables.

13.4 THE FORMAT DETAILS

There are several distinot types of information kept in a table
file. Most important is +the data tabulated refered to as "Row
data". Associated with each ocolumn is label information; this
inoluded a label and date type for each column and a format to use
if the file needs to be converted into a character file. There 1is
also a provision for storing general information about the file in
the form of keyword/value pairs. A keyword value pair consists of a
string of ocharacters (Keyword) which gives a 1label to a value
(Value) which may any of a number of data types.

TABLES IN AIPS Page 13-3
THE FORMAT DETAILS 10 May 85

13.4.1 Row Data

The row data are stored as an integer number of rows per disk
record (512 bytes) or as an integer number of disk records per row.
The columns are given a physical order appropriate to addressing on
all ocomputers. The logical order 1is carried in the file header
record (physical record 1, see below) and in a set of array indices
for addressing Dby the programs. The type of data is specified by
code numbers. These codes and the physical ordering are as follows:

ORDER ARRAY BASIC CODE + LENGTH

double precision floating R8 1

single precision floating R4 2 -
character (4 / floating) R4 3 + 10 * 1
long integer 14 4 -
logical L2 5 -
integer I2 6 -

bit (NBITWD / integer) I2 7 + 10 * 1
select flag I2 9 -

Declarations:

INTEGER*2 I2(*)
INTEGER*4 I4(*)
LOGICAL*2 L2(*)
REAL*4 R4(*)
REAL*8 R8(*)
EQUIVALENCE (I2, I4, L2, R4, R8)

The ordering is chosen to allow some machines to preprocess the
LOGICAL*2 statement into a LOGICAL*4 if needed. More esoterio
preprocessing may be required on less standard machines.

13.4.2 Physical File Format

The data, control, and header information are written in the
Table file via ZFIO in 512-byte (256-integer) blooks. The order on
disk, by physical record number, is:
record 1 : Control info / lookup table (see later)

2 : DATPTR(128) subscript of the appropriate array for
logical column n
DATYPE(128) type code for logical column n

3 - 4 : Selection strings now in force
$ -~ m : Titles (6 R*4s, 4 chars/R*4) in physical column order
m+l - 1 : Units (2 R*4s, 4 chars/R*4) in physical column order
i+l - k : Table header (keyword/value pairs, see below)
k+1 - * : Row data in n rows/record or n records/row
where
m = 8 + NCOL / (256 / (6 * NWDPFP))
1 =m+ 1+ NCOL / (256 / (2 * NWDPFP))
k =31+ 1+ NKEY / (256 / (4 * NWDPFP))

NCOL = number logiocal columns not inoluding the seleot column
NKEY = maximum number of keyword/value pairs

TABLES IN AIPS Page 13-4
THE FORMAT DETAILS 10 May 85

13.4.3 Control Information

Physical record one contains file control data needed to do the
I/0 operations and malntain the physical file. It 1s prepared by
subroutine TABINI and modified by TABIO. The latter subroutine
returns the record to disk on OPCODE = ‘CLOS’. TIts contents are:
1 - 2 (I*4) Number 512-byte records now in file

3 - 4 (I*4) Max number rows allowed in ourrent file
5 - 6 (I*4) Number rows (logical records) now in file
4 Number of bytes/value (2 for TA files)
8 # values/logical (# I*2s/row incl. select for TA)
9 » O => number rows / physical record
<« 0 => number physical records / row
10 Number logical columns/row (not including selection
column)
11 - 16 Creation date: ZDATE(1l1l), ZTIME(14)
17 - 28 Physical file name (set on each TABINI ocall)
29 - 31 Creation task name (2 chars / integer)
32 Disk number
33 - 38 Last write acocess date: ZDATE(33), ZTIME(36)
39 - 41 Last write access task name (2 chars / integer)
42 Number logical records to extend file if needed
43 Sort order: logical column # of primary sorting
44 Sort order: logical column # of secondary sorting
O => unknown, <« O => desocending order
45 Disk record number for column data pointers ()
46 Disk record number for row selection strings (3)
47 Disk record number for lst record of titles (5)
48 Disk record number for lst record of units
49 Disk record number for 1lst record of keywords
50 Disk record number for 1lst record of table data
51 DATPTR (row selection column)
52 Maximum number of keyword/value pairs allowed
53 Current number of keyword/value pairs in file
KKk kok kKX XXX
B4 - 60 Reserved
XKk ok ok K Kk Kk X
61 Number of selection strings now in file
62 Next available R*4 address for a selection string
63 First R*4 address of selection string 1
64 First R*4 address of selecotion string 2
65 First R*4 address of seleotion string 3
66 First R*4 address of selection string 4
6% First R*4 address of selection string 5
68 First R*4 address of selection string 6
69 First R*4 address of selecotion string 7
70 First R*4 address of seleoction string 8
¥xrrxxxxx* for TABIO / TABINI use only ******xsxxx
71 IOP : 1 => read, 2 => writ
72 Number I*2 words per logiocal record (incl. select)

73 - 74 (I*4) Current table row physical record in BUFFER

76 - 76 (I*4) Current table row logical record in BUFFER

7 Type of current record in BUFFER (0 - B5)

78 Current control physical record number in BUFFER

TABLES IN AIPS Page 13-5

THE FORMAT DETAILS 10 May 85
79 Current control logical record number in BUFFER

80 Type of current control record in BUFFER

81 File logical unit number (LUN)

82 FTAB pointer for open file (IND)

Xk kkkkXkkXkxX

83 -100 Reserved

LER R ERERE E B]

101 -128 Table title (4 chars / real)

129 -286 lookup table as COLPTR(logical column) = phys column

13.4.4 Keyword/value Records

The keyword/value pairs are stored in 4 single precision
floating locations, 2568 / (4 * NWDPFP) per physical record. The
keyword 1s an 8-character string stored as 4 ocharacters per real.
It is left Justified and the first character must imply the data
type used for the value. The value is stored left justified in the
drd and 4th reals using as many integer words as needed (see table
below).

The first character of the keyword must specify the type of the
binary value as:
D double precision floating point
F single precision floating point
C 8-character string in 4 chars / real
J long integer
L logical
I integer
In the call sequence to TABIO, the variable RECORD is an integer

array used to convey the data to the I/O operationms. For
keyword/value pairs, RECORD is divided as follows:
RECORD(1) 1st 4 chars of the keyword

RECORD(1+NWDPFP) 2nd 4 chars of keyword
RECORD(1+2*NWDPFP) value

where the value occupies the following number of integer words
type D NWDPDP

F NWDPFP

C 2 * NWDPFP
J NWDPLI

L NWDPLO

I 1

13.4.5 I/0 Buffers

The call to TABINI specifies two buffers, one for I/O scratch
and ocontrol and the other for the data pointers which will be used
by the calling program to access the column data. The first, called
BUFFER, is used as

BUFFER(1)-BUFFER(128) control pointers
BUFFER(129)-BUFFER(256) lookup table

TABLES IN AIPS Page 13-6
THE FORMAT DETAILS 10 May 85

BUFFER(257)-BUFFER(***) ocurrent physical record(s) of table data

where *** = 512 1f there are >= 1 rows/reo,

*** = (n+l1l) * 256 if there are n recs/row.
The call sequence of TABINI has an argument NBUF which gives the
length of BUFFER. This is used solely to check that BUFFER is large
enough to handle the present table file. BUFFER is also provided by
the programmer to TABIO whioch will modify the control and data
portions. The programmer should not modify BUFFER between the ocall
to TABINI and the call to TABIO with OPCODE ‘CLOS’' except to insert
a title for the table in words 101 - 128 or to ocorrect the sort
order information.

The second buffer, called TABP, is used by the non-I/O portions

of the table package. TABP(1,1) - TABP(128,1) ocontains the
subscript of the appropriate array for the 1logical columns.
TABP(1,2) - TABP(128,2) ocontains the data type for each logical

column. The programmer must f£1ill in TABP(1l,2) - TABP(NCOL,2) before
calling TABINI when TABINI is to oreate the table extension file.
TABINI will return a complete set of TABP under all circumstances.

13.4.6 Fundamental Table Access Subroutines

There are a set of basioc table handeling routines whioh apply
to all tables files. The following list gives a short desoription;
the details of the call sequences and useage are found at the end of
this chapter.

- TABINI creates/opens/catalogues an AIPS table.

- TABIO does I/0 to a tables file. Row data, keyword/value
pairs and ocontrol information are passed through this
subroutine.

- GETCOL returns the value and value type at a specified row
and column from an open table.

- FNDCOL locates the logical column number for a column with
& specified label.

TABLES IN AIPS Page 13-7
ROUTINES 10 May 85

13.5 ROUTINES

Following are the descriptions of the call sequences and useage
notes for the routines discussed in this chapter.

13.5.1 CCINI

creates and/or opens for writing (and reading) a specified CC
(components table) file.

SUBROUTINE CCINI (LUN, NCOL, VOL, CNO, VER, CATBLK, BUF, IERR)

Inputs: LUN I*2 Logical unit number to use
VOL I*2 Disk number
CNO I*2 Catalog number

In/out: NCOL I*2 Number of columns: 3 or 7 are allowed.
VER I*2 Input: desired version number O -> new

Output: that used
CATBLK 1I*2(258) File catalog header blook

Output: BUF I*2(768) First 512 words required for later
calls tc TABIO
IERR I*2 Error codes from TABINI or TABIO

13.5.2 CHNDAT
creates and fills or reads CH (IF descriptor) extension tables.

CHENDAT (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
* NIF, FOFF, ISBAND, IERR)

Inputs:
OPCODE R*4 Operation code:
'WRIT' = create/init for write or read
'READ’ = open for read only
BUFFER(512) I*2 I/O buffer and related storage, also defines file

if open.
DISK I*2 Disk to use.
CNO I*2 Catalogue slot number
VER I*2 CH file version
CATBLK(256) 1I*2 Catalogue header blook.
LUN I*2 Logical unit number to use
Input/Output:
NIF I*2 Number of IFs.
FOFF(*) R*8 Frequency offset in Hz from ref. freq.

True = reference + offset.
ISBAND(*) I*2 Sideband of each IF.
=1 => 0 video freq. is high freq. end
1 => 0 video freq. is low freq. end
Output:

TABLES IN AIPS Page 13-8
ROUTINES 10 May 85

IERR I*2 Return error code, 0=>0K, else TABINI or TABIO
error.

13.5.3 FLGINI
creates and initilizes FLAG (FM) extension tables.

FLGINI (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
* IFMRNO, FMKOLS, IERR)

Inputs:
OPCODE R*4 Operation code:
'WRIT' = create/init for write or read
‘READ’ = open for read only
BUFFER(512) 1I*2 I/O buffer and related storage, also defines file

if open.
DISK I*2 Disk to use.
CNO I*2 Catalogue slot number
VER I*2 FM file version
CATBLK(256) 1I*2 Catalogue header bloock.
LUN I*2 Logical unit number to use
Output:
IFMRNO I*4 Next scan number, start of the file if READ,

the last+l if WRITE

FMEROLS(12) I*2 The column pointer array in order, ID. NO.,
SUBARRAY, ANT1, ANT2, BTIME, ETIME, BIF, EIF,
BCHAN, ECHAL, PFLAGS, REASON

IERR I*2 Return error code, 0=>0K, else TABINI or TABIO
error.

13.5.4 FNDCOL

locates the logical column number(s) which are titled with specified
strings.

FNDCOL (NKEY, KEYS, LKEY, LORDER, BUFFER, KOLS, IERR)

Inputs: NKEY I*2 Number columns to0 be found
KEYS R*¢(LKEY,N) Column titles to locate (4 chars/real)
LKEY I*2 Number R*4 words to check in each
of KEYS (legal values 1 through 6)
LORDER L*2 T => logical order desired, else phys.

In/out: BUFFER I*2(>512) TABINI/TABIO buffer/ header/ work area
Output: KOLS I*2(NKEY) Logical column numbers: O => none,
-1 => more than one (!)
IERR I*2 Error code: Q0 => ok, 1 - 10 from ZFIO
>10 = 10 + # of failed colunns

TABLES IN AIPS Page 13-9
ROUTINES 10 May 85

13.5.5 GAINI
oreates and initilizes gain (GA) extension tables.

GAINI (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
IGARNO, GAKOLS, NUMANT, NUMPOL, NUMIF, NUMNOD, INLEVL, GMMOD,
* RANOD, DECNOD, IERR)

Inputs:
OPCODE R*4 Operation code:
‘WRIT' = create/init for write or read
‘READ’ = open for read only
BUFFER(512) 1I*2 I/0 buffer and related storage, also defines file

i1f open.
DISK ~ I*2 Disk to use.
CNO I*2 Catalogue slot number
VER I*2 GA flle version
CATBLK(256) I*2 Catalogue header bloock.
LUN I*2 Logical unit number to use
Input/output
NUMANT I*2 Number of antennas
NUMPOL I*2 Number of IFs per group
NUMIF I*2 Number of IF groups
NUMNOD I*2 Number of interpolation nodes. Will handle
up to 25 interpolation nodes.
INLEVL I*2 Number of gain levels, O=Abs., higher=>diff.
calibration also inoluded.
GMMOD R*4 Mean gain modulus
RANOD(*) R*4 RA offset of interpolation nodes (deg.)
DECNOD(*) R*4 Dec. offset of interpolation nodes (deg.)
Output:
IGARNO I*4 Next scan number, start of the file if READ,

the last+l if WRITE

GAKOLS(32) I*2 The column pointer array in order, TIME,
TIME INT., SOURCE ID., ANTENNA NO., SUBARRAY,
REF. ANT., CALIBRATION LEVEL,
IF NUMBER, REALl1l, IMAGl, IONIPH1l, TSYS1l, DELAY1,
RATEl, TGRDEL1l, TPHDELl, TDGRDEL1l, TDPHDEL1,
WEIGHT1, SNR1,
Following used i1f 2 polarizations per IF
REAL2, IMAG2, IONIPH2, TSYS2, DELAY2,
RATE2, TGRDEL2, TPHDELZ2, TDGRDEL2, TDPHDELZ,
WEIGHT2, SNR2,

IERR I*2 Return error code, 0=>0K, else TABINI or TABIO
error.

TABLES IN AIPS Page 13-10
ROUTINES 10 May 85

13.5.6 GETCOL

returns the value and value type found in an open table file at the
specified logical column and row.

GETCOL (IRNO, ICOL, DATP, BUFFER, RTYPE, RESULT,
* SCRTCH, IERR)

Inputs: IRNO I*4 Table row number: n.b. I*4
ICOL I*2 Table column number
DATP I*2(256) Pointer array returned by TABINI
In/out: BUFFER I*2(*) Control area set up by TABINI, used in
TABIO
Output: RTYPE I*2 Type of column: 1 —-> R*8, 2 -> R*4,
4 -> I*4, B -> L*?, 6 —> I*2
3+10*L -> character length L unpacked
7+10*L -> bit array length L packed
RESULT 9?29 Value of column: use R*8, R*4, I*4, I*2
equivalenced arrays
SCRTCH 1I*2(*) Soratch large enough to hold a row
IERR I*2 Error code: 0O => OK.
-1 => OK, but row is flagged
1l file not open, 2 input error
3 I/0 error, 4 read past EOF
5 bad data type

13.5.7 INDXIN
initilizes index (NX) file, finds first scan selected. If there is
no 1index file the first and last records are set to the first and
last records of the data file.

INDXIN (IERR)

Inputs from common /SELCAL/

NSOUWD I*2 Number of sources included or exoluded; if
0 all sources are included.
DOSWNT L*2 If .TRUE. then sources in SOUWAN are included

If .FALSE. then excluded.
SOUWAN(30) I*2 The source numbers of sources inocluded or
excluded.
TIMRNG(S8) R*4 Start day, hour, min, sec, end day, hour,
min,sec. 0's => all
Output:
IERR I*2 Return ocode, 0=>0K, otherwise INDEX file
exists but cannot be read.
Output to common /SELCAL/:

INXRNO I*4 Current INDEX file record number.
If .LT. O then there is no index file.
FSTVIS I*4 First visibility number of current socan.

LSTVIS I*4 Last visibility number of current socan.

TABLES IN AIPS Page 13-11
ROUTINES 10 May 85

CURSOU I*2 Current source number.

NXKOLS(6) I*2 Pointer array for index reocords.
In order: TIME, TIME INT, SOURCE I, SUBARRAY,
START VIS, ENDVIS.

13.5.8 SOUINI
creates and initilizes source (SU) extension tables.

SOUINI (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
* ISURNO, SUKOLS, IERR)

Inputs:
OPCODE R*4 Operation code:
‘WRIT' = oreate/init for write or read
‘'READ’ = open for read only
BUFFER(512) I*2 I/0 buffer and related storage, also defines file

if open.
DISK I*2 Disk to use.
CNO I*2 Catalogue slot number
VER I*2 SU file version
CATBLK(256) 1I*2 Catalogue header blook.
LUN I*2 Logical unit number to use
Output:
ISURNO I*4 Next scan number, start of the file if READ,

the last+l if WRITE

SUKOLS(15) I*2 The column pointer array in order, ID. NO.,
SOURCE, QUAL, CALCODE, IFLUX, QFLUX, UFLUX,
VFLUX, FREQOFF, BANDWIDTH, RAEPO, DECEPO, EPOQCH,
RAAPP, DECAPP

IERR I*2 Return error code, 0=>0K, else TABINI or TABIO
error.

13.5.9 TABCOP

copies Table extension file(s). The output file must be & new
extension - o0ld ones cannot be rewritten. The output file must be
opened WRIT in the catalog and will have its CATBLK updated on disk.

TABCOP (TYPE, INVER, OUTVER, LUNOLD, LUNNEW, VOLOLD,
* VOLNEW, CNOOLD, CNONEW, CATNEW, BUFFl, BUFF2, IRET)

Inputs:
TYPE I*2 Extension table type (e.g. ‘CC’,'AN‘)
INVER I*2 Version number to copy, O => copy all.
OUTVER I*2 Version number on output file, if more than one

copled (INVER=0) this will be the number of the
first file. If OUTVER = O, it will be taken as

TABLES IN AIPS

ROUTINES

LUNOLD I*2
LUNNEVW I*2
VOLOLD I*2
VOLNEW I*2
CNOOLD I*2
CNONEW I*2
In/out:
CATNEW(256)I*2
Output:
BUFF1(256) I*2
BUFF2(256) I*2
IRET I*2

13.5.10 TABGA

Page 13-12
10 May 85

1 higher than the previous highest version.
LUN for old file

LUN for new file

Disk number for o0ld file.

Disk number for new file.

Catalog slot number for old file

Catalog slot number for new file

Catalog header for new file.

Work buffer
Work buffer - will have CATBLK of o0ld file
Return error code 0 => ok
1 => files the same, no ocopy.
2 => no input files exist
3 => falled
4 => no output files oreated.
5 => falled to update CATNEW

does I/0 to GAIN extention tables. Usually used after setup by

GAINI.

TABGA (OPCODE, BUFFER, IGARNO, GAKOLS, NUMPOL,

* TIME, TIMEI, SOURID, ANTNO, SUBA, REFAN, LEVNO, IFNO,

* CREAL, CIMAG, IONIPH, TSYS, DELAY, RATE, TGRDEL, TPHDEL,
* TDGDEL, TDPDEL, WEIGHT, SNR, IERR)

Inputs:
OPCODE

BUFFER(512)

IGARNO

GAKOLS(32)

NUMPOL

Input/output:

TIME

R*4 Operation code:

'READ’ = read entry from table.
‘WRIT' = write entry in table.
‘CLOS’ = close file, flush on write

I*2 1/0 buffer and related storage, also defines file

if open. Should have been returned by TABINI or
GAINI.

I*4 Next scan number to read or write.
I*2 The column pointer array in order, TIME,

TIME INT., SOURCE ID., ANTENNA NO., SUBARRAY,
REF. ANT., CALIBRATION LEVEL,
IF NUMBER, REALl, IMAGl, IONIPH1l, TSYS1l, DELAY1,
RATEl, TGRDEL1l, TPHDELl1l, TDGRDEL1l, TDPHDEL1,
WEIGHT1, SNR1,
Following used if 2 polarizations per IF
REAL2, IMAG2, IONIPH2, TSYS2, DELAYR,
RATE2, TGRDEL2, TPHDEL2, TDGRDEL2, TDPHDELZ,
WEIGHT2, SNR2,

I*2 Number of polarizations per IF.

(written to or read from GAIN file)

R*4 Center time of GAIN record (Days)

TABLES IN AIPS
ROUTINES

TIMEI
SOURID
ANTNO
SUBA

IFNO
CREAL(2)
CIMAG(2)
IONIPH(2)

TSYS(2)
DELAY(2)
RATE(2)
TGRDEL(2)
TPHDEL(2)
TDGDEL(2)

TDPDEL(2)

TRATE(2)
WEIGHT(2)
SNR(2)

Output:
IGARNO
IERR

13.5.11 TABINI

R*4
I*2
I*2
I*2
I*2
R*4
R*4
R*4
R*4
R*4
R*4
R*4
R*4
R*4

R*4
R*4
R*4
R*4

I*4
I*2

Page 13-13
10 May 85

Time interval covered by record (days)

Source ID as defined in the SOURCE tablse.

Antenna number.

Subarray number.

If pixel number.

Real part of the complex gain, one for each poln.
Imag part of the ocomplex gain, one for each poln.
Ionispheric phase correction, one for each poln.

System temperature (K), one for each poln.
Residual group delay (sec), one for each poln.
Residual fringe rate (Hz), one for each poln.
Total group delay (sec), one for each poln.
Total phase delay (sec), one for each poln.
Total time derivative of group delay (sec/sec),
one for each poln.

Total time derivative of phase delay (sec/seq)
one for each poln.

Total fringe rate (Hz), one for each poln.
Weight of solution, one for each poln.

Signal to noise ratio from fit.

’

Next GAIN number.
Error code, 0=>0K else TABIO error.
Note: -1=> read but record deselected.

creates/opens a table extension file. If a file is oreated, it is
catalogued by a call to CATIO which saves the updated CATBLK.

TABINI (OPCODE, PTYP, VOL, CNO, VER, CATBLK, LUN,
* NKEY, NREC, NCOL, DATP, NBUF, BUFFER, IERR)

Input:
OPCODE R*4
PTYPE I*2

VOL I*2
CNO I*2
VER I*2

CATBLK I*2(258)

LUN I*2
NKEY I*2
NREC I*2
NCOL I*2

‘READ’ only, ‘WRIT' read or write

File physical type: 2 charaocters

Disk number

Primary file catalog number

Version number: <= O highest on READ
highest+l on WRIT (i.e. create one)
output: version number used

Primary file ocatalog header record
Logical unit number to use

Maximum number of keyword/value pairs
input: used on create, checked on WRIT
(<= recorded); output: actual

Number rows for oreate/extend

input: used on WRIT only.

Number of logical columns (not inol select)
input: used on create, checked on WRIT
(0 => any); output: actual

TABLES IN AIPS Page 13-14

ROUTINES 10 May 85
DATP I*2(128,2) DATPTR, DATYPE: DATYPE input on oreate,
output actual for both
NBUF I*2 Number I*2 words in BUFFER
BUFFER I*2(*) I/0 buffer (* >= 512 as needed)
IERR I*2 Error codes: 0 => OK,

-1 => OK, new file created,
=> bad input,

=> cannot find/open,

=> I/0 error

=> gQgreate error

DA

15.5.12 TABIO

does random access I/0 to Tables extension files. Mixed reads and
writes are allowed if TABINI was called 'WRIT'. Writes are limited
by the size of the structure (i.e. columns for units and titles)
or to the current maximum logical reoord plus one. Files opened for
WRITe are updated and compressed on CLOS.

TABIO (OPCODE, IRCODE, IRNO, RECORD, BUFFER, IERR)

Inputs:
OPCODE R*4 'READ’', 'CLOS’,
‘WRIT' write with row selected
‘'FLAG' write with row de-selected
IRCODE I*2 Type of record: 0 => table row
1l => DATPTR/DATYPE record
2 => data selection string
3 => titles
4 => units
5 => keyword/value pairs
IRNO I*&¢ (1) Logical record number:
IRCODE = 0 => row number

IRCODE = 1 => ignored
IRCODE = 2 => string number
IRCODE = 3 => column number
IRCODE = 4 => column number
IRCODE = 6 => keyword number
Input/Output:
RECORD I*2(*) Appropriate data (input or output):
IRCODE = 0 => row
IRCODE = 1 => DATP
IRCODE = 2 => geleot string
IRCODE = 3 => ocolumn title
IRCODE = 4 => column units
IRCODE = § => keyword/value
BUFFER I*2(>=768) 1I/0 control,soratch buffer (in/out)
Output:
IERR I*2 Error code: 0 => ok

-1 => row read, but it is flagged
1l file not open, 2 input error
3 I/0 error 4 logical EOF

TABLES IN AIPS Page 13-15
ROUTINES 10 May 85

5 error in file expansion

13.5.13 TABKEY

reads or writes KEYWORDs from or to an AIPS table file header. The
order of the keywords 1is arbitrary. Table flle must have been
previously opened with TABINI.

TABKEY (OPCODE, KEYWRD, NUMKEY, BUFFER, LOCS, VALUES,

* IERR)
Inputs:
OPCODE R*4 Operation desired, 'READ’, 'WRIT'
KEYWRD(2, *) R*4¢ Keywords to read/write, 4 char. per word.
NUMKEY I*2 Number of keywords to read/write.
BUFFER(*) I*2 Buffer being use for table I/O.
Output/Inputs:

LOCS(NUMKEY) I*2 The word offset of first short integer
word of keyword value in array VALUES.
Output on READ, input on WRIT.

On READ this value will be -1 for keywords
not found.

VALUES(*) I*2 The array of keyword values; due to word
alignment problems on some machines values
longer than a short integer should be copied,
eg. if the 5th keyword (XXX) is a R*4:

IPOINT = LOCS(5)
CALL COPY (NWDPFP, VALUES(IPOINT), XXX)
Output on READ, input on WRIT

Output:
IERR I*2 Return code, 0=>0K,
1-10 =>TABIO error
19 => unrecognized data type.

20 => bad OPCODE
20+n => n keywords not found on READ.

13.5.14 TABFLG

does I/0 to FLAG (FM) extention tables. Usually used after setup by
FLGINI.

TABFLG (OPCODE, BUFFER, IFMRNO, FMEKOLS, SOURID, SUBA,

* ANT1, ANTR2, BTIME, ETIME, BIF, EIF, BCHAN, ECHAN, PFLAGS,
* REASON, IERR)

Inputs:
OPCODE R*4 Operation code:

TABLES IN AIPS Page 13-16
ROUTINES 10 May 85

"READ’ = read entry from table.
‘WRIT’' = write entry in table (must have been
opened with 'WRIT'.
‘CLOS’ = olose file, flush on write

BUFFER(512) 1I*2 I/O buffer and related storage, also defines file
if open. Should have been returned by FLGINI or
TABINI.

IFMRNO I*4 Next FLAG entry number to read or write.

FMKOLS(12) I*2 The column pointer array in order, ID. NO.,
SUBARRAY, ANT1, ANT2, BTIME, ETIME, BIF, EIF,
BCHAN, ECHAN, PFLAGS, REASON

Input/output: (written to or read from FLAG file)

SOURID I*2 Source ID as defined in the SOURCE table.

SUBA I*2 Subarray number.

ANT1 I*2 First antenna number, O=>all

ANT2 I*2 Second antenna number, O=>all

ETIME R*4 Start time of data to be flagged (Days)

BTIME R*4 End time of data to be flagged (Days)

BIF I*2 First IF number to flag. 0=>all

EIF I*2 Last IF number to flag. O=>all higher than BIF
BCHAN I*2 First channel number to flag. O=>all

ECHAN I*2 Last channel number to flag. O=>all higher.

PFLAGS(4) L*2 Polarization flags, same order as in data.
.TRUE. => polarization flagged.
REASON(6) R*4 Reason for flagging, 24 char. at 4 char/R*4.

Output:
IFMRNO I*4 Next scan number.
IERR I*2 Error code, 0=>0K else TABIO error.

Note: -1=> read but record deselected.

13.5.15 TABNDX

does I/0 to INDEX extention tables. Usually used after setup by
NDXINI.

TABNDX (OPCODE, BUFFER, INXRNO, NXKOLS, TIME, DTIME,
* IDSOUR, SUBARR, VSTART, VEND, IERR)

Inputs:
OPCODE R*4 Operation code:
‘READ’' = read entry from table.
‘WRIT' = write entry in table.
‘CLOS' = close file, flush on write
BUFFER(512) 1I*2 I/O buffer and related storage, also defines file
if open. Should have been returned by NDXINI or
TABINI.
INXRNO I*4 Next scan number to read or write.
NXKOLS(6) I*2 The column pointer array in order, TIME,
TIME INTERVAL, SOURCE ID, SUBARRAY, START VIS,
END VIS.

TABLES IN AIPS
ROUTINES

Input/output:

TIME
DTIME
IDSOUR
SUBARR
VSTART
VEND
Output:
INXRNO
IERR

13.5.16 TABSOU

Page 13-17
10 May 85

(written to or read from INDEX file)

R*4
R*4
I*2
I*2
I*4
I*4

I*4
I*2

Start time of the scan (Days)

Duration of scan (Days)

Source ID as defined in then SOURCE table.
Subarray number.

First visibllity number in file.

Last visibility number in file.

Next scan number.
Error code, 0=>0K else TABIO error.
Note: -1=> read but record deselected.

does I/0 to source (SU) extention tables. Usually used after setup

by SOUINI.

TABSOU (OPCODE, BUFFER, ISURNO, SUKOLS, IDSOU, SOUNAM,
* QUAL, CALCOD, FLUX, FREQO, BANDW, RAEPO, DECEPO, EPOCH,
* RAAPP, DECAPP, IERR)

Inputs:
OPCODE

BUFFER(512)

ISURNO
SUKOLS(15)

Input/output:

IDSOUR
SOUNAM(4)
QUAL
CALCOD
FLUX(4)
FREQO
BANDW
RAEPO
DECEPO
EPOCH
RAAPP
DECAPP
Output:
ISURNO
IERR

R*4

I*2

I*4
I*2

Operation code:

‘READ’ = read entry from table.

‘WRIT' = write entry in table.

‘CLOS’ = close file, flush on write

I/0 buffer and related storage, also defines file
1f open. Should have been returned by SOUINI or
TABINI.

Next scan number to read or write.

The column pointer array in order, ID. NO.,
SOURCE, QUAL, CALCODE, IFLUX, QFLUX, UFLUX,
VFLUX, FREQOFF, BANDWIDTH, RAEPO, DECEPO, EPOCH,
RAAPP, DECAPP

(written to or read from INDEX file)

I*2
R*4
I*2
R*4
R*4
R*8
R*8
R*8
R*8
R*8
R*8
R*8

I*4
I*2

Source ID as defined in then SOURCE table.
Source name (AIPS Packed string)

Source qualifier.

Calibrator code 4 char.

Total flux density I, Q, U, V pol, (Jy)
Frequenoy offset (Hz)

Bandwidth (Hz)

Right ascension at mean EPOCH (degrees)
Declination at mean EPOCH (degrees)

Mean Epoch for position in yr. since year 0.0
Apparent Right asocension (degrees)
Apparent Declination(degrees

Next scan number.
Error code, O=>0K else TABIO error.
Note: -1=> read but record deselected.

TABLES IN AIPS Page 13-18
ROUTINES 10 May 85

13.5.17% TABSRT

sorts an AIPS table extention file. First key ochanges the most
slowly. A linear combination of two columns or a substring of a bit
or character string may be used. The ocolumns and factors are
specified in KEY and FKEY, the first (Slowest varying key) is:
KEY_VALUEl = COL_VALUE(KEY(1l,1) * FKEY(1,1) +
COL_VALUE(KEY(2,1) * FKEY(2,1)

The faster changing key value is:

KEY_VALUE2 = COL_VALUE(KEY(1,2) * FKEY(1l,2) +

COL_VALUE(KEY(2,2) * FKEY(2,2)

In the case of bit or character strings only one column is used to
generate the key values.

TABSRT (DISK, CNO, TYPE, INVER, OUTVER, KEY, FKEY,
* BUFFER, BUFSZ, TABUFF, NBUF, CATBLK, IERR)

Inputs:
DISK I*2 Disk number of the file.
CNO I*2 Catalogue slot number.
TYPE I*2 Two character type code (e.g. ‘CC')
INVER I*2 Input version number
OUTVER I*2 Output version number
KEY(2,2) I*2 Sort keys; may be linear combination

of two numerioc value columns. KEY contains
the column numbers and FKEY contains the
factors. If the column is a string (bit or
char.) then FKEY(1l,n)=first char/bit and
FKEY(2,n)=nunber of char/bit and KEY(2,n) is
ignored. KEY(2,n)=0 => ignore. Column no.
is the physical no.

FRKEY(2,2) R*4 Key ocoefficilents, 0=>1, see above.

BUFS2Z I*2 BSize of BUFFER in bytes.

NBUF I*2 §Size of TABUFF in (I*2) words.

CATBLK(256) 1I*2 Catalogue header record.
Output:

TABUFF(*) I*2 Buffer large enough to handle I/0O to table.
BUFFER(*) R*4 I/0 work buffer
IERR I*2 Error code, 0 => OK, else error.
10 => Couldn’'t find or open file.
Useage Notes:

Normally the keys are sorted into ascending order, to sort into
descending order negate the values of FKEYn.

IVO standard scoratch files will be created and entered into the
/CFILES/ common. Includes DFIL.INC and CFIL.INC should be included
in the main routine and a call made to DIE rather than DIETSK should
be made at the end of the program execution. The values in BADD
(adverb BADDISK) in the /CFILES/ common should be initilized.

IF a disk based sort is required, then a 4-way merge sort will
be used; the FTAB deolaration in the main program and the call to
ZDCHIN should be large enough to handle 8 map-like files and 2
Non-map files at the same time. (Additional files may be required
if they are left open by the calling program).

Since keys are converted into floating point numbers some

TABLES IN AIPS Page 13-19
ROUTINES 10 May 85

accuracy may be lost sorting on character or bit strings.
For a 1 key sort use KEY2(1) = 0.

CHAPTER 14

FITS TAPES

14.1 OVERVIEVW

The principle route for getting data and images into and out of
AIPS 1s by FITS (Flexible Image Transport System) format tape files.
FITS 1is an internationally adopted medium of exchange of
astronomical data and allows easy interchange of data between
observatories and image processing systems. FITS also has the
advantage that it 1is a self-defining format and the actual bit
pattern on the tape is independent of the machine on which the tape
wvas written. The purpose of this chapter is to describe the general
features of FITS and the details of the AIPS implementation of FITS.
This chapter is not intended to be a rigorous description of the
FITS standards.

The fundamental definition of the FITS system is given in
Vells, Grelsen, and Harten (1981), with an extension described in
Greisen and Harten (1981). A proposed further extension is given in
Harten, Grosbol, Tritton, Greisen and Wells, (1984). FITS has been
adopted as the recommended medium of exchange of astronomical data
by the IAU, the Working Group on Astronomical Software (WGAS) of the
AAS, and WGLAS.

Because of the great flexibility of the FITS system, many of
its features have been adopted for the internal data storage format
in AIPS. See the chapter on the catalogue header for more details
on the AIPS internal storage format.

There are three main portions of & FITS file 1) the main
header, 2) the main data and 3) any number of records containing
auxilary information. In addition, an extension of the original
definition of the FITS structure allows storage of ungridded
visibility data. Each of these 1s discussed in detail in the
following sectionmns.

14.2 PHILOSPHY

FITS 1s a philosophy as much as a data format. The underlying
philosophy is to provide a standardized, simple, and flexible means

FITS TAPES Page 14-2
PHILOSPHY 27 May 84

to transport data between computers or image processing systems.
FITS 1s standarized in the sense that any FITS reader should be able
to read any FITS image, at least to the degree that the array read
is of +the oorrect dimension and pixel values have at least the
correct relative scaling. In addition, any FITS reader should be
able to ocope with any FITS format tape and at least skip over
portions or ignore keywords that it doesn’t understand.

The requirement of simplicity means that the implementation of
FITS reading and writing be fairly straight forward on any computer
used for astronomical image processing. Simple also implies that
the structure of the file be self defining and to a large degree
self documenting.

The main advantage of FITS is its flexibility. Due to the self
defining nature of the files, a large range of data transport needs
are fulfilled. The introduction of new keywords gives +the ability
to add new pieces of information as needed and the use of
generalized extension files allows almost unlimited flexibility 4in
the type of information to be stored. Thus FITS can grow with the
needs of the Astronomical community.

The great flexibility of FITS i1s a potential weakness as well
as & strength. There is a great temptation to proliferate keywords
and new extension file types. This should be done with great
caution. Since FITS 1s a worldwide medium of data exchange, there
needs to be coordination of keywords and extension files to prevent
duplication and inconsistencies in usage.

The most fundamental philosophical ideal of FITS is that no
change in the system should render o0ld tapes illegal or unreadable.
This philosophy is reflected in the AIPS implementation of FITS 4in
that all obselete implementations (e.g. 0ld CLEAN component or
antenna extension files) are +trapped and processed in the most
accurate manner possible.

14.3 IMAGE FILES

The most common form of astronomical information is the image
and historically the first FITS tape files were for multidimensional
images. The following seotions desoribe FITS image files.

14.3.1 Overall Structure

The structure of a FITS image file oconsists of one or more
records oontaining ASCII header information followed by one or more
binary datea records. (These may be followed by other records which
are discussed in another section.)

FITS TAPES Page 14-3
IMAGE FILES 27 May 84

All "logical" records on FITS tapes are 2880 8-bit bytes long
with one record per tape block. (Larger blocking factors are being
considered but have not yet been implemented.) The number of bits in
a FITS reoord is an even multiple of words and bytes on any computer
ever sold commercially. The definition of FITS allows standard ANSI
labeled tapes but the AIPS implementation only writes unlabeled
tapes. Labeled tapes may be read by AIPS by skipping header and
trailer records.

Each FITS header record contains 36 80-byte "card images"
written in 7-bit ASCII (sign bit set to zero). These header records
contain all the information necessary to read, and hopefully, label
the 1image. In addition, other information including the processing
history may be given.

Following the header records come the data records. These
records contain the pixel values in one of several binary formats.

14.3.2 Header Records
Each "card image" in the header is in the form,
keyword = value / ocomment

Keywords should be no more than 8 ocharacters long and the
keyword = value should be readable by Fortran 77 list directed I/O.
To accomodate more primitive systems, a fixed format is mandatory
for the required keywords and suggested for the optional keywords.
This fixed format is as follows:

Keyword name beginning in column 1.
- "=" in column 9
- T or F (logical true or false) in column 30.

- Real part (integer or floating) right justified, ending in
column 30.

- Imaginary part (integer or floating) right justified,
ending in column 80.

- character string with a beginning "‘" in column 11 and an
ending "'" in or after column 20

The first keyword in a header must be SIMPLE and have a value
of T (true) if the file conforms to FITS standards and an F (false)
if 1t doesn’t. (The ASCII string "SIMPLE = T" occupying the first
30 bytes of a file of 2880-byte records is the "signature" of FITS).
The keywords and values must convey the size of the image and the
number of bits per pixel value. Optionally, the coordinate system,

FITS TAPES Page 14-4
IMAGE FILES 27 May 84

scaling and other information may be given. In the AIPS
implementation a considerable amount of information is given.

14.53.2.1 Keywords - The following keywords (data type) are required
for ALL FITS files (for all time) in the order given.

1. SIMPLE (logical) says 4if the file oconforms to FITS
standards.

2. BITPIX (integer) is the number of bits used to represent
the pixel value; 8 => 8 bit unsigned integers, 16 => 16
bit, twos complement signed integers, 32 => 32 bit, twos
complement signed integers.

3. NAXIS (integer) is the number of axes in the array.

4. ©NAXIS1 (integer) is the number of pixels on the fastest
varying axis.

8. up to NAXIS999 (integer) is the number of pixels on the 999
th fastest varying axis.

6. END , the last keyword mugt be END. The last header record
should be blank filled past the END keyword.

AIPS routines can accept up to 7 dimensional images.

The following optional keywords were suggested by Wells et.
al. (1981). Their order (between the required keywords and the END
keyword) is arbitrary; in general, all of these keywords appear in
an AIPS FITS header.

- BSCALE (floating) is the socale factor used to convert tape
pixel values to true values (true = [tape BSCALE] + BZERO).

- BZERO (floating) is the offset applied to true pixel values
(see BSCALE).

- BUNIT (character) gives the brightness units.

- BLANK (integer) is the tape pixel value assigned to
undefined pixels.

- OBJECT (character) is the image name.

- DATE (charaocter) 1is the date +the file was written
('dd/mm/yy’)

- DATE-OBS (character) is the date of data aocquition
('dd/mm/yy’).

FITS TAPES
IMAGE FILES

ORIGIN (charaoter)is the tape writing institution.

INSTRUME (character) is the data acquisition instrument.
TELESCOP (character) is the data acquisition telescope.
OBSERVER (character) is the observer name / identificationm.
blank in col 1-8 (none) means columns © - 80 are a comment.
COMMENT (none) means columns 9 - 80 are a comment.

HISTORY (none) means columns 9 - 80 are a comment.

CRVALn (floating) is the value of physical ocoordinate on
axis n at the reference pixel.

CRPIXn (floating) is the array location of reference pixel
along axis n. CRPIX may be a fractional pixel and/or be
outside of the limits of the array.

CDELTn (floating) is the inorement in physical coordinate
along axis n as FORTRAN counter increases by 1.

CTYPEn (character) is the type of physical coordinate on
axis n.

CROTAn (floating) is the rotation angle of actual axis n
from stated coordinate type.

DATAMAX (floating) is the maximum data value in file (after
scaling).

DATAMIN (floating) is the minimum data value in file.

EPOCH (floating) is the epoch of coordinate system (years).

Of these keywords, all are well defined except the rotation; see the
chapter on the catalogue header for more details on the ocurrent AIPS
rotation conventions. AIPS routines ocan currently read up to 32768
header records each consisting of 36 card images.

14.3.2.2 History - In the AIPS implementation, the “HISTORY" ocards

contain

the entries of the history file assooclated with the image.

As they appear on the tape, these history entries are in the form:

Page 14-5
27 May 84

FITS TAPES Page 14-6
IMAGE FILES 27 May 84

HISTORY tsknam keywordl=valuel, keyword2=value2 ... / oomment

Where "tsknam" is the name of the task (or AIPS) making the entry
and the keywords are the AIPS adverbs used. Thus these history
records may be used to carry AIPS speoific values which don’t have
official keywords. This feature is used, for example, to deternmine
the default file name, class etc. when reading a file which was
written on an AIPS system.

14.3.2.3 AIPS Nonstandard Image File Keywords - There are a nunmber
of keywords used by AIPS which are not standard.

- TABLES (integer) is the number of tables following the
file. (now obsolete)

- DATE-MAP (character) is the date the map was made.
('dd/mm/yy’)

- OBSRA (floating) is the Right ascension of the antenna and
delay tracking position used for the observations.

- OBSDEC (floating) is the declination of +the antenna and
delay tracking position used for the observations.

- VELREF (floating) is the reference velooity.

- ALTRVAL (floating) is the value of +the alternate
(frequency/velocity) axis at the alternate reference pixel
(ALTPIX).

- ALTRPIX (floating) is the alternate (frequenocy/veloocity)
reference pixel.

- RESTFREQ (floating) is the rest frequency of the spectral
line being observed.

- XSHIFT (floating) is the offset of the phase center from
the tangent point of the Right ascension after any
rotation.

- YSHIFT(floating) is the offset of the phase center from the
tangent point of the declination after any rotation.

FITS TAPES Page 14-7
IMAGE FILES 27 May 84

A number of keywords whioch are specific to AIPS are hidden on
HISTORY cards. These keywords are recognized if the first symbol in
columns 10 - 17 is one of +the following: "AIPS’', 'VLACV', or
‘RANCID’ .

- IMNAME (character) the name of the file im an AIPS (or
RANCID) system used to generate the FITS tape.

- IMCLASS (character) the oclass of the AIPS file.
- IMSEQ (integer) the sequence number of the AIPS file.
- TUSERNO (integer) the AIPS user number.

- PRODUCT (integer) the +type of CLEAN image. l=>normal
clean, 2=>components, 3=>residual, 4=>points.

- NITER (integer) the number of CLEAN components used for the
image.

- BMAJ (floating) the major axis (FWHP) of the restoring
beam. (degrees)

- BMIN (floating) the minor axis (FWHP) of the restoring
bean.

-~ BPA (floating) the position angle (from north thru east) of
the major axis of the restoring beam.

AIPS also recognizes, but does not write, the following
non-standard keywords:

- OPHRAE1l (floating) an obsoure number related to the Right
ascension of the ocenter on an image made on the VLA
pipeline PDP1l1l.

- OPHDCEll(floating) an obscure number related to the
declination of the center on an image made on the VLA
pipeline PDP11.

- MAPNAM11 (character) the name of the file on the VLA
pipeline PDP11.

Any keywords which are not recognized by AIPS are writtem into the
history file.

14.3.2.4 Coordinate Systems - The coordinate type and the system
used for each type 1s given by the CTYPEn values. The character
strings used for these values are identiocal to the strings used in
the AIPS ocatalogue header record (CAT4(K4CTP+n-1)). The coordinate
type is encoded into the first 4 characters of the ocoordinate type

FITS TAPES Page 14-8
IMAGE FILES 27 May 84

string (e.g. 'RA--' indicating Right ascension) and the system used
is encoded into characters 5 - 8 (e.g. ‘'-SIN' indicating a sine
projection onto the sky). The coordinate systems and their symbolio
names are desoribed in detall in the chapter on the catalogue header
and AIPS memo number 27. The coordinate system used to describe the
polarization of an image needs careful attention.

The AIPS convention for projected geometries is to specify the
tangent point of the projeotion as the reference pixel even though
this need not correspond to an integer pixel and need not even be
contained in the array given. The tangent point is the position on
the sky where the plane on which the image is projected 1is tangent
to the celestial sphere. For images derived from synthesis arrays,
this is the position for which u, v, and w were computed. The
reference pixel for a synthesis array beam image is the phase
reference of the image; this should be the position of the peak of
the beam (pixel value = 1.0).

The use of one rotation angle per axis cannot be used to define
& general rotation of the axis system. Since the AIPS catalogue
header uses the same convention, the same problems ocour intermnally
to AIPS. See the chapter on the AIPS catalogue header for a brief
discussion of the conventions used in AIPS. The same oconventions
are used when reading and writing FITS tapes.

14.3.2.5 Example Image Header - The following is an example of an
image header written by AIPS (with most of the HISTORY entries
removed).

FITS TAPES Page 14-9
IMAGE FILES _7 May 84

0000000001111111111222222222233333333334444444444555555555656666666666
1234567800123456789012345678901234567890123456789001234567890123456789
T

SIMPLE = /

BITPIX = 16 /

NAXIS - 4 /

NAXIS1 = 2048 /

NAXIS2 = 1024 /

NAXIS3 = 1/

NAXIS4 = 1/

OBJECT = '3C408 ! / SOURCE NAME
TELESCOP= ' ! /

INSTRUME= ' ! /

OBSERVER= 'PERL ! /

DATE-OBS= '27/10/82' /OBSERVATION START DATE DD/MM/YY
DATE-MAP= '14/07/83' /DATE OF LAST PROCESSING DD/MM/YY
BSCALE = 7.04625720812E-05 /REAL = TAPE * BSCALE + BZERO
BZERO = 2.18688869476E+00 /

BUNIT = 'JY/BEAM '’ /UNITS OF FLUX
EPOCH = 1.950000000E+03 /EPOCH OF RA DEC
DATAMAX = 4.495524406E+00 /MAX PIXEL VALUE
DATAMIN = -1.217470840E-01 /MIN PIXEL VALUE
CTYPE1l = 'RA---SIN' /

CRVAL1 = 2.99435165226E+02 /

CDELT1 = —4.166666986E-05 /

CRPIX1l = 1.024000000E+03 /

CROTAl = 0.000C00000E+00 /

CTYPE2 = 'DEC--SIN’ /

CRVALZ2 = 4.05961940065E+01 /

CDELT2 = 4.166666986E-05 /

CRPIX2 = 5.130000000E+03 7/

CROTA2 = 0.000000000E+00 /

CTYPE3 = 'FREQ ! /

CRVALZ = 4.86635000000E+09 /

CDELT3 = 1.250000000E+07 /

CRPIX3 = 1.000000000E+00 /

CROTA3Z = 0.000000000E+00 /

CTYPE4 = 'STOKES ' /

CRVAL4 = 1.00000000000E+00 /

CDELT4 = 1.000000000E+00 /

CRPIX4 = 1.000000000E+0Q /

CROTA4 = 0.00CO00000E+00 /

HISTORY UVLOD /DATA BASE CREATED BY USER 76 AT 14-JUL-1983 10:17:08
HISTORY UVLOD OUTNAME='CYGA ' OUTCLASS='XY !
HISTORY UVLOD OUTSEQ= 1 OUTDISK= 3

ORIGIN = 'AIPSNRAO VLA VAX3 ! /

DATE = '19/08/83' / TAPE WRITTEN ON DD/MM/YY
HISTORY AIPS IMNAME='CYGA ' IMCLASS='IMAP ‘' IMSEQ= 1 /
HISTORY ATIPS USERNO= 76 /

END

FITS TAPES Page 14-10
IMAGE FILES 27 May 84

14.5.2.6 Units - The units for pizel values and coordinate systems
should be SI units where appropriate (e.g. velocities in
meters/sec); angles in degrees; pixel values in Jdy, dJdy/beamn,
magnitudes, or magnitudes/pixel.

14.3.3 Data Records

The data array starts at the beginning of the record following
the last header record. The data occurs in the order defined by the
header; in increasing pixzel number with axis 1 the fastest varying
and the last axis defined the slowest varying. Data is packed into
the 2880 byte records with no gaps; that is, the first pPixel of any
given axls does not neocessarily appear in the first word of a new
record.

The bits in each word are in order of decreasing signifigance
with the sign bit first. This convention means the PDP-11 and VAX
machines will have to reverse the order of the bytes in 168 and 32
bit words before writing or after reading the tape. There are a
number of AIPS utility routines for converting FITS tape data to the
local convention; these are briefly desoribed in the following list.
Complete details of the call sequences eto. are given at the end of
the chapter on the Z routines.

l. ZCLC8 converts local characoters to standard 8-bit ASCII.

2. 2ZC8CL extraots 8-bit standard characters from a buffer and
stores them in the local character form.

S. 2I16IL extracts 16-bit twos ocomplement integers from a
buffer and puts them in a local small integer array.

4. ZIB3RQIL extracts 32-bit twos complement integers from a
buffer and puts them in a 1loocal array of pseudo I*4
integers.

§. ZI8L8 converts 8-bit unsigned binary numbers to "bytes"
(half of a local small integer).

6. 2ZILI16 converts a buffer of local small integers to a
buffer of standard 16-bit, twos oomplement integers. Z2R8P4
oconverts between pseudo I*4 and double precision (R*8).

14.4 RANDOM GROUP (UV DATA) FILES

The extension of the original FITS standards desoribed by
Greisen and Harten 1981 allows uv data to be written in FITS files.
These files are called "Random group"” FITS files. This extension is
to allow multiple “images" 1i.e. rectangular data arrays each of

FITS TAPES Page 14-11
RANDOM GROUP (UV DATA) FILES _7 May 84

which is arbitrarily located on some “"axes". Thus each data array
is preceeded by a number of "random" parameters whioch desoribe its
location on axes on which it is not regularly gridded, e.g, u, v, w,
time, and baseline. The definition of what constitutes an "axis" is
extremely vague. Currently AIPS FITS routines can accept up to %
actual axes i1in the regular portion of a group and up to 20 random

parameter words. The struoture of a group is shown in the
following.
t rl, r2, r3, ... rk | pll, pl2, ... pmn |
where rl ... rk are random parameters 1 thru k
pll ... pmn are the pixel value in the order

defined for image arrays. Two dimensions
are used only for demonstration.

FITS image files are actually a subset of this more general
struoture but for historical reasons the random group FITS is
treated as a special case of the image file. This has unfortunate
consequences as wlll shortly become obvious. Most of the features
of random group files are identical to image files and the
disoussion in the following seoction will conocern the differences
between image and random group FITS files.

14.4.1 Header Record

For obsoure historical reasons, random group FITS files are
declared to have zero pixels on the first axis; the first real axis
is labeled axis 2 and so on. This will allow FITS image readers
that don’t know about random group files to do something reasonable,
l.e. skip over the file. Thus a random group FITS file has one
more axis described in the header than actually ocours in the data.

In addition to playing games with the axis numbers, random

group FITS headers have the following required keywords (in any
order):

1. GROUPS (logical) is true (T) if the data file is a random
group FITS file.

2. PCOUNT (integer) is the number of random parameters
preceding each data array.

3. GCOUNT (floating) is the number of groups in the file.

The random parameters may be labeled and scaled in a fashion

similar to image axes and pixels. In addition, multiple word
precision in some of the random parameters is allowed by giving
multiple random parameters the same label. If several random

parameters have the same name (PTYPE), their values should be summed

FITS TAPES Page 14-12
RANDOM GROUP (UV DATA) FILES 27 May 84

after scaling. Labeling and soaling wuse the following optional
keywords (arbitrary order):

- PTYPEn (character) is the 1label for the n-th random
parameter. If several random parameters have the same
value of PTYPEn they should be summed after scaling.

- PSCALn (floating) gives the scale factor for random
parameter n. True_value = tape_value * PSCALn + PZEROn

- PZEROn (floating) gives the scaling offset for random
parameter n.

A number of keywords which are specific to AIPS are hidden on
HISTORY cards. These keywords are recognized if the first symbol in
columns 10 - 17 is one of the following: 'AIPS’', 'VLACV’', or
"RANCID’.

- SORT ORDER (character) the order of the groups.

- WISCAL ({floating) an additional scaling factor for
visibility weights.

14.4.2 Data Records

The binary data records are stored beginning in the first
record following the last header record in much the same way that
image files are stored; the beginning of a group does not
necessarily correspond to the beginning of a record. The same pixel
data types are allowed as for image files (note: the data type must
be t?e same for all values both random parameters and the "data"
array).

14.4.2.1 Veights And Flagging - Uv FITS files written by AIPS have
as thelr first (real, i.e. second in the header) axis the ’'COMPLEX'
axls which is dimensioned 3. The values along this axis (coordinate
values 1, 2, and 3) are real part (in Jy), imaginary part, and
welght. A non positive weight indicates that the the visibility has
been flagged. The scaling desired for the weight may be different
for the real and imaginary parts so an additional socaling factor is
stored in the header as a HISTORY entry as follows:

HISTORY AIPS WTSCAL = 2.78756756787E+01
/ CMPLX WTS=WTSCAL*(TAPE*BSCALE+BZERO)

The use of WTSCAL allows the reader to recover the same values for
the welghts as +the AIPS file which was used to generate the FITS
file. If WTSCAL is 4ignored (or absent) the relative but not
absolute scaling of the weights is preserved.

FITS TAPES
RANDOM GROUP (UV DATA) FILES

In addition to the form desoribed above, AIPS will accept other
forms of weighting/flagging data.

l. Magic value blanking. In this case the COMPLEX axis 1is
dimensioned 2 (real and imaginary) and the header keyword
BLANK is used to indicate undefined data values. Thus 1if
elther the real or imaginary parts are ’‘blanked’ the data
is assumed to be flagged (invalid).

Data written on the VLA
The welghts and flags are
More on this later in the

2. Random parameter flagging.
pipeline 1is 1n +this format.
passed as random parameters.
broadcast.

14.4.2.2 Antennas And Subarrays - If data from different arrays (or
different VLA configurations) are combined, the physical identity of

Page 14-13
27 May 84

a given antenna may not be constant in a given data base.

to

In

order

identify the physical antennas involved in a given visibility

record, AIPS uses a subarray number. The (subarray number - 1) *
0.01 1s added to the baseline number to identify the subarray.
There i1s an antenna file or 1list for each subarray. The

information about the antennas (e.g.
the antenna files.

table

files

locations eto.) is given in

Currently AIPS writes these files as extension
file version number

(described 1later) with the

corresponding to the subarray number.

AIPS will also recognize antenna locations
An example (from Greisen and Harten 1981

cards.

of

iven in the HISTORY
this follows:

COMMENT ANTENNA LOCATIONS IN NANOSECONDS:

HISTORY VLACV ANT N= 2 X= b5470.525 ¥Y=-14443.276 Z= -8061.210 ST='AW4'
HISTORY VLACV ANT N= 4 X= 1667.280 Y= ~4396.334 Z= -2452.399 ST='CW8'’
HISTORY VLACV ANT N= 5 X= 37.719 Y= 135.627 Z= -50.585 ST='DER’
HISTORY VLACV ANT N= 6 X= 3353.710 Y= -8816.123 Z= -4910.700 ST='BW6'
HISTORY VLACV ANT N= 7 X= 118.761 Y= 445.786 Z= -170.397 ST='DE4’
HISTORY VLACV ANT N= 9O X= 10924.708 Y=-28961.684 Z=-16194.042 ST='AVW6’
COMMENT FORMULA FOR BASELINES BETWEEN ANTENNA I AND J (I<J):

COMMENT BASELINE(IJ) = LOCATION(I) - LOCATION(J)

COMMENT FORMULA FOR UU, VV, WV¥ :

COMMENT UU = BX * SIN(HA) + BY * COS(HA)

COMMENT VV = BZ * COS(DEC) + SIN(DEC) * (BY * SIN(HA) - BX * COS(HA))
COMMENT WW = BZ * SIN(DEC) + COS(DEC) * (BX * COS(HA) - BY * SIN(HA))

WHERE UU AND VV ARE THEN ROTATED TO THE EPOCH

The above example also defines the antenna geometry and u, v, and w

terms used for VLA data.

FITS TAPES Page 14-14
RANDOM GROUP (UV DATA) FILES 27 May 84

14.4.2.3 Coordinates - The coordinate systems used to write FITS uv
data tapes are very similar to the AIPS internal systems; the major
difference being the use of 'DATE’ (giving the Julian date) for time
tagging +the data rather than 'TIMEl’ (giving the time in days from
the beginning of the experiment). See the uv data section of the
disk I/O0 chapter for more details of the AIPS internal uv data
coordinate systems.

14.4.2.4 Sort Order - The ordering of visibility records is
variable and may be ochanged by programs such as AIPS task UVSRT.
The sort order is given as a two character code in the FITS header
as in the following example:

HISTORY AIPS SORT ORDER = 'XY'

Data sorted in AIPS has a two key sort order with the first key
varying the slowest. The two keys are coded as characters given by
the following table:

=> baseline number

=> time order

=> u gpatial freq. coordinate
=> v spatial freq. coordinate
=> w spatial freq. coordinate
=> basgeline length.

=> baseline position angle.
=> descending ABS(u)

=> descending ABS(v)

=> ascending ABS(u)

=> ascending ABS(v)

=> not sorted

*BNKMHUOUDE<A3 W

14.4.3 Typical VLA Record Structure

The following is a uv FITS header for continuum VLA data which
demonstrates the use of multiple precision random parameters. Most
of the HISTORY records are removed from this example. The header
indicates that the data in this example is followed by two antenns
files in the old AIPS tables format.

FITS TAPES

Page 14-15
RANDOM GROUP (UV DATA) FILES

27 May 84

0000000001111111111222223222223333333333444444444455555555556666666666
123456789012345678901234567890123456788012345678901234567800123456789

SIMPLE = T /
BITPIX = 16 /

NAXIS = 8 /

NAXIS1 = O /NO STANDARD IMAGE JUST GROUP
NAXIS2 = 3 /

NAXIS3 = 4/

NAXIS4 = 1/

NAXIS5 = 1/

NAXISE = 1/

OBJECT = '0923+350’ / SOURCE NAME

TELESCOP= ' ' /

INSTRUME= ' ' /

OBSERVER= ’COTT ' /

DATE-OBS= '30/04/82’ /OBSERVATION START DATE DD/MM/YY
DATE-MAP= '11/10/83' /DATE OF LAST PROCESSING DD/MM/YY
BSCALE = 3.30087595420E-06 /REAL = TAPE * BSCALE + BZERO
BZERO = 0.00000000000E+00 /

BUNIT = ‘JY ' /UNITS OF FLUX

EPOCH = 1.950000000E+03 /EPOCH OF RA DEC

OBSRA = 1.40795415491E+02 /ANTENNA POINTING RA
OBSDEC = 3.50133331865E+01 /ANTENNA POINTING DEC
TABLES = 2 /THIS IS THE ANTENNA FILE
CTYPE2 = 'COMPLEX ' /

CRVAL2 = 1.00000000000E+00 /

CDELT2 = 1.000000000E+00 /

CRPIX2 = 1.000000000E+00 /

CROTA2 = 0.000000000E+00 /

CTYPE3 = 'STOKES ' /

CRVAL3 = -1.00000000000E+00 / STOKES AS RR; LL, RL, LR
CDELT3 = -1.000000000E+00 /

CRPIX3 = 1.000000000E+00 /

CROTAZ = 0.000000000E+00 /

CTYPE4 = 'FREQ ' /

CRVAL4 = 4.88510000000E+09 /

CDELT4 = 5.000000000E+07 /

CRPIX4 = 1.000000000E+00 /

CROTA4 = 0.000000000E+00 /

CTYPES = 'RA ' /

CRVALS = 1.40795415491E+02 /

CDELT5 = 0.000000000E+00 /

CRPIXS = 1.000000000E+00 /

CROTA5 = 0.000000000E+00 /

CTYPES = ‘DEC ' /

CRVALS = 3.50133331865E+01 /

CDELT6 = 0.000000000E+00 /

CRPIXE = 1.000000000E+00 /

CROTAB = 0.000000000E+00 /

GROUPS = T/

GCOUNT = 21389. /

PCOUNT = 7/

PTYPEl = ‘UU-L ' /

FITS TAPES Page 14-16

RANDOM GROUP (UV DATA) FILES 27 May 84
PSCAL1 = 2.56659543954E-09 /
PZERO1 = 0.00000000000E+00 /
PTYPE2 = 'VV-1L ! /
PSCAL2 = 3.46332811989E-09 /
PZERO2 = 0.00000000000E+00 /
PTYPE3 = 'WW-L ' /
PSCAL3 = 2.33722136998E-09 /
PZERO3 = 0.00000000000E+00 /
PTYPE4 = ‘BASELINE’ /
PSCAL4 = 1.00000000000E+00 /
PZERO4 = 0.00000000000E+00 /
PTYPES = ’'BASELINE’ /
PSCALS = 1.00000000000E-02 /
PZEROS5 = 0.00000000000E+00 /
PTYPES = 'DATE ' /
PSCALS = 2.50000000000E-01 /
PZERO5 = 2.44508950000E+06 /
PTYPE? = 'DATE ! /
PSCALY = 1.52587890600E-05 /
PZERO7 = 0.00000000000E+00 /
/ WHERE BASELINE = 256*ANT1 + ANT2 + (ARRAY#-1)/100

HISTORY UVLOD RELEASE='15NOV83 ' /CREATED AT 11-OCT-1983 13:34:50
HISTORY UVLOD OUTNAME='0923+350 ' OUTCLASS='UVDATA'’
HISTORY UVLOD OUTSEQ= 1 OUTDISK= 3
ORIGIN = 'AIPSNRAO node CVAX 15NOV83' /
DATE = ‘11/10/83" / TAPE WRITTEN ON DD/MM/YY
HISTORY AIPS IMNAME='0923+350 * IMCLASS='XYAC ' IMSEQ= 1 /
HISTORY AIPS USERNO= 413 /
HISTORY AIPS SORT ORDER = ‘XY’

/ WHERE X MEANS DESC ABS(U)

/ WHERE Y MEANS DESC ABS(V)
HISTORY AIPS WTSCAL = 2.76756756757E+01 / CMPLX WTS=WTSCAL*(TAPE*BSCALE+BZER

END

FITS TAPES Page 14-17
EXTENSION FILES 27 May 84

14.5 EXTENSION FILES

There 1s frequently auxilary 4information assoclated with an
image or data set which needs to be saved in the same tape file.
Examples of this in AIPS are the Antenna files and CLEAN component
files. There is currently a draft proposal to the IAU (Harten et.
al. 1984) defining a standard format for the invention of extension
flles to Dbe written after the main data records (if any) and
defining a "Tables" type extension file. The Tables extension files
will be able to carry information whioh can be expressed in the form
of a table. The following section will desoribe the proposed
standards which are being incorporated into AIPS.

14.5.1 §Standard Extension

The standard, generalized extension file is not a true tape
file 1in the sense that it is separated by tape EOF marks, but is a
number of records inside a FITS tape file which contains information
of relevence to the file. Each standard extension "file" will have
a header which is very similar to the main FITS header. This header
consists of one or more 2880 8-bit byte "logical" records each
containing 36 80-byte "ocard images" in the form:

keyword = value / ocomment

The extension file header begins in the first record following
the 1last record of main data (if any) or the last record of the
previous extension file. The format of the generalized extension
"file" header 1s such that a given FITS reader can decide if it
vants (or understands) a given extension file type and can skip over
the extension file if the reader deoides it doesn't.

Most of the standards concerning data types and bit orders for
the wmain FITS data records also apply to extension files. One
difference is that 8-bit pixel values can be used to indicate ASCII
code.

The use of the generalized extemsion "files" requires the use
of a single additional keyword in the main header:

- EXTEND (logical) if true (T) indicates that there may be
extension files following the data records and if there
are, that they conform to the generalized extension file
header standards.

The required keywords in an extension file header record are,
in order:

FITS TAPES Page 14-18
EXTENSION FILES 27 May 84

1. XTENSION (character) indicates the type of extension file,
this must be the first keyword in the header.

2. BITPIX (integer) gives the number of bits per "pixel"
value. The types defined for the main data records plus
8-bit ASCII are allowed.

3. ©NAXIS (integer) gives the number of "axes"; a value of zero
ls allowed which indicates that no data records follow the
header.

4. NAXIS1 (integer) is the number of "pixels" along the first
axis (if any).

5. NAXISn (integer) is the number of "pixels" along the last
axis.

6. PCOUNT (integer) is +the number of "random" parameters
before each group. This is similar to the definition of
random group main data records. The value may be zero.

7. GCOUNT (integer) is the number of groups of data defined as
for the random group main data records. If an image-like
file (e.g. a table file) is being written this will be 1.

8. END is always the last keyword in a header. The remainder
of the record following the END keyword is blank filled.

There are three optional standard keywords for extension file
header records. The order, between the required keywords and the
END keyword, is arbitrary.

- EXTNAME (character) can be used to give a name to the
extension file to distinguish it from other similar files.
The name may have a hierarchical structure giving its
relation to other files (e.g. “"mapl.cleancomp")

- EXTVER (integer) is a version number which can be used with
EXTNAME to identify & file.

- EXTLEVEL (integer) specifies the 1level of +the extension

file in a hierarchiocal structure. The default value for
EXTLEVEL should be 1.

The number of bits in an extension file (excluding the header)
should be given by the formula:
NBITS = BITPIX * GCOUNT * (PCOUNT + NAXIS1 * NAXIS2 * ... * NAXISn)

The number of data records following the header record are then
given by:

FITS TAPES Page 14-19
EXTENSION FILES 27 May 84

NRECORDS = INT ((NBITS + 23039) / 23040)

It is important that the above formulas aococurately predioct the
number of data records in an extension "file" so that readers can
skip over these "files". The data begins in +the first record
following the last record of the header.

Extreme caution must be exercized when inventing new types of
extension files. In particular, duplication of types or several
types with the same funoction must be avoided. This means that when
& nevw extension file type is invented, it should be as general as
possible so that it may be used for other similar problems.

14.5.2 Tables Extension

A very oommon type of extemsion file is one ocontaining data
that oan be expressed in the form of a table. That is, a number of
entries which are all identical in form. A general, self defining
table extension f{file type is proposed by Harten et. al. (1984).
The following sections describe the proposed format.

The table extension file uses ASCII records to ocarry the
tabular information. Each table entry will contain a fixed number
of entries (although the number can vary between different extension
files). For each entry is given 1) a label (optional), 2) the
beginning column, 3) an undefined value (optional) , 4) a Fortran
format to decode the entry, 5) scaling and offset information
(optional), 6) the units (optional).

14.5.2.1 Tables Header Reocord - The keywords for tables extension
file headers are given in the following:

- XTENSION (character) is required to be the first keyword
and has a value 'TABLE ' for table extension files.

- BITPIX (integer) is a required keyword which must have a
value of 8 indiocating printable ASCII characters.

- NAXIS (integer) is a required keyword which must have a
value of 2 for tables extension files.

- ©NAXIS1l (integer) is a required keyword which given the
number of characters in a table entry.

- NAXIS2 (integer) is a required keyword which gives the
number of entries in the table. A value of 1 is allowed.

- PCOUNT (integer) is a required keyword which must have the
value of 0 for tables extension files.

FITS TAPES Page 14-20
EXTENSION FILES 27 May 84

- GCOUNT (integer) is a required keyword whioch must have the
value of 1 for tables extension files.

- TFIELDS (integer) is a required keyword whioch must follow
the GCOUNT keyword. TFIELDS gives the number of fields in
each table entry.

- EXTNAME (character) is the name of the table.
- EXTVER (integer) is the version number of the table.

- EXTLEVEL (integer) is the hierarchical level number of the
table, 1 is recommended. (optional)

- TBCOLnnn (integer) the pixel number of the first character
in the nnn th field .

- TFORMnnn (character) the Fortran format of field nnn
(I,A,E,D)

- TTYPEnnnn (character) the label for field nnn. (optional,
order arbitrary)

- TUNITnnn (character) the physical units of field nnn.
(optional, order arbitrary)

- TSCALnnn (floating) the scale factor for field nnn.
True_value = tape_value * TSCAL + TZERO. Note: TSCALnnn
and TZEROnnn are not relevant to A-format fields. Default
value is 1.0 (optional, order arbitrary)

- TZEROnnn (floating) +the offset for field nnn. (See
TSCALnnn.) Default value is 0.0 (optional, order arbitrary)

- TNULLnnn (character) the (tape) value of an undefined
value. Note: an exaot left-justified match to the field
width as specified by TFORMnnn 1is required. (optional,
order arbitrary)

~ AUTHOR (character) the name of the author or oreator of the
table. (optional, order arbitrary)

- REFERENC (character) the reference for the table.
(optional, order arbitrary)

- END must always be the last keyword and the remainder of
the record must be blank filled.

The TFORMnnn keywords should speoify the width of the field and
are of the form Iww, Aww, Eww.dd, or Dww.dd (integers, ocharacters,
single precision and double precision). If -0 is ever to be
distinguished from +0 (e.g. degrees of declination) the sign field
should be declared to be a separate character field.

FITS TAPES Page 14-21
EXTENSION FILES _7 May 84

The FITS tables agreement does not inoclude & number of data
types used with AIPS tables: Short integer, logical and bit string.
The following conventlions are used to indicate these data types.

1. Extention name. The table name is given by the table
header keyword 'EXTNAME'. AIPS will invoke the following
conventions if the EXTNAME keyword is of the form ‘AIPS xx'
where xx 1s a two character table type. Likewise, tables
files written by AIPS will use the same convention.

2. Integer length An integer will be considered to be short
(e.g. 16 bits) 1f +the width of the field given by the
TFORMn keyword is 6 or less and long if the width is 7 or
more.

3. Logical Logical variables will be written as a character
string of length 1 containing either the value ‘T’ or 'F’
indicating true or false. The units of this field will be
'LOGICAL'.

4. Bit strings Bit strings will be encoded as hexidecimsl
numbers in a charaocter string. The first set of four bits
will be encoded into the first charaoter with the first bit
being the most signifigant in determining the hexidecimal
representation. The following bits oome in the same order.
The wunits of this field will be 'HEXnnnn’' where nnnn gives
the number of bits in the string.

Arbitrary Table keywords do not have a defined data type in
FITS. FITS written by AIPS tapes will use the AIPS tables
convention for keywords not defined by the FITS agreement and will
indicate the data type by the first letter of the keyword name:

First letter data type
F Single precision floating
D Double precision floating
o] Charaocter string (8 char)
I Short integer
J Long integer
L Logical

14.5.2.2 Table Data Records - The table file data records begin
with the next record following the last header record and each
contains 2880 ASCII characters in the order defined by the header.
Table entries do not necessarily begin at the beginning of a new
record. The last reocord should be blank filled past the end of the
valid data.

FITS TAPES Page 14-22
EXTENSION FILES 27 May 84

14.5.2.3 Example Table Header And Data - The first two 1lines of
numbers are only present to show card columns and are not part of
the extension file.

1 2 3 4 5 6 7
12345678901234567890123456780012345678901234567890123456789001234567890123456

XTENSION= 'TABLE ! / EXTENSION TYPE

BITPIX = 8 / PRINTABLE ASCII CODES

NAXIS = 2 / TABLE IS A MATRIX

NAXIS1 = 60 / WIDTH OF TABLE IN CHARACTERS
NAXIS2 = 449 / NUMBER OF ENTRIES IN TABLE
PCOUNT = O / RANDOM PARAMETER COUNT

GCOUNT = 1 / GROUP COUNT

TFIELDS = 3 / NUMBER OF FIELDS IN EACH ROV
EXTNAME = 'AIPS CC ' / AIPS CLEAN COMPONENTS

EXTVER = 1 / VERSION NUMBER OF TABLE

TBCOL1l = 1 / STARTING CHAR. POS. OF FIELD N
TFORM1 = ‘El5.6 ! / FORTRAN FORMAT OF FIELD N
TTYPE1l = 'FLUX ! / TYPE (HEADING) OF FIELD N
TUNIT1 = 'JY ! / PHYSICAL UNITS OF FIELD N
TSCALl = 1.0 / SCALE FACTOR FOR FIELD N
TZEROl = 0.0 / ZERO POINT FOR FIELD N

TBCOL2 = 17 / STARTING CHAR. POS. OF FIELD N
TFORM2 = 'E15.6 ! / FORTRAN FORMAT OF FIELD N
TTYPER2 = 'DELTAX ' / TYPE (HEADING) OF FIELD N
TUNIT2 = 'DEGREES ' / PHYSICAL UNITS OF FIELD N
TSCAL2 = 1.0 / SCALE FACTOR FOR FIELD N
TZERO2 = 0.0 / ZERO POINT FOR FIELD N

TBCOL3 = 33 / STARTING CHAR. POS. OF FIELD N
TFORM3 = 'E15.86 ! / FORTRAN FORMAT OF FIELD N
TTYPE3S = 'DELTAY ‘' / TYPE (HEADING) OF FIELD N
TUNIT3 = 'DEGREES ' / PHYSICAL UNITS OF FIELD N
TSCAL3 = 1.0 / SCALE FACTOR FOR FIELD N
TZERO3 = 0.0 / ZERO POINT FOR FIELD N

END

The rest of the header block is blank filled. The data cards start
on the next block boundary.

0.183387E+00 -0.138889E-03 0.694444E-04
0.1468710E+00 -0.138889E-03 0.694444E-04
0.117368E+00 -0.138889E-03 0.694444E-04
0.938941E-01 -0.138889E-03 0.694444E-04
0.183387E+00 -0.138889E-03 0.694444E-04

FITS TAPES Page 14-23
EXTENSION FILES 27 May 84

14.5.3 Older AIPS Tables

Prior to the (presumed) establishment of the standard tables
extension files, AIPS had 1t own tables file format and a large
number of tapes have been written with these tables. These o0ld
tables were encoded in ASCII and ocould have any number of columns in
the table. However, all values in the table had to be of the same
data type and written with the same format. AIPS FITS readers will
contlnue to recognize and deal with these obsolete tables
indefinitely. The following sections desoribe these tables.

14.5.3.1 General Form Of Header - The presence of the o0ld format
AIPS tables 1s indicated in the main header by the presence of the
integer keyword TABLES which gives the number of tables following
the data records. Each table has a header record in a manner
simllar to the now standard extension file header but with different
keywords. The header contains the following keywords:

1. TABNAME (character) gives the name of the file.
2. TABVER (integer) gives the version number of the file.

3. TABCOUNT (integer) gives the number of entries in the
table.

4. TABWIDTH (integer) gives the number of values per table
entry

5. TABCARDS (integer) gives the number of values per ocard
image.

6. TTYPEn (character) gives a label for the n th column.

7. NUMTIYPE (character) gives the data type used for internal
storage (I*2, R*4, R*8)

8. FORMAT (character) gives the format for the table elements.
8. END is the last keyword.

14.5.3.2 Data Records - The data records oonsist of floating point
values encoded in ASCII in 38 80-byte card images per record in a
free field format. The values are encoded TABCARDS values per 80
byte card image.

FITS TAPES Page 14-24
EXTENSION FILES 27 May 84

14.5.3.3 CC Files - The details of the AIPS o0ld CLEAN ocomponent
(CC) table file are illustrated in the following example of a
header. Component posltions are given in degrees from the tangent
point (reference pixel) of the image in the projected and rotated
plane (i.e. not true RA and dec). Component flux densities are in

Janskys. CLEAN ocomponents are stored 2 per card image written as
6E13.5.

TABNAME = 'AIPS CC' / AIPS CLEAN COMPONENTS
TABVER = 1 / VERSION NUMBER

TABCOUNT= 100 / # LOGICAL RECORDS IN TABLE
TABWIDTH= 3 / % VALUES PER LOGICAL RECORD
TABCARDS= 6 / # VALUES PER CARD IMAGE
TTYPE1l <= 'DELTAX ' / COLUMN 1 LABEL

TTYPE2 = 'DELTAY ' / COLUMN 2 LABEL

TTYPE3 = 'FLUX(JY)' / COLUMN 3 LABEL

NUMTYPE = 'R*4 ! / OUR INTERNAL STORAGE SIZE
FORMAT = 'El13.5 ! / FORMAT ACTUALLY USED HERE

END

14.5.3.4 AN Files - The detalls of the AIPS o0ld antenna table file
are 1llustrated in +the following example of a header. Antenna
positions are given in seconds (light travel time).

TABNAME = 'AIPS AN’ /ANTENNA IDS, LOCATIONS
TABVER = 1 /VERSION NUMBER

TABCOUNT= 28 / # LOGICAL RECORDS IN TABLE
TABWIDTH= 5 / % VALUES PER LOGICAL RECORD
TABCARDS= 5 / % VALUES PER CARD IMAGE
TTYPEl = 'AN NO. ' / COLUMN 1 LABEL

TTYPE2 = 'STATION ' / COLUMN 2 LABEL

TTYPES = 'IX ! / COLUMN 3 LABEL

TTYPE4 = 'LY ! / COLUMN 4 LABEL

TTYPES = 'L2 ! / COLUMN 5 LABEL

END

FITS TAPES Page 14-25
AIPS FITS INCLUDES 27 May 84

14.6 AIPS FITS INCLUDES

There are several AIPS INCLUDEs which contain tables of KEYWORD
names, data types and pointers to the AIPS catalogue header. Each
of the sets oconsists of a declaration inolude (Dnnn.inc), an
EQUIVALENCE include (Ennn.inoc) and a DATA inolude (Vannn.inc). These
includes can be used direotly by routines such as FPARSE. The basio
components of these includes is shown below:

- AVYWORD (R*¢) - this array ocontains the recognized keywords,
two R*4 words per keyword with four characters per R*4
word. This array ocan be sent to GETCRD as the 1list of
keywords.

- NCT (I*2) - this gives the number of required keyword names
in CWORD which is equivalences at the beginning of AWORD.

- NKT (I*2) - this given the number of optional keywords

names in KWORD which is equivalenced into AWORD after
CWORD.

- ATYPE (I*2) - this array gives the data types corresponding
to keywords in AWORD. 1=>logical variable, 2=>numerical
value, and 3=>string.

- APOINT (I*2) - this array ocontains pointers in the ocommon
in the includes DHDR.INC and CHDR.INC to the AIPS catalogue
header in the form 1000nbytes + 100offset + position of
pointer in ocommon. Here nbytes given the number of bytes
used in the AIPS ocatalogue header and the offset is the
character offset past the position indicated by the header
pointer. The text of these includes is in the following
seoctions.

14.6.1 DFUV.INC

Cc Include DFUV
INTEGER*2 ATYPE(150), APOINT(150), CTYPE(1ll), KTYPE(139),
* CPOINT(11), POINT(139), NKT, NCT
REAL*4 AWORD(2,150), CWORD(2,11), KWORD(2,139), K1(2,73),
* K2(2,68)

c End DFUV

FITS TAPES Page 14-26
AIPS FITS INCLUDES 27 May 84

14.6.2 DFIT.INC

C Include DFUV
INTEGER*2 ATYPE(82), APOINT(82), CTYPE(10), KTYPE(%2), CPOINT(10),
* POINT(72), NKT, NCT

REAL*4 AYWORD(2,82), CWORD(2,10), KWORD(2,72)
C End DFUV

14.6.3 EFUV.INC

C Include EFUV
EQUIVALENCE (AWORD(1,1), CWORD(1,1)), (AWORD(1,85), K2(1,1)),
* (AWORD(1,12), KWORD(1,1), K1(1,1))
EQUIVALENCE (APOINT(1), CPOINT(1l)), (APOINT(12), POINT(1))
EQUIVALENCE (ATYPE(1l), CTYPE(1l)), (ATYPE(12), KTYPE(1))
C End EFUV

l4.6.4 EFIT.INC

C Include EFUV
EQUIVALENCE (AWORD(1,1), CWORD(1,1)), (AWORD(1,11), KWORD(1,1))
EQUIVALENCE (APOINT(1), CPOINT(1)), (APOINT(11), POINT(1))
EQUIVALENCE (ATYPE(1l), CTYPE(1l)), (ATYPE(11), KTYPE(1))

C End EFUV

14.6.5 VFUV.INC

C Include VFUV
DATA NCT/11l/, NKT/138/
DATA CWORD/'SIMP',‘'LE ','BITP','IX ','NAXI’',’'S ', 'NAXI',
* ’'S1 ','NAXI',’'S2 ','NAXI','S3 ','NAXI',’'S4 ', 'NAXI','S5 ',
* 'NAXI',’'S6 ', 'NAXI',’'S7? ',’'NAXI',’'Ss8 '/
DATA K1 /'OBJE', 'CT ‘,'TELE', 'SCOP', 'INST', ‘RUME’, 'OBSE’, 'RVER’,
* ‘DATE', '~OBS', 'DATE’, '-MAP', 'BSCA’','LE ', 'BZER’, 'O ‘,
* "BUNI’','T ‘,'CTYP’','El ‘,'CTYP','E2 ','CTYP','E3 ',
* ‘CTYpP','E4 ','CTYP','ES ','CTYP','E6 ','CTYP','E? ',
* ‘CTYP’',’'E8 ','CRVA’,'Ll ',’'CRVA’','L2 ','CRVA','L3 g
* ‘CRVA’,'I4 ‘,'CRVA’,’'LS ','CRVA',’'L& ','CRVA’,'L? .
* ‘CRVA’,'L8 ','CDEL',‘'Tl1 ','CDEL’,‘'T2 ','CDEL’,'T3 "
* ‘CDEL', ‘T4 ','CDEL','T5 ', 'CDEL’,‘T6 ', 'CDEL’,'T? ',
* ‘CDEL', ‘T8 ','CRPI',‘X1 ','CRPI',’'X2 ','CRPI’','X3 ,

FITS TAPES Page 14-27

AIPS FITS INCLUDES 27 May 84
* ‘CRPI',‘X4 ','CRPI','X5 ','CRPI',’'X6 ','CRPI','X? '
* ‘CRPI',’'X8 ','CROT’','Al ','CROT',’'A2 ','CROT','A3 '
* ‘CROT','A4 ','CROT',’'A5 ','CROT',’'A6 ‘,'CROT',‘'AY '
* ‘CROT',‘'A8 ','EPOC’','H ", 'DATA’', 'MAX ', 'DATA’', 'MIN '
* 'BLAN', 'K ‘,"INHI', 'BIT ', 'IMNA’','ME ', 'IMCL’,'ASS '
* "IMSE’, 'Q ‘,'USER’, 'NO ', 'PROD’, 'UCT ', 'NITE’, 'R '
* 'BMAJ ', ’ ', 'BMIN’,’ ‘,'BPA ', ','VELR','EF '
* 'ALTR', 'VAL ',’'ALTR’','PIX ', ‘'OBSR’‘, ‘A ','OBSD', 'EC '
* ‘REST', 'FREQ', 'XSHI','FT ','YSHI','FT ', 'DATE’',’ !
* 'ORIG','IN '/
DATA K2 /'GROU','PS ',’'GCOU’,'NT ','PCOU’','NT ','PTYP',’'El '
* ‘PTYP','E2 ','PTYP','E3 ','PTYP','E4 ', 'PTYP','ES5 '
* ‘PTYP','E6 ','PTYP','EY ','PTYP','E8 ','PTYP','EQ '
* ‘'PTYP', 'E10 ', 'PTYP','Ell ', 'PTYP’,'El12 ', 'PTYP', 'E13 '
* 'PTYP', 'El4 ', 'PTYP','E1l8 ', 'PTYP', 'El6 ', 'PTYP', 'E17 '
* ‘PTYP','E18 ', 'PTYP’','El9 ',’'PTYP’','ER0 ‘,'PSCA',’'Ll1 '
* ‘PSCA','L2 ','PSCA','L3 ‘,'PSCA’','l4 ','PSCA’,'L5 '
* ‘PSCA','L6 ','PSCA','L? ','PSCA’','L8 ','PSCA','L9 '
* ‘PSCA’,'L10 ','PSCA’, ‘L1l ','PSCA’','L12 ','PSCA’','L13
* ‘PSCA’,'L14 ','PSCA’,'L18 ','PSCA’,'L18 ', ‘PSCA’','L1% '
* ‘PSCA’',’'L18 ','PSCA','L19 ', 'PSCA','L20 ', 'PZER’',’'01 '
* "PZER','02 ','PZER’','O3 ‘,'PZER’','0O4 ','PZER',‘'0O5 '
* '"PZER','08 ','PZER’','O7 ','PZER’','O8 ','PZER',b‘'09Q ‘'
* "PZER’, 'O10 ', 'PZER’','O1l1 ', 'PZER’', ‘'0Ol2 ', 'PZER’', 'Ol13 '
* "PZER’', 'O14 ','PZER’,'0O15 ', 'PZER’, ‘Ol6 ', 'PZER', 'O1%7 '
* 'PZER', 'O18 ', 'PZER’', '0l19 ', 'PZER‘', ‘020 ', 'TABL','ES '
* ‘SORT', 'ORDR', 'WTSC’, 'AL '/

C l=Logical variable

C 2=Number

C 3=String
DATA CTYPE /1,2,2,2, 2,2,2,2, 2,2,2/
DATA KTYPE /3,3,93,3, 3,3,2,2, 3,3,3,3, 3,3,3,3, 3,2,2,2,
* 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2,
* 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,3,3, 2,2,2,2,
* 2,2,2,2, 2,2,2,2, 2,2,2,3, 3,1,2,2,
* 20*3, 20*2, 20*2, 2,3,2/

c 1000*nbytes + 100*offset +

c position of pointer in common
DATA CPOINT / 0, 2043, 2041, 2042, 2142, 2242, 2342, 2442,
x

DATA POINT / 8001, 8002, 8003, 8004, 8005, 8006, 8029, 8030,
8007, 8009, 8109, 8209, 8309, 8409, 8509, 8609,
8709, 8031, 8131, 8231, 8331, 8431, 8531, 8631,
8731, 4010, 4110, 4210, 4310, 4410, 4510, 4610,
4710, 4011, 4111, 4211, 4311, 4411, 4511, 4611,
4212, 4312, 4412, 4512, 4612,
4712, 4013, 4014, 4015, 4016, 2044,1201%7, 6218,
2045, 2046, 2048, 2047, 4020, 4021, 4022, 2049,
8035, 4023, 8032, 8033, 8034, 4024, 4025, 0,
G, 1001, 2039, 2040,
20*8008, 20*4004, 20*4004, 4004, 2048, 4004/
C End VFUV.

LR R R A IR R)
1N
~2
[
-
1Y
o
[t
V]
1Y
[
[
N

FITS TAPES Page 14-28
AIPS FITS INCLUDES 27 May 84

14.6.6 VFIT.INC

C Include VFIT
DATA NCT/10/, NKT/72/
DATA CWORD/'SIMP','LE ','BITP','IX ','NAXI’','S ', 'NAXI',
* 'Sl ','NAXI’',’'S2 ','NAXI',’'S3 ','NAXI',’'S4 ','NAXI','S5 ',
* ‘NAXI','S6 ','NAXI’','S?T '/
DATA KWORD /'OBJE’, 'CT ',’TELE’ ‘SCOP', 'INST', 'RUME' 'OBSE’,
* 'RVER’, 'DATE’, '-OBS', 'DATE’, —MAP’ ’BSCA’,'LE ,‘BZER' ‘0 ",
* 'BUNI’','T ', 'CTYP’', 'El ,’CTYP','EZ ', 'CTYP','E3 ',
* ‘cTYP','E4 ',’'CTYP','E5 ','CTYP','E6 ', 'CTYP','E? ',
* "CRVA', 'Ll ',’CRVA','Lz ‘,'CRVA','L3 ','CRVA','L4 ',
* ‘CRVA’,'L5 ','CRVA','L6 ','CRVA’','L?Y ',‘'CDEL’,'T1 ',
* 'CDEL','T2? ','CDEL’,'T3 ','CDEL’,’'T4 ', 'CDEL‘,‘'T8 ',
* ‘CDEL’,'T6 ','CDEL','T?Y ','CRPI',’'X1 ','CRPI’,'X2 ',
* ‘CRPI','X3 ','CRPI','X4 ','CRPI','X5 ','CRPI','X8 ',
* ‘CRPI', ‘X7 ','CROT',‘'Al ','CROT',’'A2 ‘', ‘'CROT','A3 ',
* ‘'CROT',’'A4 ','CROT','A5 ','CROT',’A6 ','CROT’','A? ',
* "EPOC','H ", 'DATA’, 'MAX ', 'DATA', 'MIN ', 'BLAN’,'K .
* ‘INHT', 'BIT ', 'IMNA','ME ', 'IMCL','ASS ', 'IMSE’,’'Q Y,
* 'USER','NO ', 'PROD', 'UCT ', 'NITE', 'R ', 'BMAJ ', "’ ‘Y
* 'BMIN',’ ','BPA ', ', 'VELR','EF ','ALTR’',’'VAL ',
* "ALTR','PIX ','OBSR’,'A ‘','0OBSD','EC ', 'REST', 'FREQ',
* 'XSHI','FT ','YSHI','FT ', 'DATE',’ ','ORIG','IN ',
* ‘TABL','ES ','OPHR', 'AE1ll’, 'OPHD’, ‘CEll’, 'MAPN','AM11'/

C l=Logical variable

c 2=Number

c 3=String
DATA CTYPE /1,2,2,2, 2,2,2,2, 2,3/
DATA KTYPE /3,3,8,5, 3,3,2,2, 3,3,3,3, 3,3,3,3, 2,2,2,2,

2,2,2,2, 2,2,23,2, 2,2,2,2, 2,2,2,2, 2,2,2,2,

* 2)2)2D2l 2!2)2’2’ 2!3|3’2! 212!2l2’ 2’2)2’2’
* 2,2,2,2, 2,2,3,3, 2,2,2,3/

c 1000*nbytes + 100*offset +

C position of pointer in common
DATA CPOINT / 0, 2043, 2041, 2042, 2142, 2242, 23342, 2442,
* 2542, 2642/

DATA POINT / 8001, 8002, 8003, 8004, 8005, 8006, 8029, 8030,
8007, 8009, 8109, 8209, 8309, 8409, 8509, 8609,
8031, 8131, 8231, 8331, 8431, 8531, 8631, 4010,
4110, 4210, 4310, 4410, 4510, 4610, 4011, 4111,
4211, 4311, 4411, 4811, 4611, 4012, 4112, 4212,
4312, 4412, 4512, 4612, 4013, 4014, 4015, 40186,
2044,12017, 6218, 2045, 2046, 2048, 2047, 4020,
4021, 4022, 2049, 8035, 4023, 8032, 8033, 8034,
4024, 4028, 0, 0, 4001, 4101, 4201,1201%/

c End VFIT.

* % X O O ¥ ¥ *

FITS TAPES Page 14-29
AIPS FITS PARSING ROUTINES 27 May 84

14.7 AIPS FITS PARSING ROUTINES

There are several AIPS utility routines which are useful for
parsing (reading) FITS header records. These routines are briefly
described in the following; detalls of the call sequences eto. will
be given later.

- FPARSE parses a FITS header card, unpacking the card image,
interpreting 1t and putting the data value into the correct
location in the AIPS catalogue header. This routine is for
standard FITS headers but with the substitution of the
INCLUDEs DFIT.INC, EFIT.INC and VFIT.INC for DFUV.INC,
EFUV.INC and VFUV.INC the routine will work for FITS image
tapes written on the VLA pipeline.

- GETCRD unpacks a given card image from a header block of
FITS data and looks for keywords in a supplied table.

- GETSYM finds the next symbol in an unpacked buffer. A
symbol 1is defined to begin with a letter and have up to 8
alpha-numeric characters.

- GETLOG obtains the value of a logical variable from an
unpacked buffer.

- GETNUM converts an ASCII numeric field into a REAL*8 value.
- GETSTR obtains a character string from an unpacked buffer.

Following are the details of the call sequence and funotion of
the AIPS FITS parsing utility routines.

14.7.1 FPARSE - (parse FITS card) will unpack and interpret a ocard
image from a block of FITS data and put that data into the internal
AIPS header. Works for standard uv or image FITS headers.

FPARSE (ICARD, FITBLK, PSCAL, POFF, PTYPES, TABLES,
* END, IERR)

Inputs:
ICARD I*2 The card number (1-38) in block to interpret.
FITBLK I*2(1440) A block of FITS header data.

Outputs:

PSCAL R*8(20) Random parameter scalings
POFF R*8(20) Random parameter offsets
PTYPES R*4(20) Random parameter types (packed chars every

other omne)
TABLES I*2 # Tables extension
END L*2 True if end card found, else false.
IERR I*2 error code O=0k. l=error.

COMMON /MAPHDR/

FITS TAPES Page 14-30
AIPS FITS PARSING ROUTINES 27 May 84

14.7.2 GETCRD - (get card) will unpack a given card image from a
header Dblock of FITS data, look for a recognizable key word from a
supplied table and return information to the calling routine.

GETCRD (ICARD, NOSYM, STRSYM, SYMTAB, FITBLK, NPNT,
* KL, SYMBOL, TABNO, ISHIST, END, IERR)

Inputs:
ICARD I*2 the card image (1-36) in FITS data bloock.
NOSYM I*2 the number of entries in key word table.
STRSYM TI*2 Start search with symbol # STRSYM

SYMTAB I*2(2,NOSYM) unpacked keywords, two per I*2.
FITBLK 1I*2(1440) the block of FITS header cards.
In/Out:

NPNT I*2 The position to start scan in array KL.
Returns the last position scanned plus onse.

KL I+*2(80) input the unpacked card image if NPNT » 1,
else returns the unpacked card image.

Outputs:

SYMBOL 1I*2(2) the unpacked symbol found on the card.

TABNO I*2 SYMBOL matches SYMTAB(1&2,TABNO).

ISHIST L*2 True if history card else false.

END L*2 True 1f end card found, else false.

IERR I*2 O=match found, 1=no match on otherwise

valid keyword, 2=card ends or other trouble

14.7.3 GETLOG - obtains the value of a logical variable from loose
buffer.

GETLOG (KB, LIMIT, KBP, IL)
Inputs:

KB(80) I*2 Loose buffer of card image
LIMIT I*2 Number of words in loose buffer

KBP I*2 Pointer position at start
Outputs:
KBP I*2 Pointer position of next field
IL I*2 Value of logical field
0--> .false.

1—_) .true.
2--> invalid

FITS TAPES Page 14-31

AIPS FITS PARSING ROUTINES 27 May 84

14.7.4 GETNUM - oconverts ASCII numeric field into REAL*8 number.
GETNUM (KB, KBPLIM, KBP, X)

Inputs: KB I*2() 1loose character buffer
KBPLIM I*2 # charaocters in buffer

KBP 1I*2 start of numeric field
Outputs: KBP I*2 start of next field (inol blanks)
X R*8 numerlcal wvalue

14.7.5 GETSTR - obtains a hollerith value from a loose buffer.

GETSTR (KB, KBPLIM, NMAX, KBP, ISTR, NCHAR)

Inputs: KB I*2(80) 1loose buffer
KBPLIM I*2 size of loose buffer
NMAX I*2 max string length in charaocters
KBP I*2 start position in KB

Outputs: KBP I*2 start position in KB next field
ISTR R*4(*) packed string, blank filled
NCHAR 1I*2 *+ characters (0 => no string found)

14.7.6 GETSYM - sorutinizes a card image to 1look for the next
symbol. A symbol begins with a letter and contains up to eight
alpha-numeric characters (A-Z2,0-9,_). This routine is wused for
interpreting a FITS tape and for interpreting the HI files.

GETSYM (LBUFF, NPNT, SYM, IERR)

Inputs:
LBUFF(80) I*2 Loose packed card image
NPNT I*2 Pointer to first ocharacter
Output:
NPNT I*2 Pointer value after getting symbol
SYM(2) R*4 Symbol, padded with blanks
IERR I*2 Return code

O--> Found legal symbol followed by ‘=’
l--> Ran off the end of the ocard
2--> Symbol had >8 charaocters
3--> Found legal symbol with no '='
or SYM is HISTORY or COMMENT
4--> Found a '/' symbol
5--> Symbol contains an illegar char

FITS TAPES Page 14-32
REFERENCES Q7 May 84

14.8 REFERENCES

Wells, Greisen, and Harten 1981, Astronomy and Astrophysics
Supplement series, vol. 44, pp 363 - 370.

Greisen and Harten, 1981, Agtronomy and Astrophysics Supplement
Series, vol. 44, pp 371 - 374.

Harten, Grosbol, Tritton, Greisen and Wells 1984, draft reproduced
in the IAU Comission 9 Astronomical Image Processing Circular.

CHAPTER 15
THE Z ROUTINES

15.1 OVERVIEW

The AIPS system has a number of types of routines the details
of which depend on the hardware and/or operating system upon which
the system 1s running. These types of routines are denoted by the
first letter of the name. The types of routines which may vary from
system to system are: 1) those which depend primarily on the
operating system or CPU hardware (denoted by a "2", thus the "2"
routines), 2) those which depend on the image display (TV) hardware
and/or software (the "Y" routines) and 3) those which depend on
array or vector hardware and/or software (the "Q" routines). This
chapter discusses the "Z" routines; the "Y" and "Q" routines are
disocussed elsewhere in this manual.

In principle, all that is required to make AIPS work on a new
machine is to develop a disk file structure and oreate a set of “2“,
"Q" and "Y" routines to interface AIPS programs to the operating
system, the flle structure, the array or vector functions and the
image display. If routines other than "2Z" (or "Y" and "Q") routines
are modified then they will have to be modified every time the AIPS
system is updated. For this reason we recommend that no routines
other tham “2"°., “Y" or Q" routines should be modified.

This ohapter will describe the funotions of the upper layer of
Z routines; in any implementation there will probably be additional
lower level machine-dependent routines. These Z routines form the
basis of & virtual operating system under which the applications
code rung. Careful study of an existing implementation of AIPS is
recommended before attempting & new installation.

NOTE: The routines desoribed in this chapter are intended to
congtitute a oomplete and necessary set to implement ALL AIPS
applications code exolusive of the image display (TV) related
functions. Any (non-TV) "Z" routines not desoribed in this chapter
are lower level routines and should NEVER be ocalled from non-"2"
routines.

THE Z ROUTINES Page 15-2
OVERVIEW 2 April 85

For purposes of discussion the Z routines will be divided up into a
number of overlapping categories:

1. Data Manlpulation Routines - These routines oconvert data
formats from external (tape) integers and characters to
local and vice versa, and move bits and bytes.

2. Digk I1/0 and File Manipulation - These routines oreate,
destroy, expand, contract, open, olose, read, and write
disk files.

3. LSystem Functions - These routines do various system

functions such as starting and stoping processes, inquiring
what prooesses are running, and inquiring how much space is
avallable on a given disk drive.

4. Device I/0 - These routines talk to the terminals, the tape
drive, ¢graphics devices, image displays, etc. This area
overlaps heavily with the disk I/O ares.

5. Directory and Text File Routines - These routines read the
directories for, and contents of, text files.

6. Miscellaneous - There are a number of routines such as that
which initializes the Device Characteristics Common which
do not easily fit in one of the other catagories.

7. Television I/0 routines. These routines are discussed in
the ochapter on televisions and are not discussed further
here.

A detalled descoription of the ocall sequences to each of these
routines and 1listings of the relevant INCLUDE files are at the end
of this chapter.

15.1.1 Device Characteristics Common

Many of the parameters desoribing the host operating system and
installation in AIPS programs are carried in the Device
Characteristios Common which is obtained using the includes
IDCH.INC, DDCH.INC and CDCH.INC. The text of these include files
can be found at the end of this chapter.

The ocontents of the Device Characteristics gommon are
initialized by a call to ZDCHIN. Details of the call sequence can
be found at the end of this chapter.

Many of the values in the Device Characteristics ocommon are
read from a disk file. The values in this file can be read and
changed using the standalone utility program SETPAR. The oconstants
kept in +this ocommon, the values in DEVTAB, and the use of logloal
unit numbers are desoribed in the chapter on disk I/O.

THE Z ROUTINES Page 15-3
OVERVIEW 2 April 85

15.1.2 FTAB

The FTAB array in the device characteristios common is used to
keep AIPS and system I/0 tables. The FTAB has separate areas for
the three different kinds of I/0: 1) device I/0 to devices which
may not mneed I/O tables, 2) non-map or regular I/O which is single
buffered, nonwait-mode I/0 and 3) map I/0O which ocan be double
buffered, wait mode I/O.

The FTAB has space for one system I/O table for non-map files
and two system I/0 ¢tables for map files and space for 16 integer
words for application routine use for map I/O. The size of the
entries 1in FTAB for the different types of I/O are carried in the
Device Charaoteristios Common. The type of the I/O (map or non-map)
is declared by the calling routine to the file/device open routine
ZOPEN. In general, the FTAB is used to carry any system dependent
information necessary for I/0 to the device or file. Note: the
size of FTAB is dimensioned in each application program and ZDCHIN
is not told what the aoctual dimension is; this may lead to problems
if FTAB is dimensioned too small in a given applications task.

The FTAB is divided up by ZDCHIN into three areas, one for each
type of I/0. These areas are desoribed in the following:

l. Non-FTAB I/0 - This area has NTAB1l entries each NBTE1 bytes
long. The first integer word in each entry is zero if that
entry is not in use and the LUN of the corresponding device
if the entry is in usse.

2. FTAB “non-map' I/0 - This area has NTAB2 entries each NBTB2
bytes 1long. The first of these 1s zero if that entry is
not in use and the LUN of the corresponding device if the
entry is 1in wuse. Following 1is space for one copy of
whatever system I/O table is required for the host systenm.

3. FIAB 'map" I/Q0 - This area has NTAB3 entries each NBTB3
bytes long. The first 16 integer words in each entry are
reserved for applioation routines; the first of these is
zero 1f that entry is not in use and the LUN of the
corresponding device if the entry is in use. Following
these 16 integers is space for two copies of whatever
system I/0 table is required for the host system.

Note that a byte is defined in this manual as half a short integer.

THE % ROUTINES Page 15-4
OVERVIEV 2 April 85

15.1.3 Disk Files

The AIPS system uses binary files for data and text files for
source code and control information. The location and physical name
of the various files depends very much on the host system and
installation. The physical name of a file is derived by ZPHFIL and
the location of a file is determined by ZPHFIL and ZOPEN (or ZTOPEN
for text files).

15.1.3.1 Binary (data) Files - Binary files are divided into two

types, “map" and “non-map" files corresponding to the two types of
I/0. Normally most AIPS binary files on a given disk are put in a
single area or directory. Current implementations of AIPS use 8

characters for the basic physical name and 3 more 1f private
catalogues are supported. Applications software will handle up to
24 characters in a name.

An example from & VAX system with private ocatalogues 1is
"DAOn:ttdoocvv.uuu" ; where n is the one relative disk drive number,
DAOn: 1s a logical variable which is assigned to & directory, tt is
a two character file type (eg. 'MA’'), 4 is the one relative disk
drive number(hex), coo is the catalogue slot number(hex), vv is the
version (hex) (01 for "MA" and "UV" files), and uuu 1s the users
number in hexidecimal notation.

"Map" type files are files on which it should be possible to
double buffer. It should be possible to contract "map" files but it
is not necessary to expand "map" files so these files may be forced
to be contigious on the disk. Contigious files are more efficient
but they cause problems for users with large files. These files
should be ocapable of random access with I/0O beginning on a disk
sector boundary.

"Non-map" files should be expandable and contractable. These
files should be capable of random access with I/0 beginning on a
disk sector boundary.

15.1.3.2 Text Files - Text files are used primarily for storing
source oode and control information such as the RUN and HELP/INPUT
files. Currently text files may be read but not written using AIPS
routines. The source oode routines are acoessed primarily by AIPS
managment routines such as the AIPS manual printing program.

Different types of text files are kept in different areas which
have directories. The type of the text file is specified to ZPHFIL
as one of several types; the directory may be further selected by
the 2ZTOPEN argument VERSON which can specify the version (directory
or area). The member (or file) name is specified to ZTOPEN and may
contain up to eight characters. These types and the files kept in
each area are described in the following:

THE Z ROUTINES Page 15-5
OVERVIEW 2 April 85

- HE - These are the HELP files which specify which AIPS
adverbs are to be sent to tasks and contain the primary
user documentation.

- IN -~ Same as HE. This is a relic of older versions in
which the HELP files and INPUTS files were distinot.

- RU - The RUN files usually oontain instruotions for the
AIPS program. Other types of text files may appear in this
area as input for AIPS tasks.

- DC - These are the programmer documentation files,
primarily sections of the AIPS manual.

- SO - These are the "standard" source code routines. These
routines are those which should conform to all AIPS coding
standards.

- SR - This area contains source code which is used only by

the AIPS program and standalone utility programs but not
AIPS tasks.

- SI - This area contains the inoclude files.

- SN - This area contains source ocode which has not been
determined to meet all AIPS coding standards. Code in this
area may give problems in a new installation.

- SF - This area contains the source code for the true array
processor routines.

- ©SP - This area contains the source ocode for the pseudo
array processor routines.

- SL - This area contains miscellaneous files.

15.2 DATA MANIPULATION ROUTINES

The internal form in whioh charaoters and integers are stored
varies from oomputer to computer but a given FITS data tape should
be able to be read on any AIPS system. Thus it is necessary to be
able to convert between the external (FITS) formats to the internal
formats. The format of data on FITS tape files is disocussed in
another chapter.

The following list gives the names and uses of the upper level
data manipulation "Z" vroutines; in practical installations more 2%
routines will be required. Details of the ocall sequences are given
later in this chapter.

THE Z ROUTINES Page 15-6
DATA MANIPULATION ROUTINES 2 April 85

- ZBYTFL - Flip the order of bytes if necessary on local
machine.

- ZCLC8 - converts local characters to standard ASCII.

- 2C8CL - converts standard ASCII to the local characters.

- 2ZMCACL - converts Modocomp compressed ASCII to local ASCII.

— ZDM2DL converts Modcomp double precision real numbers to

local.
- ZGETCH - extraots a single character from a R4 word.
- ZGTBIT - extract bits from a word.
- ZGTBYT - extract byte from a word.
- 2I16IL - converts standard 16 bit integers to the local

short integer.

- 2I32IL - oonverts standard 32 bit integers to a pair of
local short integers.

- ZI8L8 - comnverts 8 - bit unsigned binary numbers to bytes.

- 2ILI16 - converts loocal short integers to external format
16 bit integers.

- ZPTBIT - sets bits in a word.

- 2ZPTBYT - sets a byte in a word.

- ZPUTCH - inserts a character into a string.
- 2ZP4I4 - oconverts pseudo I*4 to true I*4.

- ZRDMF - converts data packed in DEC-Magtape format to pairs
of 16 bit integers.

- ZRM2RL - Converts Modcomp single precesion floating numbers
to local.

- 2R8P4 - converts between pseudo I*4 and REAL*8.

THE Z ROUTINES Page 15-7
DISK I/O AND FILE MANIPULATION ROUTINES 2 April 85

15.3 DISK I/0 AND FILE MANIPULATION ROUTINES

This seotion desoribes the routines needed for manipulating
digk data (binary) files. The physical names of disk data files are
always construoted by ZPHFIL and these files are always opened by
ZOPEN. There are separate routines for writing to the message file
(ZMSGCL, 2ZMSGDK, and ZMSGOP) to avoid recursion when reporting an
error message from one of the I/0 routines.

A short desoription of the disk file routines are given in the
following 1ist; detailed desoriptions of the call sequences are
given at the end of the chapter.

- ZCLOSE - oloses disk files or devices.

- ZCMPRS - contraocts disk files.

- ZCREAT - oreates disk files.

- ZDESTR - destroys disk files

- ZEXIST - determines if a given file exists.

- ZEXPND - expands “"non-map" files.

- ZFIO - does "non-map" (single buffer) I/O to disk files and
devices.

- ZMIO - does "map" (double buffer, wait mode) I/O to disk
files and devices.

- ZMSGCL - closes the message file.

- ZMSGDK - wrltes to the message file.

- 2MSGOP - opens the message file.

- ZOPEN - opens disk files and devioces.

- Z2PHFIL - construots physical file names.

- ZRENAM - changes the physical name of a file.

- 2VWAIT - suspends the calling task until an I/O operation
initiated by ZMIO is complets.

THE Z ROUTINES Page 15-8
SYSTEM FUNCTIONS 2 April 85

15.4 SYSTEM FUNCTIONS

There are a number of functions involving processes or system
resources whlich must be done in a system dependent fashion. These
include controlling processes (starting, killing, suspending and
resuming) and determining the time, date, name of the current
process, and the amount of CPU time used by the current task. Some
of these may require special privileges.

The AIPS interaotive program may start independent proocesses
called tasks which do most of the computations. In order to start a
task, AIPS first writes the task’s adverbs (determined from the
associated HELP file and the ocurrent POPS adverb values) together
with an initial value of the task return code (-999) into the task
data (TD) file, closes the TD file and starts the task.

AIPS then 1loops with a fixed +time delay (3 seo. for
interactive, 8 sec. for interactive with POPS adverb DOWAIT=TRUE
and 20 sec. for batoh) until one of two conditions exist. These
conditions are 1) the value in the TD file of the return code has
changed or 2) the task is no 1longer running. In case 1, AIPS
resumes normal operation; in case 2, if the value of the return code
is unchanged the task 1s assumed to have falled and the soratch
files are destroyed. In case 1 or case 2 if the value of the return
code is modified, AIPS continues and processes the return code. A
non-zero return code indiocates that the task falled.

The following list gives a short desoription of these routines;
complete desoriptions of the call sequence can be found at the end
of this chapter. 1In any implementation there will be lower level 2
routines called by these routines.

- ZACTV8 - acotivates a specified task.

- ZCPU - returns the amount of CPU time used by the ocurrent
process.

- ZDATE - returns the ourrent calender date.
~ ZDELAY - delays the calling task for a specified period.

- ZFREE - determines the amount of disk space available on
each of the disks.

- ZGNAME - returns the actual task/process name.

THE Z ROUTINES Page 18-9
SYSTEM FUNCTIONS 2 April 85

- ZMIVER - determines the default version of AIPS (NE¥, OLD,
TST).

- Z2PRIO - raises or lowers a task's priority.

- 2PRPAS - prompted read for password.

- 2TACTQ - checks 1f a given process is active.
- 2TIME - returns the ourrent time.

- ZSTAIP - restores the process to its normal state on the
completion of an interaotive AIPS process.

- ZTKILL - kills (aborts) a specified task.

- 2TQSPY - writes a 1list of the ourrent AIPS processes
running to the user monitor terminal and the message file.

- 4WHOMI - returns the name of the executing task.

15.5 DEVICE (NON-DISK) I/O ROUTINES
Many of the routines discussed in the disk I/0 section will
also work on other devices. There are a number of special funotions
required for non-disk devices. One example of these is the routine
to talk to a terminal; some operating systems don’t allow Fortran
I/0 to a terminal so this I/O is done through the routine ZTTYIO.
The following list gives a short desoription of these routines;
complete descriptions of the call sequence can be found at the end
of this chapter.
- ZDOPRT - plots a bit map onto the plotter.
- ZENDPG - does a page ejeoct on the line printer.
- 2ZQMSIO - Opens and/or writes to a QMS Lasergraphix
~ 2TAPE - positions a tape and writes file marks.

- 2ZTKBUF - formats the output buffer for the graphios output
device.

THE Z ROUTINES Page 15-10

DEVICE (NON-DISK) I/O ROUTINES 2 April 85
- ZTEKCLS - ocloses a TK devioce.
- ZTKOPN - opens a TK device.
- Z2TTYIO - reads and writes to the terminal.
- ZPRMPT - does a prompted read from the terminal.

15.6 DIRECTORY AND TEXT FILE ROUTINES

Text files are used for source code and control information and
have Dbeen disoussed previously in +this chapter. Currently text
files may be read but not writtem from AIPS routines.

The following 1list briefly desoribes the function of the
special routines for text files; detailed desoriptions of the ocall
sequences are found at the end of this chapter.

ZTOPEN - opens a text file.

- ZTREAD reads a text file.
- 2ZTCLOS - ocloses a text file.

~ ZTXMAT - searches a directory for files whose names begin
with a given character string.

- 2ZGTDIR - returns the direoctory for a text file area.

15.7 MISCELLANEOUS

Several Z routines don’t naturally fit in any of the above
categories. The following list gives a brief desoription of each;
details of the call sequence and function are given at the end of
this chapter.

- ZDCHIN - initializes the Device Characteristics Common.

- ZMATH4 - does pesudo I*4 arithmetic.

THE Z ROUTINES Page 15-11
MISCELLANEOUS 2 April 85
- ZTFILL - 1initlalizes the FTAB array in the Devioce

Characteristios Common.

ZKDUMP - dumps an array to the user message monitor and
message file in a number of different formats.

15.8 INCLUDES

There are several types of INCLUDE file which are distinguished

by the
contain

first ocharacter of their name. Different INCLUDE file types
different types of Fortran deoclaration statments as

descoribed in the following list.

15.8.1

Dxxx.INC. These INCLUDE files contain Fortran type (with
dimension) declarations.

Cxxx.INC. These files contain Fortran COMMON statments.
Exxx.INC. These contain Fortran EQUIVALENCE statments.
Vxxx.INC. These contain Fortran DATA statments.

Ixxx.INC. Similar to Dxxx.INC files in that +they contain
type declarations but the deolaration of some varalble is
omitted. This type of inolude is used in the main program
to reserve gpace for the omitted variable in the
appropriate common. The omitted variable must be declared
and dimensioned separately.

Zxxx.INC. These INCLUDE files contain declarations whioch
may change from one computer or installation to another.

CDCH.INC

Inolude CDCH

COMMON /DCHCOM/ XPRDMM, XTKDMM, SYSNAM, VERNAM, RLSNAM, TIMEDA,

* M N N N B

TIMESG, TIMEMS, TIMESC, TIMECA, TIMEBA, TIMEAP, RFILIT,
NVOL, NBPS, NSPG, NBTBl, NTABl1l, NBTB2, NTAB2, NBTB3, NTABS3,
NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR, CSIZPR, NINTRN,
KAPWRD, NCHPFP, NWDPFP, NWDPDP, NWDPLI, NWDPLO, NBITWD,
NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC, NTKACC,
UCTSIZ, BYTFLP, USELIM, NBITCH

COMMON /FTABCM/ DEVTAB, FTAB

End CDCH.

THE Z ROUTINES Page 15-12
INCLUDES 2 April 85

15.8.2 CMSG.INC

C Include CMSG
COMMON /MSGCOM/ MSGCNT, TSKNAM, NPOPS, NLUSER, MSGTXT,
* NACOUN, MSGSUP, MSGREC, MSGKIL

C End CMSG.

15.8.3 DDCH.INC

C Include DDCH
REAL*4 XPRDMM, XTKDMM, SYSNAM(5), VERNAM, RLSNAM(2), TIMEDA(18),
* TIMESG, TIMEMS, TIMESC, TIMECA, TIMEBA(4), TIMEAP(3),
* RFILIT(14)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1l, NTABl, NBTB2, NTAB2,
NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP, NWDPLI,
NWDPLO, NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV,
NTVACC, NTKACC, UCTSIZ, BYTFLP, USELIM, NBITCH,
DEVTAB(50), FTAB(1l)
C End DDCH.

* ¥ O N X

15.8.4 DMSG.INC

C Include DMSG
INTEGER*2 MSGCNT, TSKNAM(3), NPOPS, NLUSER, MSGSUP, MSGREC,
* MSGKIL
INTEGER*4 NACOUN
REAL*4 MSGTXT(20)
C End DMSG.

15.8.5 1IDCH.INC

C Include IDCH
REAL*4 XPRDMM, XTKDMM, SYSNAM(5), VERNAM, RLSNAM(2), TIMEDA(15),
* TIMESG, TIMEMS, TIMESC, TIMECA, TIMEBA(4), TIMEAP(3),
* RFILIT(14)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1l, NTAB1l, NBTB2, NTAB2,
NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP, NWDPLI,
NWDPLO, NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKYV,
NTVACC, NTKACC, UCTSIZ, BYTFLP, USELIM, NBITCH,

* ¥ R ¥

THE Z ROUTINES Page 15-13
INCLUDES 2 April 85

* DEVTAB(50)
c End IDCH.

16.9 ROUTINES
15.9.1 Data Manipulation

15.9.1.1 ZBYTFL - interchange the low order and high order bytes
for all words in the input buffer and put the results in an output
buffer. The input buffer is unchanged except in the special oase
vhere the input buffer has the same starting address as the output
buffer.

ZBYTFL(NWORDS, INBUF, OUTBUF)
Inputs: NWORDS I*2 The length of the input buffer in I*2 words
INBUF I*2() The input buffer.

Output: OUTBUF I*2() The output buffer containing byte swapped
words.

16.9.1.2 ZCLC8 - converts local characters in a buffer to standard
8~bit ASCII in another buffer - which may be the same buffer.

ZCLC8 (NCHAR, INB, NP, OUTB)

Inputs: NCHAR I*2 Number of characters
INB R*4(*) Input buffer in local chars: start at 1
NP I*2 Start index in output buffer in units of

8-bit chars, l-relative
Output: OUTB R*4(*) Output buffer

15.9.1.3 2ZC8CL - extracts 8-bit ASCII standard ocharacters from a
buffer and stores them in the local character form. Must work even
when INARR and OUTARR start at the same address.

ZC8CL (NCHAR, NP, INARR,OUTARR)

Inputs: NCHAR I*2 Number of characters to extract
NP I*2 Start position in input buffer in units
of 8-bit characters
INARR R*4(*) Input buffer
Output: OUTARR R*4(*) Output buffer

THE Z ROUTINES Page 15-14
ROUTINES 2 April 85

15.9.1.4 ZMCACL - converts Modocomp compressed ASCII ocharacters to
blank filled 80 byte records in 1local ocharacter form. Two
characters per short integer are assumed. A blank record will be
placed 1in the output between files. This routine is only used by
task FILLR which reads VLA Modcomp/archive format data tapes.

NOTE: this routine will not work inplace.

MODCOMP compressed ASCII format for each logical record:

BYTE Use
0 ASCII ETX (Hex 03)
1 checksum (optional)

2-3 byte count, negative => end of file.
(Note may be bytes 1-2)
4~ Compressed ASCII characters, a NUL (Hex 00) terminates.
A negative value (most signifigant bit on) indicates a
repeatition of the previous character the number of times
indicated by the absolute value of the negative number.
Example: an ASCII ‘C’ followed by a byte with the HEX value
FF (twos complement -1) indicated two 'C's.
NOTE: logical records may span physiocal records.
NOTE: padding to 80 byte records is already done on tape.

ZMCACL (NBYTES, INBUF, OUTBUF, LASTCH)

Inputs:

NBYTES I*2 The length of the input buffer in bytes.

INBUF(*) 1I*2 Input buffer of MODCOMP compressed ASCII 2 bytes
per word.

LASTCH I*4 Address (in RECORD) of previous last character
written. Should be zero for first call.

Outputs:

NBYTES I*2 The number of bytes in the output buffer

OUTBUF(*) I*2 Output buffer, pack character string. Each MODCOMP
logiocal record is converted to 80 bytes with blank
filling. Each record begins at the first byte
of every 40 th local short integer.
Due to the expansion of the data the size
of the output buffer is not strictly predictible.

LASTCH I*4 Position in RECORD of last charaoter written.
Will contain the address -~ DON'T touch!

15.9.1.5 ZDM2DL - converts Modoomp R*6 or R*8 floating point data
into 1local double precision floating point. Expeots, after word
flip, sign bit in bit 31 (l=>negative), bits 22:30 are the exponent
biased by 512, bits 0:21 are the normalized fraction. Negative

values are obtained by 2's compliment of +the whole word. Before
calling ZDM2DL the data should have the bytes flipped (2I16IL) whioch
will leave the values split between four short integers. Should

work inplace. This routine is only used by task FILLR whioh reads
VLA Modoomp/archive format data tapes.

THE Z ROUTINES Page 15-15
ROUTINES 2 April 85

ZDM2DL (NWORDS, INBUF, OUTBUF)

Inputs:
N$ORDS I*2 The length of the input buffer in words
INBUF(*) R*8 The input array in MODCOMP R*6 or R*8
If R*6 the low order two bytes should be zeroed.
Outputs:
OUTBUF(*) R*8 The output array in local REAL*8

15.9.1.6 2GETCH - extracts a single character from a real variable
and places it in +the least significant bits of an otherwise zero
integer. This routine allows an NCHAR of 1 to NCHPFP.

ZGETCH (CHAR, WORD, NCHAR)

Inputs: WORD R*4 Vord to be extracted from (packed string).
NCHAR I*2 Char number (1 - NCHPFP)
where char n is n’'th charaoter printed
under format An
Output: CHAR I*2 Char is LS bits, O in rest.

15.9.1.7 2ZGTBIT - gets the lowest order NBITS of WORD and returas
them in BITS with the 1lsb in BITS(1)...sign bit in BITS(18).

ZGTBIT (NBITS, WORD, BITS)

Inputs: NBITS I*2 Number of bits to copy
WORD I*2 Input word from which bits are extracted.
Output: BITS(*) I*2 Resulting "Bit" array (values O or 1)

15.9.1.8 ZGTBYT - extracts a byte (half a short integer) from IWORD

and returns the byte in the low order byte of DATA with zero in the

upper byte. NBYTE = 1 corresponds to the left byte, and NBYTE = 2

ocorresponds to the right byte as printed using FORTRAN A2 format.
ZGTBYT (DATA, IWORD, NBYTE)

Inputs:
IWORD I*2 The word containing the input character.
NBYTE I*2 1 for the "left" byte of IWORD and 2 for the "right"
byte.
Outputs:
DATA I*2 The desired character in the low order byte, padded
with zeros in the upper byte.

THE 2 ROUTINES Page 15-16
ROUTINES 2 April 85

15.9.1.9 ZI16IL - extraots 16-bit, 2's complement integers from a
buffer and puts them into the local small integer form. Must work
even when INB and OUTB have the same address.

ZI16IL (NVAL, NP, INB, OUTB)

Inputs: NVAL I*2 # values to extract
NP I*2 start position in input ocounting from 1
in units of 16-bit integers
INB I*2(*) 1Input buffer
Output: OUTB I*2(NVAL) Output buffer

15.9.1.10 2ZI32IL - extracts 32-bit, 2's complement integers from a
buffer and puts them into the local small integer form. Must work
even when INB and OUTB have the same address. The IBM order must
apply to the output: i1.e. the most significant part of the 32-bit
integer must be at a lower index in OUTB than the least significant
part. They will be picked up into standard pseudo I*4 via IP(2) =
OUTB(1i), IP(1) = OUTB(i+l).

Z2I32IL (NVAL, NP, INB, OUTB)

Inputs: NVAL I*2 # values to extraoct
NP I*2 start position in input counting from 1
in units of 32-bit integers
INB I*2(*) Input buffer
Output: OUTB I*2(2*NVAL) Output buffer

15.9.1.11 2I8L8 - converts 8-bit unsigned binary numbers to "bytes"
(one-half of a local small integer). Must work when input and
output buffers are the same.

ZI8L8 (NVAL, NP, INB, OUTB)

Inputs: NVAL 1I*2 *# values
NP I*2 First value to get from INB counting from 1
in units of 8-bit numbers
INB I*2(*) Input buffer
Output: OUTB I*2(NVAL/2) Output buffer

THE Z ROUTINES Page 15-17
ROUTINES 2 April 88

15.9.1.12 2ILI16 - oconverts a buffer of loocal small integers to a
buffer of standard 16-bit, 2's ocomplement integers.

ZILI16 (NINT, INB, NP, OUTB)

Inputs: NINT I*2 Number of integers
INB I*2(*) Input buffer: start at index 1
NP I*2 start point in output buffer l-relative in

units of standard 16-bit integers
Outputs:OUTB I*2(*) Out buffer

15.9.1.13 ZP4I4 - Converts Pseudo I*4 integer to true I*4.

ZP4I4 (P4, I4)

Input:

P4 1I*2(2) ©pseudo I*4 value
Output:

I4 1I*4 I*4 value

16.9.1.14 ZPTBIT - builds WORD from NBITS bit values in the array
BITS, where BITS(1) supplies the 1lsb, BITS(2) the next higher bit.
Unspecified bits are zero filled.

ZPTBIT (NBITS, WORD, BITS)

Inputs: NBITS I*2 Number of bits.
BITS(*) 1I*2 "Bit" array.
Output: WORD I*2 VWord into which bits are placed.

15.9.1.18 ZPTBYT - puts the low order byte of DATA in either the
"left" or the "right" byte of IWORD. The convention is that NBYTE =
1 corresponds to the left byte, and NBYTE = 2 oorresponds to the
right byte as printed using FORTRAN A2 format.

ZPTBYT (DATA, IWORD, NBYTE)

Inputs:
DATA I*2 The word containing the input character.
NBYTE I*2 1 for the "left" byte of IWORD and 2 for the "right"
byte.
Outputs:
IWORD I*2 The word to receive the byte.

THE 2 ROUTINES Page 15-18
ROUTINES 2 April 85

15.9.1.16 2PUTCH - inserts the appropriate number of bits of CHAR
(one oharacter worth, taken from the least signifiocant bits) into
the specified character position of WORD.

ZPUTCH (CHAR, WORD, NCHAR)

Inputs: CHAR I*2 character in 1lsb’s.
NCHAR I*2 character position in which to insert: char n
is the n’'th character printed by An.
In/out: WORD R*4 ‘word’ to have character inserted. (packed
string)

18.9.1.17 ZRDMF - converts data packed in DEC-Magtape format (DMF)
to pairs of 16 bit integers, 1 per local short integer. The DMF
format is:

Track 1 2 3 4 5 6 7 8

Byte
1 FO Fl1 F2 F3 F4 F5 F6 F7
2 F8 F9 Fl1l0 Fll Fl2 Fl3 Fl4a Fis
3 F16 F17 RO Rl R2 R3 R4 RSB
4 R8 R7 R8 R9 R10 R1ll1] R1l2 R13
5 o o 0 O Rl14 R15 R16 R17

The Rn refer to the right halfword, Fn to the left halfword. Since
the purpose of this routine is to read MODCOMP tapes written with
this peculiar format F16, F17, R16 and R17 (the high order bits) are
zero for VLA data but are used for the word count.

The first word (5 bytes) of a tape blook ocontains the word
count of the block. For 16 bit output bits R2-R17 are returned for
the word count for all other data bits FO-F15 and RO-R15 are
returned. Input data i1s assumed packed into 2 1/2 short integers
and output data will be returned in a pair of local short integers
per DEC-10 word. This routine is only used by task FILLR which
reads VLA Modoomp/archive format data tapes.

ZRDMF (NWORDS, INBUF, OUTBUF, FLAG)

Inputs:
NWORDS I*2 The length of the input buffer in DEC-10 words
INBUF(*) 1I*2 Input buffer of DMF format data.

FLAG I*2 If .gt. O then the first word word is the beginning
of a tape bloock.

Outputs:

OUTBUF(*) I*2 Output buffer, two loocal short integers per
input DEC-10 word.

THE Z ROUTINES Page 15-19
ROUTINES 2 April 88

16.9.1.18 ZRM2RL - converts Modoomp single precision floating point
data into loocal single precision floating point. Expeots, after
wvord flip, sign bit in bit 31 (1l=>negative), bits 22:30 are the
exponent biased by 612, bits 0:21 are the normalized fraction.
Negative values are obtained by 2's compliment of the whole word.
Before oalling ZRM2RL the data should have the bytes flipped
(2I16IL) which will 1leave the values split between two ghort
integers. Should work inplace. This routine is only used by task
FILLR vhioch reads VLA Modcomp/archive format data tapes.

ZRM2RL (NWORDS, INBUF, OUTBUF)

Inputs:

NWORDS I*2 The length of the input buffer in words
INBUF(*) R*4 The input array in MODCOMP R*4

Outputs:
OUTBUF(*) R*4 The output array in local REAL*4

15.9.1.19 ZR8P4 - converts between pseudo I*4 and R*8.
ZR8P4 (OP, INTG, DX)

Inputs: OP R*4 ‘4TO8' Pseudo I*4 to R*8
‘8T04' R*8 to pseudo I*4
‘4IB8’ IBM 1*4 to R*8
‘8IB4’ R*8 to IBM I*4
In/out: INTG I*2(2) the I*4
DX R*8 the R*8
Pseudo I*4 has the form of two short integers with the least
significant half at the lower I*2 index.
IBM I*4 has the form of a 2's ocomplement, 32-bit integer with the
most significant 16 bits in the I*2 word of lower index and the
least signifiocant 16 bits in the I*2 word of higher index.

15.9.2 Disk I/0

15.9.2.1 2CMPRS - releases unused disk space from a non-map file.
¥ill also allow "map" files. File must be open. "Byte" defined as
1/2 of a small integer.

ZCMPRS (IVOL, PNAME, LUN, LSIZE, SCRTCH, IERR)

Inputs: IVOL I*2 volume number
PNAME R*4(6) physical file name
LUN I*2 logical unit number under which file is
open.
In/Out: LSIZE 1I*4 (In) desired final size in bytes.

(out) actual final size in bytes.

THE Z ROUTINES Page 15-20
ROUTINES 2 April 85

Outputs: SCRTCH I*2(286) Soratch buffer
IERR I*2 error code: 0 => ok
1l => input data error
& => compress error FMGR

15.9.2.2 ZCREAT - creates a disk file.
ZCREAT (IVOL, PNAME, ISIZE, MAP, ASIZE, SCRTCH, IERR)

Inputs:
IVOL I*2 Disk drive unit number(l1-8).
PNAME R*4(8) Physical file name given by ZPHFIL.(ASCII)
left Justified, padded with blanks.

ISIZE I*q Requested size of the file in bytes. Will be
rounded to next higher granual.
MAP L*2 True if map file.
outputs:
ASIZE I*q Actual number of bytes in the new file.

(byte = half of a short integer)

SCRTCH 1I*2(256) Scoratch buffer.

IERR I*2 Error return code. The values mean:
0 - sucocess.

file already exists.

volume is not available.

space 1s not available.

Other.

A=
|

156.9.2.3 ZDESTR - Destroys the file associated with PNAME. The
file must already be closed.

ZDESTR (IVOL, PNAME, IERR)

Input:
IVOL 1I*2 Volume number of disk.
PNAME R*4(8) Physical file name.
Output:
IERR 1I*2 Completion code. O=good.

1=file not found
2=failed

THE Z ROUTINES Page 15-21
ROUTINES 2 April 85

15.9.2.4 2EXIST - determines if a file exists. If 80, the size of
the file is returned.

ZEXIST (IVOL, PHNAME, ISIZE, SCRTCH, IERR)

Inputs:
IVOL I*2 The disk volume to seach.
This information is found in PHNAME.
PHNAME R*4(6) File name.
Outputs:
ISIZE TI*4 Size of the file in 512 byte blooks.
SCRTCH I*2(256) Soratch buffer.

IERR I*2 Error code 0 = file exists, l1l=file not found,
2 = other.

15.9.2.85 ZEXPND - inoreases the size of a non-map file.
ZEXPND (LUN, IVOL, PHNAME, NREC, IERR)

Inputs: LUN I*2 LUN of file (already open)

IVOL I*2 disk volume number of file

PHNAME R*4(6) physical file name of file
In/Out: NREC I*2 # 286-integer records requested/received
Output: IERR I*2 error code 0O =»> ok

1 => input error
2 => FMGR error

15.9.2.6 2FIO - reads or writes one logiocal record between core and
device LUN. For disk devices, the record length is always 512 bytes
(& byte being defined as half of & short integer). NREC gives the
random aoccess record number (in units of 512 bytes). For non-disk
devices, NREC contains the number of bytes. Used for non-map files.

Note: +there is a temporary version named ZFI3 differing from
Z2FIO only in that NREC is an I*2 value. This version will disappear
once all application code has been converted.

ZFI0O (OPER, LUN, FIND, NREC, BUF, IERR)

Inputs:
OPER R*4 Operation = 'READ’ or ‘WRIT'
LUN I*2 logical unit number
FIND I*2 pointer to file area in FTAB
NREC I*4 record number in file: starts with 1 (DISKS):
number of bytes (Sequential DEVICES)
In/Out:
BUF I*2(256) array to hold record
Output:

THE Z ROUTINES Page 15-22
ROUTINES 2 April 85

IERR I*2 error code: 0 => ok

-»> file not open
=> input error

-> I/0 error

-> end of file

-> begin of medium
-> end of medium

N AN+~

15.9.2.7 ZMIO - & low level random access, large record, double
buffered device I/0 routine. Used for "map" files.

Note: there is a temporary version named ZMI3 differing from
ZMIO only in that BLEKNO is & pseudo I*4 value. This version will
disappear once all application code has been converted.

ZMIO (OP, LUN, FIND, BLKNO, NBYTES, BUFF, IBUFF, IERR)

Inputs:
oP R*4 Operation - 'READ’, 'WRIT'. ASCII - 4 characters.
LUN I*2 Logical unit number of a previously opened file.

FIND I*2 Pointer to FTAB returned by ZOPEN.
BLKNO I*4 One relative beginning block number. The size of a
block is given by NBPS in COMMON/DCHCOM/ .
NBYTES I*2 Number of bytes to transfer.
BUFP R*4 The i1/0 buffer.
IBUFF I*2 Buffer number to be used - 1 or 2.
Outputs:
IERR I*2 Error retura code:
Success.
File not open.
= Operation incorreotly specified.
= I/0 error.
end of file (no messages)

ARQODHO

15.9.2.8 ZMSGCL - closes message file assoclated with LUN removing
any exolusive use state and olears up the FTAB.

ZMSGCL (LUN, FIND, IERR)

Inputs: LUN 1I*2 1logical unit number (6 or 12)

Output: IERR I*2 error code: 0 -> no error
1 -»> Deaccess or Deassign error
2 -> file already closed in FTAB
3 -> both errors
4 -> erroneous LUN

THE 2 ROUTINES

ROUTINES

18.9.2.9 2ZMSGDK - reads

Page 15-23
2 April 85

or wrltes one 612-byte 1logical record

between the buffer BUF and disk unit LUN. Special version for
message writing.

ZMSGDK (OPER, LUN, FIND, NREC, BUF, IERR)

Inputs:
OPER
LUN
FIND
NREC
BUF

Output:

IERR

R*4
I*2
I*2
I*2
I*2

I*2

Operation = '‘READ’ or 'WRIT'

logical unit number (12)

pointer to file area in FTAB

record number in file: starts with 1

(256)

error

array to hold record

code: 0 => ok
l -> file not open
2 => input error
other -> I/O error

15.9.2.10 ZMSGOP - opens message files.

ZMSGOP (LUN, IND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)

Fortran Logical file number. (6 or 12)
Disk volume containing file, 1,2,3,...

8 Charaoter physical file name,left justified

Is this a map file.
Desire exolusive use.

T will wailt.

Index into FTAB for the file control bloock.
error code

No error

LUN already in use

File not found

Volume not found

Exol requested but not available
No room for LUN

Other open errors

ZOPEN - opens logical files, fills FTAB entries and

Inputs:
LUN I*2
IVOL I*2
PNAME R*4(2)
MAP L*2
EXCL L*2
WAIT L*2
Output:
IND I*2
IERR I*2
0-
1-
2-
3-
4 =
5-
8 =
156.9.2.11
performs

channel.

full open on disk files. Tape units are assigned an I/0

ZOPEN (LUN, IND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)

Inputs:
LUN

I*2

Logical unit number.

THE Z ROUTINES Page 15-24
ROUTINES 2 April 85

IVOL I*2 volume number, 1,2,3,...
PNAME R*4(6) 24-charaoter physical file name,left justified,
packed, and padded with blanks.

MAP L*2 is this & map file ?
EXCL L*2 desire exclusive use?
WAIT L*2 I will wailt?
Output:
IND I*2 Index into FTAB for the file control bloock.
IERR I*3 Error return ocode:
0 = no error
l = LUN already in use
2 = file not found
3 = volume not found
4 = exol requested but not availlable
5 = no room for lun
6 = other open errors

15.9.2.12 ZPHFIL - construots a physical file name in PNAM from
ITYPE, IVOL, NSEQ, and IVER. New version designed either for public
data files or user specific files. This routine oontains the
logical assignment list for Graphios devices. Numerical values are
encoded as hexidecimal numbers.

EXAMPLE: If ITYPE='MA’, IVOL=8, NSEQ=801, IVER=153, NLUSER=768 then
PNAME='DAO8 :MA832199;1' for public data or
PNAME='DAQO8 :MA832199.300;1’ for private data

ITYPE = 'MT’ leads to special name for tapes

ITYPE = 'TK’' leads to special name for TEK4012 plotter CRT
ITYPE = 'TV’ leads to special name for TV device

ITYPE = 'ME’ leads to speclal logical for POPS memory files

ZPHFIL (ITYPE, IVOL, NSEQ, IVER, PNAM, IERR)
Inputs:
ITYPE I*2 Two characoters denoting type of file. For example,
‘MA’ for map file.
IVOL I*2 Number of the disk volume to be used.
NSEQ I*2 User supplied sequence number. 000-999.
IVER I*2 User suppplied version number. 00-255.
Outputs:
PNAM R*4(8) >= 24-byte field to receive the physical file name,
left justified (packed) and padded with blanks.
IERR I*2 Error return code.
0 = good return. 1l = error.

THE 2% ROUTINES Page 15-25
ROUTINES 2 April 85

15.9.2.13 ZRENAM - Renames a disk file.
ZRENAM (IVOL, NAME1l, NAME2, IERR)

Inputs:
IVOL I*2 Volume number (1 relative).
NAME1 R*4(6) Old file name. 24 char., left justified, padded
on the right with blanks, and packed.
NAME2 R*4(8) New file name. like NAME1.
Outputs:
IERR I*2 error ocode.
= successful completion
old file not found
volume not found or not ready
= név file name already exists in directory.
= other errors.

~NOARO
1

15.9.2.14 ZVWAIT - waits until an I/O operation started by ZMIO is
complete.

ZWAIT (LUN, IND, IBUF, IERR)

Inputs:
LUN I*2 1logical unit number
IND I*2 Polnter to FTAB
IBUF I*2 VWait for 1st or 2nd buffer in double buffered I/O
Output:
IERR I*2 Error return 0 => ok
=> LUN not open
=> I/0 error
=> end of file
=> walt service error

N

THE Z ROUTINES Page 15-26
ROUTINES 2 April 85

15.9.3 System Functions

15.9.3.1 2ZACTV8 - activates the specified task. This routine is
normally in the AIPS program library (for AIPS and other standalone
programs but not tasks).

ZACTV8 (NAME, INPOPS, VERSON, PID, IERR)

Inputs: NAME I*2(3) root task name. (2 char / integer)

INPOPS I*2 Pops # to be used by task.

VERSON R*4(5) Logical name or absolute name of
device/directory for area containing
the executable module.

Output: PID I*2(4) Process "ID" code of activated task
for use by directly subsequent ZTACTQs
PID(1) = user number on systems which
use that (= 0 otherwise and on all
AIPSB invocations)
PID(2-4) process ID number (as needed)
IERR I*2 error code:
0 => ok.
1l => name invalid or not task.
2 => activation error.

15.9.3.2 ZCPU - determines ocumulative opu usage in seconds for this
process: i.e. each time a process calls ZCPU during an execution,
TIME is larger.

ZCPU (TIME, IOCNT)

Output: TIME R*4 Current CPU accumulation in seconds
IOCNT 1I*4 I/0 count

15.9.3.3 ZDATE - returns loocal time of day.
ZDATE (ID)
Output: ID(1) year since 0.

ID(2) month (1-12).
ID(3) day (1-31).

THE Z ROUTINES Page 15-27
ROUTINES 2 April 85

15.9.3.4 ZDELAY - causes the calling program to suspend itself for
a specified length of time.

ZDELAY (SECS, IERR)
Input:
SECS R*4 Number of seoonds to delay.

Output:
IERR I*2 Error code. O = 0ok, 1 = error.

15.9.3.5 2ZGNAME - returns the actual task/process name.
ZGNAME (NAME, IERR)

Outputs: NAME I*2(3) Aotual name (2 chars / word)
IERR I*2 Error code : 0 => ok

15.9.3.6 ZMYVER - determines the default version (OLD or NEW or
TST). This vroutine is normally in the AIPS grogram library (for
AIPS and other standalone programs but not tasks).

ZMYVER

Output: in Common /DCHCOM/ variable VERNAM
Unpacked String containing ‘OLD:’, 'NEW:’, 'TST:'

16.9.3.7 2ZPRIO ~ changes the ourrent program’'s machine priority
between that of batch programs and that of interactive programs.
This routine is used by tasks using true array processors.

ZPRIO (OP, IERR)

Inputs: OP R*4 'UPPP’' to inter., 'DOWN’ to batch
IERR I*2 Error code: 0O => ok
l => bad OP

2 => illegal request
3 => other failures

THE Z ROUTINES Page 15-28
ROUTINES 2 April 85

15.9.3.8 ZPRPAS - prompts the user on his terminal with the prompt
string "Password: " and then reads back a l2-character "password"
without echoing on the screen.

ZPRPAS (PASS, BUFF, IERR)
Outputs: PASS R*4(3) Password - 12 unpacked characters: left
Justified and blank filled.
BUFF I*2(256) soratch buffer (if needed)

IERR I*2 error code: 0 =»> ok
?9? => I/0 error of some sort

15.9.3.9 2ZTACTQ - determines if a specified task is active.
ZTACTQ (NAME, ACTIVE, IERR)

Inputs: NAME I*2(3) aoctual task name.(2 char/integer)
Output: ACTIVE L*2 T => task active.
IERR I*2 €rror number:
0 => ok.

1l => invalid task name.

156.9.3.10 ZTIME - returns the local time of day.
ZTIME (IT)

Output: IT(1l) I*2 hours (0-23)
IT(2) I*2 min (0-59)
IT(3) I*2 seo (0-59)

15.9.3.11 ZFREE - This routine will ocaloulate the number of free
512 Dbyte blocks that are available on the disks used for AIPS data
and print the information on the soreen. This routine is normally
in the AIPS program library (for AIPS and other standalone programs
but not tasks).

ZFREE (IERR)

Inputs:
From common /DCHCOM/
NVOL I*2 Number of AIPS disks.
Output:
IERR I*2 0 = ok, 1l=error in disk logical name.

THE 2 ROUTINES Page 185-29
ROUTINES 2 April 85

15.9.3.12 ZSTAIP - performs any operations needed to normalize the
local operating system at the oonclusion of an interactive AIPS
session. This routine is normally kept in the AIPS program library
(not for tasks).

ZSTAIP (SCRTCH)

Outputs: SCRTCH I*2(256) Soratoh buffer

153.9.3.18 ZTKILL - will delete the task/process speocified by NAME.
This routine 1is normally in the AIPS program library (for AIPS and
other standalone programs but not tasks).

ZTKILL (NAME, IERR)

Inputs: NAME I*2(3) actual task name.(2 char/integer)
Output: IERR I*2 error number:

0 => ok.

1l => error.

15.9.3.14 2TQSPY - obtalns entire list of AIPS-originated tasks now
running in system and prints info about them via MSGWRT. This
routine is normally in the AIPS program library (for AIPS and other
standalone programs but not tasks).

ZTQSPY (TLIST)
Output: TLIST I*2(256) Soratch buffer

15.9.3.15 ZVWHOMI - determines the actual task name under which the
present version of AIPS is running. It uses this information to set
the value of NPOPS in the common /MSGCOM/. It then assigns the TV
and TK devices setting NTVDEV and NTKDEV in ocommon /DCHCOM/. It
checks for remote entries at this stage and uses the +true device
numbers (set by 2DCHIN) to do the assignments. This routine is
normally in the AIPS program library (for AIPS and other standalone
programs but not tasks).

ZWHOMI (IERR)
Output: IERR I*2 error ocode: 0O ok.

1l => task is AIPS, but NPOPS illegal.
2 => task is not AIPS.

THE Z ROUTINES Page 15-30
ROUTINES 2 April 85

15.9.4 Non-disk I/O Routines

15.9.4.1 ZDOPRT - reads a bit map such as produced by PRTDRW and
converts it into & FORTRAN file that oan be spooled to the
printer-plotter as a plot.

ZDOPRT (IVOL, IBMLUN, NCOPY, FILNAM, DESTRY, ISIZE,
* INBLK, IERR)

Inputs:
IVOL I*2 volume no. of bit map disk (1 rel)
IBMLUN I*2 bit map logical unit number.
NCOPY I*2 Number of copiles of the plot to make.

FILNAM R*4(6) physical file name of bit map.
DESTRY L*2 destroy bit file when done?

ISIZE I*2 size of INBLK in words.
In/Out:
INBLK I*2(*) scratch buffer
Outputs:
IERR I*2 error return code.

0 => OK, otherwise failed.

15.9.4.2 ZENDPG - advances the line printer to avoid "burn-out" on
electrostatic type printers.

ZENDPG (LINE)

Inputs: LINE I*2 # lines printed on page so far

15.9.4.3 ZQMSIO - opens a file for printing a plot on the QMS
Lasergraphix using the name QMS.PLT (OP = ‘OPEN’) or writes data to
the QMS device (or temp file) (OP = 'WRIT').

ZQMSIO (OP, QMSLUN, N, LINE, IERR)

Inputs: OP I*2 'OPEN’, 'WRIT'
QMSLUN I*2 LUN to use
N I*2 Number of characters in LINE (WRIT only)
LINE L*1(N) Characters to go to QMS (WRIT only)
Output: IERR I*2 Error code: 0 => ok
l => bad OP
2 => OPEN can’'t find logical name queue
3 => OPEN ocan’'t assign logiocal name
6 => OPEN or WRIT I/O error

THE Z ROUTINES Page 15-31
ROUTINES 2 April 88
15.9.4.4 ZTAPE - Performs standard tape manipulating functions.

ZTAPE (OP, LUN, FIND, COUNT, IERR)

Inputs:
OP R*4 Operation to be performed. 4 characters ASCII.

'ADVF' = advance file marks

'ADVR’ = advance records

'BAKF' = backspace file marks.

‘BAKR’ = backspace records.

‘DMNT‘ = dismount tape. Works for VMS 3.0 & later.
‘MONT’ = mount tape. Works for VMS 3.0 and later.
‘REWI’' = rewind the tape on unit LUN

‘WEOF’ = write end of file on unit LUN: writes 4

EOFs, positions tape after first one
"MEOF' = write 4 EOF marks on tape, position tape
before the first ome
LUN I*2 logical unit number
FIND I*2 TFTAB polnter. Drive number for MOUNT/DISMOUNT.
COUNT I*2 Number of records or file marks to skip. On MOUNT
this value is the density.
Outputs:
IERR I*2 Error return: O => ok
1 = Flle not open
2 = Input specification error.
= I/0 error.
End Of File
Beginning Of Medium
End Of Medium

(o N B W)

16.9.4.8 2TKBUF - puts the low order byte of IN into the proper
byte of +the TEKTRONIX output buffer (TKBUFF). The "2" is to allow
other conversions as required loocally.

ZTKBUF (IN, IT, FIND, IERR)

Input: IN I*2 the low order byte of this word is put into
DRBUFF.
IT I*2 Type of data: 1 ocontrol, 2 position, 3 char
FIND I*2 FTAB position of TEK 4012 data.
Output: IERR I*2 error code. 0O=ok, l=write error.

COMMON: TKPOS Byte position in TKBUFF to place IN.
TKBUFF TEKTRONIX output buffer.

THE 2 ROUTINES Page 15-32
ROUTINES 2 April 85
15.9.4.6 2ZTKCLS - closes a TK (Tektronix) devioe.
ZTKCLS (LUN, IND, IERR)
Inputs: LUN I*2 Logical unit number

IND I*2 Pointer to FTAB
Output: IERR I*2 Error code: O -»> ok, else from ZCLOSE.

15.9.4.7 ZTKOPN - opens a TK (Tektronix) device.
ZTKOPN (LUN, IND, IERR)
Inputs: LUN I*2 Logical unit number for TK device

Output: IND I*2 pointer to FTAB
IERR 1I*2 error code: 0O => ok, else failed.

15.8.4.8 2ZTTYIO - performs I/0 to a terminal.
ZTTYIO (OPER, LUN, FIND, NBYTES, BUFFER, IERR)

Inputs: OPER R*4 ‘READ’ or 'WRIT'
LUN I*2 LUN of open device (usually 5 or 6)
FIND I*2 Pointer to FTAB for open devioce
NBYTES 1I*2 # bytes (characters) to transmit (<= 132)
In/out: BUFFER R*4(*) 1I/0 buffer
Output: IERR I*2 Error code: 0 => ok
1l => file not open
2 => input parameter error
3 => I/0 error
4 => end of file

15.9.4.9 2ZPRMPT - prompts user on CRT scoreen and reads a line.
This routine is normally in the AIPS program library (for AIPS and
other standalone programs but not tasks).

ZPRMPT (IPC, BUFF, IERR)

INPUT: IPC I*2 prompt charaocter.
OUTPUT: BUFF I*2(40) line of user input.
IERR I*2 error codse: 0 => ok.

1 =» read/write error.

THE Z ROUTINES Page 15-33
ROUTINES 2 Aprll 85

15.9.5 Direotory And Text File
15.9.5.1 ZTCLOS - ocloses a text file.

ZTCLOS (LUN, FIND, IERR)
Inputs: LUN I*2 1logical unit number.
FIND I*2 Not used with this routine.
Output: IERR I*2 Error oode.
0O => no error.
1l => RMS error.
2 => file not open.

15.9.5.2 ZTOPEN - opens a text file.
ZTOPEN (LUN, FIND, IVOL, PNAME, MNAME, VERSON, WAIT,

* IERR)
Inputs: LUN I*2 logical unit number.
IVOL I*2 disk drive number.

PNAME R*4(6) disk-file typs. Only type (‘'HE’ ect)
used. Should be generated by ZPHFIL.
MNAME R*4(2) file name.
VERSON R*4(5) Version (determines in which dir/subdir
to look for the file).
WAIT L*2 T => wait until file is available.
Output: IERR I*2 error code:
=> No error.
=> LUN already in use.
=> Fille not found.
=> Volume not found.
=> File locked.
=> NO room for LUN
=> Other open errors.
FIND I*2 pointer to FTAB location.

DAPRAD-O

16.9.56.3 ZTREAD - reads the next sequential card image from a text
file.

ZTREAD (LUN, FIND, BUF, IERR)

Inputs: LUN I*2 logical unit number
FIND I*2 FTAB pointer for LUN

THE Z ROUTINES Page 15-34
ROUTINES 2 April 85

Output: BUF(*) I*2 array card image.(> = 80 chars packed)
IERR I*2 Error ocode:
0 => No error
1 => File not open.
2 => End of file.
4 => Other.

15.9.5.4 ZTXMAT - opens the directory for a source file area and
returns a list of member names whose first NCH characters match the
first NCH characters of MNAME.

ZTXMAT (IVOL, PNAME, MNAME, NCH, VERSON, NAMES,
* NNAM, IERR)

Inputs: IVOL I*2 Volume number.
PNAME R*4(6) File name: 24 packed chars
MNAME I*2(4) Text file member name
NCH I*2 Number of characters to compare
VERSON R*4(5) Tells which dir to get names from.
Output: NAMES I*2(4,64) Names whioh match NCH chars of MNAME
(unpacked, 2 per integer)

NNAM I*2 Number of names in NAMES
IERR I*2 Error code: 0 =» ok
1 => none

2 => error in inputs or Open
3 => I/0 error

15.9.5.5 ZGTIDIR - gets alphabetized list of members of text files.
ZGTDIR (ITYPE, LNAME, HNAME, VERSON, NUM, NAMES, IERR)

Inputs: ITYPE I*2 type of file (HE, S0, etaq).

LNAME I*2(4) lowest name to include.

HNAME I*2(4) include names lower than this one.

VERSON R*4(5) Version. Set in AIPS as the adverb VERSION.
Output: NUM I*2 number of names found.

NAMES I*2(4,1000) sorted file names.

IERR I*2 error code.

THE Z ROUTINES Page 15-35
ROUTINES 2 April 85

15.9.6 Miscellaneous

15.9.6.1 2ZDCHIN - initializes the disk characteristios common. If
NDISK ¢« O, ZDCHIN uses ABS (NDISK) but skips reading parameters from
the parameter disk file. Otherwise, ZDCHIN starts by hardcoded
parameter values and +then resets some based on values on an
alterable disk filse.

ZDCHIN (NDEV, NDISK, NMAP, IOBLK)
Inputs: NDISK I*2 max number regular disk files open at once
NMAP I*2 max number of map (double buf) files open at once

NDEV I*2 max number of devices open at once
IOBLK I*2(258) I/O buffer for reading values off disk.

15.9.6.2 2ZMATH4 - does I*4 arithmetic on pseudo I*4 arguments.
ZMATH4 (ARGl, OP, ARG2, RESULT)

Inputs:
ARGl P I*4 First P I*4 argument
OP I*2 OPeration ='PL'(+); '‘MI’'(-); ‘'MU'(x);‘'DI'(/)

‘'MN’(min); ‘MX‘(max)
ARGZ P I*4 Second P I*4¢ argument
Outputs:
RESULT P I*4 Result

16.9.6.3 2KDUMP - dumps portions of an array in INTEGER*2, ochar*4,
hex*2, and REAL*4: i.e. in as many forms as possible ZKDUMP is
called a 2 routine because the formats may not be acceptable on all
machines. This routine is normally in the AIPS program library (for
AIPS and other standalone programs but not tasksg.

ZKDUMP (Il, I2, K, C)

Inputs: Il I*2 start subsoript in integer array
I2 I*2 end subsoript in integer array
K I*2(*) integer array
C R*4(*) real array equivalenced to K

THE Z ROUTINES

Page 15-36
ROUTINES

2 April 85

15.9.6.4 ZTFILL - fills in initial values in FTAB.
ZTFILL (FIND, MAP)

Inputs: FIND I*2 location in FTAB
MAP I*2 T => map part of FTAB

AIPS batch, ©-1, 12-5
APIO, 12-10, 12-16
AXSTRN, 10-21

CAPC.INC, 12-13
CBPR.INC, 12-5, 12-13
CCINI, 13-2, 13-7
CDCD.INC, 12-14
CDCH.INC, 12-5, 15-2, 15-11
/CFILES/, 12-10, 12-18
CHNDAT, 13-2, 13-7
CMSG.INC, 15-12
CTKS.INC, ©-8
CTVC.INC, 9-8, 10-26
CIVD.INC, 10-26

DAPC.INC, 12-14

DBPR.INC, 12-5, 12-14

DDCH.INC, 12-5, 12-14, 15-2,
15-12

DECBIT, 10-12 to 10-13, 10-42

Device Characteristiocs Common,
12-5, 15-2 to 15-3, 15-10

DFIT.INC, 14-26

DFUV.INC, 14-25

DLINTR, 10-20, 10-41

DMSG.INC, 15-12

DSKFFT, 12-9 to 12-10, 12-18

DTKS.INC, 9-8

DTVC.INC, ©-9, 10-26

DTVD.INC, 10-26

EAPC.INC, 12-15
EFIT.INC, 14-26
EFUV.INC, 14-26

FITS, 15-5

FLGINI, 13-2, 13-8

Floating Point Systems, 12-2,
12-4, 12-8

FNDCOL, 13-6, 13-8

FPARSE, 14-29

FTAB, 15-3

GAINI, 13-2, 13-9, 13-12
GETCOL, 13-6, 13-10
GETCRD, 14-29 to 14-30
GETLOG, 14-29 to 14-30
GETNUM, 14-29, 14-31
GETSTR, 14-29, 14-31
GETSYM, 14-29, 14-31

Page Index-1

INDEX

ICINIT, 9-6, 9-8, 10-12
ICREAD, 10-21

ICWRIT, 9-6, 9-9

IDCH.INC, 12-15, 15-2, 15-12
IENHNS, 10-41

IMARMP, 10-21

IMANOT, 1040

IMCHAR, 10-40

IMVECT, 10-41

INDXIN, 13-10

keyword/value pairs, 13-1 to 13-2,
13-5

LUN, 9-2, 9-4

MAPOPN, 10-13

MDIS3, 9-3, 9-10

MINI3, 9-3, 9-10

MOVIST, 10-12 to 10-13, 10-42
MP2SKY, 10-21

NDXINI, 13-2

PEAKFN, 12-10, 12-18
PLNGET, 12-10, 12-19
PRTAB, 13-1

QBOXSU, 12-25
QCFFT, 12-26
QCRVMU, 12-26
QCSQTR, 12-26
QCVCMU, 12-27
QCVCON, 12-27
QCVEXP, 12-27
QCVJAD, 12-28
QCVMAG, 12-28
QCVMMA, 12-28
QCVMOV, 12-29
QCVMUL, 12-29
QCVSDI, 12-29
QCVSMS, 12-30
QDIRAD, 12-30
QGET, 12-23
QGSP, 12-24
QHIST, 12-31
QINIT, 12-5, 12-25
QLVGT, 12-31
QMAXMI, 12-31
QMAXV, 12-32
QMINV, 12-32

QMTRAN, 12-32
QPHSRO, 12-33
QPOLAR, 12-33

TABNDX, 13-2, 13-16
TABSOU, 13-2, 13-17
TABSRT, 13-2, 13-18

Page Index-2

QPUT, 12-24 tape files, 9-1 to 9-3

QRECT, 12-33 TEKFLS, 9-5 to 9-6, 9-11
QRFFT, 12-34 TEKVEC, 9-5 to 9-6, 9-12
QRFT, 12-24 TKCHAR, 9-4 to ©-6, 9-12

QRLSE, 12-5, 12-26
QROLL, 12-5, 12-17

TKCLR, 9-4 to 9-6, 9-12

TKCURS, 9-6, 9-13

QSVE, 12-34 TKDVEC, 9-4, 9-13
QSVESQ, 12-34 TKPL, 9-4
QVABS, 12-34 TKVEC, 9-5
QVADD, 12-35 TV displays, 10-1
QVCLIP, 12-35 TVCLEAR, 10-12
QVCLR, 12-35 TVCLOS, 10-12 to 10-13, 10-20 to
QVCOS, 12-36 10-21, 10-37
QVDIV, 12-36 TVFIDL, 10-39
QVEXP, 12-36 TVFIND, 10-38
QVFILL, 12-37 TVLOAD, 10-13, 10-39
QVFIX, 12-37 TVOPEN, 10-12 to 10-13, 10-20 to
QVFLT, 12-37 10-21, 10-37
QVIDIV, 12-38 TVSCROLL, 10-20
QVLN, 12-38 TVWHER, 10-21
QVMA, 12-38 TVWIND, 10-13, 10-38
QVMOV, 12-39
QVMUL, 12-39 u,v,w, computing, 14-13
QVNEG, 12-39 UVDISK, 9-3, 9-13 to 9-14
QVRVRS, 12-40 UVINIT, 9-3, 9-13 to 9-14
QVSADD, 12-40
QVSIN, 12-40 variable length records, 9-1
QVSMA, 12-40 vBOUT, 9-1, 9-3, 9-16
QVSMAFX, 12-41 Veotor Function Chainer, 12-8 to
QVSMSA, 12-41 12-9
QVSMUL, 12-42 VFIT.INC, 14-28
QVSQ, 12-42 VFUV.INC, 14-26
QVSQRT, 12-42
QVSUB, 12-43 Y routines, 10-2, 10-7
QVSWAP, 12-43 YALUCT, 10-10, 10-35
QVTRAN, 12-43 YCHRY, 10-8, 10-27
QWAIT, 12-25 YCNECT, 10-8, 10-27
QWD, 12-25 YCONST, 10-10
QWR, 12-25 YCRCTL, 10-9, 10-32
YCUCOR, 10-8, 10-28
RNGSET, 10-13, 10-42 YCURSE, 10-8, 10-20, 10-28
YDEA.INC, 10-11
SETPAR, 15-2 YFDBCK, 10-10, 10-35
sort order, 14-14 YGGRAM, 10-10 to 10-11
SOUINI, 13-2, 13-11 YGRAFE, 10-10
YGRAPH, 10-8, 10-29
TABCOP, 13-2, 13-11 YGYHDR, 10-10, 10-36

TABFLG, 13-2, 13-15
TABGA, 13-2, 13-12

YIFM, 10-10, 10-36

YIMGIO, 10-9, 10-32
TABINI, 13-5 to 13-6, 13-13 YINIT, 10-9, 10-33

TABIO, 13-5 to 13-6, 13-14 YLNCLR, 10-8, 10-29
TABKEY, 13-2, 13-15 YLOWON, 10-11

Page Index-3

YLUT, 10-9, 10-33 2I32IL, 14-10, 15-8, 15-16
YMAGIC, 10-10 21818, 14-10, 15-6, 15-16
YMKCUR, 10-11 ZILI16, 14-10, 15-8, 15-17
YMKHDR, 10-10 ZKDUMP, 15-11, 15-35
IMNMAX, 10-10 ZM70CL, 10-6
YOFM, 10-9, 10-33 ZM7T0OMC, 10-7
YRHIST, 10-10, 10-37 ZM700P, 10-6
YSCROL, 10-9, 10-20, 10-33 ZM70XF, 10-%
YSHIFT, 10-10 ZMATH4, 15-10, 15-35
YSLECT, 10-9, 10-30 ZMCACL, 15-6, 15-14
YSPLIT, 10-9, 10-34 ZMI3, 15-22
YSTCUR, 10-10 ZMIO, 15-7, 15-22
YTCOMP, 10-11 ZMSGCL, 18-%, 15-22
YTIVCIN, ©9-5 to 9-6, 9-16, 10-9, ZMSGDK, 15-7, 15-23

10-30 ZMSGOP, 15-7, 15-23
YTVCLS, 10-9, 10-31 ZMYVER, 15-9, 15-27
ITIVMC, 10-9, 10-31 ZOPEN, 9-2, 9-4, 9-6, 9-16, 15-3,
YIVOPN, 10-9, 10-31 15-7, 15-23
YZERO, 10-9, 10-12, 10-30 ZP4I4, 15-6, 15-17
YZ00MC, 10-9, 10-34 ZPFIL, 9-2

ZPHFIL, 9-4, 9-6, 9-17, 15-7,

ZACTV8, 15-8, 15-26 15-24
ZBYTFL, 15-6, 15-13 ZPRIO, 15-9, 15-27
zcsCL, 14-10, 15-6, 15-13 ZPRMPT, 15-10, 15-32
Z2ClC8, 14-10, 15-6, 15-13 ZPRPAS, 15-9, 15-28
ZCLOSE, ©-8, 15-7 ZPTBIT, 15-6, 15-17
ZCMPRS, 15-7, 15-19 ZPTBYT, 15-6, 15-17
ZCPU, 15-8, 15-26 ZPUTCH, 15-6, 15-18
ZCREAT, 15-7, 15-20 ZQMSIO, 15-9, 15-30
ZDATE, 15-8, 15-26 ZR8P4, 14-10, 15-6, 15-19
ZDCHIN, 15-2, 15-10, 15-35 ZRDMF, 15-6, 15-18
ZDEACL, 10-8 ZRENAM, 15-7, 15-25
ZDEAMC, 10-7 ZRM2RL, 15-6, 15-19
ZDEAOP, 10-8 ZSTAIP, 15-9, 15-29
ZDEAXF, 10-7 ZTACTQ, 15-9, 15-28
ZDELAY, 15-8, 15-27 ZTAPE, 9-2, ©-17, 15-9, 15-31
ZDESTR, 15-7, 15-20 ZTCLOS, 15-10, 15-33
ZDM2DL, 15-6, 15-14 ZTFILL, 15-11, 15-36
ZDOPRT, 15-9, 15-30 ZTIME, 15-9, 15-28
ZENDPG, 15-9, 15-30 2TKBUF, 15-9, 15-31
ZEXIST, 15-7, 15-21 ZTKCLS, 15-10, 15-32
ZEXPND, 15-7, 15-21 ZTKILL, 15-9, 15-29
ZFrl3, 15-21 ZTKOPN, 15-10, 15-32
ZFI0, ©-3, 15-7, 15-21 ZTOPEN, 15-10, 15-33
ZFREE, 15-8, 15-28 ZTQSPY, 15-9, 15-29
ZGETCH, 15-6, 15-15 ZTREAD, 15-10, 15-33
ZGNAME, 15-8, 15-2%7 2TTYIO0, 15-9 to 15-10, 15-32
ZGTBIT, 15-6, 15-15 ZTXMAT, 15-10, 15-34
ZGTBYT, 15-6, 15-18 ZWAIT, 15-7, 15-25
ZGTDIR, 15-10, 15-34 ZWHOMI, 15-9, 15-29

2I16IL, 14-10, 15-6, 15-16

