
Q alag AIPSj.A Programmers Quids to. ike HRAQ jzflnflmifi&l Image Erfi<2sssing Syaism

W. D. Cotton and a oast of AIPS
Version 15 July 85

VOLUME 2

ABSTRACT

This is the seoond of a two-volume manual for persons
wishing to write programs using the NRAO Astronomical
Image Processing System (AIPS). This volume oontains
information about some of the more detailed features
of the AIPS system.

CONTENTS

CHAPTER 9 DEVICES
9.1 OVERVIEW... 9-1
9.2 TAPE D R I V E S 9-1
9.2.1 Opening Tape Files.............................9-2

9.2.2 Positioning Tapes 9-2
9.2.3 I/O To Tape F i l e s9-3

9.2.3.1 MINI3/MDIS3 And UVINIT/UVDISK 9-3
9.2.3.2 Z F I O ... 9-3

9.2.3.3 VBOUT 9-3
9.2.4 Tape Data Struoture...........................9-3

9.3 GRAPHICS DISPLAYS 9-4
9.3.1 Opening The Graphios Terminal 9-4
9.3.2 Writing To The Graphios Terminal.............. 9-5
9.3.3 Activating And Reading The C u r s o r 9-5

9.3.4 Updating The Image Catalog 9-6
9.3.5 An Example..................................... 9-6
9.4 INCLUDES... 9-8
9.4.1 CTKS.INC....................................... 9-8
9.4.2 CTVC.INC....................................... 9-8
9.4.3 DTKS.INC....................................... 9-8
9.4.4 DTVC.INC....................................... 9-9
9.5 ROUTINES... 9-9
9.5.1 ICINIT... 9-9
9.5.2 ICWRIT... 9-9
9.5.3 M D I S 3 9-10
9.5.4 M I N I 3 9-10
9.5.5 TEKFLS....................................... 9-11
9.5.6 TEKVEC....................................... 9-12
9.5.7 TKCHAR....................................... 9-12
9.5.8 T K C L R 9-12
9.5.9 TKCURS....................................... 9-13

9.5.10 TKDVEC 9-13
9.5.11 UVDISK 9-13
9.5.12 UVINIT 9-14
9.5.13 VBOUT 9-16
9.5.14 YTVCIN 9-16
9.5.15 ZOPEN 9-16
9.5.16 ZPHFIL 9-17
9.5.17 ZTAPE 9-17

CHAPTER 10 USING THE TV DISPLAY
10.1 OVERVIEW....................................... 10-1
10.1.1 Why Use (or Not Use) The TV Display?........ 10-1

10.1.2 The AIPS Model Of A TV Display Devioe 10-2
10.2 FUNDAMENTALS OF THE CODING.....................10-5

10.2.1 The Parameter Commons And Their Maintenanoe . 10-5
10.2.2 The I/O Routines............................. 10-6

Page 215 July 85

Page 315 July 85

10.2.3 The Y Routines............................... 10-7
10.2.3.1 Level 0 10-8
10.2.3.2 Level 1 10-9
10.2.3.3 Level 2 10-10
10.2.3.3.1 IIS Models 70 And 7 510-10
10.2.3.3.2 DeAnza 10-11
10.3 CURRENT APPLICATIONS 10-11
10.3.1 Status Setting 10-11
10.3.2 Load Images, Label 10-12
10.3.3 UVMAP 10-15
10.3.4 APCLN, VM, MX, Et A1.......................... 10-15
10.3.5 Plot Files (TVPL) 10-19
10.3.6 Transfer Funotion Modification, Zooming . . . 10-19
10.3.7 Objeot Looation, Window Setting 10-21
10.3.8 Blotoh Setting, Use 10-23
10.3.9 R o a m ... 10-24
10.3.10 Movie, Blink 10-24
10.3.11 Non-standard Tasks 10-25
10.4 INCLUDES..................................... 10-26
10.4.1 DTVC.INC 10-26
10.4.2 CTVC.INC 10-26
10.4.3 DTVD.INC 10-26
10.4.4 CTVD.INC 10-26
10.5 Y-ROUTINE PRECURSOR REMARKS: 10-27
10.5.1 Level 0 10-27
10.5.1.1 YCHRW 10-27
10.5.1.2 YCNECT 10-27
10.5.1.3 YCUCOR 10-28
10.5.1.4 YCURSE 10-28
10.5.1.5 YGRAPH 10-29
10.5.1.6 YLNCLR 10-29
10.5.1.7 YSLECT 10-30
10.5.1.8 YTVCIN 10-30
10.5.1.9 YZERO 10-30
10.5.1.10 YTVCLS................................. ! ! 10-31
10.5.1.11 YTVMC 10-31
10.5.1.12 YTVOPN 10-31
10.5.2 Level 1 10-32
10.5.2.1 YCRCTL 10-32
10.5.2.2 YIMGIO 10-32
10.5.2.3 YINIT 10-33
10.5.2.4 Y L U T 10-33
10.5.2.5 Y O F M ‘ 10-33
10.5.2.6 YSCROL................................. * 10-33
10.5.2.7 YSPLIT 10-34
10.5.2.8 YZOOMC 10-34
10.5.3 Level 2 (Used As Level 1 In Non-standard

Tasks)....................................... 10-3510.5.3.1 YALUCT 10-35
10.5.3.2 YFDBCK............................. * 10-35
10.5.3.3 YGYHDR............................. ‘ 10-36
10.5.3.4 Y I F M 10-36
10.5.3.5 YRHIST 10-37
10.5.4 Seleoted Applications Subroutines 10-37

10.5.4.1 TVOPEN 10-37
10.5.4.2 TVCLOS 10-37
10.5.4.3 TVFIND 10-38
10.5.4.4 TVWIND 10-38
10.5.4.5 TVLOAD 10-39
10.5.4.6 TVFIDL 10-39
10.5.4.7 IMANOT 10-40
10.5.4.8 IMCHAR 10-40
10.5.4.9 IMVECT 10-41
10.5.4.10 IENHNS 10-41
10.5.4.11 DLINTR 10-41
10.5.4.12 RNGSET 10-42
10.5.4.13 DECBIT 10-42
10.5.4.14 MOVIST 10-42

CHAPTER 11 PLOTTING
11.1 OVERVIEW....................................... 11-1
11.2 PLOT F I L E S 11-2

11.2.1 General Comments 11-2
11.2.2 Struoture Of A Plot F i l e11-2
11.2.3 Types Of Plot File Logioal Reoords.......... 11-3
11.2.3.1 Initialize Plot Reoord......................11-3
11.2.3.2 Initialize For Line Drawing Reoord......... 11-4
11.2.3.3 Initialize For Grey Soale Reoord........... 11-4
11.2.3.4 Position Reoord............................. 11-5
11.2.3.5 Draw Veotor Reoord..........................11-5
11.2.3.6 Write Charaoter String Reoord.............. 11-5
11.2.3.7 Write Pixels Reoord.........................11-5

11.2.3.8 Write Miso. Info To Image Catalog Reoord. . 11-6
11.2.3.9 End Of Plot Reoord..........................11-6
11.3 PLOT PARAFORM T A S K S11-6

11.3.1 Introduction 11-6
11.3.2 Getting Started 11-7

11.3.3 Labeling The P l o t11-8
11.3.4 Plotting 11-8

11.3.5 Map I/O 11-8
11.3.6 Cleaning U p 11-10

11.3.7 The Three Paraform Plot Tasks 11-10
11.3.7.1 PFPL1 11-10
11.3.7.2 PFPL2 11-12
11.3.7.3 PFPL3 11-13
11.3.8 Routines 11-13
11.3.8.1 PLEND 11-13
11.3.8.2 PLPOS 11-13
11.3.8.3 PLVEC 11-14
11.3.8.4 PLMAKE 11-14
11.3.8.5 PLGRY 11-14
11.3.8.6 MAKNAM 11-14
11.3.8.7 INTMIO 11-15
11.3.8.8 REIMIO 11-15
11.3.8.9 GETROW 11-16

Page 4
15 July 85

CHAPTER 12 USING THE ARRAY PROCESSORS
12.1 OVERVIEW....................................... 12-1
12.1.1 Why Use The Array Prooessor?................ 12-1
12.1.2 When To Use And Not To Use The A P 12-2
12.2 THE AIPS MODEL OF AN ARRAY PROCESSOR.......... 12-2
12.3 HOW TO USE THE ARRAY PROCESSOR................ 12-4
12.3.1 AP Data A d d r e s s e s 12-4

12.3.1.1 Q Routine Arguments..................... . 12-4
12.3.1.2 Array Prooessor Memory Size 12-5

12.3.2 Assigning The A P 12-5
12.3.3 Data Transfers To And From The A P 12-6

12.3.4 Loading And Executing AP Programs 12-7
12.3.5 Timing Calls 12-7
12.3.6 Writing AP Routines 12-8

12.3.6.1 Mioroooding Routines........................12-9
12.3.6.2 Veotor Funotion Chainer.....................12-9
12.3.7 F F T s ... 12-9

12.4 PSEUDO-ARRAY PROCESSOR.........................12-10
12.5 EXAMPLE OF THE USE OF THE A P12-10
12.6 INCLUDES....................................... 12-13

12.6.1 CAPC.INC 12-13
12.6.2 CBPR.INC 12-13
12.6.3 CDCD.INC 12-14
12.6.4 DAPC.INC 12-14
12.6.5 DBPR.INC 12-14
12.6.6 DDCH.INC 12-14
12.6.7 EAPC.INC 12-15
12.6.8 IDCH.INC 12-15
12.7 ROUTINES....................................... 12-16

12.7.1 Utility Routines 12-16
12.7.1.1 A P I O 12-16

12.7.1.2 QROLL 12-17
12.7.1.3 DSKFFT 12-18
12.7.1.4 PEAKFN 12-18
12.7.1.5 PLNGET 12-19
12.7.2 Array Prooessor Routines 12-20
12.7.3 AP Routine Call Sequenoes 12-23
12.7.3.1 Q G E T 12-23
12.7.3.2 Q G S P 12-24
12.7.3.3 Q P U T 12-24
12.7.3.4 Q R F T 12-24

12.7.3.5 QWAIT 12-25
12.7.3.6 Q W D 12-25
12.7.3.7 Q W R 12-25

12.7.3.8 QBOXSU 12-25
12.7.3.9 QINIT 12-25
12.7.3.10 QRLSE 12-26
12.7.3.11 QCFFT 12-26
12.7.3.12 QCRVMU 12-26
12.7.3.13 QCSQTR 12-26
12.7.3.14 QCVCMU 12-27
12.7.3.15 QCVCON 12-27
12.7.3.16 QCVEXP 12-27

Page 5
15 July 85

12.7.3.17 QCVJAD 12-28
12.7.3.18 QCVMAG 12-28
12.7.3.19 QCVMMA 12-28
12.7.3.20 QCVMOV 12-29
12.7.3.21 QCVMUL 12-29
12.7.3.22 QCVSDI 12-29
12.7.3.23 QCVSMS 12-30
12.7.3.24 QDIRAD 12-30
12.7.3.25 QHIST 12-31
12.7.3.26 QLVGT 12-31
12.7.3.27 QMAXMI 12-31
12.7.3.28 QMAXV 12-32
12.7.3.29 QMINV 12-32
12.7.3.30 QHTRAN 12-32
12.7.3.31 QPHSRO 12-33
12.7.3.32 QPOLAR 12-33
12.7.3.33 QRECT 12-33
12.7.3.34 QRFFT 12-34
12.7.3.35 Q S V E 12-34

12.7.3.36 QSVESQ 12-34
12.7.3.37 QVABS 12-34
12.7.3.38 QVADD 12-35
12.7.3.39 QVCLIP 12-35
12.7.3.40 QVCLR 12-35
12.7.3.41 QVCOS 12-36
12.7.3.42 QVDIV 12-36
12.7.3.43 QVEXP 12-36
12.7.3.44 QVFILL 12-37
12.7.3.45 QVFIX 12-37
12.7.3.46 QVFLT 12-37
12.7.3.47 QVIDIV 12-38
12.7.3.48 Q V L N 12-38
12.7.3.49 Q V M A 12-38

12.7.3.50 QVMOV 12-39
12.7.3.51 QVMUL 12-39
12.7.3.52 QVNEG 12-39
12.7.3.53 QVRVRS 12-40
12.7.3.54 QVSADD 12-40
12.7.3.55 QVSIN 12-40
12.7.3.56 QVSMA 12-40
12.7.3.57 QVSMAFX 12-41
12.7.3.58 QVSMSA 12-41
12.7.3.59 QVSMUL 12-42
12.7.3.60 Q V S Q 12-42

12.7.3.61 QVSQRT 12-42
12.7.3.62 QVSUB 12-43
12.7.3.63 QVSWAP 12-43
12.7.3.64 QVTRAN 12-43

Page 6
15 July 85

CHAPTER 13 TABLES IN AIPS
13.1 OVERVIEW....................................... 13-1

13.2 GENERAL TABLES ROUTINES 13-1

13.3 SPECIFIC TABLES ROUTINES 13-2
13.4 THE FORMAT DETAILS............................. 13-2
13.4.1 Row D a t a 13-3

13.4.2 Physioal File Format 13-3
13.4.3 Control Information 13-4
13.4.4 Keyword/value Reoords 13-5

13.4.5 I/O B u f f e r s 13-5
13.4.6 Fundamental Table Aooess Subroutines 13-6

13.5 ROUTINES....................................... 13-7
13.5.1 CCINI 13-7
13.5.2 CHNDAT 13-7
13.5.3 FLGINI 13-8
13.5.4 FNDCOL 13-8
13.5.5 GAINI 13-9
13.5.6 GETCOL 13-10
13.5.7 INDXIN 13-10
13.5.8 SOUINI 13-11
13.5.9 TABCOP 13-11
13.5.10 TABGA 13-12
13.5.11 TABINI 13-13
13.5.12 TAB10 13-14
13.5.13 TABKEY 13-15
13.5.14 TABFLG 13-15
13.5.15 TABNDX 13-16
13.5.16 TABSOU 13-17
13.5.17 TABSRT 13-18

CHAPTER 14 FITS TAPES
14.1 OVERVIEW....................................... 14-1
14.2 PHILOS P H Y 14-1
14.3 IMAGE F I L E S 14-2

14.3.1 Overall Struoture 14-2
14.3.2 Header Reoords 14-3
14.3.2.1 Keywords 14-4
14.3.2.2 History 14-5
14.3.2.3 AIPS Nonstandard Image File Keywords 14-6
14.3.2.4 Coordinate Systems 14-7
14.3.2.5 Example Image Header 14-8
14.3.2.6 Units 14-10
14.3.3 Data Reoords................................. 14-10

14.4 RANDOM GROUP (UV DATA) FILES 14-10
14.4.1 Header Reoord 14-11
14.4.2 Data Reoords................................. 14-12

14.4.2.1 Weights And Flagging 14-12
14.4.2.2 Antennas And Subarrays 14-13
14.4.2.3 Coordinates 14-14
14.4.2.4 Sort O r d e r 14-14

14.4.3 Typioal VLA Reoord Struoture 14-14
14.5 EXTENSION F I L E S 14-17

14.5.1 Standard Extension 14-17
14.5.2 Tables Extension 14-19
14.5.2.1 Tables Header Reoord 14-19

Page 7
15 July 85

14.5.2.2 Table Data Reoords 14-21
14.5.2.3 Example Table Header And Data 14-22
14.5.3 Older AIPS Tables 14-23
14.5.3.1 General Form Of Header 14-23
14.5.3.2 Data Reoords............................... 14-23
14.5.3.3 CC Files................................... 14-24
14.5.3.4 AN F i l e s 14-24
14.6 AIPS FITS INCLUDES............................. 14-25

14.6.1 DFUV.INC 14-25
14.6.2 DFIT.INC 14-26
14.6.3 EFUV.INC 14-26
14.6.4 EFIT.INC 14-26
14.6.5 VFUV.INC 14-26
14.6.6 VFIT.INC 14-28
14.7 AIPS FITS PARSING ROUTINES.....................14-29

14.7.1 FPARSE 14-29
14.7.2 GETCRD 14-30
14.7.3 GETLOG 14-30
14.7.4 GETNUM 14-31
14.7.5 GETSTR 14-31
14.7.6 GETSYM 14-31
14.8 REFERENCES..................................... 14-32

Page 8
15 July 85

CHAPTER 15 THE Z ROUTINES
15.1 OVERVIEW....................................... 15-1

15.1.1 Devioe Characteristics Common 15-2
15.1.2 F T A B ... 15-3
15.1.3 Disk F i l e s 15-4

15.1.3.1 Binary (data) Files 15-4
15.1.3.2 Text F i l e s 15-4
15.2 DATA MANIPULATION ROUTINES.....................15-5

15.3 DISK I/O AND FILE MANIPULATION ROUTINES 15-7
15.4 SYSTEM FUNCTIONS 15-8
15.5 DEVICE (NON-DISK) I/O ROUTINES 15-9
15.6 DIRECTORY AND TEXT FILE ROUTINES.............. 15-10
15.7 MISCELLANEOUS................................. 15-10
15.8 INCLUDES....................................... 15-11

15.8.1 CDCH.INC 15-11
15.8.2 CMSG.INC 15-12
15.8.3 DDCH.INC 15-12
15.8.4 DMSG.INC 15-12
15.8.5 IDCH.INC 15-12
15.9 ROUTINES....................................... 15-13
15.9.1 Data Manipulation........................... 15-13

15.9.1.1 ZBYTFL 15-13
15.9.1.2 ZCLC8 15-13
15.9.1.3 ZC8CL 15-13
15.9.1.4 ZMCACL 15-14
15.9.1.5 ZDM2DL 15-14
15.9.1.6 ZGETCH 15-15
15.9.1.7 ZGTBIT 15-15
15.9.1.8 ZGTBYT 15-15

15.9.1.9 ZI16IL 15-16
15.9.1.10 ZI32IL 15-16
15.9.1.11 ZI8L8 15-16
15.9.1.12 ZILI16 15-17
15.9.1.13 ZP4I4 15-17
15.9.1.14 ZPTBIT 15-17
15.9.1.15 ZPTBYT 15-17
15.9.1.16 ZPUTCH 15-18
15.9.1.17 ZRDMF 15-18
15.9.1.18 ZRM2RL 15-19
15.9.1.19 ZR8P4 15-19
15.9.2 Disk I / O 15-19
15.9.2.1 ZCMPRS 15-19
15.9.2.2 ZCREAT 15-20
15.9.2.3 ZDESTR 15-20
15.9.2.4 ZEXIST 15-21
15.9.2.5 ZEXPND 15-21
15.9.2.6 Z F I O 15-21
15.9.2.7 Z M I O 15-22
15.9.2.8 ZMSGCL 15-22
15.9.2.9 ZMSGDK 15-23
15.9.2.10 ZMSGOP 15-23
15.9.2.11 ZOPEN 15-23
15.9.2.12 ZPHFIL 15-24
15.9.2.13 ZRENAM 15-25
15.9.2.14 ZWAIT 15-25
15.9.3 System Funotions 15-26
15.9.3.1 ZACTV8 15-26
15.9.3.2 Z C P U 15-26
15.9.3.3 ZDATE 15-26
15.9.3.4 ZDELAY 15-27
15.9.3.5 ZGNAME 15-27
15.9.3.6 ZMYVER 15-27
15.9.3.7 ZPRIO 15-27
15.9.3.8 ZPRPAS 15-28
15.9.3.9 ZTACTQ 15-28
15.9.3.10 ZTIME 15-28
15.9.3.11 ZFREE 15-28
15.9.3.12 ZSTAIP 15-29
15.9.3.13 ZTKILL 15-29
15.9.3.14 ZTQSPY 15-29
15.9.3.15 ZWHOMI 15-29
15.9.4 Non-disk I/O Routines 15-30
15.9.4.1 ZDOPRT 15-30
15.9.4.2 ZENDPG 15-30
15.9.4.3 ZQMSIO 15-30
15.9.4.4 ZTAPE 15-31
15.9.4.5 ZTKBUF 15-31
15.9.4.6 ZTKCLS 15-32
15.9.4.7 ZTKOPN 15-32
15.9.4.8 ZTTYIO 15-32
15.9.4.9 ZPRMPT 15-32
15.9.5 Direotory And Text F i l e15-33
15.9.5.1 ZTCLOS 15-33

Page 9
15 July 85

Page 10
15 July 85

15.9.5.2 ZTOPEN15-33
15.9.5.3 ZTREAD15-33
15.9.5.4 ZTXMAT15-34
15.9.5.5 ZGTDIR15-34
15.9.6 Miscellaneous15-35
15.9.6.1 ZDCHIN15-35
15.9.6.2 ZMATH415-35
15.9.6.3 ZKDUMP15-35
15.9.6.4 ZTFILL15-36

CHAPTER 9
DEVICES

9.1 OVERVIEW
Programs in the AIPS system oooasionally need to talk to

peripheral devioes. This ohapter disousses suoh devioes other than
disk drives, TV displays, array processors, and plotters which are
covered elsewhere. Many of the same routines used for disk I/O are
also used for I/O to other devioes but their use may be modified to
suit the physioal properties of the particular devioe. The details
of the oall sequenoe for the relevant routines disoussed in this
ohapter are given at the end of the ohapter.

9.2 TAPE DRIVES
Tapes are used in AIPS primarily for long term storage of data,

images or text files. The prinoiple differences in the AIPS system
between use of tape and disk is that tapes, by their physioal
nature, are sequential aooess devioes and the physioal blook size of
data depends on the program writing the tape. In addition, AIPS
batoh jobs are forbidden to talk to tape drives.

The usual problems of Fortran I/O apply to tapes, i.e. it is
not prediotable from one maohine and/or operating system to another.
For this reason standard AIPS programs do not use Fortran I/O for
tapes. Also, some versions of Fortran cannot read or write some
file structures suoh as those containing variable length, blooked,
unspanned reoords.

Sinoe AIPS tasks work direotly from I/O buffers a program using
tape must take aooount of the details of the way data is written on
tape. One exoeption to this is writing variable length, blooked,
but unspanned reoords; suoh reoords may be assembled and written
using the AIPS utility routine VBOUT.

DEVICES
TAPE DRIVES Page 9-210 May 85

9.2.1 Opening Tape Files
Tape files are opened using ZOPEN in a way similar to disk

files. Details about ZOPEN and examples of its use oan be found in
the ohapter on disk I/O. However, to tell the AIPS routines that
the file is on a tape drive and to speoify whioh tape drive, the LUN
and file name are different from those used for disk files. The LUN
for tape files must be 31 or 32. When oonstruoting the name of the
file using ZPFIL use 'MT' as the file type and the (one relative)
tape drive number as the volumn number, the rest of the values sent
to ZPHFIL are ignored by ZOPEN and are arbitrary.

9.2.2 Positioning Tapes
Onoe the file has been opened in AIPS the tape may be

positioned, mounted or dismounted, or EOFs may be written using
ZTAPE. NOTE: mounting and dismounting are generally done only by
the AIPS program itself. Details of the oall sequence to ZTAPE are
given at the end of this ohapter. The following list gives the
opoodes reoognized by ZTAPE.

1. 'ADVF' - advanoe file marks
2. 'ADVR' wm advanoe reoords
3. 'BAKF' - baokspaoe file marks.
4. 'BAKR' - baokspaoe reoords.
5. 'DMNT' - dismount tape.
6. 'MONT' - mount tape.
7. 'REWI' - rewind the tape on unit LUN
8. #WEOF' - write end of file on unit LUN: writes 4

positions tape after first one EOFs,

9. 'MEOF' -
the firstwrite 4 EOF marks on tape, position tape ; one before

DEVICES
TAPE DRIVES Page 9-3

10 May 85

9.2.3 I/O To Tape Files
The same routines to write to disk files oan be used to talk to tape
files although several oall arguments have altered meanings for tape files.

9.2.3.1 MINI3/MDIS3 And UVINIT/UVDISK - Double buffered I/O oan be
done using MINI3/MDIS3 and UVINIT/UVDISK. For these pairs of
routines the primary differenoe between their use on disk and tape
is that the physioal blooks on the tape are: 1) a single logioal
reoord of an image (a row, or the first dimension) if written using
MINI3/MDIS3 or 2) the number of logioal reoords (visibilities)
requested in a single oall (NPIO) to UVINIT. Sinoe these routines
know or oare little about the internal struoture of the data read or
written, in praotioe, any format reoords oan be prooessed.

9.2.3.2 ZFIO - Single buffered I/O oan be done using ZFIO but the
input variable used for to blook number beoomes the byte oount for the transfer.

9.2.3.3 VBOUT - The utility routine VBOUT will oolleot variable
length reoords and blook them, unspanned, into IBM format physioal
blooks up to 4008 bytes long. The tape must be opened with ZOPEN as
a non-map file. The prinoiple use of this routine is to write VLA
"EXPORT" format tapes. Details of the oall sequenoe as well as
other important useage notes are found at the end of this ohapter.

9.2.4 Tape Data Struoture
In order to make effioient use of tape storage a number of logioal
records may be grouped into a single physioal reoord. In general
these logioal reoords may be fixed or variable length and may or may
not span physioal blooks. In addition, logioal reoords may be
formatted (text, usually ASCII) or binary. Suoh details need to be
determined before attempting to read or write suoh files.

Fixed length logioal reoords are paoked into physioal reoords
as defined by the reoord size and blook length. Sinoe the order and
size of these reoords is well defined there is no need for
additional oontrol information.

For variable length logioal reoords, oontrol bytes are added to
the reoord to determine the boundaries of logioal reoords.
Unfortunately, the details of the of variable length reoord
struoture varies from oomputer to oomputer and from operating system
to operating system. If you wish to read or write one of these

DEVICES
TAPE DRIVES Page 9-4

10 Hay 85

tapes you have to find the details of the formats for the maohines
in question.

9.3 GRAPHICS DISPLAYS
The graphios devioes ourrently supported in AIPS fall into

three oategories: TV display devioes suoh as the IIS, hardoopy
devioes suoh as the Versateo printer/plotter, QMS Lasergraphios
printer and interactive graphios terminals suoh as the Tektronix
4012. This seotion deals with the Tektronios type graphios
terminals. The other devioes are disoussed in the ohapter on plotting.

A graphios terminal oan be used in two major modes: as a
temporary display devioe, or as an interactive graphios devioe.
When used as a temporary display devioe, a task will read graphios
oommands from a plot file, oonvert these devioe independent oommands
to the form needed by the devioe, and finally write to the devioe.
The AIPS task that does this is TKPL. A programmer wishing to write
a task to intepret a plot file for another type of graphios
terminal, would start with TKPL and oonvert the routines TKDVEC,
TKCHAR, and TKCLR to send the proper oommands to the devioe.

When using a graphios terminal in the interactive mode, the
programmer probably will go straight from the data file to the
graphios terminal without going through a plot file. In general, an
interactive task or verb will open the display devioe, display the
data, activate the oursor, read the cursor position in the absolute
devioe coordinates, oonvert these coordinates into more useful
units, and then perform some useful funotion with the oonverted
units, suoh as display them.

Current AIPS use of graphios is quite primative. In the future
we will probably oonvert to use of the GKS graphios system whioh may
invalidate most of the following disoussion.

9.3.1 Opening The Graphios Terminal
The graphios terminal is opened as a non map file using ZOPEN.

AIPS logioal unit 7 is reserved for this devioe type, and should be
used in the oall to ZOPEN. When oonstruoting the devioe name with
ZPHPIL, a devioe type of 'TK' must be used. A volume number of 1
and zero values for the other auguments should be used to remain
consistent with other tasks. On the VAX, eaoh AIPS is assigned a
graphios terminal on start up aooording to a set of logioal names.
Thus, ZOPEN on the VAX ignores everything in the name exoept TK.

DEVICES
GRAPHICS DISPLAYS Page 9-5

10 May 85

9.3.2 Writing To The Graphios Terminal
Before writing to the graphios terminal, the programmer must

set some values in oommon. Common INCS:CTVC.INC oan be initialized
by oalling routine YTVCIN. Most values in this oommon are for the
TV display, but array MAXXTK contains the maximum X and Y values in
device units (for the Tektronix 4012, these values range from 1 to
1024 for X and 1 to 780 for Y). In oommon INCS:CTKS.INC, the
graphios buffer size, TKSIZE, should be set to 20. The ourrent
position in use in the buffer, TKPOS, should be set to zero. Soale
factors SCALEX and SCALEY and offsets RXO and RYO must be oaloulated
and assigned. If a subroutine is told to soale a value then the X
value in absolute devioe units will be equal to
SCALEX * value_input_for_X + RXO.

Usually the first thing a programmer will want to do when
writing to the terminal is to dear the soreen. This oan be done
with subroutine TKCLR.

Setting the beginning of the line (sometimes oalled drawing a
dark veotor) and drawing lines from the ourrent position to a new
position (a bright veotor) are done with routine TEKVEC. TEKVEC is
given an X and Y position and a oontrol oode whioh tells it if it
should draw a dark veotor or a bright veotor, and if it should
oonsider X and Y to be in absolute devioe units or if the values
should be soaled. TEKVEC will automatically trunoate veotors that
run off the plot and write the buffer when it fills up.

Charaoters oan be written to a Teotronix terminal by oalling
routine TKCHAR. TKCHAR allows the programmer to write oharaoters
either horizontally or vertically. TKCHAR uses the hardware
oharaoter generator in the Tektronios, so the oharaoters only oome
in one size. Choosing the starting position of the oharaoters
involves a oombination of TEKVEC and TKCHAR. First, a veotor
position on the plot is ohosen by oalling TEKVEC with the 'dark
veotor' option. Then an offset from the veotor position in
oharaoter sizes is ohosen by use of the DCX and DCY parameters in
TKCHAR. Programmers who need a oharaoter generator oan find one in
task PRTPL that oan be adapted to a graphios terminal.

Before olosing the graphios terminal, the programmer should
write any remaining buffers to the graphios devioe by oalling
TEKFLS.

9.3.3 Aotivating And Reading The Cursor
Subroutine TKCURS will aotivate the oursor on the Tektronix

4012 and wait for a response from the 4012 keyboard. After the user
positions the oursor and presses any key, the oursor will disappear
and TKCURS will return the last ooordinate position in absolute
Tektronix units. The programmer will probably have to oonvert this
position into plot coordinates by using information in the image

DEVICES
GRAPHICS DISPLAYS

Page 9-6
10 May 85

oatalog.

9.3.4 Updating The Image Catalog
The image oatalog should be updated when an image is written to

the graphios terminal. This is essential when one task (or verb)
writes an image to the devioe, and another task (or verb) needs
information about the plot on the soreen. For example, task TKPL
oan be used to display a oontour map on the terminal, and verb TKPOS
oan be used to print map ooordinate values at seleoted positions on
the plot. The TKPOS uses information in the image header to oonvert
an absolute Teotronix oursor position into the map axis units suoh
as RA and DEC. The routines ICINIT and ICWRIT oan be used to set up
the image oatalog for the graphios terminal. See the ohapter on
oatalogues for a detailed desoription of the image oatalog and the
example below for making a minimum image oatalog entry.

9.3.5 An Example
This example oode shows how to open the graphios terminal,

olear the soreen, draw a box, and write some text in the oenter of
the box. Opening the map, getting parameters from AIPS, eto., are
not shown. In a non-trivial example, oaloulating the soaling
parameters and updating the image oatalog would be muoh more
involved.

INTEGER*2 TK, NO, Nl, ITKLUN, ITKIND, IERR, TKSIZE, TKPOS,
* IPOS, IDRAW, NCHAR, IHORZ, IPLANE, BUFFER(256), VOL, CNO,
* CATBLK(256), LINE(40)
LOGICAL*2 T,F
REAL*4 DEVNAM(6), BLCX, BLCY, TRCX, TRCY, CENTER, DCX, DCY
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

' INCS
' INCS
' INCS
' INCS
' INCS
' INCS
'INCS
'INCS

DHDR,
DDCH
DTVC
DTKS
CHDR
CDCH
CTVC
CTKS

INC'
INC'
INC'
INC'
INC'
INC'
INC'
INC'

C Open the Tektronix devioe.ITKLUN - 7
CALL ZPHFIL (TK, Nl, NO, NO, DEVNAM, IERR)
IF (IERR.NE.O) GO TO 900
CALL ZOPEN (ITKLUN, ITKIND, Nl, DEVNAM, F, T, T, IERR)
IF (IERR.NE.O) GO TO 900

oo
oo

oo

o
oo

o
oo

o
oo

oo

o
o

oo
DEVICES
GRAPHICS DISPLAYS Page 9-7

10 Hay 85

CALL YTVCIN
TKSIZE - 20
TKPOS - 0

SCALEX - MAXXTK(l) / 100.0
SCALEY - MAXXTKC2) / 100.0
RX0 - 0.0
RY0 - 0.0
CALL TKCLR (ITKIND, IERR)
IF (IERR.NE.0) GO TO 900
BLCX - 25.0
BLCY - 25.0
TRCX - 75.0
TRCY - 75.0

IPOS

Set variables in oommon.

Make soreen be 100 by 100
units.

Clear soreen.

Set oorners

1 is the oode for soale
X and Y and position veotor.
2 is the oode for soale X and
Y and draw veotor.IDRAW - 2
Draw a box.CALL TEKVEC (BLCX, BLCY, IPOS, ITKIND, IERR)

CALL TEKVEC (BLCX, TRCY, IDRAW, ITKIND, IERR)
CALL TEKVEC (TRCX, TRCY, IDRAW, ITKIND, IERR)
CALL TEKVEC (TRCX, BLCY, IDRAW, ITKIND, IERR)
CALL TEKVEC (BLCX, BLCY, IDRAW, ITKIND, IERR)
IF (IERR.NE.0) GO TO 900

Write some oharaoters in
the oenter of the box.NCHAR - 14

ENCODE (NCHAR, 1000, LINE)
Position at oenter.CENTER - 50.0

CALL TEKVEC (CENTER, CENTER, IPOS, ITKIND, IERR)
IF (IERR.NE.0) GO TO 900

Compute offset to start
writing oharaoters.DCX --- NCHAR / 2.0

D C Y ---0.5
IHORZ - 0

Write messageCALL TKCHAR (NCHAR, IHORZ, DCX, DCY, LINE, ITKIND, IERR)
IF (IERR.NE.0) GO TO 900

Write any remaining buffer to
soreen.CALL TEKFLS (ITKIND, IERR)
Update image oatalog although
for this example plot has no
relation to map.
Caloulate image plane. These

DEVICES Page 9-8
GRAPHICS DISPLAYS 10 May 85

values are found in oommon
set up in CDCH.INC.

IPLANE - NGRAY + NGRAPH + NTKDEV
CALL ICINIT (IPLANE, BUFFER)

CATBLK, VOL and CNO were
found when map was opened.

CATBLK(I2VOL) - VOL
CATBLK(I2CN0) - CNO

Set plot type to MISC
CATBLK(I2PLT) - 1
CALL ICWRIT (IPLANE, NO, CATBLK, BUFFER, IERR)

Close graphios terminal.
CALL ZCLOSE (ITKLUN, ITKIND, IERR)

1000 FORMAT ('This is a test')

9.4 INCLUDES
9.4.1 CTKS.INC

C
C

C
C

C

C

Inolude CTKS
COMMON /TKSPCL/ TKBUFF, SCALEX, SCALEY, RXO, RYO, RXL, RYL,
* TKPOS, TKSIZE

End CTKS

9.4.2 CTVC.INC

Inolude CTVC
COMMON /TVCHAR/ NGRAY, NGRAPH, NIMAGE, MAXXTV, MAXINT, SCXINC,
* SCYINC, MXZOOM, NTVHDR, CSIZTV, GRPHIC, ALLONE, MAXXTK,
* CSIZTK, TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS, TVZOOM,
* TVSCRX, TVSCRY, TVLIMG, TVSPLT, TVSPLM, TVSPLC, TYPMOV,
* YBUFF

End CTVC

9.4.3 DTKS.INC

Inolude DTKS
REAL*4 TKBUFF(20), SCALEX, SCALEY, RXO, RYO, RXL, RYL
INTEGER*2 TKPOS, TKSIZE

End DTKS

DEVICES
INCLUDES Page 9-9

10 Hay 85

9.4.4 DTVC.INC

C Inolude DTVCINTEGER*2 NGRAY, NGRAPH, NIHAGE, MAXXTV(2), MAXINT, SCXINC,
* SCYINC, MXZOOM, NTVHDR, CSIZTV(2), GRPHIC, ALLONE, MAXXTK(2),
* CSIZTK(2), TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS(7),
* TVZ00M(3), TVSCRX(16), TVSCRY(16), TVLIMG(4), TVSPLT(2),
* TVSPLM, TVSPLC, TYPM0V(16), YBUFF(168)

G End DTVC

9.5 ROUTINES
9.5.1 ICINIT - Initializes image oatalog for plane IPLANE

ICINIT (IPLANE, BUFF)
Input:

IPLANE 1*2 Image plane to initialize Output:
BUFFC256) 1*2 Working buffer

9.5.2 ICWRIT - writes image oatalog blook from ICTBL into image oatalog.
ICWRIT (IPLANE, IMAWIN, ICTBL, BUFF, IERR)Inputs:

IPLANE 1*2 image plane involved
IMAWIN(4) 1*2 Corners of image on soreen
ICTBL 1*2(256) Image oatalog blook Outputs:
BUFF 1*2(256) working buffer
IERR 1*2 error oode: 0 -> ok

1 -> no room in oatalog
2 -> 10 problems

DEVICES
ROUTINES Page 9-10

10 May 85

9.5.3 MDIS3 - reads or writes image data to/from disks and other
devioes. MDIS3 and MINI3 are pseudo 1*4 versions of yet to be
written replacements MDISK and MINIT whioh will use true 1*4.

MDIS3 (OP
Inputs:
OP 1*4
LUN 1*2
FIND 1*2

Input and/or
BUFF ??

Output:
BIND 1*2
IERR 1*2

LUN, FIND, BUFF, BIND, IERR)
Op oode ohar string 'WRIT', 'READ','FINI'
logioal unit number
Pointer to FTAB returned by ZOPEN output:
Buffer holding data, you better know speoifioation
Pointer to position in buffer of first pixel in window in the present line
Error return: 0

1 -
2 -3 -
4 -
5 -0 n

ok
file not open
input error
I/O error
end of file
beginning of medium
end of medium

MDIS3 sets array index to the start of the next line wanted.
NOTE: the line sequenoe is set by the WIN parameter in MINI3,
if the vaules of WIN(2) and Win(4) are switohed then the file
will be aooessed backwards.
A oall with OP - 'FINI' flushes the buffer when writing.
MINI3 MUST be oalled before MDIS3.

9.5.4 MINI3 - initializes the I/O tables for MDIS3.
MINI3 (OP, LUN, IND, LX, LY, WIN, BUFF, BFSZ, BYTPIX,* BLKOF, IERR)

Inputs:
OP R*4 Operation oode oharaoter string: 'READ','WRIT'
LUN 1*2 logioal unit number
IND 1*2 pointer to FTAB, returned by ZOPEN when file is opened
LX 1*2 Number of pixels per line in X-direotion for whole plane
LY 1*2 Number of lines in whole plane.
WIN 1*2(4) Xmin,Ymin,Xmax,Ymax defining desired subreotangle in

the plane. A subimage may NOT be speoifled for 'WRIT'.
BFSZ 1*2 Size of total available buffer in bytes, should be even

Speoial oase: BUFSZ-32767 is treated as though
BUFSZ-32768 to allow double buffering of 16Kbyte reoords.

BYTPIX 1*2 Number of bytes per pixel in stored map
BLKOF 1*2(2) Pseudo 1*4 block number, 1 relative, of first map

pixel in the desired plane. Use COMOF3 + ZMATH4 to set.
Outputs:

DEVICES
ROUTINES Page 9-11

10 Hay 85

IERR 1*2 Error return: 0
1
2
7
3
4
5
6

Ok
file not open
input error
Buffer too small
I/O error on initialize
end of file
beginning of medium
end of medium

MINI3 sets up speolal seotion of FTAB for quiok return, double
buffered I/O. N.B. Tills routine is designed to read/write images
one plane at a time. One oan run the planes together iff the rows
are not blooked: i.e. iff NBPS / (LX * BYTPIX) < 2.
Usage notes: For map I/O the first 16 words in eaoh FTAB entry
oontain a user table to handle double buffer I/O, the rest
oontain system-dependent I/O tables. A "major line" is 1 row or
1 seotor if more than 1 line fits in a seotor. FTAB user table
entries, with offsets from the FIND pointer are:

FTAB + 0
1
2
3
4
5
6
78
9

10
11
12
13
14
15

LUN using this entry
No. of major lines transfered per I/O op
No. of major times a buffer has been aoessed
No. of major lines remaining on disk
Output index for first pixel in window
No. pixels to inorement for next major line
Whioh buffer to use for I/O; -1 -> single buffer
Blook offset in file for next operation (lsb 1*4)
msb of pseudo 1*4 blook offset
Blook inorement in file for eaoh operation
No. of bytes transferred
I/O op oode l-> read, 2 -> write.
BYTPIX
rows / maj or line (>- 1)
times this major line has been aooessed
pixels to inorement for next row (- LX)

9.5.5 TEKFLS - writes the output buffer TKBUFF to the TEKTRONIX 4012.
TEKFLS (FIND,IERR)

Inputs:
FIND 1*2 FTAB position assigned to TEK 4012.

Outputs:
IERR 1*2 error flag. 0-ok, .GT. 1-write error from ZFIO

DEVICES
ROUTINES Page 9-12

10 Hay 85

9.5.6 TEKVEC - puts oontrol oharaoters, and X and Y coordinates
into the TEKTRONIX output buffer.

TEKVEC (XX, YY, IN, FIND, IERR)
Inputs:
XX 1*2 X coordinate value.
YY 1*2 Y coordinate value.
IN 1*2 oontrol value:

1 - Soale XX and YY and preoede ooordinates
by 'write dark veotor' oontrol oharaoter

2 - Soale XX and YY, put in buffer; will write
bright veotor.

3 - XX and YY are not soaled, 'write dark
veotor' oontrol oharaoter is put into
the buffer.

4 - no soale, write bright veotor.
FIND 1*2 FTAB position of TEKTRONIX devioe.Output:
IERR 1*2 error oode, 0-ok, 1-write error.

Common variables modified:
TKBUFF
TKPOS
RXL, RYL

9.5.7 TKCHAR - writes oharaoters to a TEKTRONIX 4012.
TKCHAR (INCHAR, IANGL, DCX, DCY, TEXT, ITFIND, IERR)

Inputs:
INCHAR 1*2 number of oharaoters.
IANGL 1*2 O-horizontal, other - vertioal.
DCX R*4 X distanoe in oharaoters from ourrent position.
DCY R*4 Y distanoe in oharaoters from ourrent position.
TEXT R*4(??) paoked oharaoters.
ITFIND R*4 FTAB index of open TEK.

Outputs:
IERR 1*2 error indioator. 0 - o k .

9.5.8 TKCLR - will olear the soreen for a Tektronix 401n.
TKCLR (DEVFND, IERR)

Inputs:
DEVFND 1*2 FTAB index of an open devioe.Output:
IERR 1*2 Error oode from the last I/O routine. 0-ok.

DEVICES
ROUTINES Page 9-13

10 May 85

9.5.9 TKCURS - aotivates the oursor on the TEKTRONIX 4012 and waits
for a response from the 4012 keyboard. After the response the
oursor will disappear and TEKCUR will return the ooordinate
positions. The TEKTRONIX must have opened (by ZOPEN) before this
routine is oalled.

TKCURS (IFIND, I05LK, IX, IY, IERR)
Inputs:

IFIND 1*2 index into FTAB for open TEKTRONIX devioe.IOBLK 1*2(256) I/O blook for TEKTRONIX devioe.
Outputs:

IX 1*2 x oursor position.
IY 1*2 y oursor position.
IERR 1*2 0-ok, 1-TEK write error. 2-TEK read error.
WARNING: This routine assumes a normal interfaoe to a TEK 401n.

Thus it may not work on all CPUs.

9.5.10 TKDVEC - oonverts TEK4012 veotors to aotual oommands to
TK buffer. Positions are assumed to be in bounds. the

TKDVEC (IN, X, Y, FIND, IERR)
Inputs:

1 -> dark veotor, 2
X ooordinate value.
Y ooordinate value.
FTAB position of TEKTRONIX devioe.

IN 1*2
X 1*2
Y 1*2
FIND 1*2

Outputs:
IERR 1*2

bright veotor

error oode, 0-ok, 1-write error.
Common variables modified:
TKBUFF
TKPOS

9.5.11 UVDISK - reads and writes reoords of arbitrary length,
especially uv visibility data. Operation is faster if blooks of
data are integral numbers of disk blooks. There are three
operations whioh oan be invoked: READ, WRITE and FLUSH (OPoodes READ, WRIT and FLSH).

READ reads the next sequential blook of data as speoified to
UVINIT and returns the number of visibilities in NIO and the pointer
in BUFFER to the first word of this data.

WRIT arranges data in a buffer until it is full. Then as many
full blooks as possible are written to the disk with the remainder
left for the next disk write. For tape I/O data is always written
with the blook size speoified to UVINIT; one I/O operation per oall.
For disk writes, left-over data is transferred to the beginning of

DEVICES
ROUTINES Page 9-14

10 Hay 85

buffer 1 if that is the next buffer to be filled. Value of NIO in
the oall is the number of vis. reo. to be added to the buffer and
may be fewer than the number speoified to UVINIT. On return NIO is
the maximum number whioh may be sent next time. On return BIND is
the pointer in BUFFER to begin filling new data.

FLSH writes integral numbers of blooks and moves any data left
over to the beginning of buffer half 1. One exoeption to this is
when NIO -> -NIO or 0, in whioh oase the entire remaining data in
the buffer is written. After the oall BIND is the pointer in BUFFER
for new data. The prinoipal differenoe between FLSH and WRIT is
that FLSH always foroes an I/O transfer. This may oause trouble if
a transfer of less than 1 blook is requested. A oall with a
nonpositive value of NIO should be the last oall and corresponds to a oall to MDIS3 with opoode 'FINI'.

NOTE: A oall to UVINIT is REQUIRED prior to oalling UVDISK.
UVDISK (OP,

Inputs:
OP
LUN
FIND
BUFFFERC)
NIO

R*4
1*2
1*2
1*21*2

Output:
NIO 1*2

BIND

IERR

1*2

1*2

LUN, FIND, BUFFER, NIO, BIND, IERR)
Opoode 'READ','WRIT',' FLSH' are legal
Logioal unit number
FTAB pointer returned by ZOPEN
Buffer for I/O
For writes, the number of visibilites added to the
buffer; not used for reads.
For reads, the number of visibilities ready in the buffer;
For writes, the maximum number whioh oan be added to
the buffer. If zero for read or write then the file
is oompletely read or written.
The pointer in the buffer to the first word of the
next reoord for reads, or the first word of the next
reoord to be oopied into the buffer for writes. Return error oode.
0
1
2
3
4
7

OK
file not open in FTAB
input error
I/O error
end of file
attempt to write more vis than speoified
to UVINIT or will fit in buffer.

9.5.12 UVINIT - sets up bookkeeping for the UV data I/O routine
UVDISK. I/O for these routines is double buffered (if possible)
quiok return I/O. UVDISK will run muoh more efficiently if on disk
LREC*NPIO*BP is an integral number of blooks. Otherwise partial
writes or oversize reads will have to be done. Minimum disk I/O is
one blook. The buffer size should inolude an extra NBPS bytes for
eaoh buffer for non tape read if NPIO reoords does not oorrespond to

DEVICES
ROUTINES

Page 9-15
10 Hay 85

an integral number of disk seotors (NBPS bytes).
required for eaoh buffer for write.

2*NBPS extra bytes

UVINIT (OP, LUN, FIND, NVIS, VISOFF, LREC, NPIO,
* BUFSZ, BUFFER, BO, BP, BIND, IERR)

Inputs:
OP
LUN
FIND
NVIS

VISOFF I
LREC I
NPIO I

* 4

*2
*2
*4

* 4

*2
*2

BUFSZ 1*2
BUFFER() I
BO I
BP I

Output:
NPIO 1*2

*2
*2

BIND I
IERR I

*2
*2

OP oode, 'READ' or 'WRIT' for desired operation.
Logioal unit number of file.
FTAB pointer for file returned by ZOPEN.
Total number of visibilities to read. NVIS+VISOFF
must be no greater than the total number in the
file.
Offset in vis. reo. of first vis. reo. from BO.
Number of values in a visibility reoord.
Number of visibilities per oall to UVDISK.
Determines blook size for tape I/O
Size in bytes of the buffer.
If 32767 given, 32768 is assumed.
Buffer
Blook offset to begin transfer from (1-relative)
Bytes per value in the vis. reoord.
For WRITE, the max. number of visibilities
whioh oan be aooepted.
Pointer in BUFFER for WRITE operations.
Return error oode:

0
1
2
3
4
7

OK

Note: VISOFF
UVINIT sets
FTAB(FIND+0)

1
2-3

4-5
6
7
8
9

10
11
12
13
14

15

file not open in FTAB
invalid input parameter.
I/O error
End of file,
buffer too small

and BO are additive,
and UVDISK uses values in the FTAB:
- LUN
- # Bytes per I/O
- # vis. reoords left to transfer. 1*4

For double buffer read, 1 more I/O will have
been done than indioated.

- Blook offset for next I/O. 1*4
- byte offset of next I/O
- bytes per value
- Current buffer ♦, -1 «> single buffering
- OPoode 1 - read, 2 - write.
- Values per visibility reoord.
- # vis. reoords per UVDISK oall
- max. # vis. per buffer.
- # vis. prooessed in this buffer.
- Buffer pointer for start of ourrent buffer.(values)
Used for WRIT only; inoludes any data oarried over
from the last write.

- Buffer pointer for oall (values)

DEVICES
ROUTINES

Page 9-16
10 May 85

9.5.13 VBOUT - VBOUT writes variable blooked reoords of 1*2 data to
tape. Maximum blook size on the tape is 4008 bytes. Tape must be
opened (non-map) before first oall. For overlaid programs COMMON
/VBCOM/ should be kept in a segment whioh is oore-resident from the
first oall to the last oall to VBOUT. A oall with N - 0 will oause
all data remaining in the buffer to be written. Charaoter data must
be in ASCII two oharaoters per integer as looal integers: ie oall
ZCLC8 followed by ZI16IL on suoh data before calling VBOUT.

VBOUT (N, IDATA, LUN, NUM, IERR)
Inputs:

N 1*2 Number of 1*2 words in array IDATA
If N - 0 the buffer is flushed.

IDATA 1*2 Array oontaining data to be written.
LUN 1*2 LUN of tape to be written on.
NUM 1*2 The reoord number to be written, must be 1 on

the first and only the first reoord in a file.
Output:

IERR 1*2 Return error oode 0 -> OK
1 -> LSERCH error (tape not open)
2 -> ZFIO error.

9.5.14 YTVCIN - initializes the oommon whioh desoribes the
oharaoteristios of the interaotive display devioes and the oommon
whioh has the ourrent status parameters of the TV.

9.5.15 ZOPEN - opens logioal files, performing full open on disk
files and sets up an FTAB entry for double buffering.

ZOPEN (LUN, IND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)
Inputs:

LUN
I VOL
PNAME
MAP
EXCL
WAIT

Output:
IND
IERR

0 - no error
1 - LUN already in use
2 - file not found
3 - volume not found

1*2 Logioal unit number.
1*2 Disk volume oontaining file, 1,2,3,...
R*4(6) 24-oharaoter physioal file name,left justified,

paoked, and padded with blanks.
L*2 is this a map file ?
L*2 desire exolusive use?
L*2 I will wait?
1*2 Index into FTAB for the file oontrol blook.
1*2 Error return oode:

DEVICES
ROUTINES Page 9-17

10 Hay 85

4 - ezol requested but not available5 - no room for lun
6 - other open errors

9.5.16 ZPHFIL - oonstruots a physical file name in PNAM from ITYPE,
IVOL, NSEQ, and IVER. New version designed either for publio data
files or user speoifio files. This routine oontains the logioal
assignment list for Graphios devioes. Numerioal values are enooded
as hezideoimal numbers.

EXAMPLE: If ITYPE-'MA', IV0L-8, NSEQ-801, IVER-153, NLUSER-768 then
PNAME-'DA08:MA832199;1' for publio data or
PNAME-'DA08:MA832199.300;1' for private data

ITYPE - 'MT' leads to speoial name for tapes
ITYPE - 'TK' leads to speoial name for TEK4012 plotter CRT
ITYPE - 'TV' leads to speoial name for TV devioe
ITYPE - 'ME' leads to speoial logioal for POPS memory files

ZPHFIL (ITYPE, IVOL, NSEQ, IVER, PNAM, IERR)
Inputs:

ITYPE 1*2 Two oharaoters denoting type of file. For example,
'MA' for map file.

IVOL 1*2 Number of the disk volume to be used.
NSEQ 1*2 User supplied sequenoe number. 000-999.
IVER 1*2 User suppplied version number. 00-255.Outputs:
PNAM R*4(6) >- 24-byte field to receive the physioal file name,

left justified (paoked) and padded with blanks.
IERR 1*2 Error return oode.

0 - good return. 1 - error.

5.17 ZTAPE - Performs standard tape manipulating funotions.
ZTAPE (OP, LUN, FIND, COUNT, IERR)

Inputs:
OP R*4 Operation to be performed. 4 oharaoters ASCII.

'ADVF' - advanoe file marks
'ADVR' - advanoe reoords
'BAKF' - baokspaoe file marks.
'BAKR' - baokspaoe reoords.

dismount tape. Works for VMS 3.0 & later
mount tape. Works for VMS 3.0 and later,
rewind the tape on unit LUN
write end of file on unit LUN: writes 4
EOFs, positions tape after first one

'DMNT'
'MONT'
'REWI'
'WEOF'

DEVICES
ROUTINES Page 9-18

10 May 85

LUN 1*2
FIND 1*2
COUNT 1*2

Outputs:
IERR 1*2

'MEOF' - write 4 EOF marks on tape, position tape
before the first one

logioal unit number
FTAB pointer. Drive number for MOUNT/DISMOUNT.
Number of reoords or file marks to skip. On MOUNT
this value is the density.
Error return: 0 -> ok

1 - File not open
2 - Input speoifioation error.
3 - 1 / 0 error.
4 - End Of File
5 * Beginning Of Medium
6 - End Of Medium

CHAPTER 10
USING THE TV DISPLAY

10.1 OVERVIEW
The most useful implementations of the AIPS system inolude one

or more oomputer peripheral devioes oapable of displaying images
with multiple levels of gray and/or oolor. We refer to suoh devioes
as TV displays sinoe most are implemented via large binary memories
and standard television monitors. The main program AIPS and some
tasks (e.g. BLANK) use the TV display as an interaotive input, as
well as display, devioe. Other tasks (e.g. UVMAP, MX, APCLN) use
the TV display simply to show the stages of the data prooessing.
All use of the TV is optional and the AIPS system will run without
suoh a devioe. The number of TV displays in the looal system is
parameterized (under oontrol of the stand alone program SETPAR) and
all programs are told whioh TV display (if any) is assigned to the ourrent user.

10.1.1 Why Use (or Not Use) The TV Display?
There are numerous reasons to use the TV display in writing

AIPS routines. Gray soale images provide a more realistio view of
image data allowing the eye to integrate over noisy regions and to
separate olosely spaoed features. Contour images require muoh more
elaborate software to generate and they make unreasonably definitive
assertions about the intensity levels. The TV may be used to
display intermediate results whioh are never stored on disk. And
the TV may be used to interaot with the user in a very wide variety
of ways. Current interaotive usages inolude modification of the
blaok and white transfer funotion, modification of pseudo ooloring,
seleotion of features of interest, seleotion of subimage oorners,
dynamio, multi-image displays, and oommunioation to the task of
simple information. The last is used primarily to tell iterative
tasks that they may stop at the ourrent iteration.

Despite these desirable features, an AIPS programmer should not
put the TV in a task unless it is truly useful. A TV option
requires some, potentially considerable extra ooding effort and,
during exeoution, some significant extra real and CPU time. Many TV
devioes also require a high rate of I/O in order to load an image

USING THE TV DISPLAY
OVERVIEW Page 10-2

10 May 85

and, especially, to interact with the user. If an algorithm is
based on the TV display, then it will not be available at those AIPS
sites whioh do not have one. Although TV displays oan funotion as
graphios devioes, many of them are very slow in that mode. Finally,
tasks whioh use the TV will interfere with the interaotive AIPS
user's other uses of the display by replaoing ourrent images in the
TV memory or modifying the zoom, soroll, transfer funotions, et al.

10.1.2 The AIPS Model Of A TV Display Devioe
As AIPS was being designed, it was realized that there was

already a wide variety of TV display devioes on the market and that
the market would not hold still. The NRAO initially purohased two
International Imaging Systems (IIS) Model 70/E displays. However,
that oompany ohanged rapidly to Model 70/F and now sells only a
Model 75. Our initial ohoioe undoubtedly oolors our image of what a
TV display devioe does and how it does it. Nonetheless, we have
attempted to design the oode to be very general and to aooount for
the range of options available on individual models of display and
for the range of different manufacturers.

We regard the TV display as being a oomputer peripheral devioe
whioh aooepts the basio I/O operations of open, olose, initialize,
read, and write. Speoial Z routines are provided in AIPS sinoe we
do not assume that these I/O operations are identioal, for all TVs
and host operating systems, to those for disks, tapes, or Fortran
devioes. We assume that the TV display may be subdivided logioally
into a variety of sub-units whioh oontrol the various funotions of
the display. Speoial libraries of subroutines, subdivided by model
of TV display, are provided for oommunioating to these sub-units.
These subroutines are oalled "Y routines" beoause all of them have
names beginning with the letter Y. The NRAO has, at this time,
developed the Y routines for IIS Models 70/E and 70/F. In addition,
we store, distribute, and attempt to maintain sets of Y routines
developed by other institutions for other models of displays. At
the moment, we have Y routines for DeAnza, developed by Walter Jaffe
at the STSoI, and for IIS Model 75, developed by IIS.

AIPS also uses, at both the Y and non-Y programming levels, a
TV devioe parameter oommon. This oommon is initialized by a Y
routine (YTVCIN) and is maintained via a disk file and a stand alone
program (SETTVP). The oommon oontains both fundamental parameters
(i.e. number of memories, display size, maximum Intensity, maximum
zoom, eto.) and parameters desoribing the ourrent state of the TV
(i.e. whioh planes are on, ourrent zoom and soroll, eto.).

In order to provide the full functionality of the basio AIPS
verbs and tasks, a TV display devioe needs to oontain the following
sub-units. Note, these subunits are logioal devioes. They may be
implemented as oontrol registers in the devioe or in numerous other
fashions. It is only neoessary that the Y routines impose on the
devioe a oontrol that foroes it to this general struoture.

USING THE TV DISPLAY
OVERVIEW Page 10-3

10 May 85

1. IMAGE MEMORIES: These are one or more memories n bits deep
whioh hold the gray-soale images to be displayed. All n bits
of the image oontribute to the display. The memory is assumed
to have a fixed number of pixels on eaoh axis and to be
addressable at the individual pixel level. The addresses are
assumed to be one-relative and to begin at the lower left of
the display. The number of bits, the dimensions of eaoh axis,
and the number of memories are parameters inside AIPS. It is
also assumed that eaoh memory may be turned on and off in eaoh
of the three oolors individually.

2. GRAPHICS MEMORIES: These are one or more memories eaoh 1 bit
deep used to display graphioal information suoh as axis labels
or line drawings on top of the gray-soale images. It is
assumed that the overlay planes have the same number of pixels
on eaoh axis as the image memories and that eaoh overlay plane
may be enabled or disabled individually. It is nioe to be able
to assign unique oolors to eaoh of the overlay planes. AIPS
will want to use four overlay planes, but all standard programs
will work more or less normally with only one. The number of
graphios memories is a parameter.

3. CURSOR AND BUTTONS: The oursor is some form of marker whioh
may be enabled or disabled and whioh is under the positional
oontrol of some meohanioal devioe (e.g. traokball, joy stiok,
thumb wheels). The position of the oursor on the TV soreen may
be read at any time it is enabled. The "buttons" are some
devioe to signal oonditions to the programs suoh as "this is
the desired position" or "time to quit". AIPS assumes that
there are four suoh buttons returning to the program a value
between 0 and 15. Simultaneity of more than one button is
never used, however.

4. LOOK UP TABLES: These are tables of numbers whioh oonvert the
stored n-bit image intensities to the desired display
intensities. AIPS assumes that there is one n-bit in, n-bit
out look up table ("LUT") for eaoh oolor of eaoh image memory.
AIPS also assumes that there is a seoond set of three look-up
tables, oalled the output funotion memory ("OFM"), whioh
oonverts the sums of all enabled memories to the final
displayed intensities. In praotise, AIPS uses the individual
ohannel LUTs for blaok and white enhanoement (most of the time)
and the OFM for pseudo-oolor enhanoement. There are
algorithms, suoh as TVHUEINT, whioh utilize the full oapability
of the two sets of look-up tables. Arrays Inside AIPS are
likely to be dimensioned for 8-bit image planes and a 10-bit
OFM. (These assumptions probably should be generalized in time.)

5. SCROLL: it is assumed that eaoh image memory may be displayed
on the TV soreen shifted along both axes by varying amounts.
AIPS assumes that eaoh memory may be sorolled independently and
that the graphios memories may be sorolled together independent
of the image memories. The minimum inorements of soroll along

USING THE TV DISPLAY
OVERVIEW

Page 10-4
10 Hay 85

eaoh axis are parameters. Note that AIPS does not make heavy
use of soroll exoept for the TVROAM display and, of oourse,
TVSCROLL.

6. SPLIT SCREEN: It Is assumed that the soreen may he divided
into quadrants and different image ohannels enabled in eaoh
quadrant. There is a oontrol parameter speoifying the degree
to whioh the looal TV display has this capability. AIPS
currently uses split soreen primarily in the TVROAM display,
but also uses it during image enhancement in the ohannel blink
routines.

7. ZOOM: AIPS assumes that the display of an image may be blown
up about any pixel by automatio pixel replication by integer
powers of two without affeot on the images stored in the image
memories. The highest power of two available is a parameter.
Zoom is important to the TVMOVIE algorithm and is used in many
of the image enhancement routines.

The most important TV operations of AIPS oould be implemented
on a TV devioe having one image memory, appropriate LUTs, and a
oursor with buttons. Additional image memories, graphios memories,
an OFM, soroll, split soreen, and zoom are needed primarily for less
important aspeots of the basio operations and for some interesting,
but esoterio operations.

There are several other sub-units in the IIS Model 70 whioh are
supported by the Y routines in that sub-library. They inolude an
input funotion memory (translates input to the TV from the host and
from the ALU), a histogram generator, a feedback arithmetic logio
unit, shift and min/max registers, and the like. Although there are
no standard routines in AIPS whioh use these units, there are two
new nonstandard tasks for histogram equilization whioh make some use
of them. The speoial Y routines used by these two tasks will be
desoribed below, but they should not (yet) be required for other
kinds of TV devioes - if they are even possible on them.

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING Page 10-5

10 May 85

10.2 FUNDAMENTALS OF THE CODING
10.2.1 The Parameter Commons And Their Maintenanoe

All application routines must open the TV devioe via a oall to
TVOPEN and dose it via a oall to TVCLOS. TVOPEN opens a disk file
oalled IDlOOOOn with exolusive use requested, where n is the number
of the assigned TV devioe. From the first reoord of this file, it
reads a 256-word reoord oontaining parameters whioh desoribe the
struoture and ourrent status of the assigned TV devioe. The
parameters are stored in a oommon oalled /TVCHAR/ whioh is obtained
by inoluding DTVC.INC and CTVC.INC. TVCLOS puts baok to the disk
the time variable portions of this oommon and then oloses the file.
In this way, several users>/programs may share the TV in sequenoe and
all will know the ourrent status information. The disk file may be
initialized and the individual parameters set by using the stand
alone program SETTVP. The parameters are important to the oorreot
functioning of the looal TV devioe and must be set and maintained oarefully.

The fixed portion of /TVCHAR/, namely that portion not
by TVCLOS, inoludes the parameters: written

NGRAY
NGRAPH
NIMAGE

MAXXTV(2)
MAXINT
SCXINC
SCYINC
MXZOOM
NTVHDR
CSIZTV(2)
GRPHIC
ALLONE
MAXXTK(2)
CSIZTKC2)
TYPSPL
TVALUS
TVXMOD
TVYMOD
TVDUMS(7)

The number of n-bit image memories.
The number of 1-bit graphios overlay memories.
The number of images whioh may be stored
simultaneously in a gray-soale image plane (affeots
the image oatalogue mostly).
The number of pixels in the X and Y direotions.
The highest gray-soale intensity - 2 ** n - 1.
The minimum increment in soroll in the X direotion.
The minimum inorement in soroll in the Y direotion.
The highest power of two for zooming.
The number of integer words in the TV I/O header
(probably no longer used).
The size of oharaoters in pixels in the X, Y
direotions.
The bit pattern representing the set of graphios
overlay memories (normally -32768).
The bit pattern representing all bits on (-1).
The number of pixels in the X, Y direotions on the
TEK graphios devioe.
The size of oharaoters on the TEK graphios devioe in
pixels in the X, Y direotions.
Type of split soreen: 0 none, 1 vertioal division
only, 2 horizontal division only, 3 either, 4 both.
Number of TV arithmetio logio units.
Mode for loading TV in X direotion: 0 none, 1 ok in
AIPS order (to right), 2 ok in reverse direotion.
Mode for loading TV in Y direotion: 0 none, 1 ok in
AIPS order (to top), 2 ok in reverse direotion.Spare room

The time variable portion of the /TVCHAR/ oommon is:
TVZ00M(3) Current zoom: power of two, X, Y zoom oenter

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING

Page 10-6
10 May 85

TVSCRXC16)
TVSCRYQ6)
TVLIMGC4)

TVSPLT(2)
TVSPLM
TVSPLC
TYPMOV(16)

YBUFFC168)

Current X soroll for 15 image planes and graphios.
Current Y soroll for 15 image planes and graphios.
Bit pattern for whioh images are on by quadrant:
quadrants are numbered CCW from top right and the
lsb is for gray plane one and NGRAY+NGRAPH bits are
used.
Current split soreen position in X, Y.
10 * (number planes in X) + (number planes in Y) in
Roam mode.
Roam mode: digits imply whioh ohannels in whioh
order.
Movie loop oode: 2 * (magnifioation power of two) +
8 * (number frames remaining). Add 1 if this is the
first plane of the movie.
Maohine dependent parameters.

There is a seoond TV inolude whioh oontrols I/O, but is little
used elsewhere.
and oontains:

TVLUN
TVIND
TVLUN2
TVIND2
TVBFNO
TVMAP

It is obtained by inoluding DTVD.INC and CTVD.INC
LUN of open TV devioe.
Position of TV devioe in FTAB for I/O.
LUN of open TV parameter disk.
Position of parameter disk in FTAB.
Not used (map style I/O no longer supported).
Not used.

10.2.2 The I/O Routines
Four basio I/O operations for TV devioes are supported: open,

olose, I/O reset ("master olear"), and data transfer (read/write).
The aotual Z subroutines whioh perform these operations are both TV
devioe and host operating system speoifio. The subroutines are
stored in the subdirectory appropriate for the host operating system
with names refleoting the TV devioe type. To insure that the
oorreot Z routines are link edited, a layer of Y routines is
interposed between these Z routines and all other non-Y AIPS
routines. No non-Y subroutine or program should oall these Z
routines. These Z subroutines have names of the form ZMMMOO, where
MMM is the TV model (i.e. M70 for IIS Models 70 and 75, DEA for
DeAnza) and 00 is the type of operation (OP for open, CL for olose,
MC for I/O reset, and XF for data transfer).

Note that the four Z routines may have TV devioe speoifio oall
sequenoes. The ourrent implementations are

Z . OP :
ZM700P (LUN, IND, IERR)
ZDEAOP (LUN, IND, IERR)

Performs the needed ohannel assignment and opens a
non-map entry in the FTAB. The DeAnza version also
oalls ZDEAXF ('DAT ',...) to initialize the I/O.

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING

Page 10-7
10 May 85

Z CL ;
ZM70CL (LUN, IND, IERR),
ZDEACL (LUN, IND, IERR),

Performs a simple olose (deassign) via a oall to
ZCLOSE and olears the FTAB entry. The DeAnza version
oalls ZDEAXF ('DET ',...) to perform a deallocation
before oalling ZCLOSE.

Z...MC :
ZM70MC (FTAB(ohannel)) - Vax version

Performs a "rewind" QIO operation oausing the IIS to
reset its I/O status.

ZM70MC - Modoomp version
Performs a "home" I/O operation oausing the IIS to
reset its I/O status.

ZDEAMC
Null subroutine.

Z...XF :
ZM70XF (OPER, NBYTES, HEADER, BUFFER, IERR)

Writes an eight-word oommand HEADER to the IIS after
preparing the oheoksum word of the header. Then
reads from or writes to the IIS NBYTES of BUFFER.
Issues a master olear on error.

ZDEAXF (OPER, BUFFER, NBYTES, EP1, EP2, WAIT, IERR)
"Calls to ZDEAXF map one to one to oalls to IP8 routines
in the DeAnza IP8500 level 0 software paokage." Does
requested I/O operation using opoode definitions
oontained in IP8I0F.MAR (supplied by DeAnza, not NRAO).

10.2.3 The Y Routines
The Y routines may be divided into three groups whioh we oall

levels 0 through 2. Level 0 routines do not perform I/O to the TV
devioe. Instead, they prepare data to be fed to lower level Y
routines and/or handle oommon parameters and various oonversions.
It has been found that this level of Y routine often needs little
alteration from one model of TV to the next. Level 1 routines do
oall Z...XF to perform I/O to the TV devioe. They may be oalled by
both Y and non-Y routines and henoe must be implemented for all TV
devioes. Level 2 routines also perform I/O in general, but are only
oalled by Y routines. Henoe, these do not have to be implemented
for all TV devioes. The reader should note that the division of Y
routines into these three levels is not quite so olear as the above
desoription would indioate. For one, some level 2 routines may have
to graduate to level 1 as new applioation oode is developed. For
another, some of the level 0 routines are aotually TV independent as
ooded for the IIS Models 70 and 75. They are oalled Y routines
simply to allow more effioient, level 0 or 1 implementations for
other TV devioes.

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING

Page 10-8
10 May 85

On normal AIPS systems, the Y subroutines are stored In
subdirectories separated by type of TV devioe. On our Vax, the
subdirectories are [AIPS.reldate.APL.YSUB.xxx] with logioal names
APLxxx: where xxx is IIS for IIS Model 70, M75 for IIS Model 75,
and DEA for DeAnza and where reldate is the date of the ourrent AIPS
release. The oompile prooedures seleot the value of xxx appropriate
to the looal TV devioe and write the objeot oode into the link
editor library in the [AIPS.reldate.APL] area. This library is then
used for link editing all programs and tasks. The oareful reader
will note that this method does not allow for more than one kind of
TV devioe on a given host oomputer. To date, we have been able to
get away with this defioienoy. In the future, we may have to
improve the AIPS start-up procedure and the task aotivation
subroutine (ZACTV8) so that the number of the assigned TV devioe is
used to determine from whioh library the executable modules are
taken.

The following seotions provide a brief overview of the ourrent
Y routines. The preoursor oomments of most of the Y routines are
reproduoed near the end of this ohapter.

10.2.3.1 Level 0

- YCHRW writes oharaoters into an image or graphios plane.
The M70 version is TV independent and uses a 7 x 9 pixel
area per oharaoter. The baokround intensity is set to 1
for multi-bit ohannels and 0 for graphios.

- YCNECT writes a line segment in an image or graphios plane
at a speoified intensity. The M70 version is TV
independent.

- YCUCOR oonverts oursor positions and obtains the
corresponding image header. It is a speoialized version of
YCURSE to avoid any TV I/O and to do the image oatalog
work. M70 and DeAnza versions are identioal.

- YCURSE enables/disables oursor and oursor blink and reads
oursor position and buttons value. The main oomplioations
oome from oorreotions for zoom and soroll. The IIS Model
70/E is trioky, the Model 70/F and DeAnza are easier.

- YGRAPH enables/disables graphios overlay planes by altering
the graphios oolor look up tables. A non-essential nioety
is the use of oomplimentary oolors when two or more
graphios planes are enabled at the same pixel.

- YLNCLR oomputes a pieoewise linear OFM with gamma
oorreotion. Called a Y routine solely beoause of the use
of a 10-bit OFM.

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING Page 10-9

10 May 85

- YSLECT enables/disables gray and graphios ohannels setting
the proper values into TVLIMG.

- YTVCIN provides initial values for the TV oharaoteristios
oomxnons.

- YZERO olears a gray or graphios memory by the fastest
possible method.

- YTVCLS olose the TV devioe. Aotually is just an interface
to the appropriate Z...CL subroutine.

- YTVMC reset the TV I/O status. Aotually is just an
interfaoe to the appropriate Z...MC subroutine.

- YTVOPN Open the TV devioe. Aotually is just an interfaoe
to the appropriate Z...OP subroutine.

10.2.3.2 Level 1

- YCRCTL reads/writes the oursor/traokball oontrol register
inoluding position, enable/disable on eaoh axis, blink
oontrol.

- YIMGIO reads/writes a line of image data from/to a
gary-soale or graphios plane. It will perform buffer swaps
if needed to get the desired angle and bit-level
oorreotions when graphios planes are read. This is the
most heavily used Y routine.

- YINIT initializes all subunits of the TV, olears the TV
memories, resets the image oatalog, and resets status
parameters in oommon.

- YLUT reads/writes the full channel-level lookup table for
one or more image ohannels and oolors.

- YOFM reads/writes the full OFM lookup table for one or more
oolors.

- YSCROL writes the soroll oontrol registers for one or more
ohannels.

- YSPLIT reads/writes the split soreen oontrol registers.
This is the aotual oontrol of the split soreen oenter and
of whioh ohannel(s) are enabled/disabled in eaoh quadrant.

- YZOOMC writes the zoom oontrol registers giving
magnifioation and zoom oenter.

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING Page 10-10

10 May 85

10.2.3.3 Level 2
10.2.3.3.1 IIS Models 70 And 75

- YALUCT reads/writes the IIS arithmetio logio unit oontrol
registers. No aotual funotion is performed until a
feedbaok operation is done via YFDBCK. This routine is
very IIS speoifio and we doubt that its funotions oan be
implemented on other TVs.

- YCONST reads/writes the oonstant "biases" whioh are added
to the sums of the individual enabled ohannels before the
signals are sent to the OFM.

- YFDBCK oauses a feedbaok operation to ooour. The ALU does
its thing with one or more ohannels and returns an 8 or 16
bit result to one or two ohannels. A magio bit oauses the
funotion to be a simple zeroing of a ohannel.

- YGGRAM reads/writes the lookup table used for graphios
planes.

- YGRAFE reads/writes the graphios oontrol register whioh
assigns a graphios plane as the "blotoh" plane and another
as the "status" plane. No use is made of this.

- YGYHDR prepares a basio I/O oontrol header for
writing/reading image data to/from the IIS.
YIFM reads/writes a portion of the input funotion memory.
This lookup table oan be used in writing data to the TV
memory and in the feedbaok operation. AIPS does not do the
former and only one non-standard task does the latter.

- YMAGIC (Model 75 only) initializes graphios, zoom, and
soroll subunits (oalled by YINIT only).

- YMKHDR prepares a basio I/O oontrol header for the IIS.
- YMNMAX reads the min and max output from the sum of all

enabled gray-soale planes for eaoh oolor.
- YRHIST reads a portion of the histogram of the output of

the OFM for a seleoted oolor. The IIS oan do this on the fly if properly equipped.
- YSHIFT reads/writes the shift registers whioh shift the

13-bit output of the sum of all enabled ohannels before the data get to the OFM.
- YSTCUR reads/writes the IIS oursor array. This 64 x 64 bit

array provides a wide ohoioe of patterns for the display
"oursor". AIPS uses only a simple plus sign with a blank

USING THE TV DISPLAY
FUNDAMENTALS OF THE CODING

Page 10-11
10 May 85

pixel at the oenter.

10.2.3.3.2 DeAnza

- YGGRAM reads/writes the lookup table used for the graphios
planes.

- YLOWON finds lowest ohannel number in a ohannel mask.
- YMKCUR oreates and loads the oursor pattern memory with a

specified shape. Only the AIPS plus sign is implemented.
YTCOMP performs logioal tests on parameter values. It is
used to minimize I/O to the DeAnza oontrol registers.

- YDEA.INC Inolude file giving parameter definitions to
speoify positions in YBUFF whioh correspond to the various
registers in a DeAnza TV devioe.

10.3 CURRENT APPLICATIONS
This seotion is devoted to a generally brief overview of the

ourrent application oode. Primarily it will be used simply to point
out whioh routines do what, with some oomment on the methods. This
should suffioe as an introductory guide to the oode for applications
programmers wishing to inolude the TV display in their programs. In
a oouple of oases, some of the aotual oode will be reproduoed in
order to olarify the use of the various servioe routines. The
preoursor remarks for some of the most oommonly used, non-Y servioe
routines are reproduoed at the end of this ohapter.

10.3.1 Status Setting
By "status setting", we mean initializing the TV devioe,

olearing memory ohannels, enabling and disabling portions of the
display, and the like. Many of the applications whioh involve
loading images to the TV display will zero the relevant memories
(via YZERO) and olear the corresponding portions of the image
oatalog (via ICINIT) before oarrying out their primary funotions.
However, the simplest examples of status setting are those performed
by various AIPS verbs. The subroutine AU5 performs the verbs TVINIT
(via YINIT), TVCLEAR (as follows), GRCLEAR (like TVCLEAR without the
MOVIST oall), TVON, TVOFF, GRON, GROFF (via oalls to YSLECT),
TV3C0L0R (use YSLECT to turn off all ohannels, then YSLECT to turn
on ohannels 1 through 3 in red, green, blue, resp.), and CURBLINK

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-12

10 Hay 85

(via YCURSE).
The verb TVCLEAR is ooded as follows. The ohannel number is

pioked up as an integer, the deoimal oode is oonverted to a bit
pattern (via DECBIT), the movie status parameters are reset (via
HOVIST), and then a loop over all seleoted gray planes is done to
zero the memory (via YZERO) and olear the image oatalogue (via
ICINIT).
C Open TV devioe

CALL TVOPEN (CATBLK, JERR)
IP (JERR.EQ.O) GO TO 50

POTERR - 101
GO TO 980

200 ICHAN - ABS(TVCHAN) + EPS
C oonvert to ohannel bit mask

CALL DECBIT (NGRAY, ICHAN, ICHAN, ITEHP)
C olear movie parameters

CALL HOVIST (0NC0DE(2), ICHAN, NO, NO, NO, IERR)
DO 210 IP - 1,NGRAY

C is plane requested
IF (IAND(ICHAN,N2**(IP-1)).EQ.O) GO TO 210

C olear image oatalogue
CALL ICINIT (IP, INBUF)

C olear TV memory
CALL YZERO (IP, JERR)
IF (JERR.NE.0) GO TO 975

210 CONTINUE
GO TO 900

C normal TV olose900 CALL TVCLOS (CATBLK, JERR)
GO TO 999

10.3.2 Load Images, Label
Images are loaded to the TV by a wide variety of tasks (e.g.

APCLN, TVPL, BLANK) and by several verbs (TVLOD, TVROAM, TVMOVIE).
TVLOD will be illustrated in this subseotion and the others
mentioned in later subseotions.

The full oode from subroutine AU5A for TVLOD, exoept the
declarations, formats, error branohes, and the like, is reproduced
below. It begins by opening the TV oontrol file and devioe (via
TVOPEN). It moves the user adverbs to looal variables to avoid
ohanging their (global) values and opens the map file (via MAPOPN).
It oonverts the user's PIXRANGE adverb using standard defaults (via
RNGSET) and fills in some of the image oatalogue parameters in the
header. It sets the window parameters (via TVWIND), seleots a
single gray soale memory plane (via DECBIT), and dears the movie

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-13

10 Hay 85

parameters (via MOVIST). Finally, it finishes up the image
oatalogue parameters, puts the header in the image oatalogue, and
reads, soales, and loads the image to the TV memory (all via
TVLOAD). Afterwards, it oloses the map file (via MAPCLS) and the TV devioe and disk file (via TVCLOS).

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

INTEGER*2 NO, N1, N6, N7, N12, N6176, MA
INCLUDE 'INCS:DHDR.INC'
INCLUDE 'INCS:CHDR.INC'
DATA MA /'MA'/, NO, N1, N6, N7,
CALL TVOPEN (INBUF, IERR)
IF (IERR.NE.0) GO TO 980
IF (BRANCH.GT.2) GO TO 20

N12, N6176
open TV /0,1,6,7,12,6176/

Map open junk: TVLOD, TVROAM
adverbs -> looal variables
Adverbs used:
TVCHAN
INNAM
INCLS
INSEQ
INDSK
USERID
TVBLCO
TVTRCO
TVXINC
TVYINX
PXRANG
TVCORN

ICHAN - IROUND(TVCHAN)
IVOL - INDSK + EPS
USID - ABS(USERID) + EPS
SEQNO - INSEQ + EPS
IF (USID.EQ.0) USID - NLUSER
IF (USID.EQ.MAGIC) USID - 0
CALL CHCOPY (N12, Nl, INNAM, N1
CALL CHCOPY (N6, Nl, INCLS, Nl,
CALL RCOPY (N7, TVBLCO, LBLC) CALL RCOPY (N7,
INC(l) - TVXINC
INC(2) - TVYINC
IMA - MA

tv ohannel
File name
File olass
File sequenoe number Disk number
User ID number
TV bottom left oorner
TV top right oorner
TV x pixel inorement
TV y pixel inorement
Range of pixel values
BLC on TV soreen for
image

SNAME)
SCLAS)

TVTRCO, LTRC)
+ EPS
+ EPS

open map file
CALL MAPOPN (READ, IVOL, SNAME, SCLAS, SEQNO, IMA, USID,

DLUN, DIND, CNO, CATBLK, INBUF, IERR)POTERR - 33
IF (IERR.GT.l) GO TO 975

CATBLK, CT4, CT8 equivalenoed
Image oat: fill in some
set image soaling too CALL RNGSET (PXRANG, CT4(K4DMX), CT4(K4DMN), CT8(K8BSC), CT8(K8BZE), CT4(I4RAN))

USING THE TV DISPLAY Page 10-14
CURRENT APPLICATIONS 10 May 85

CATBLK(I2VOL) - IVOL
CATBLK(I2CN0) - CNO
CALL CHCOPY (N2, Nl, FUNTYP, Nl, CATBLK(I2TRA))
ITVC(l) - TVCORN(1) + EPS
ITVC(2) - TVCORN(2) + EPS
POTERR - 49

TVLOD
load one Image plane
set windowsTYPE - -1

CALL TVWIND (TYPE, INC, LBLC, LTRC, ICHAN, ITVC, IWIN, IERR)
IF (IERR.NE.O) GO TO 970

oonvert ohannel number
CALL DECBIT (NGRAY, ICHAN, ICHAN, I)
ICHAN - I
CALL DECBIT (NGRAY, ICHAN, ICHAN, I)

olear movie parameters CALL HOVIST (OFF, ICHAN, NO, NO, NO, IERR)
do the TV load, img oatlg CALL TVLOAD (DLUN, DIND, I, INC, ITVC, IWIN, N6176, IERR)

IF (IERR.EQ.O) POTERR - 0
GO TO 970

Close down ops
CALL MAPCLS (READ, IVOL, CNO, DLUN, DIND, CATBLK, F, INBUF,* IERR)

C
975 CALL TVCLOS (INBUF, IERR)

The verbs TVWEDGE, IMWEDGE, and IMERASE load step wedge or pure
zero images to the TV. They ooour in subroutine AU5C. This routine
oalls TVFIND and possibly TVWHER to determine whioh image is
desired. It then oomputes a buffer of appropriate values oalling
ISCALE (as TVLOAD does). AU5C then does a lot to set an appropriate
image oatalogue header and writes that to the oatalogue via ICWRIT.
Finally it loads the TV rows via oalls to YIMGIO.

The image labeling verbs TVLABEL and TVWLABEL are implemented
from subroutine AU5B. This routine oalls TVFIND to determine whioh
image is to be labeled and IAXIS1 to do the labeling. Subroutines
IAXIS1 and ITICS are very similar to the standard axis labeling
routines used to make plot files and to write direotly to the TEK
graphios devioe. Charaoters are written to a graphios memory with a
blaok baokground by oalls to IMANOT and lines are written to the
graphios memory by oalls to IMVECT. (See the preoursor oomments of
these routines at the end of this ohapter.)

C
C
C

100

110

c
c

970

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-15

10 May 85

10.3.3 UVMAP
UVMAP uses the TV display for a fairly simple purpose -- to

show the pattern of sampled uv oells (after oonvolution of the data
to the grid). In prinoiple, the algorithm is simple: assooiate uv
oells with TV pixels and display 0 on the TV when the uv oell is
unsampled (0.00) and display MAXINT on the TV when the oell is
sampled (not 0.0). Unfortunately, the uv grid may be larger than
the TV display and the disk file oontains the grid in transposed,
quadrant-swapped order. The first problem is solved by deoimation
(examine only every n'th oell in X and m'th oell in Y. The quadrant
swapping is solved by addressing the TV beginning in the middle and
by starting in the middle of the buffer whioh is written to the TV.
The transposition is solved by writing the rows of the file as
oolumns on the TV. The subroutine in UVMAP whioh does this (UVDISP)
uses the image writing mode parameters (TVYMOD and TVXMOD) to handle
this oorreotly when possible and to leave the display in transposed
order when not (i.e. TVYMOD - 0).

10.3.4 APCLN, VM, MX, Et All­
iterative map analysis programs oan make good use of the TV

display. The user may, for example, request that the CLEAN task
(APCLN) display the residual map after eaoh major oyole. APCLN does
this, then turns on the oursor and waits up to 15 seoonds for the
user to push Button D to signify that suffioient iterations have
been performed. Several tasks (ourrently MX, VM, APGS, REGLR) use
oode similar to that in APCLN for loading the image to the TV and
requesting the user input. Given below is the TV subroutine from
APCLN. Note that it uses the array prooessor to soale the data for
YIMGIO. This is reasonable, but only for tasks whioh are already
using the array prooessor for more important computations. The
oosts of opening and olosing the AP devioe and performing the I/O to
it make any improvement in computational speed marginal for
computations suoh as these. Note also the soaling parameters used
here. The lowest displayed intensity gets TV value 1.01 and the
highest gets MAXINT+0.99 (after the 0.5 for rounding is added and
before the integers are trunoated by routine VFIX). This soaling is
assumed (primarily by CURVALUE) for all linear transfer funotions.
TV value zero is reserved for "blanked" (indefinite) pixels and
should always be given zero intensity on the display (by the LUTs and OFMs).

C-
C
C
C
C
C
C
C-

SUBROUTINE DISPTV (TVPASS)
DISPTV displays the ourrent residual map on the TV, showing inner
portion only if that's all that will fit.
Inputs: TVPASS 1*2 oode: 0 -> olear soreen, else don't

0,1 -> don't question the user about
quitting

Output: TVPASS 1*2 oode: 32700 -> user wants to quit oleaning

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-16

10 May 85

INTEGER*2 TVPASS, JROW(l), WIN(4), MY, FIND, BIND, IERR,
* ICH, CATBLKC256), S2H(256), IQ, IB, IBLANK, I
INTEGER*4 MX, ZERO, ONE, TWO, THREE, FOUR
INTEGER*2 IWIN(4), IY, MAXO, MINO
INTEGER*2 NO, Nl, N2, N3, N4, N5, N6, N256
REALM XN(4), XBUFF(l), REED, S4H(128), TD, RP0S(2), ON, OFF
REAL*4 WRIT, XFLUX, PREFIX(2), TVLMAX, TVLMIN, ARG,* AMIN1, AMAX1
LOGICAL*2 MAP, EXCL, WAIT, LERR, F
REAL*8 S8HC64)
INCLUDE 'INCS:DCLN.INC'
INCLUDE 'INCS:DFIL.INC'
INCLUDE 'INCS:DTVC.INC'
INCLUDE 'INCS:DMSG.INC'
INCLUDE 'INCS:DHDR.INC'
INCLUDE 'INCS:DTVD.INC'
INCLUDE 'INCS:CMSG.INC'
INCLUDE 'INCS:CCLN.INC'
INCLUDE 'INCS:CFIL.INC'
INCLUDE 'INCS:CTVC.INC'
INCLUDE 'INCS:CHDR.INC'
INCLUDE 'INCS:CTVD.INC'
COMMON /MAPHDR/ CATBLK
EQUIVALENCE (JROW(l), BUFF2(1)), (BUFFl(l), XBUFF(l))
EQUIVALENCE (S2H, S4H, S8H, BUFFI(513))
DATA MAP, EXCL, WAIT / .TRUE., 2*.TRUE./
DATA WRIT, REED, ON, OFF /'WRIT','READ','ONNN',* 'OFFF'/
DATA NO, Nl, N2, N3, N4, N5, N6, N256 /O,1,2,3,4,5,6,256/DATA F , IBLANK /.FALSE., ' '/
DATA ZERO, ONE, TWO, THREE, FOUR /O, 1, 2, 3, 4/
ICH - 1
CALL TVOPEN (BUFFI, IERR)
IF (IERR.EQ.O) GO TO 10

ENCODE (80,1000.MSGTXT) IERR
CALL MSGWRT (N6)
GO TO 999

10 IF (TVPASS.NE.O) GO TO 20
CALL YZERO (ICH, IERR)
IF (IERR.EQ.O) GO TO 15

ENCODE (80,1010,MSGTXT) IERR
CALL MSGWRT (N6)
GO TO 998

15 CALL ICINIT (ICH, XBUFF)
20 IF (TVFMAX.GT.TVFMIN) GO TO 25

TVFMAX - TVREMX
TVFMIN - TVREMN

25 IF (TVREMX.GT.TVFMAX) TVFMAX - TVREMX
IF (TVREMN.LT.TVFMIN) TVFMIN - TVREMN
TVLMAX - TVFMAX - TVFMIN
IF (0.1*TVLMAX.LE.TVREMX-TVREMN) GO TO 30 ARG - 0.1 * TVFMIN

TVFMIN - AMIN1 (ARG, TVREMN)

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-17

10 May 85

ARG - TVFMIN + 0.1 * TVLMAX
TVFMAX - AMAX1 (ARG, TVREMX)
TVLMAX - TVFMAX - TVFMIN

30 XN(1) - TVFMIN
XN(2) - TVFMAX
XN(3) - (MAXINT - 0.02) / TVLMAX
XN(4) - 0.51 - TVFMIN * XN(3)
CALL QPUT (XN, ZERO, FOUR, TWO)

C Write scaling faotorXFLUX - TVLMAX
CALL METSCA (XFLUX, PREFIX, LERR)
TVLMIN - TVFMIN * XFLUX / TVLMAX
TVLMAX - TVFMAX * XFLUX / TVLMAX
ENCODE (80,1080,MSGTXT) TVLMIN, TVLMAX, PREFIX
CALL MSGWRT (Nl)
WIN(l) - (WINM(3,1) + WINM(l.l)) / 2 - MAXXTV(l) / 2 + 1
WIN(1) - MAXO (Nl, WIN(l))
WIN(S) - (WINM(4,1) + WINM(S.l)) / 2 - MAXXTV(2) / 2 + 1
WIN(2) - MAXO (Nl, WIN(2))
WIN(3) - (WINM(3,1) + WINM(1,1)) / 2 + MAXXTV(l) / 2
WIN(3) - MINO (NX, WIN(3))
WIN(4) - (WINM(3,1) + WINM(1,1)) / 2 + MAXXTV(2) / 2
WIN(4) - MINO (NY, WIN(4))
DO 70 I - 1,2

IWIN(I) - (MAXXTV(I) - WIN(I+2) + WIN(I) + l)/2
IF (IWIN(I).GE.1) GO TO 50

IWIN(I) - 1
WIN(I) - (WIN(I+2) + WIN(I) - MAXXTV(I) + l)/2
GO TO 60

50 IWIN(I+2) - IWIN(I) + WIN(I+2) - WIN(I)
IF (IWIN(I+2).LE.MAXXTV(I)) GO TO 70

60 IWIN(I+2) - MAXXTV(I)
WIN(I+2) - WIN(I) + IWIN(I+2) - IWIN(I)70 CONTINUE

C Prepare to read map.CALL ZOPEN (LUNRES, FIND, RESVOL, RESFIL, MAP, EXCL, WAIT, IERR)
CALL MINI3 (REED, LUNRES, FIND, NX, NY, WIN, XBUFF, BUFSZ1,
» BPRES, BORES, IERR)
MX - WIN(3) - WIN(l) + 1
MY - WIN(4) - WIN(2)+ 1

c loop, passing map to IIS.DO 100 I - 1,MY
IY - I + IWIN(2) - 1
CALL MDIS3 (REED, LUNRES, FIND, XBUFF, BIND, IERR)
IF (IERR.NE.O) GO TO 110
CALL QPUT (XBUFF(BIND), FOUR, MX, TWO)
CALL QWD
CALL QVCLIP (FOUR, ONE, ZERO, ONE, FOUR, ONE, MX)
CALL QVSMSA (FOUR, ONE, TWO, THREE, FOUR, ONE. MX)
CALL QVFIX (FOUR, ONE, FOUR, ONE, MX)
CALL QWR
CALL QGET (JROW, FOUR, MX, ONE)CALL QWD

2 Send row to IIS.

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-18

10 May 85

100
110

C
C

120

130
135

140

150
998

CALL YIMGIO (WRIT, ICH, IWIN, IY, NO, MX, JROW, IERR)
IP (IERR.NE.0) GO TO 110
CONTINUE

CALL ZCLOSE (LUNRES, FIND, IERR)
Release the APCALL QRLSE
Image oatalogCALL COPY (N256, CATBLK, S2H)

S2H(I2V0L) - 0
S2H(I2CN0) - 0
CALL FILL (N5,
CALL COPY (N4,
CALL COPY (N4,
S2H(I2TRA) -
S8H(K8BSC) -
S8H(K8BZE) -
S4H(I4RAN) -
S4H(I4RAN+1)
S4H(K4DMN) -
S4H(K4DMX)

Nl, S2H(I2DEP))
IWIN, S2H(I2COR))
WIN, S2H(I2WIN))

IBLANK
1.0D0
0.0D0
TVFMIN
- TVFMAX
TVREMN
TVREMX

CALL ICWRIT (ICH, IWIN, S2H
IF (IERR.EQ.O) GO TO 120

ENCODE (80,1110,MSGTXT)
CALL MSGWRT (N6)

XBUFF, IERR)

Ask user to quit?IF (TVPASS.LT.2) GO TO 998
ENCODE (80,1120,MSGTXT)
CALL MSGWRT (Nl)
ENCODE (80,1121,MSGTXT)
CALL MSGWRT (Nl)
RPOS(l) - MAXXTV(1)/2.0
RPOS(2) - MAXXTV(2)/2.0
TD - 0.2
CALL YCURSE (ON, F, F, RPOS, IQ, IB, IERR)
IF (IERR.NE.0) GO TO 998
DO 130 I - 1,75

CALL ZDELAY (TD, IERR)
CALL YCURSE (REED, F, F, RPOS, IQ, IB, IERR)
IF (IB.GT.7) GO TO 140
IF (IB.GT.O) GO TO 135
IF (IERR.NE.0) GO TO 135
CONTINUE

ENCODE (80,1135,MSGTXT)
CALL MSGWRT (Nl)
GO TO 150
TVPASS - 32700
ENCODE (80,1140,MSGTXT)
CALL MSGWRT (N3)
CALL YCURSE (OFF, F, F, RPOS,

CALL TVCLOS (BUFFI, IERR)

Wants to quit

Off oursor
IQ, IB, IERR)

999 RETURN

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-19

10 May 85

1000 FORMAT ('CANT OPEN TV IER-',I6)
1010 FORMAT ('IMCLEAR ERROR -',16)
1020 FORMAT ('TVDISP: DISPLAY RANGE -',2F8.3,IX,A4,A1,'JY')
1110 FORMAT ('CAN''T UPDATE IMAGE CATALOG IER«',I6)
1120 FORMAT ('HIT BUTTON D WITHIN 15 SECONDS TO STOP CLEANING NOW')
1121 FORMAT ('HIT BUTTONS A, B, OR C TO CONTINUE SOONER')
1135 FORMAT ('CONTINUING')
1140 FORMAT ('TV BUTTON D HIT: HAVE DONE ENOUGH I GUESS')

END

10.3.5 Plot Files (TVPL)
Plots in AIPS are usually produoed as devioe independent plot

files (see the ohapter on plotting). The task whioh interprets suoh
files and writes on the TV display is oalled TVPL. It will soale
line drawings to fill the TV soreen or, at the user's option, plot
them at the original pixel soaling (oonverted to TV pixels).
Grey-soale plot files are always done at pixel soaling. The
oharaoter and veotor portions of the plot are written to one of the
graphios planes (ohosen by the user) via subroutines IMVECT and
IMCHAR. Grey-soale reoords, if any, are written via YIMGIO to the
user-speoified grey-soale memory. TVPL also updates the image oatalogue as needed.

10.3.6 Transfer Funotion Modification, Zooming
Subroutine AU6A oarries out the verbs OFFTRAN, TVTRAN, TVLUT,

and TVMLUT whioh perform modifications on the blaok and white (or
single oolor) LUTs of the speoified gray-soale memories. OFFTRAN
simply writes a linear, 0 through MAXINT array to the LUTs via YLUT.
TVTRAN is implemented by the subroutine IENHNS whioh is also used by
other verbs and tasks (e.g. TVFIDDLE, BLANK, TVMOVIE, TVBLINK).
IENHNS allows a linear LUT with the oursor position controlling the
slope and interoept and buttons allowing a switoh in the sign of the
slope and a oontinually updated plot of the LUT. TVLUT and TVMLUT
allow the user to plot his own LUT funotion on a graphios plane with
the oursor and the buttons. They both use the subroutine GRLUTS.

Subroutine AU6 implements the verbs OFFPSEUD, OFFZOOM, and
OFFSCROL to olear the OFM, the zoom setting, and the soroll(s). It
also implements interaotive setting of the zoom faotor and oenter
(verb TVZOOM), of individual ohannel sorolls (TVSCROLL), and of the
pseudo-oolor OFM (TVPSEUDO). OFFPSEUD simply sends a linear OFM to
all oolors via YOFM; OFFZOOM sends a 0 zoom faotor via YZOOMC, and
OFFSCROL sends a 0 soroll via YSCROL. TVZOOM makes considerable use
of YCURSE and YZOOMC, while TVPSEUDO uses YCURSE and alternately
IMLCLR (RGB oolor triangle), IMPCLR (oirole in hue), and IMCCLR
(oolor oontours). AU6 also implements a muoh more oomplioated

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-20

10 Hay 85

enhancement algorithm in whioh one gray-soale ohannel is used to set
the intensity and another to set the hue. This algorithm requires
the TV to have both LUTs for eaoh ohannel and an OFM for the sum of
the enabled ohannels. A log funotion is put in the LUTs and an
exponential in the OFM whioh oarries out the required multiplication
of the two signals. Subroutines HIENH and HILUT aotually oarry out
most of the algorithm inoluding interaotive enhancements (via an
algorithm similar to IENHNS) and switohing of the roles of the two
ohannels.

One of the most oommonly used image enhancement routines is
TVFIDL. It is oalled by the verb TVFIDDLE via subroutine AU6C and
task BLANK. It is a deliberately limited interaotive routine
designed to provide easy to use enhancement in blaok and white (via
IENHNS) or pseudooolor (via IMCCLR with a single type of oolor
oontour). A simple zoom prooedure is also provided. During image
enhancement the oursor position oontrols slope and interoept and
during zoom the oursor position oontrols zoom oenter. Button A
(value 1) alternately seleots oolor and blaok and white enhancement,
button B/C inorements/deorements the zoom and seleots zoom mode. As
in all interaotive algorithms, button D (values >-8) terminates the funotion.

The algorithm for TVSCROLL is a good example to present in
detail sinoe the aotion required when the oursor moves is quite
simple. The most important thing to notioe below is the routine
DLINTR. This routine tests the output of YCURSE to see if anything
has ohanged. If not, it delays the program by some period of time
whioh inoreases slowly as the time sinoe the last ohange inoreases.
Without this algorithm, the tight loop on reading the TV oursor is
oapable of jamming the CPU and I/O ohannels espeoially when the user
does not move the oursor.
C open TV devioeCALL TVOPEN (BUFFER, IERR)
C get start time

CALL ZTIME (ITW)
IF (IERR.EQ.O) GO TO 10

POTERR - 101
GO TO 980

C TVSCROL
C user instruotions500 ENCODE (80,1500,MSGTXT)

CALL MSGWRT (Nl)
ENCODE (80,1505,MSGTXT)
CALL MSGWRT (Nl)

C find ohannel(s) to soroll
C soroll graphios too ?IC - ABS(TVCHAN) + EPS

CALL DECBIT (NGRAY, IC, IC, J)
IF (ABS(GRCHAN).GT.EPS) IC - IOR (IC, GRPHIC)
IF (IC.NE.O) GO TO 505

IC - MOD (TVLIMG(l), N2**NGRAY)

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-21

10 May 85

IF (IC.NE.TVLIMG(l)) IC - IOR (IC, GRPHIC)505 IX - 0
IY - 0
RPOS(l) - MAXXTV(l)/2
RPOSC2) - MAXXTV(2)/2

C turn on oursor
CALL YCURSE (ON, F, F, RPOS, QUAD, IBUT, IERR)
IF (IERR.NE.O) GO TO 900

C foroe soroll510 CALL YSCROL (IC, IX, IY, T, IERR)
IF (IERR.NE.O) GO TO 900

PPOS(l) - RPOS(l)
PP0S(2) - RPOS(2)

C read until oursor moves520 CALL YCURSE (READ, F, F, RPOS, QUAD, IBUT, IERR)
IF (IERR.NE.O) GO TO 900

C test for ohange
CALL DLINTR (RPOS, IBUT, F, QUAD, PPOS, ITW, DOIT)
IF (.NOT.DOIT) GO TO 520

c oursor moved, ohange sorollIX - RP0S(1) - MAXXTV(1)/2
IY - RP0S(2) - MAXXTV(2)/2

C any button -> doneIF (IBUT.EQ.O) GO TO 510 POTERR - 0
GO TO 900

C olose down
c oursor off, TV olosed900 IF (BRANCH.GE.4) CALL YCURSE (OFF, F, F, RPOS, QUAD, IBUT, JERR)910 CALL TVCLOS (BUFFER, JERR)

10.3.7 Objeot Looation, Window Setting
Subroutine AU5 performs the verbs TVPOS, IMXY, IMPOS (see

below), and TVNAME (via TVFIND) as well as a variety of status
setting verbs. IMPOS is implemented as follows. It oalls TVWHER to
find the oursor position indioated by the user. Then it oheoks all
enabled memories via ICREAD to see if there is an image displayed at
that pixel position. Finally, it oalls MP2SKY to set up the
ooordinate oommons and get the primary positions and goes through
some other messy stuff to display the results to the user.

CALL TVOPEN (CATBLK, JERR)
IF (JERR.EQ.O) GO TO 50

POTERR - 101
GO TO 980

C IMPOS
c read oursor to get position600 CALL TVWHER (IQUAD, RPOS, IBUT, JERR)

IF (JERR.NE.O) GO TO 975

o
o

USING THE TV DISPLAY
CURRENT APPLICATIONS

Page 10-22
10 Hay 85

C image pix -> map pixel pos
625 IX - RPOS(l) + EPS

IY - RP0SC2) + EPS
C Find lowest plane with x,y

IN2 - NGRAY + NGRAPH
DO 630 IP * 1,IN2

C skip off ohannels
IF (IAND (TVLIMG(IQUAD), N2**(IP - Nl)).EQ.O) GO TO 630

C get img oat blook
CALL ICREAD (IP, IX, IY, CATBLK, IERR)

C loop if x,y not in image
IF (IERR.EQ.N1) GO TO 630
IF (IERR.EQ.O) GO TO 650
GO TO 975

630 CONTINUE
C x,y not in on image

ENCODE (80,1630,MSGTXT) IX, IY
CALL MSGWRT (N6)
GO TO 900

C image -> map positions
650 CALL IMA2MP (RPOS, RPOS)

ENCODE (80,1650,MSGTXT) RPOS
CALL MSGWRT (N5)

C map -> sky positions660 CONTINUE
CALL MP2SKY (RPOS, SKYPOS)

C 3rd axis pairs w 1st or 2nd
IF ((AXTYP.EQ.2) .OR. (AXTYP.EQ.3)) CALL AXSTRN (CTYP(1,3),

* SKYPOS(3), KLOCA, NCHLAB(l), SAXLAB(1,1))
Primary axes
Tell user results via MSGWRT.ENCODE (80,1660,MSGTXT)

ICH - 8
DO 665 1 - 1 , 2

CALL AXSTRN (CTYP(1,I), SKYPOS(I), I-Nl, ILEN, RSTR)
CALL CHPACK (ILEN, RSTR, ICH, MSGTXT)
ICH - ICH + ILEN
CALL CHFILL (N2, RBLANK, ICH, MSGTXT)
ICH - ICH + 2

665 CONTINUE
ILEN - 81 - ICH
CALL CHFILL (ILEN, RBLANK, ICH, MSGTXT)
CALL MSGWRT (N5)

C Seoondary axes values
IF ((NCHLAB(l).LE.O) .AND. (NCHLAB(2).LE.0)) GO TO 900 ICH - 8

DO 670 1 - 1 , 2
IF (NCHLAB(I).LE.O) GO TO 670

CALL CHPACK (NCHLAB(I), SAXLAB(l.I), ICH, MSGTXT)
ICH - ICH + NCHLAB(I)
CALL CHFILL (N2, RBLANK, ICH, MSGTXT)
ICH - ICH + 2

670 CONTINUE
ILEN - 81 - ICH

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-23

10 May 85

CALL CHFILL (ILEN, RBLANK, ICH, MSGTXT)
CALL MSGWRT (N5)
GO TO 900

C normal TV olose
900 CALL TVCLOS (CATBLK, JERR)

GO TO 999
The interactive window setting verbs TVWIN, TVBOX, TVSLICE, and

REBOX are initiated from subroutine AU5C and performed primarily by
subroutine GRBOXS. This routine is another instanoe of
interactivity via YCURSE and line drawing via IMVECT. It uses
YCUCOR at the end to obtain the image oatalogue header and thenoe,
to oorreot the oursor positions to map pixel looations.

CURVALUE is an interactive verb whioh displays on a TV graphios
ohannel the position and image value of the pixel ourrently under
the TV oursor. It is implemented by subroutine AU6B. The image
values are read from the original map files on disk, if possible,
using MAPOPN, MINI3, and MDIS3. However, the intensities of step
wedges and temporary images (i.e. intermediate residual maps
displayed by APCLN) are read from the TV memory via YIMGIO. The
routine makes extensive use of IMCHAR and, although too long to
reproduoe here, is an interesting example of AIPS image plus TV ooding.

10.3.8 Blotoh Setting, Use
A “blotoh" is a region within an image over whioh some aotion

is to be performed. Pixels outside the blotoh are ignored or have
some alternative aotion performed on them. At present, AIPS has two
functions whioh generate and use blotches: the verb TVSTAT whioh
returns image statistios within the blotoh area and the task BLANK
whioh blanks out all pixels outside the blotoh. In both, the user
uses the TV oursor to set the vertioes of one or more polygonal
areas and the routines draw lines on a graphios plane between the
vertioes. When the user is done, the routines fill in the blotoh
areas on the TV graphios and then read and aot on the map file.
Subroutine AU6D implements TVSTAT for whatever image is visible on
the TV, obtaining the polygons through subroutine GRPOLY. AU6D
itself does the data reading, determination of whether a pixel is
inside or outside the blotoh, and the computation and display of the
image statistios. Task BLANK uses internal subroutines BLNKTV and
BLKTVF to display the image (via TVLOAD), allow transfer
modification (via TVFIDL), to obtain the polygons (BLKTVF), and to
use them to blank the output image (BLNKTV). The subroutine BLTFIL
does the filling of the polygons on the TV graphios soreen for both
TVSTAT and BLANK.

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-24

10 May 85

10.3.9 Roam
Roam is mode of display whioh requires multiple gray-soale

memories and the capability to do split soreen and soroll. Adjaoent
portions of the Image are loaded into separate image memories. Then
the soreen is split horizontally and/or vertioally and the
appropriate memories are enabled in eaoh quadrant eaoh with soroll.
This allows the user to view a soreen-size portion of a rather
larger image. By shifting the soroll and split point interactively,
the user may seleot whioh portion is viewed. Roam is implemented in
AIPS from the subroutine AU5A. This routine loads the image to the
TV memories in a manner similar to TVLOD (above). However, it uses
TVWIND to determine a muoh more oomplioated window and must itself
play with windows further before oalling TVLOAD. The interaotive
portion of the Roam is oarried out by AU5A oalling subroutine
TVROAM. That routine oan handle images of up to 1 x 4, 4 x 1 , or 2
x 2 planes and uses YCURSE for interaotive input, YSCROL to set the
soroll (identioal for all planes), and YSPLIT to set the split point
and enable the appropriate ohannels. A zoom option is also
available.

10.3.10 Movie, Blink
The verb TVMOVIE is a very interesting algorithm implemented

via subroutines AU5D and TVMOVI. A movie is a method of displaying
a 3-dimensional image as a time sequenoe of 2-dimensional planes.
Eaoh gray-soale TV memory is subdivided into a 2 x 2 , 4 x 4 , o r 8 x
8 matrix of images of oonseoutive planes of the oube. During the
display phase, the zoom faotor is set to 2, 4, or 8, respectively,
so that only one plane is visible at a time. The zoom oenter is
moved from frame to frame at a user oontrolled rate to simulate a
movie. Subroutine AU5D determines whioh zoom faotor and windows to
use, zeros the gray-soale memories, loads the planes to the TV (via
TVLOAD), transfers the LUT of the first TV memory to the other TV
memories, draws border lines around eaoh plane (via IMVECT),
annotates eaoh plane with the 3rd ooordinate axis value, and puts a
small pointer in the image as well. TVMOVI exeoutes an interaotive
alogorithm in whioh the oursor oontrols the frame rate and the
buttons allow a single frame at a time mode and interaotive
enhanoement of the LUTs (via IENHNS) or the OFM (via IMCCLR). The
verb REMOVIE is also done by AU5D and TVMOVI using the stored
parameters whioh desoribe how the movie was loaded to the TV
memories (parameter TYPMOV in the /TVCHAR/ oommon).

The subroutines AU6A and TVBLNK implement the verbs TVBLINK and
TVMBLINK. Blinking is simply enabling one gray-soale memory for a
while, then disabling it and enabling another for a second period of
time, then disabling the seoond ohannel and re-enabling the first,
and so on. These two verbs allow manual as well as timed switohing
between the two planes and transfer function modification via the
subroutine IENHNS (see above).

USING THE TV DISPLAY
CURRENT APPLICATIONS Page 10-25

10 May 85

10.3.11 Non-standard Tasks
There are a number of tasks in AIPS whioh are seriously

non-standard in their ooding and in their use of various devioes.
Among these are several whioh use the TV display. We will list them
here briefly. Programmers should not use these tasks as models of
how to oode in AIPS and should not assume that they oan even be made
to run on non-VMS, non-IIS systems.

- IMLHS uses up to 3 maps to oreate a false oolor image on
the TV. It uses the first map to modulate the brightness
of the image, the 2nd to modulate the hue and the 3rd to
modulate the saturation. If any of the images are omitted
the corresponding parameter is set to a oonstant. (Note:
verb TVHUEINT is standard and does a similar funotion with
two images.)
TVHLD loads up to 13-bit image to two TV memories and
performs an interactive histogram equilization of the
display. Can feed the result baok to a 3rd TV memory.
This task uses YRHIST, YALUCT, YFDBCK, YIFM, and the
dual-ohannel mode of the IIS and will be hard to implement
on TV display devioes other than the IIS.

- TVHXF does an interaotive histogram equilization of the
image whioh is ourrently displayed. This task uses YRHIST
whioh is ourrently IIS speoifio. However, a TV-independent
(but SLOW) YRHIST oan be ooded is someone wishes to do the
work.

- TVSLV loads an image, prepared by tasks TVCUB and TVSLD, to
the TV. The image is a 3-dimensional representation of a
data oube.
UVDIS attempts to take an FFT of an image and display the
oomplex results on the TV as intensity and oolor-enooded
phase.

USING THE TV DISPLAY
INCLUDES

Page 10-26
10 May 85

10.4
10.4

C

C

10.4

C

C

10.4

C

C

10.4

INCLUDES
.1 DTVC.INC

Inolude DTVC
INTEGER*2 NGRAY, NGRAPH, NIMAGE, MAXXTV(2), MAXINT, SCXINC,
* SCYINC, MXZOOM, NTVHDR, CSIZTV(2), GRPHIC, ALLONE, MAXXTK(2),
* CSIZTKC2), TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS(7),
* TVZOOHC3), TVSCRX(16), TVSCRY(16), TVLIMG(4), TVSPLT(2),
* TVSPLH, TVSPLC, TYPM0V(16), YBUFF(168)

End DTVC

.2 CTVC.INC

Inolude CTVC
COMMON /TVCHAR/ NGRAY, NGRAPH, NIMAGE, MAXXTV, MAXINT, SCXINC,
* SCYINC, MXZOOM, NTVHDR, CSIZTV, GRPHIC, ALLONE, MAXXTK,
* CSIZTK, TYPSPL, TVALUS, TVXMOD, TVYMOD, TVDUMS, TVZOOM,
* TVSCRX, TVSCRY, TVLIMG, TVSPLT, TVSPLM, TVSPLC, TYPMOV,
* YBUFF

End CTVC

.3 DTVD.INC

Inolude DTVD
INTEGER*2 TVLUN, TVIND, TVLUN2, TVIND2, TVBFNO
LOGICAL*2 TVMAP

End DTVD

.4 CTVD.INC

C Inolude CTVD
COMMON /TVDEV/ TVLUN, TVIND, TVLUN2, TVIND2, TVBFNO, TVMAP

C End CTVD

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-27

10 May 85

10.5 Y-ROUTINE PRECURSOR REMARKS:
10.5.1 Level 0
10.5.1.1 YCHRW - writes oharaoters into image planes of the TV.
The format is 5 by 7 with one blank all around: net 7 in X by 9 in
Y This version will work on all TVs whioh allow horizontal writing
to the right. It is a Y routine to allow for hardware oharaoter
generators on some TVs.

Inputs:

Output:

' (CHAN, X, Y,
CHAN 1*2
X 1*2
Y 1*2
COUNT 1*2
STRING R*4
SCRTCH I*2(>)
IERR 1*2

ohannel seleot (1 to NGRAY + NGRAPH)
X position lower left oorner first ohar.
Y position lower left oorner first ohar.
number of oharaoters in STRING
oharaoter string
soratoh buffer (dim - 14*oount+8 < 1031)
error oode of Z...XF:0 - ok

2 - input error

10.5.1.2 YCNECT - writes a line segment on the TV. This version
will work on all TVs. It is oalled a Y routine to allow the use of
hardware veotor generators on those TVs equiped with them.

YCNECT (XI, Yl, X2, Y2, IC, BUFFER, IERR)
Inputs: XI 1*2 start X position

Yl 1*2 start Y position
X2 1*2 end X position
Y2 1*2 end Y position
IC 1*2 Channel (1 to NGRAY+NGRAPH)
BUFFER 1*2(512) BUFFER(1 - 512) oontains desired

intensity (size here for I2S)
Output: IERR 1*2 error oode : 0 -> ok

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-28

10 May 85

10.5.1.3 YCUCOR - takes a oursor position (oorreoted for zoom, but
not soroll) oorreots it for soroll, determines the quadrant of the
TV, and gets the corresponding image header in oommon /MAPHDR/ and
returns the image coordinates.

YCUCOR (RPOS, QUAD, CORN, IERR)
Inputs: RPOS
Output: QUAD

CORN
IERR

R*4(2)
1*2

R*4(7)
1*2

X,Y soreen pos before zoom & soroll
TV quadrant to use for sorolls
Out: if in— 1, no soroll, else find
quadrant (needs real TV pos)
Image coordinates (pixels)
error oode of Z...XF : 0 - ok

2 - input error

10.5.1.4 YCURSE - reads oursor positions and oontrols the blink and
visibility of the TV oursor.

YCURSE (OP, WAIT, CORR, RPOS, QUAD, EVTMOD, IERR)
Inputs: OP

In/Out:

WAIT
CORR
RPOS
QUAD

Output: EVTMOD 1*2
IERR

R*4 'READ' read oursor position
'ONNN' plaoe oursor at RPOS & leave on
'OFFF' turn oursor off
'BLNK' reverse sense of oursor blink

L*2 wait for event & return RPOS & EVTMOD
(done on all OPs)
T -> oorreot RPOS for zoom Gf soroll
X,Y soreen pos before zoom & soroll
TV quadrant to use for sorolls
In: if <1 >4, no soroll
Out: if in— 1, no soroll, else find
quadrant (needs real TV pos)
event # (0 none, 1-7 low buttons,
8-15 the "quit" button)

1*2 error oode of Z...XF : 0 - ok
2 - input error

L*2
R*4(2)
1*2

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Pag© 10-2910 May 85

10.5.1.5 YGRAPH - is used to turn graphios overlay planes on and
off by altering the graphios oolor look up table. The oolor pattern
is:

CHAN 1 insert yellow drawing plots
2 insert green+.05 red axis labels
3 insert blue + 0.6 green blotoh

+ red
4 insert blaok label baokgrounds
5-7 add nothing null ohannels
8 insert purple oursor

YGRAPH (OP, CHAN, SCRTCH, IERR)
Inputs: OP R*4 'ONNN' or 1OFFF'

CHAN 1*2 ohannel number (1 - 8)
Output: SCRTCH 1*2(256) soratoh buffer

IERR 1*2 error oode of Z...XF: 0 -> ok
2 »> input error

10.5.1.6 YLNCLR - oomputes a pieoewise linear OFM and writes it to
the TV. If NEND(NPOINT) is 256 (512) then the OFM is repeated 4 (2)
times.

YLNCLR (COLOR, NPOINT, NEND, SLOPE, OFFSET, GAMMA, BUFFER, IERR)
Inputs: COLOR 1*2 oolor bit mask: RGB - 421

of segments
end points of segments
slopes of segments
offsets of segments
power applied to oolors (1 /gamma)

Output: BUFFER 1*2(1024) soratoh buffer
error oode of Z...XF : 0 - o k

Form is C - (i-l)*SLOPE + OFFSET with 0 <- C <- 1.0.

COLOR 1*2
NPOINT 1*2
NEND 1*2
SLOPE R*4(NP0INT)
OFFSET R*4(NPOINT)
GAMMA R*4
BUFFER 1*2(1024)
IERR 1*2

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-30

10 May 85

10.5.1.7 YSLECT - enables and disables gray and graphios planes.
YSLECT (OP, CHAN, COLOR, BUFFER, IERR)

Inputs: OP R*4 'ONNN' or 'OFFF'
CHAN 1*2 ohannel number (1 to NGRAY+NGRAPH)
COLOR 1*2 0 - all, 1,2,3 - R,G,B, resp.

Output: BUFFER 1*2(256) soratoh buffer (for graphios only)
IERR 1*2 error oode of Z...ZF: 0 - o k

2 - input err
YSLECT sets TVLIMG in the TV devioe parms oommon /TVDEV/

10.5.1.8 YTVCIN - initializes the oommon whioh desoribes the
oharaoteristios of the interaotive display devioes and the oommon
whioh has the ourrent status parameters of the TV.
NOTE: These are default values only. They are reset to the ourrent
true values by a oall to TVOPEN.
NOTE: YTVCIN resets the oommon values of TVZOOM and TVsoroll, but
does not oall the TV routines to foroe these to be true. A separate
oall to YINIT or YZOOMC and YSCROL is needed.

YTVCIN
(no arguments)

10.5.1.9 YZERO - fills an TV memory plane with zeros the fast way.
Note: this is equivalent to YINIT, but avoids linking with all the
routines oalled by the main parts of YINIT.

YZERO (CHAN, IERR)
Inputs: CHAN 1*2 ohannel # (1 - NGRAY+NGRAPH), 0 -> all
Outputs: IERR 1*2 error oode of Z...XF: 0 - o k

2 - input error

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 10-31
10 May 85

10.5.1.10 YTVCLS - oloses TV devioe assooiated
any EXCLusive use state and olears up the FTAB.

YTVCLS (LUN, IND, IERR)

with LUN removing

Inputs:
Output:

LUN
IND
IERR

logioal unit number
pointer into FTAB
error oode 0

1
2
3
4

no error
Deaooess or Deassign error
file already olosed in FTAB
both errors
erroneous LUN

10.5.1.11 YTVMC - issues a "master olear" to the TV. This resets
the TV I/O system (if neoessary) to expeot a oommand reoord next.
YTVMC gets all needed parameters from the TV devioe oommon. The TV
must already be open.

YTVMC
(no arguments)

10.5.1.12 YTVOPN - performs a system "OPEN" on the TV devioe. It
is a Y routine in order to oall the appropriate Z routine only.

YTVOPN (LUN, IND, IERR)
Inputs: LUN 1*2 Logioal unit number to use
Output: IND 1*2 Pointer to FTAB entry for open devioe

IERR 1*2 Error oode: 0 -> ok
1 - LUN already in use
2 - file not found
3 - volume not found
4 - exol requested but not available
5 - no room for lun
6 - other open errors

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-32

10 May 85

10.5.2 Level 1
.tp 19

10.5.2.1 YCRCTL - reads/writes the oursor/trackball oontrol
register of TV.

YCRCTL (OP, ON, X, Y, LINKX, LINKY, RBLINK, BUTTON,
* VRTRTC, IERR)

Inputs: OP R*4
VRTRTC L*2

In/Out: ON L*2
X 1*2
Y 1*2
LINKX L*2
LINKY L*2
RBLINK 1*2

Output: BUTTON 1*2
IERR 1*2

'READ' from TV or 'WRIT' to TV
T -> do on vertical retraoe only
T -> oursor visible, F -> off
X position oursor center (1-512, 1 «> LHS)
Y position oursor oenter (1-512, 1 -> bot)
T -> traokball moves oursor in X
T «> traokball moves oursor in Y
rate of oursor blink: 0-3 no-fast blink
button value (0 - 15)
error oode of Z...XF : 0 -> ok

2 »> input error

10.5.2.2 YIMGIO - reads/writes a line of image data to the TV
soreen. For graphios overlay planes, the data are solely 0's and
l's in the least signifioant bit of IMAGE after a READ. For WRIT,
all bits of eaoh word should be equal (i.e. all l's or all 0's for
graphios).
NOTE***** on WRIT, the buffer may be altered by this routine for some IANGLs.

YIMGIO (OP, CHAN, X, Y, IANGL, NPIX, IMAGE, IERR)
Inputs: OP

CHAN
X
Y
IANGL

NPIX
In/Out: IMAGE
Output: IERR

R*4
1*21*2
1*2
1*2

1*2
I*2(NPIX)
1*2

'READ' from TV or 'WRIT' to TV
ohannel number (1 to NGRAY+NGRAPH)
start pixel position
end pixel position
- 0 -> horizontal (to right)
- 1 -> vertioal (up the soreen)
- 2 -> horizontal (to left)
- 3 -> vertioal (down the soreen)
number of pixels
data (only no header)
error oode of Z...XF - 0 -> ok

2 -> input err

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Pago 10—33

10 May 85

10.5.2.3 YINIT - initializes the TV subunits: doing everything.
YINIT (SCRTCH, IERR)

Output: SCRTCH 1*2(1024) soratoh buffer (oan be 256 for CHAN
1 for ZERO & REST)

IERR 1*2 error oode of Z...XP - 0 -> ok
2 -> input error

10.5.2.4 YLUT - reads/writes full ohannel look up tables to TV.
YLUT (OP, CHANNL, COLOR, VRTRTC, LUT, IERR)

Inputs:

In/Out
Out:

OP
CHANNL
COLOR
VRTRTC
LUT
IERR

R*4
1*2
1*2
L*2
1*2(256)
1*2

'READ' from TV, 'WRIT' to TV
ohannel seleot bit mask
oolor seleot bit mask (RGB <-> 421)
T -> do it only during vertioal retraoe
look up table (Is 9 bits used)
error oode of Z...XF : 0 -> ok

10.5.2.5 YOFM - reads/writes full OFM look up tables to TV.
YOFM (OP, COLOR, VRTRTC, OFM, IERR)

Inputs: OP
COLOR
VRTRTC

In/Out: OFM
Out: IERR

R*4
1*2
L*2
1*2(1024)
1*2

'READ' from TV, 'WRIT' to TV
oolor seleot bit mask (RGB <-> 421)
T -> do it only during vertioal retraoe
look up table (Is 10 bits used)

error oode of Z...XF : 0 -> ok

10.5.2.6 YSCROL - writes the soroll registers on the TV.
YSCROL (CHANNL, SCROLX, SCROLY, VRTRTC, IERR)

Inputs: CHANNL 1*2
VRTRTC L*2

In/Out: SCROLX 1*2
SCROLY 1*2

Output: IERR 1*2

bit map ohannel seleot
T -> do it on vertioal retraoe only
amount of X soroll (>0 to right)
amount of Y soroll (>0 upwards)
error from Z...XF : 0 -> ok

YSCROL updates the soroll variables in /TVDEV/ oommon

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-34

10 May 85

10.5.2.7 YSPLIT - reads/writes the look up table/ split soreen
oontrol registers of the TV.
Quadrants are numbered CCV from top right.

YSPLIT COP, XSPLT , YSPLT , RCHANS, GCHANS, BCHANS,

'READ' from TV, 'WRIT' to TV
T »> do on vertioal retraoe only

In/Out: XSPLT 1*2 X position of split (1-512, 1 => LHS)
Y position of split (1-512, 1 ~> bot)
ohan seleot bit mask 4 quadrants : red
ohan seleot bit mask 4 quadrants : green
ohan seleot bit mask 4 quadrants : blue

Output: IERR 1*2 error oode of Z...XF: 0 -> ok
2 -> input error

VRTRTC, :IERR)
:: OP R*4

VRTRTC L*2
: XSPLT 1*2
YSPLT 1*2
RCHANS 1*2(4)
GCHANS 1*2(4)
BCHANS 1*2(4)

: IERR 1*2

10.5.2.8 YZOOMC - writes (ONLY1) the zoom oontrol registers of the
TV.

YZOOMC (MAG, XZOOM, YZOOM, VRTRTC, IERR)
Inputs: MAG 1*2 0-3 for magnification 1,2,4,8 times, resp.

XZOOM 1*2 X oenter of expansion (1-512, 1 -> LHS)
YZOOM 1*2 Y oenter of expansion (1-512, 1 -> bot)

Output: IERR 1*2 error oode of Z...XF: 0 -> ok
2 -> input error

YZOOMC updates the /TVDEV/ oommon TVZOOM parameter

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-35

10 May 85

10.5.3 Level 2 (Used As Level 1 In Non-standard Tasks)
10.5.3.1 YALUCT - reads / writes the TV arithmetio logio unit
oontrol registers. The aotual feedbaok-ALU computation is performed only upon a oall to YFDBCK.

YALUCT (OP, ARMODE, BFUNC, NFUNC, CONSTS, OUTSEL,
* EXTOFM, ESHIFT, SHIFT, CARYIN, CARRY, EQUAL, IERR)

Inputs: OP R*4
In/Out: ARMODE L*2

BFUNC 1*2
NFUNC 1*2
CONSTS 1*2(8)
OUTSEL 1*2(8)

EXTOFM L*2

0 - 7
8
9
10
11
T =* >

ESHIFT L*2 T ->
SHIFT L*2 T «>
CARYIN L*2 T - >
CARRY L*2 T ->
EQUAL L*2 T — >
IERR 1*2 error

'READ' from TV or 'WRIT' to TV
T »> arithmetio mode F -> logio mode
funotion number (1-16) in blotoh
funotion number (1-16) outside blotoh
oonstant array (may seleot as ALU output)
lookup table seleots output based on oarry
(lsb), equal, ROI (msb) input, values -

oonstants 1 - 8
aooumulator ohannel pair
seleoted OFM
ALU
external

> extend sign of OFM on input to ALU
> extend sign of ALU output if SHIFT
> right shift ALU output
> add one to arithmetio results
> oarry oondition ooourred in frame
> equal oondition ooourred in frame

error oode of Z ...XF : 0 - ok
2 - input error

10.5.3.2 YFDBCK - sends a feedbaok command to the TV.
YFDBCK (COLOR, CHANNL, BITPL, PIXOFF, BYPIFM, EXTERN,
* ZERO, ACCUM, ADDWRT, IERR)

Inputs: COLOR 1*2 bit map of oolor to be fedbaok (RGB - 4,2,1)
CHANNL 1*2 bit map of ohannels to reoeive feedbaok
BITPL 1*2 bit map of bit planes to reoeive feedbaok
PIXOFF 1*2 offset fedbaok image to left by 0 - 1 pixels

NOTE: I2S literature olaims only 1 bit here not the three
that their software (NOT this routine) uses.

BYPIFM L*2 F -> image goes thru IFM lookup before store
EXTERN L*2 T -> image from external input (iedigitizer) ZERO L*2 T -> feed baok all zeros
ACCUM L*2 T -> use 16-bit aooumulator mode

then CHANNL must give even-odd pair lsbyte
goes to even (lower) # ohannel

ADDWRT L*2 T -> additive write F -> replaoe old data
Outputs: IERR 1*2 error oode of Z...XF: 0 -> ok

2 -> input error

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-36

10 May 85

10.5.3.3 YGYHDR - builds an TV header to write
aotual I/O must be done by oalls to Z...XF. image data. The

YGYHDR (OP, NPIXEL, XINIT, YINIT, IANGLE, CHANNL,
* PLANES, PACKED, BYPIFM, BYTE, ADDWRT, ACCUM, VRTRTC, HEADER,* IERR)

Inputs: OP
NPIXEL
XINIT
YINIT
IANGLE
CHANNL
PLANES
PACKED
BYPIFM
BYTE
ADDWRT
ACCUM
VRTRTC

Output: HEADER
IERR

R*4
1*2
1*2
1*2
1*2
1*2
1*2
L*2
L*2
L*2
L*2
L*2
L*2
1*2(8)
1*2

'READ' from TV or 'WRIT' to TV
number of pixel values to I/O
first pixel X ooordinate (1-512, 1 -> LHS)
first pixel Y ooordinate (1-512, 1 -> bot)
(0 => data I/O horizontal to right, 1 »>
up, 2 -> to left, 3 -> down)
ohannel seleot bit mask
bit plane seleot bit mask
T -> 2 values/word, F -> 1 value/word
F -> IFM lookup applied to data (write)
T -> 8 values/byte (needs XINIT - 8*n+l)
T -> OR data with present memory oontents
T -> use 16-bit aooumulator mode
T -> do it only during vertioal retraoe
header to be sent to TV
error oode of 0 ■> ok

2 -> input error

10.5.3.4 YIFM - reads/writes a seotion of TV input funotion memory
This look up table takes 13 bits in and gives 8 bits out.

YIFM (OP, START, COUNT, PACK, VRTRTC, IFM, IERR)
Inputs: OP R*4

START 1*2
COUNT 1*2
PACK L*2
VRTRTC L*2In/Out: IFM I*2(>)Output: IERR 1*2

'READ' from TV or 'WRIT' to TV
start address of IFM (1 - 8192)
elements of IFM to transfer (1-8192)
T -> 2 values/word, F -> 1 value/word
T -> do it only on vertioal retraoe
funotion values (0-255)
error oode of Z ...XF: 0 - ok

2 - input error

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-37

10 May 85

10.5.3.5 YRHIST - reads the histogram of the output of a seleoted OFM of the TV.
**** Warning: the results are 18-bit integers stored in a standard
AIPS pseudo 1*4 order (Is 16 bits in first word).

YRHIST (MODE, COLOR, INITI, NINT, HISTOG, IERR)
Inputs: MODE 1*2

COLOR 1*2
INITI 1*2
NINT 1*2

Output: HISTOG I*2(2*NINT)
IERR 1*2

seleots area to histogram: 0 blotoh,
1 not blotoh, 2 all, 3 external bltoh
bit map of single oolor (RGB - 4,2,1)
first intensity to histo (1 - 1024)
values to get
histogram
error oode of Z...XF : 0 -> ok

2 -> input err

10.5.4 Seleoted Applications Subroutines
10.5.4.1 TVOPEN - opens the TV, passing pointers through oommon /TVDEV/.

TVOPEN (BUF, IERR)
OUTPUTS: BUF 1*2(256) Soratoh buffer

IERR 1*2 Error return from ZOPEN
- 10 TV unavailable to this version

10.5.4.2 TVCLOS - oloses the TV devioe and the TV status disk file,
updating the information on the disk.

TVCLOS (BUF, IERR)
Outputs: BUF 1*2(256) Soratoh buffer

IERR 1*2 Error oode : 0 -> ok
else as returned by ZFIO

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-38

10 May 85

10.5.4.3 TVFIND - determines whioh of the visible TV images the
user wishes to seleot. If there is more than one visible image, it
requires the user to point at it with the oursor. The TV must already be open.

TVFIND (MAXPL, TYPE, IPL, UNIQUE, CATBLK, SCRTCH,
* IERR)

Inputs: MAXPL 1*2

Output:
TYPE
IPL
UNIQUE
CATBLK
SCRTCH
IERR

1*2
1*2
L*2
1*2(256)
1*2(256)
1*2

Highest plane number allowed (i.e. do
graphios oount?)
2-ohar image type to restriot searoh
Plane number found
T -> only one image visible now
(all types)
Image catalog blook found
Soratoh buffer
Error oode: 0 *> ok

1 => no image
2 -> I/O error in image oatalog
3 «> TV error

10.5.4.4 TVWIND - sets windows for normal and split soreen TV loads.
TVWIND (TYPE, PXINC, BLC, TRC, ICHAN, ITVC, IWIN,* IERR)

TYPE 1*2

PXINC 1*2(2)
BLC R*4(7)
TRC R*4(7)
ICHAN 1*2
ITVC 1*2(4)
IWIN 1*2(4)
IERR 1*2

Common: /MAPHDR/ CATBLK

In: <0 -> 1 plane, other -> split method
Out: 0 -> 1 plane, other - 10 * (#planes

in X) + (# planes in Y)
X, Y inorements
User requested bot left oorner
User requested top right oorner
User requested TV ohan (deoimal form)
IN: first 2 user req. TVCORN
Out: full "pseudo-TV" oorners
Window into map
error oode: 0 -> ok, else fatal
image header used extensively, the
depth array is set here

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-39

10 May 85

10.5.4.5 TVLOAD - loads a map from an already opened map file to
one TV memory plane. TVLOAD puts TV and map windows in the image
header and writes it in the image oatalog. It assumes that the
other parts of the image header are already filled in (and uses
them) and that the windows are all oomputed.

TVLOAD (LUN, IN]
* IERR)

Inputs:
LUN 1*2
IND 1*2
I PL 1*2
PXINC 1*2(2)
IMAWIN 1*2(4)
WIN 1*2(4)
BUFSZ 1*2

Outputs
IERR 1*2

Commons: /MAPHDR/
/IMBUF /

Logioal unit # of map file
FTAB pointer for map file
Channel to load
Inorement in z,y between inoluded pixels
TV oorners: BLC x,y TRC x,y
Map window: ""
Buffer size in bytes
Error oode: 0 «> ok

1 -> input errors
2 »> MINI3 errors
3 -> MDIS3 errors

CATBLK image header
BUFF work spaoe for I/O

10.5.4.6 TVFIDL - does an interaotive run with button A seleoting
alternately TVTRANSF and TVPSEUDO (oolor oontour type 2 only),
button B incrementing the zoom and C decrementing the zoom.

TVFIDL (ICHAN, NLEVS, IERR)
Inputs: ICHAN 1*2 Selected gray-soale ohannel

NLEVS 1*2 Number of gray levels (usually MAXINT+1)
OUTPUT: IERR 1*2 Error code: 0 -> ok

else set by Z ...XF

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-40

10 May 85

10.5.4.7 IMANOT - is used to annotate an image by writing the
string into the lettering plane (usually graphios plane 2) and, if
possible writing a blook of ones NEDGE pixels wider than the string
into graphios plane 4 to foroe a blaok baokground.

IMANOT (OP, X, Y, IANGL, CENTER, COUNT, STRING,
* SCRTCH, IERR)

Inputs: OP

Output:

X
Y
IANGL
CENTER

COUNT
STRING
SCRTCH
IERR

R*4

1*2
1*2
1*2
1*2

1*2
R*4()
I*2(>
1*2)

'ONNN' enables the 2 graphios planes
'OFFF' disables the 2 planes
'INIT' zeros and enables the 2 planes
'WRIT' writes strings to the planes
X position of string
Y position of string
0 - horizontal, 3 - vertioal (DOWN)
0 - XY are lower left first oharaoter
1 - XY are center of string
2 - XY are top right of last oharaoter
number of oharaoters in STRING
oharaoter string
soratoh buffer (>256, 14*oount)
error oode of Z...XF : 0 - ok

2 - input error

10.5.4.8 IMCHAR - oauses oharaoters to appear on the TV by IMCHRW.
IMCHAR (CHAN, X, Y, IANGL, CENTER, COUNT, STRING,* SCRTCH, IERR)

oalling

Inputs: CHAN 1*2
X 1*2
Y T*9
IANGL 1*2
CENTER 1*2

COUNT 1*2
STRING R*4()

Output: SCRTCH I*2(>)
IERR 1*2

ohannel number (1 - NGRAY+NGRAPH)
X position of string
Y position of string
0 - horizontal (to right), 3 - vertioal

(down) ONLY ones supported.
0 - XY are lower left of first oharaoter
1 - XY are oenter of string
2 - XY are upper right of last oharaoter
number of oharaoters in STRING
oharaoter string to go to TV
soratoh buffer (14*oount)
error oode of Z...XF: 0 - ok

2 - input error

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS: Page 10-41

10 May 85

10.5.4.9 IMVECT - writes a oonneoted sequenoe of line segments on a TV ohannel oalling YCNECT
IMVECT (OP, CHAN, COUNT, XDATA, YDATA, SCRTCH, IERR)

Inputs: OP R*4 'ONNN' line of ones (max intensity)
'OFFF' line of zeros (min intensity)

CHAN 1*2 ohannel number (1 to NGRAY+NGRAPH)
COUNT 1*2 number of X,Y pairs (> 1)
XDATA I*2(C0UNT) X coordinates XI,X2,...
YDATA I*2(COUNT) Y coordinates Y1,Y2,...

Output: SCRTCH 1*2(512) soratoh buffer
IERR 1*2 error oode of Z...XF - 0 «> ok

2 ~> input error

10.5.4.10 IENHNS - performs an interaotive linear enhancement of TV
LUTs. X oursor -> interoept, Y oursor -> slope, high button -> quit

IENHNS (ICHAN, ICOLOR, ITYPE, RPOS, BUFFER, IERR)
Inputs:
In/Out:

Output:

ICHAN
ICOLOR
ITYPE

RPOS
BUFFER
IERR

1*2
1*2
1*2

R*4(2)
I*2(>768)
1*2

ohannel seleot bit mask
oolor seleot bit mask
on in: 1 -> do plot, A, B switch plot

C switoh sign of slope
2 -> no plot, A, B return

C switoh sign of slope
3 -> no plot, return any button

on out - button value
Cursor position: initial -> final
soratoh buffer
error oode of Z...XF: 0 -> ok

10.5.4.11 DLINTR - is oalled by interaotive routines to delay the
task when nothing is happening (i.e. the user is thinking or out to
lunoh.) It also prevents oursor wrap around.

DLINTR (RP, IEV, DOCOR, QUAD, PP, IT, DOIT)
not - 0 -> event has ooourred
Soroll oorreotion parameter for YCURSE
quadrant parameter for YCURSE
oursor position read (fixed on wraps)
previous oursor position
time of last aotion
T -> something has happened.

Inputs: IEV 1*2
DOCOR L*2
QUAD 1*2

In/out: RP R*4(2)
PP R*4(2)
IT 1*2(3)

Output: DOIT L*2

USING THE TV DISPLAY
Y-ROUTINE PRECURSOR REMARKS:

Page 10-42
10 May 85

10.5.4.12 RNGSET - oaloulates range parameters for displaying a map
using the IRANGE adverb supplied by POPS plus soaling information
derived from the map header.

RNGSET (IR, MMAX, MMIN, BSC, BZE, RANG)
INPUTS:

IR(2)
MMAX
MMIN
BSC
BZE

OUTPUTS:
RANG(2)

R*4
R*4
R*4
R*8
R*8
R*4

Range values speoified by user
Map maximum value from header
Map minimum value
Map soaling faotor from header
Map zero offset from header
Output range values calculated using

defaults and map soaling

10.5.4.13 DECBIT - translates a deoimal based ohannel number into a
binary ohannel no. e.g. 1453 -> 2**0 + 2**3 + 2**4 + 2**2 A
maximum of nine ohannels are addressable (6 at a time)

DECBIT (NMAX, ICHAN, IPL, LOW)
INPUTS:

NMAX
ICHAN

OUTPUTS:
I PL
LOW

1*2
1*2
1*2
1*2

Maximum allowed ohannel number
Input ohannel deoimal number
Binary ohannel # pattern
Lowest of speoified ohannels

10.5.4.14 MOVIST - sets and resets the movie status parameters in
the TV oommon.

MOVIST (OP, ICHAN, NFR, NFRPCH, MAG, IERR)
Inputs: OP R*4 'ONNN' when turning on a movie

#OFFF' when olearing ohannel(s)
ICHAN 1*2 Bit pattern of ohannels involved (OFFF)

Aotual first ohannel number (1-NGRAY, ONNN)
NFR 1*2 Number of frames in movie total (ONNN)
NFRPCH 1*2 Number of frames per TV ohannel (ONNN)
MAG 1*2 Magnifioation number (0 - 3 , ONNN)

Output: IERR 1*2 Error - 2 -> bad input, else ok

CHAPTER 11
PLOTTING

11.1 OVERVIEW
Plotting in AIPS is usually a two step prooess. First a task

or a verb creates an AIPS "plot file" whioh. consists of plot devioe
independant "oommands" that tell a devioe how to draw the plot. As
of the time this ohapter was written, this file is always an
extension file assooiated with a oataloged file. However, the plot
file oould itself be a oataloged file. The seoond step in obtaining
a plot is to run a task to read the plot file and write it to a
speoifio devioe, suoh as a TV, or a hardcopy plotter. This two step
method greatly reduces the number of plot programs that must be
written and maintained. For instanoe, if a new graphios devioe is
added to the system then only one new program that reads the plot
file and writes to the new devioe is needed. All the other plotting
programs work with no modification. Another advantage is that a
plot file may exist for an extended period of time, thus allowing
plots to be written to different devioes, and oopies to be generated
at later times without duplicating the oaloulations needed in making the plot.

There are exceptions to the two step prooess. For example,
slioes of map files oan be plotted direotly on the Tektronios 4012.
This is done to simplify matters in interactive situations suoh as
gaussian fitting of slioes.

AIPS oontains some very powerful routines for plotting in an
variety of ooordinate systems in use in astronomy. The complexity
of these routines is oommensuate to their power. Fortunately, a set
of plot program templates exist to provide a starting point. These
routines are desoribed in a latter seotion in this ohapter.

PLOTTING
PLOT FILES Page 11-2

10 May 85

11.2 PLOT FILES
11.2.1 General Comments

Plot files are a generalized representation of a graphios
display. They oontain soaling information and oommands for drawing
lines, pixels, and oharaoters, and a oommand for putting
miscellaneous information in the image oatalog. The image oatalog
is used by programs that must know details about an image currently
displayed on the graphios devioe in order to allow user interaction
with the devioe. For example a program may want to read a oursor
position and translate it to the ooordinate system of the image
displayed on the graphios devioe.

The reoords in plot files do not inolude a reoord length value.
This means that it is inconvenient to invent new types of reoords
(i.e. new opoodes) or to add new values on to the end of reoords of
existing types beoause all of the programs must be ohanged. On the
other hand, the rigid format definitions aided in debugging the oode
several years ago and oontinue to assure the integrity of I/O
systems (AIPS devioe plotting programs refuse to prooeed if they
enoounter an unknown opoode). So far, the inoreased flexibility
supplied by length values seems not to have been absolutely required in AIPS.

The oharaoter drawing reoord includes neither a size value nor
an angle value. This is beoause oharaoter plotting capabilities are
devioe dependent. Orientations are either vertioal or horizontal
(and not baokwards) and the position offsets for plotting oharaoter
strings are speoified in units of the devioe oharaoter size,
permitting the devioe plotting program to position strings nioely no
matter what size it ohooses to use. It also follows that most plots
produoed by AIPS have only one size of oharaoter. One AIPS
application program (PROFL) draws its own oharaoters by using the
line drawing oommands in order to plot oharaoters with arbitrary
size, orientation, and even perspective.

11.2.2 Struoture Of A Plot File
The first physical reoord (256 words) in the plot file oontains

information about the task whioh oreated the file. It is not
logioally part of the "plot file", but is there to provide
documentation of the file's origins. This reoord is ignored by the
programs that aotually do the plotting. The primary use of this
information is by the the verb EXTLIST that lists all the plot files
assooiated with a oataloged file. When new types of plots are added
to AIPS, an experienced programmer should update the verb EXTLIST
(found in subroutine AU8A) to list useful things about the plot.
Otherwise the verb will print a line telling the user that he has a
plot file of type UNKNOWN. A novioe AIPS programmer should leave
this oode alone.

PLOTTING
PLOT FILES Page 11-3

10 May 85

Tlie oontents of the first physioal reoord are task-dependent and have the form:
FIELD TYPE

1. 1*2(3)
2. 1*2(6)
3. 1*2
4. R*4(*)

DESCRIPTION
Task name (2 ohars / word)
Date/time of file oreation YYYY,MM,DD,HH,MM,SS
Number of words of task parameter data
Task parameter blook as transmitted from AIPS
(preferably with defaults replaoed by the values used).

The rest of the plot file oontains a generalized representation
of a graphios display. This representation is in the form of
soaling information and oommands for drawing lines, pixels, and
oharaoters and a oommand for putting miscellaneous information in the image oatalog.

The lowest level plot file I/O routines read and write 256 word
blooks. The applications programmer will be oonoerned with routines that read and write logioal reoords.

The logioal reoords are of 6 types and vary in length. With
the exception of the 'draw pixels' reoord, logioal reoords do not
oross the blook boundaries. Unused spaoe at the end of a blook
oonsists of integer zeros. All values in the plot file are 1*2
variables or ASCII oharaoters. This aids in exporting plot files to
other oomputers via tape. Unfortunately, this also limits the
values that oan be stored in the plot file, thus foroing us to use a
soaling faotor and offset for some plots to prevent integer
overflow. The soaling faotor and offset are not in the plot file.
This oauses problems for interaotive tasks that read positions from
a graphios devioe and then try to oonvert them to the original
coordinates. These interaotive tasks must make do with information
from the map header and data from the "miscellaneous information" reoord.

Plot files have names of the format PLdsssvv, where d is the
disk volume number, sss is the Catalog slot number of the assooiated map, and vv is the version number.

11.2.3 Types Of Plot File Logioal Reoords
11.2.3.1 Initialize Plot Reoord. - The first logioal reoord in a plot file must be of this type.

DESCRIPTION
Opoode (equal to 1 for this reoord type).User number.
Date: yyyy, mm, dd
Type of plot: 1 - miscellaneous

2 » oontour
3 « grey soale

FIELD TYPE
1. 1*2
2. 1*23. 1*2(3)4. 1*2

PLOTTING
PLOT FILES Page 11-4

10 May 85

4 = 3D profile
5 » slioe
6 - oontour plus polarization lines
7 - histogram

11.2.3.2 Initialize For Line Drawing Reoord. - This reoord provides
soaling information needed for a plot. The plot consists of a 'plot
window' in whioh all lines are drawn and a border (defined in terms
of oharaoter size) in whioh labeling may be written. The seoond
reoord in a plot file must be of this type.
FIELD TYPE DESCRIPTION

1. 1*2 Opcode (equal to 2 for this reoord type).
2. 1*2 X Y ratio * 100. The Ratio between units on the X

axis and units on the Y axis (X / Y). For example
if the deorement between pixels in the X direotion
on a map is twioe the deorement in the Y direotion
the X Y ratio oan be set to 2 to provide proper
soaling. Some programs may ignore this field. For
example IISPL when writing grey soale plots to the IIS.

3. 1*2 Soale faotor (ourrently 16383 in most applications).
This number is used in soaling graph positions before
they are written to disk. BLC values in field 4 are
represented on disk by zero and TRC values are
represented by integers equal to the soale faotor).

4. 1*2(4) The bottom left hand oorner X and Y values and the top
right hand X and Y values respectively in the plot window (in pixels).

5. 1*2(4) 1000 * the fraotional part of a pixel allowed to ooour
outside the (integer) range of BLC and TRC (field 4
above) in line drawing commands

6. 1*2(4) 10 * the number of oharaoter positions outside the
plot window on the left, bottom, right, and top respectively

7. 1*2(5) Looation of the X Y plane on axes 3,4,5,6,7. This
field is valid only for plots assooiated with a map.

11.2.3.3 Initialize For Grey Soale Reoord. - This reoord if needed
must follow the 'init for line drawing' reoord. This reoord allows
proper interpretation of pixels for raster type display devioes.
Programs that write to line drawing type devioes (e.g. the TEKTRONIX 4012) ignore this reoord.

DESCRIPTION
Opoode (equals 3 for this reoord type).
Lowest allowed pixel intensity.
Highest allowed pixel intensity.
Number of pixels on the X axis.
Number of pixels on the Y axis.

FIELD TYPE
1. 1*2
2. 1*2
3. 1*2
4. 1*2
5. 1*2

PLOTTING
PLOT PILES Page 11-5

10 May 85

11.2.3.4 Position Reoord. - This reoord tells a devioe where
start drawing a line, row/oolumn of pixels or oharaoter string. to

FIELD TYPE
1. 1*2
2.

3.

1*2

1*2

DESCRIPTION
Opoode (equals 4 for this reoord type),
soaled x position i.e. a value of 0 represents the
BLC values defined in the 'init for line drawing'
reoord, and a value equal to the soale faotor
represents the TRC value.
Soaled Y position.

11.2.3.5 Draw Veotor Reoord. - This reoord tells a devioe to draw a
line from the ourrent position to the final position speoified by this reoord.
FIELD TYPE DESCRIPTION

1« 1*2 Opoode (equals 5 for this reoord type).
2. 1*2 Soaled final X position.
3. 1*2 Soaled final Y position.

11.2.3.6 Write Charaoter String Reoord. - This reoord tells a
devioe to write a oharaoter string starting at the ourrent position.
FIELD TYPE DESCRIPTION

1« 1*2 Opoode (equals 6 for this reoord type).
2. 1*2 Number of oharaoters.
3. 1*2 Angle oode: 0 - write characters horizontally.

1 - write oharaoters vertically.
4. 1*2 X offset from ourrent position in oharaoters * 100
5* 1*2 Y offset from ourrent position in oharaoters * 100

(net position refers to lower left oorner of 1st ohar)
6. I*2(n) ASCII oharaoters (n - INT((field2 + 1) / 2))

11.2.3.7 Write Pixels Reoord. - This reoord tells a raster type
devioe to write an n-tuple of pixel values starting at the ourrent
position. Programs that write to line drawing type devioes ignore reoords of this type.

DESCRIPTION
Opoode (equals 7 for this reoord type).
Number of pixel values.
Angle oode: 0 - write pixels horizontally.

1 - write pixels vertically (up).X offset in oharaoters * 100.
Y offset in oharaoters * 100.
n (equal to field 2) pixel values.

FIELD TYPE
1. 1*2
2. 1*2
3. 1*2
4. 1*2
5. 1*2
6. I*2(n)

PLOTTING
PLOT FILES Page 11-6

10 May 85

11.2.3.8 Write Miso. Info To Image Catalog Reoord. - This reoord
tells the programs that write to interaotive devioes (TEKPL, IISPL)
to put up to 20 words of miscellaneous information in the image
oatalog starting at word I2TRA + 2. This information is interpreted
by routines suoh as AU9A (TKSKYPOS, TKMAPPOS, eot.). Routines that
write to non-interaotive graphios devioes (PRTPL) ignore this reoord.
FIELD TYPE DESCRIPTION

1. 1*2 Opoode (equals 8 for this reoord type).
2. 1*2 Number of words of information.
3. I*2(n) Miscellaneous info (n=value of field 2).

11.2.3.9 End Of Plot Reoord. - This reoord marks the end of a plot
file.
FIELD TYPE DESCRIPTION

1. 1*2 Opcode (equals 32767 for this reoord type).

11.3 PLOT PARAFORM TASKS
11.3.1 Introduction

Three paraform tasks (PFPL1, PFPL2 and PFPL3) are available in
AIPS for developing plot tasks that read a map and oreate a plot
file to be associated with the map. These tasks use the standard
AIPS defaults for adverb values suoh as IMNAME, BLC, TRC, XYRATIO,
PIXRANGE, eto., and work for both integer and floating point maps.
The programs are heavily commented and modular.

The three tasks oorrespond to the three types of plots that oan
be found in AIPS. The first type is a plot of an X Y plane of the
map or a subimage of the map. In this case the X and Y axis of the
plot are the same as the X and Y axis of the map. Examples of this
type are produoed by tasks CNTR and GREYS. A seoond type of plot is
when the X axis of the plot is a slioe of the X and Y axis of the
map and the Y axis of the plot is some other value suoh as
intensity. Task SL2PL will oreate a plot of this type from a slioe
of a map. The third type of plot is when the axis of the plot has
no real relation to the map axis. An example of this type of plot
is the histogram produoed by task IMEAN.

The struoture of all three paraform tasks are very similar.
The major differences are in subroutine PLINIT (the subroutine that
initializes the oommons used in labeling the plot), PLLABL (this
routine does the aotual labeling), and in the example plots in
subroutine PLTTOR. The adverbs reoeived from AIPS also differ
slightly. The tasks will be disoussed individually in a following
seotion, but first we will desoribe the general struoture of all
three programs. The tasks perform the following steps:

PLOTTING
PLOT PARAFORM TASKS Page 11-7

10 May 85

1. Open a map file corresponding to the users inputs from AIPS.
2. Create an extension file of type PL (plot) to be assooiated

with the map file. The header of the map file will be
updated to inolude this new extension file.

3. Write the plot file reoords to draw the borders and labels
of the plot. The programmer oan oustomize this section of
the program by ohanging data statements and assignment
statements in the main program.

4. Write the rest of the plot file reoords to the plot file.
This is done by subroutine PLTTOR. The programmer will
have to modify the oode in PLTTOR for his needs.

5. Do the neoessary olean up funotions, write end of plot
reoords, olose all files, eto.

11.3.2 Getting Started
The first step is choosing a new name and making oopies, using

the new name, of the souroe oode file and the help file. On the
Vax, one should oopy files NOTPGM:PFPLn.FOR, and HLPFIL:PFPLn.HLP
("n" stands for 1, 2 or 3) to a user direotory and work with the
program there. Useful information on running a task from a user's
direotory, and on oompiling and linking tasks and on modifying
skeleton tasks oan be found in other ohapters of this manual.

When a task is renamed, some souroe oode must be ohanged. The first line of the program

PROGRAM PFPLn
and the data statement

DATA PRGNAM /'PF','PL','n '/
should be ohanged to use the new name. The name in the HELP file should also be ohanged.

Next, the programmer should oompile and link the task in his
direotory and try running it from AIPS by using adverb VERSION.
This will assure the programmer that the task does work, and also
demonstrate the ourrent output of the task.

PLOTTING
PLOT PARAFORM TASKS Page 11-8

10 May 85

11.3.3 Labeling The Plot
The labeling of the plot takes plaoe in two subroutines oalled

by subroutine PLTTOR. PLINIT will set a number of variables in
oommon that give the labeling routines and the plot drawing routines
information about the oorners of the plot, the types of the axes,
the type of labeling, the size of the plot borders in oharaoters, and other details.

Subroutine PLLABL uses the information provided by PLINIT to
aotually write the oommands in the plot file to draw the labels, borders, and tio marks.

The programmer oan oustomize the labeling somewhat without
ohanging either PLINIT or PLLABL by setting values in an array
PCODE, and ohanging data statements in the main program.

Optional text oan be printed at the bottom of a plot by setting
values NTEXT (number of lines of text), and TEXT (an array
oontaining the aotual text lines). These values are ourrently set
in data statements in the main program. The programmer oan ohoose
to set NTEXT to zero to suppress all of the lines. If the
programmer wishes to use more than two lines, then the seoond
dimension of array TEXT must be ohanged in all the routines in whioh TEXT is deolared.

See the seotion on the individual programs for details on setting PCODES.

11.3.4 Plotting
Plotting oonsists of reading the map, oolleoting the data, and

then drawing lines or writing grey soale pixels. All of these steps
are usually done in subroutine PLTTOR. Reading a map is usually
done with routine GETROW (see below). Setting a starting point of a
line is usually done with routine PLPOS. Setting the end point of a
line is done with PLVEC. Grey soale pixels are written with subroutine PLGRY.

11.3.5 Map I/O
This program does not use the Easy I/O (WaWa) paokage, but

instead uses the standard AIPS I/O paokage grouped into a few
subroutines. This approaoh attempts to make life a little easier by
hiding a few of the messy details, but not to eliminate the
flexibility of the standard I/O by hiding it under a oomplex system.
These routines use the "oopy mode" approaoh to I/O in that data is
read into a large buffer and then oopied with soaling from the large
I/O buffer to a smaller buffer when a row is needed. This is less
effioient than using the bare AIPS I/O routines but frees the

PLOTTING
PLOT PARAFORM TASKS Page 11-9

10 Hay 85

programmer from having to deal with, indexes into the large array,
and handling both floating and integer maps in the upper level program.

There are four I/O routines in this program, HAKNAM (fills in a
real array with all the data items that go into speoifying a map),
INTHIO (initializes the I/O routines to read or write a oataloged
map), REIHIO (initializes oounters for reading a different subimage
or making another pass through a map opened by INTHIO) and GETROW
(reads a row of a map, and oonverts the values to floating point
numbers, if neoessary). HAKNAH and INTHIO are used in straight
forward ways to open the map. The programmer oan usually ignore
these two routines unless a seoond map must be opened. if the
program must make more than one pass through the data REIHIO oan be
used to reset all of the oounters. REIHIO assumes that the map is
already opened in INTHIO and that a seoond pass is being made
through the data. This routine oan NOT be used to read different
subimages from the same map at the same time. GETROW must be used
(usually in subroutine PLTTOR) to read data from the map, one row at a time.

The I/O routines in this program use a oommon named HAPHDR.
This name was ohosen to interfaoe with several of the plotting
routines whioh expeot this oommon to have the map header as the
first 256 words. Besides the map header, this oommon oontains an
array, IHSTUF, whioh has several data items of interest. IHSTUF(9)
*̂s particular interest sinoe it oontains the number of data
values (pixels) in eaoh row of the map. This number is usually the
upper limit of a loop whioh operates on eaoh element in the map row
A description of all the elements of IHSTUF are listed in the following table:

1. AIPS I/O Logioal unit number
2. FTAB index
3. Integer (1) or real (2) flag.
4. Blanked value for integers 0»no blanking.
5. Catalog slot of image.
6. Size of I/O buffer in bytes.
7. Disk volume number of image.
8. Number of dimensions in image.
9. Number of values read per row of image.
10-16. Number of values along all 7 axes

PLOTTING
PLOT PARAFORM TASKS Page 11-10

10 May 85

17-30. Window in BLC TRC pairs along all 7 axes.
31-36. Current position on last six axes.
37 1 if read forward -1 if baokward read on 2nd axis.
Minor modifications in the I/O routines oould be made to

produoe routines for reading UV data, but this has not yet been done.

11.3.6 Cleaning Up
Some of the adverbs passed from AIPS may not be used for some

types of plots. The programmer oan make things easier for the AIPS
user by removing them from the help file. The programmer must then
remove them from the oommon /INPARM/, whioh oan be found in the main
program and in several of the subroutines. The variable NPARMS is
initialized in an assignment statement in the main program. This
must be ohanged to correspond to the new number of floating point
numbers reoeived from AIPS.

11.3.7 The Three Paraform Plot Tasks
11.3.7.1 PFPL1 - This task should be used when developing a
plotting task in whioh the X and Y axis of the plot are the same as the X and Y axis of the map.

Muoh of the labeling is controlled by values of array PCODE.
The values for the elements of PCODE are summarized in the following table.
If PCODES(l) equals

1 then the plot axis oonsists of an unlabeled
reotangular border.

2 then draw a reotangular border plus
the title and text at the bottom.

3 then draw a reotangular border, labels,
and border tiok marks
indicating absolute coordinates (r.a., deol., eto.).

4 then draw a reotangular border, labels, and border tiok marks
indioating coordinates relative to the coordinates
of the image reference pixel (units usually in aro seoonds).

5 draw border, labels, and border tiok marks
indioating coordinates relative to the oenter of

PLOTTING
PLOT PARAFORM TASKS Page 11-11

10 May 85

the subimage plotted (units usually in aro seoonds).
6 draw border, labels, and border tiok marks

indioating image pixel numbers.
If PC0DES(2) equals

0 then label the X axis with the X axis value found in themap header.
other then label the X axis using variable XUNIT whioh is set in

a data statement in the main program.
If PC0DES(3) equals

0 then label the Y axis with the Y axis value found in themap header.
other then label the Y axis using variable YUNIT whioh is set in

a data statement in the main program.
If PC0DES(4) equals

0 then use the “standard" title oonsisting of map name,souroe name, and frequenoy.
other then use the title given in data statement for

variable TITLE in the main program.
If PC0DES(5) equals

0 then no grey soale pixels are to be written for theplot.
other then grey soale pixels with a range given by PIXRNG

(these values are usually passed from AIPS in adverb
PIXRANGE) oan be written to the plot. This oode value
oauses an 'init for grey soale' reoord to be written to the plot file.

Usually a task will let the AIPS user ohoose the value of
PCODES(l) by setting adverb LTYPE, e.g., PCODES(l) is set to LTYPE after the task gets this adverb value from AIPS.

When using PLPOS and PLVEC the positions for this type of ulot are given in pixels.
The unmodified version of PFPL1 oontains oode in PLTTOR to read

the map, and draw a grey soale plot. The user should remove this
example found between oomment lines "** Plot speoifio oode" and "**
End plot speoifio oode" and insert the oode for his own applioation.

PLOTTING
PLOT PARAFORM TASKS Page 11-12

10 May 85

11.3.7.2 PFPL2 - This task should be used when developing a
plotting task in whioh the X axis of the plot is a slioe of some
plane of the map, and the Y axis is some other value suoh as
intensity. The PCODE usage is desoribed below.
PCODES(l) equals

The label type of the X axis. The codes are the same as for PFPL1.
If PC0DES(2) equals

0 then label the X axis with the units determined by the
"standard" slioe labeling algorithm.

other then label the X axis using variable XUNIT whioh is set in
a data statement in the main program.

If PCODES(3) equals

0 then label the Y axis with the units found in the
map header for the map intensity.

other then label the Y axis using variable YUNIT whioh is set in
a data statement in the main program.

If PC0DESC4) equals
0 then use the "standard" title oonsisting of map name,

souroe name, and frequency.
other then use the title given in data statement for

variable TITLE in the main program.
If PCODESC5) equals

0 then use the "standard" slioe message at the bottom of
the plot. This message will give the oenter of the slioe.
This message ooours above the message found in TEXT as desoribed above.

other then do not print the "standard slioe message"

The example program in PFPL2 will plot a slioe of the X Y
plane. The user should remove the example found between oomment
lines "** Plot speoifio oode" and "** End plot speoifio oode" and
insert the oode for his own applioation. This example uses no
interpolation (it uses the value of the nearest pixel) and is NOT
adequate for a produotion program. See the oode in task SLICE for a
good set of interpolation routines and a "rolling buffer" soheme.

PLOTTING
PLOT PARAFORM TASKS Page 11-13

10 Hay 85

11.3.7.3 PFPL3 — This task should be used when developing a
plotting task in whioh the X and Y axis have no relation to the map
X and Y axis. The plot oould be of a funotion, a histogram of some values, or a table.

The only PCODES value used are PC0DES(4) and PCODES(5). If
PC0DESC4) is 0 then the program plots the "standard" title line.
Otherwise, it uses whatever string is in variable TITLE. If
PCODES(5) is not zero then this signals the existenoe of grey soale
pixels. The program automatically uses whatever strings are in
variables XUNIT and YUNIT to label the units for X and Y. Thus, the
programmer will have to edit the data statements for these variables
in the main program, or fill them in by some other means.

The example program in the unmodified version of PFPL3 will
plot a simple histogram of map intensities. The subroutine PLTTOR
reads the map to determine the histogram values and the range of the
Y axis (number of pixels). Then the standard initializing routine
(PLINIT) and labeling routine (PLLABL) are oalled. Finally the
histogram is plotted. The programmer must remove the two seotions
of example oode found between two sets of oomment lines "** Plot
speoifio oode" and H** End plot speoifio oode" and insert the oode for his own applioation.

11.3.8 Routines
11.3.8.1 PLEND - Do some plotting oleanup funotions. Write "end of
plot" reoord, olose plot file, oheok for veotors that were off the plot.

PLEND (IOBLK, ISTAT)
In/Out:
IOBLK 1*2(256) Work I/O buffer
ISTAT 1*2 O-suooessful oompletion, other-dies unnaturally.

11.3.8.2 PLPOS - This routine will put a 'position veotor' oommand in an AIPS plot file.
PLPOS (X, Y, IERR)

Inputs:
X R*4 X value.
Y R*4 Y value.
COMMON /PLTCOM/

Output:
IERR 1*2 Error oode. 0 means OK.

PLOTTING
PLOT PARAFORM TASKS Page 11-14

10 May 85

11.3.8.3 PLVEC - This routine will put a 'draw veotor' oommand in an AIPS plot file.
PLVEC (X, Y, IERR)

Inputs:
X R*4 X value.
Y R*4 Y value.
COMMON /PLTCOM/

Output:
IERR 1*2 Error oode. 0 means OK.

11.3.8.4 PLMAKE - This routine will oreate and open a plot file,
put it in the map header and write the first reoord into the plot file.

PLMAKE (NP, RPARM, IERR)
Inputs:
NP 1*2 Number of floating point words in parameter list

received from AIPS.
RPARM R*4(NP) AIPS parameters.

Output:
IERR 1*2 Error oode. two digit, first digit indi-

oates subroutine: 1: MAPOPN, 2: MADDEX,
3: ZPHFIL, 4: GINIT, seoond digit indi­
cates error oode of that subroutine.

11.3.8.5 PLGRY - This routine will put draw grey soale commands in the plot file.
PLGRY (IANGLE, NVAL, VALUES, IERR)Inputs:

IANGLE 1*2 Angle oode. 0 = horizontal, 1 - vertioal.
NVAL 1*2 The number of grey soale pixel values.
VALUES R*4(?) Grey soale values.Output:
IERR 1*2 Error oode. 0=ok.

11.3.8.6 MAKNAM - This routine will oonstruot a WaWa I/O name
string, given the values that make up the thing.

Inputs:
INAME R*4(3)
INCLAS R*4(2)
SEQ R*4
VOL R*4
TYPE R*4
USER R*4

file name
file olass
file sequenoe number,
file disk volume,
file type,
file user number.

PLOTTING
PLOT PARAFORM TASKS Page 11-15

10 May 85

Output:
NAMSTR R*4(9) "Name string" in the tradition of WaWa I/O.

NAME(1:3) name, NAME(4:5) olass, NAME(6) seq,
NAME(7) volume, NAME(8) type, NAME(9) user.

11.3.8.7 INTMIO - This routine will open a map file, set values in
oommon for use with olose down routine DIE and set up two arrays
oontaining all the values and oounters needed by reading and writing routines oompatible with this one.

*, ACCESS, NAME, BLC, TRC, IBSIZE, IHD, IMSTUF, DSCAL, IERR
Logioal unit number to use for the map file.
'READ' or 'WRITE' status to mark oatalog.
"Name string" in the tradition of WaWa I/O.
NAME(1:3) name, NAME(4:5) olass, NAME(6) seq,
NAME(7) volume, NAME(8) type, NAME(9) user.
Bottom left oorner of map.
Top right oorner of map
Size of I/O buffer in INTEGER*2 values.
Values updated so that subroutine DIE will olose this file.
) Map header.
I/O pointers and stuff that are needed by other
I/O routines oompatible with this one. They are:1. LUN
2. FTAB index
3. integer (1) or real (2) flag.
4. Blanked value for integers 0-no blanking.
5. Catalog slot of image.
6. Size of I/O buffer in bytes of all things.
7. Volume number of image.
8. Number of dimensions in image.
9. Number of values read per row of image.
10-16. Number of values along all 7 axis
17-30. Window in BLC TRC pairs along all 7 axis.
31-36. Current position on last six axis.
37 1 if read fwd -1 is baokwrd read on 2nd axis.DSCAL R*8(2) Soale faotors to use with this image.

IERR 1*2 Error oode. 0-ok.

Inputs:
ILUN 1*2
ACCESS R*4
NAME R*4(9)

BLC R*4(7)
TRC R*4(7)
IBSIZE 1*2

Outputs:
COMMON /CFILES/
IHD 1*2(256IMSTUF 1*2(37)

11.3.8.8 REIMIO - This routine will reinitialize the oounters in
IMSTUF for reading another subimage of a map opened and set up with
INTMIO. All IMSTUF values that oan be found in the header are
re-initialized even if they are not ohanged by the standard routines.

REIMIO (BLC, TRC, IBSIZE, IHD, IMSTUF, DSCAL, IERR)Inputs:

PLOTTING
PLOT PARAFORM TASKS Page 11-16

10 May 85

BLC
TRC
IBSIZE
IHD
IMSTUF(l)
IHSTUF(2)
IHSTUF(7)
IMSTUFC5)
IMSTUF(6)

Outputs:
IMSTUF(3)
IHSTUF(4)
IMSTUFC8)
IHSTUF(9)
IHSTUF(10-
IHSTUFC17-
IHSTUFC31-
IHSTUF(37)
DSCAL
IERR I

R*4(7) Bottom left oorner of map.
R*4(7) Top right oorner of map
1*2 Size of I/O buffer in INTEGER*2 values.
I*2(256)Hap header.
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
16)
30)
36)
1*2

R*8(2)
*2

LUN
FTAB index
Volume number of image.
Catalog slot of image.
Size of I/O buffer in bytes of all things.
Integer (1) or real (2) flag.
Blanked value for integers 0=no blanking.
Number of dimensions in image.
Number of values read per row of image.
Number of values along all 7 axis
Window in BLC TRC pairs along all 7 axis.
Current position on last six axis.
1 if read fwd -1 is bokwrd read on 2nd axis
Soale faotors to use with this image.

Error oode. 0*ok.

11.3.8.9 GETROW - This routine will read a row of an image file
that has been opened with and initialized with INTHIO. The routine
will oopy the row from the I/O buffer to the user buffer, oonverting
integer values to floating point, if neoessary.

GETROW (IHSTUF, DSCAL, IOBLK, ROW, EOF, IERR)

set in INTHIO.
Aotual value - DSCAL(l) * disk value + DSCAL(2)
I/O buffer.
Soaled output row of image.
TRUE means last row speoified in INTHIO by the
BLC, TRC arguments has been read.
Error oode, 0=ok, others from HDISK.

Inputs:
IHSTUF 1*2(37)
DSCAL R*8(2)

In/Out:
IOBLK I*2(?)

Outputs:
ROW R*4(?)
EOF L*2
IERR 1*2

CHAPTER 12
USING THE ARRAY PROCESSORS

12.1 OVERVIEW
Many of the more important of the AIPS tasks do a great deal of

computation while the opu of the host oomputer of most AIPS systems
is rather slow. The traditional approaoh to increasing the
performance of a opu is by means of hardware arithmetio units oalled
Array Prooessors. These array prooessors (or APs) have their own
memory and high speed, pipelined arithmetio hardware enabling them
to run muoh faster than the host for oertain specialized operations.
Sinoe not all computers running AIPS will have, or need array
prooessors attaohed there is a library of Fortran routines whioh
emulate the funotions of the array prooessor; these routines and a
oommon in the host memory oonstitute the "pseudo-array prooessor".
Sinoe the details of the implementation of these routines will
depend on the hardware on which the software is run these routines
are explioitly maohine dependent and have names beginning with the
letter "Q"; thus the "Q-routines". This ohapter will describe the
use AIPS makes of array prooessors and explain how to use APs. At
the end of this ohapter is a list of the major Q routines with
detailed oomments on the oall sequenoe.

12.1.1 Why Use The Array Prooessor?
The prinoiple reason for using an array prooessor is speed.

The design of most array prooessors optimizes its performance for
repetitive arithmetio operations making it mush faster at veotor
arithmetio than the host CPU. Sinoe most APs operate asynohronously
from the host CPU they oonstitute a oo-prooessor whioh inoreases the
oapaoity of the system.

A seoond advantage of using an array prooessor is that it
oontains its own looal memory. On systems with limited physioal
memory or address spaoe this oan be an important consideration. It
will be possible in the near future to get array prooessors, or fast
CPUs with many megawords of looal memory. Suoh large memories will
allow the use of more effioient methods of prooessing data.

USING THE ARRAY PROCESSORS
OVERVIEW Page 12-2

15 April 85

12.1.2 When To Use And Not To Use The AP
The array processor is most efficient at very repetitive

operations suoh as doing FFTs and multiplying large veotors. Its
effioienoy is greatly degraded for non-repetitive operations or
operations requiring a great number of deoisions based on the
results of oomputations. In faot, most array prooessors have very
limited capability to make deoisions based on the results of
oomputations.

Sinoe the APs have their own program and data memory, the AP
instructions and the data must be transfered to and the results
transfered from the AP. These I/O operations may oost more opu time
than the amount saved by using the array prooessor.

As a general rule, use of the AP is more effioient than the CPU
when multiple or oomplex (suoh as FFTs) operations whioh are highly
reptitious are going to be done on relatively large amounts of data
(thousands of words or more). In other oases using the AP will
probably not help muoh and will keep other prooesses from using this valuable resouroe.

12.2 THE AIPS MODEL OF AN ARRAY PROCESSOR
The model of an array prooessor used is oolored strongly by our

use of Floating Point Systems FPS AP-120B array prooessors.
However, expressed in general terms, this model oan be emulated on
other real or virtual (pseudo) array prooessors. It should be noted
that use of the APs requires veotorized programming, henoe,
implementation on super oomputers or other veotor maohines should be
relatively effioient. The following desoribes the fundamental
features of the AIPS model of array processors.

- AIPS ourrently uses APs essentially as veotor arithmetio
units. That is, data is sent into the AP, some (usually
veotor) operation is done, and the reults is returned to
the host CPU. The prinoiple difficulty in the
implementation of AIPS on other array or veotor prooessors
is that our oonoept of a veotor operation is rather more
general than that of most oomputing hardware manufactures.
Many of the more oomplex of the AIPS operations are better
desoribed as pipelined soalar operations. In the AIPS
useage, most high level oontrol and use of disk storage is
done in the host CPU and only arithmetio operations are done in the AP.

- AIPS oonsiders the AP to be a devioe whioh oan be assigned
via QINIT and deassigned via QRLSE. Basioally, this means
that data will not dissappear from the task's assigned AP
data memory between these oalls. This oonoept has little
meaning for virtual AP exoept that the data memory is
oleared after a QINIT oall.

USING THE ARRAY PROCESSORS
THE AIPS MODEL OP AN ARRAY PROCESSOR Page 12-3

15 April 85

- An AP should have a relatively large looal data memory.
The size of the AP data memory is obtained from a oommon
set by ZDCHIN whioh reads it from a disk file. The value
in this disk file oan be modified by the AIPS utility
program SETPAR. In the oase of pseudo (virtual) AP's, this
memory is physioally in the host CPU. A similar
implementation oould be done for an AP with signifioantly
less oapaoity than an FPS AP-120B.
In addition to data memory, the AP is assumed to have an
array of 16 integer registers (SPAD) whioh oan be read from
the host CPU. These are used to oommunioate the addresses
of maxima, minima, eto. This oapability is not extensively used.

- AIPS assumes that the array prooessor is programmable in
that funotions are used whioh are not now or likely ever to
be in a standard library. If the AP is not programmable or
is otherwise inoapable of emulating one of the AIPS
funotions, then these funotions must be performed in the
host CPU and hidden from the AIPS routines. Alternately,
these funotions may be reformulated in terms of the
funotions available; this will be neoessary for effioient
implementation of long veotor super computers and the new,
oheap APs.

- Communication with the AP by AIPS is via Fortran oall
statements whioh speoify the data in the AP memory and
other oontrol information, transfer data between the AP and
host CPU, or synchronize the operation of the AP and host CPU.

- Data in the AP memory is speoified by a base address and an
inorement. In ourrent implementations these addresses are
absolute but this is not assumed. The oalling prooess is
assumed to have absolute oontrol over an address spaoe
beginning at address 0 and extending to the address
indioated in the devioe oharaoteristio oommon (inolude
CDCH.INC) as (1024KAPWRD-1). Word addressing only is used.

- Many of the most oruoial funotions used by AIPS routines
depend on data dependent address generation and logio flow.
As mentioned above, implementation of AIPS on an array
processor without this oapability will require
reformulation of several of the algrothyms (especially
gridding and the in-oore CLEAN) in terms of veotor
operations. This reformulation will likely require veotor
logioal operations, Gather, Soatter, Merge and Compress
operations.

- AIPS assumes that the AP oan handle either integer or real
data values (with the same word size). Complex values
oonsist of a pair of real values in adjaoent looations, the
first being the real part and the seoond being the

USING THE ARRAY PROCESSORS
THE AIPS MODEL OF AN ARRAY PROCESSOR Page 12-4

15 April 85

imaginary part.

12.3 HOW TO USE THE ARRAY PROCESSOR
Sinoe the array processors used by AIPS have their own program

and data memories the instructions must be loaded in to the AP and
data sent to, and results returned from the AP. Sinoe the AP runs
asynohronously from the host opu there most also be ways to
synchronize the operations. Then general operations are given in
the following list with the name of the subroutine AIPS uses for the given operation:

1. Assign / Initialize the AP. (QINIT)
2. Transfer data to the AP. (QPUT)
3. Wait for transfer to oomplete. (QWD, QWAIT)
4. Load and exeoute the AP program, (many)
5. Wait for computations to finish. (QWR, QWAIT)
6. Transfer data baok to host opu. (QGET)
7. Walt for transfer to oomplete. (QWD, QWAIT)
8. Release AP. (QRLSE)

12.3.1 AP Data Addresses
The AIPS convention for specifying data in the AP memory, whioh

follows the Floating Point Systems (FPS) conventions, is to speoify
data by the zero relative memory address of the first element in an
array, the memory address inorement between the elements of an
array, and the number of elements in the array. On FPS APs the
memory address is an absolute address but in implementations on
other APs the address may be a relative address but this should be
hidden from the programmer.

12.3.1.1 Q Routine Arguments - The oall arguments to the Q routines
(AP-routines) are local long integers (Integer4). The exceptions to
this are the host array names passed in QPUT and QGET. The FPS Q
routines oonvert these to 16 bit unsigned integers.

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR Page 12-5

15 April 85

12.3.1.2 Array Prooessor Memory Size - Sinoe different array
prooessors will have different memory sizes the memory size of the
AP is oarried in the Devioe Charaoteristios Common whioh is obtained
by the inoludes DDCH.INC and CDCH.INC. The size of the AP is in the
1*2 value KAPWRD as the multiple of 1024 words of AP data memory.
Any operation with the AP should oheok that enough data memory is
available and if possible soale the operation to make full use of the available memory.

12.3.2 Assigning The AP
The array prooessor is assigned to the oalling task using the

AIPS routine QINIT. QINIT incorporates the AIPS priority system and
provides for smooth use of the AP for batoh tasks. The AIPS AP
priority soheme is to give tasks with lower Pops numbers (the number
at the end of the task name when it is running) higher priority.
This is done by keeping a list of AP tasks in QINIT. When a task
asks for an AP, QINIT then oheoks to see if any AP tasks with a
lower pops number are running; if so then QINIT suspends the task
for a short period and then oheoks again. The number of times a
task goes through the oheok - suspend loop before asking for the AP
at the next opportunity is proportional to its Pops number.

QINIT also sets values in oommon /BPROLC/ (inoludes DBPR.INC
and CBPR.INC) whioh oontrol the AP roller subroutine QROLL. The
text of these inoludes is shown at the end of this ohapter and the
use of the values are desoribed in the detailed description of QROLL given at the end of this ohapter.

On some systems batoh AIPS tasks present more of a problem.
AIPS batoh tasks are usually run at lower priority than interaotive
tasks so they may grab the AP and then not get enough opu oyoles to
finish that AP operation for a very long time. To avoid this
problem, QINIT inoreases the priority of the batoh task to that of
an interaotive task while it has the AP.

QRLSE is used to deassign the AP. QRLSE also lowers the
priority of batoh tasks after the AP is released.

In the interest of a smooth and friendly system for users, it
is important not to hog the AP for long periods of time. The
priority system should then work to give lower Pops numbered AIPS
users a larger fraotion of the time if they need the AP. A task
should in general not keep the AP tied up for more than 5 to 10
minutes at a time, less if that is praotioal. For tasks whioh may
need to keep the same data in the AP for long periods of time, suoh
as tasks whioh oompute models based on CLEAN oomponents, there is an AP roller subroutine QROLL.

QROLL determines if it is time to roll out the AP based on
values set by QINIT, will oreate a soratoh file (using the /CFILES/
system), oopy the speoified oontents of the AP memory to a soratoh

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR Page 12-6

15 April 85

file, release the AP, wait a short period of time, re-assign the AP
and load the previous oontents baok into the AP memory. Details of
the oall sequenoe to QROLL are found at the end of this ohapter.
IMPORTANT NOTE: QROLL (and APROLL) work properly only for floating
point data. Integer values rolled will not be restored oorreotly.

12.3.3 Data Transfers To And From The AP
The fundamental routines for getting data to and from the Array

Prooessor memory are QPUT and QGET; details of the oall sequenoes
oan be found at the end of this ohapter. In addition, for
image-like data there is the routine APIO.

APIO transfers image-like data between disk files and the array
prooessor. The file open and olose and initialization logio are all
oontained in this routine. Information about the file and the the
desired properties of the I/O are passed to APIO in the array FLIST.
APIO oan aooess either oatalogued 'MA' type files or soratoh files
using the /CFILES/ oommon system. APIO oan handle arbitrary row
lengths. This is done by breaking up the logioal reoords if they
are larger than 16384 bytes or the buffer size.

NQXEJ. it is important that data read with APIO either have a
logioal reoord length of 16384 bytes or less or have been written by
APIO with the same buffer size; this may be a problem for oatalogued
files if the row length is greater that 4096 for real format data or
8192 for soaled integers. The problem is that APIO will break up
logioal reoords if they are longer than 16384 bytes or the buffer
size and MDISK may leave blank spaoe on the disk if the shorter
logioal reoord does not fill a disk sector. For this reason it is
good to use a buffer size of 16384 bytes or greater when reading or
writing oatalogued files with APIO. It is IMPORTANT to always use
the same size buffer when aooessing a given file.

Useage notes for APIO:
l. Opening the fils.,.

If APIO determines that the file is not open it will
do so. The file oan be either a oatalogued file or a
soratoh file using the /CFILES/ oommon system. If the
oatalogue slot number given in FLIST is 0 or less the file
is assumed to be a soratoh file. File open assumes that
the file type is 'MA' (if oatalogued), file is opened
patiently without exolusive use.

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR Page 12-715 April 85

2 .

APIO initializes the I/O using the values in FLIST
when it opens the file. It may be initialized again at any
time using OPCODE 'INIT'. Also switohing between 'READ'
and 'WRIT ' will foroe flushing the buffer ('WRIT') and
initialization. Any initialization when the ourrent
operation is 'WRIT ' will oause the buffer to be flushed.

3. Closing ihfi file..
The file may be olosed with a oall with opoode 'CLOS'.

If the file is being written and a 'CLOS' oall is issued,
APIO will flush the buffer. This means that if APIO is
being used to write to a disk it MUST be oalled with
OPCODE-'CLOS','READ', or 'INIT' to flush the buffer. NOTE:
All pending AP operations MUST be oomplete before oalling
APIO with opoode 'CLOS'.

4. A£ timing
APIO oalls QWD before getting data from or sending

data to the AP but does not oall QWR. The oalling routine
should oall QWR as appropriate.

More details about the oall arguments are found at the end of this
ohapter and an example of the use of APIO is given in a later seotion.

12.3.4 Loading And Exeouting AP Programs
Loading and exeouting AP programs is done in a single oall to

the relevant routine. The oall argument also inoludes the
speoifioation of the data, looation of the output array, and any
prooessing flags. A list of the AP routines ourrently supported in
AIPS is found at the end of this ohapter. If the funotion desired
is not available then it is possible to write it for the AP.

12.3.5 Timing Calls
Sinoe array prooessors normally run asynohronously from the

host CPU timing oalls are neoessary. The subroutine oalls basioally
suspend the operation of the oalling program until the speoified AP
operation is oompleted. FPS olaims that data transfers and
computations (not involving the same AP memory) may be overlapped;
however, the results of doing this are erratio and this praotioe
should be avoided. On oooasion there appear to be timing problems
whose symptoms are erratio and very wrong results whioh go away when
apparently unneoessary timing oalls are added; suoh as oalls to QWR
between oalls to oomputation routines.

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR Page IS-8

15 April 85

We use three timing oalls:
- QWD suspends the oalling program until data transfers to or

from the AP are complete.
- QWR suspends the oalling program until the AP oompletes all

oomputations.
- QWAIT suspends the oalling program until all data transfers

and oomputations are oomplete.

12.3.6 Writing AP Routines
If the ourrent library of AP routines does not oontain the

desired funotion there are two possibilities for ooding the
funotion: 1) mioroooding the routine or 2) using the Veotor Funotor
Chainer (or equivalent on non-FPS APs) to oombine existing funotions
to oreate the desired funotion. If either of these is ohosen the
programmer should also write the corresponding pseudo-AP routines if
the task is likely to have general use. The name of the routine
should start with the letter Q and be placed in the appropriate
libraries.

In order to use miorooode or Veotor Funotion Chainer (VFC)
routines the following steps must be performed:

1. Compile VFC (or other high level language routines) to
assembly (miorooode) language. For FPS oode this is done
by the FPS routine VFC.

2. Assemble miorooode into machine oode. For FPS oode this is
done using APAL.

3. Link edit miorooode routines together to make an exeoutable
module. For FPS oode this is done using APLINK. APLINK
oreates a Fortran or host assembly language routine with
the exeoutable module in a data statment.

4. Compile/assemble the Fortran/assembly language module and
put in the appropriate subroutine link edit library.

It is beyond the soope of this manual to desoribe the use of the FPS
or other AP software, the reader is referred to the appropriate manual provided by the AP vendor.

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR Page 12-9

15 April 85

12.3.6.1 Mioroooding Routines. - It is beyond the soope of this
manual to give details about mioroooding for array prooessors, see
the AP manuals for these details. The general prinoiples of
effioient mioroooding are that several of the hardware units,
address oomputation, floating add, floating multiply, and memory
aooess, may be given instructions in a given oyole. In addition,
the floating point hardware is pipelined. That is, even though it
takes several oyoles for an operation, it is broken up into several,
single oyole steps and a new operation oan be initiated eaoh oyole.

This arohiteoture allows for very effioient loops. The loop
may be broken into several seotions and one seotion from eaoh of
several passes through the loop may be prooessed in parallel.
Effioient ooding of loops may become very oomplioated but oareful
ooding may speed up the prooess by a faotor of several. The souroe
oode for NRAO written miorooode is kept in the file FPSSUB:WDC.AP.

12.3.6.2 Veotor Funotion Chainer. - The prinoiple purpose of the
Veotor Funotion Chainer is to oombine a number of mioroooded
routines into a single AP oall. This oan greatly reduoe the
overhead of the host opu talking to the AP; and, if the individual
AP operations are relatively numerous and short ohaining routines
oan make a dramatio improvement in the speed of the overall prooess.

The Veotor Funotion Chainer uses souroe oode that looks vaguely
like Fortran but has very limited capabilities and essentially no
aooess to the data memory. Hopefully, in the future there will be
effioient Fortran oompilers for APs. (FPS has suoh a oompiler for
the 120B but NRAO doesn't have a oopy).

12.3.7 FFTs
One of the more oommon operations using the array prooessor is

the Fast Fourier Transform (FFT). We have adopted the FPS
convention for real-to-oomplex FFTs in paoking the imaginary part of
the last oomplex value into the real part of the first value in the
array. This is allowed beoause the imaginary part of the first
value and the real part of the last value are always zero. This
oonvention allows the use of the same AP memory or disk spaoe for
the input and output arrays from a real-to-oomplex FFT.

We also adopt the oonvention for FFTs that the seoond half of a
one dimensional array oome first and that the oenter is N/2+1 where
N is the number of elements in the array (always a power of two).
In two dimensions this means basioally that the oenter of the array
is at the oorners with the first element of an NX x NY array being
(NX/2+1,NY/2+1). An exoeption to this is that the AIPS two
dimensional FFT routine DSKFFT expeots the normal order when
transforming from the sky plane to the aperature plane (reverse transform).

USING THE ARRAY PROCESSORS
HOW TO USE THE ARRAY PROCESSOR Page 12-10

15 April 85

The AIPS utility routine DSKFFT will FFT a two dimensional
array kept in a /CFILES/ system soratoh file. Real-to-oomplex,
oomplex-to-real, or full oomplex transforms oan be done in either
direotion. For real-to-oomplex or oomplex-to-real transforms the
maximum and minimum values in the output array and real-to-oomplex
transforms oan return either oomplex, the real part of the result,
or the amplitude of the result. Details of the oall sequenoe for
DSKFFT are given at the end of this ohapter.

The FFT routines require REAL format data without blanking in
an array whioh is a power of two on a side. In addition, the center
of an image in a catalogued file may not be in the required
(NX/2+1,NY/2+1) position whioh will produoe a phase ramp in the
transformed array. Two AIPS utility routines are useful in this
oase 1) PEAKFN whioh finds the location of the peak of an image near
the oenter (say of a dirty beam) and 2) PLNGET which will subimage a
catalogued file, float soaled integer input, zero fill the exoess,
and rotate the oenter of the image. Detailed descriptions of these
routines are given at the end of this ohapter.

12.4 PSEUDO-ARRAY PROCESSOR
Sinoe not all systems have array processors and many AIPS

systems are running on VAXes whioh have very large address spaoes
and virtual memory, there is a set of Fortran and assembly language
routines whioh emulate the funotions of an array prooessor, ie. the
"pseudo-array processor". The pseudo-AP consists of a Common,
obtained by the INCLUDES DAPC.INC, CAPC.INC, and EAPC.INC, whioh
serves as the AP data memory and a set of routines whioh operate on
data in this oommon. There are pseudo-AP routines duplicating all
of the funotions of the true array prooessor so that a task is
simple linked with the appropriate library to use either a true or
the pseudo-AP. Listings of the pseudo-AP inoludes appear at the end
of this ohapter. Since Fortran requires one relative indexing
whereas the AP addressing is zero relative, pseudo AP routines must add 1 to addresses.

12.5 EXAMPLE OF THE USE OF THE AP
In the following example of the use of the array prooessor, the

elements of two soratoh files oontaining arrays N x M using the
/CFILES/ system (numbers ISCRA and ISCRB) are added and returned to
the file ISCRC. This makes very inefficient use of the AP but
illustrates the basio features. This example also illustrates use of APIO.

SUBROUTINE FILADD (ISCRA, ISCRB, ISCRC, N, M, IRET)C —— -- ------------------ —-------------------- —______________
C FILADD adds two REAL N x M arrays in the /CFILES/ soratoh files
C ISCRA and ISCRB and writes the result in soratoh file ISCRC.

USING THE ARRAY PROCESSORSEXAMPLE OP THE USE OF THE AP Page 12-11
15 April 85

c Inputs:
c ISCRA 1*2
c ISCRB 1*2
c ISCRC 1*2
c N 1*2
c M 1*2
c Output:
c IRET H * to
c
c—

C-
C
C
C

C
C

C
C
C
C
C

/CFILES/ soratoh. file number of first input file.
/CFILES/ soratoh file number of seoond input file
/CFILES/ soratoh file number of output file.
Length of a row in the array
Number of rows in the array.

oode.
INTEGER*2 N, M, INCR, FLIST(22,3), LOOP, IRET,
* ISCRA, ISCRB, ISCRC,
* NO, N22
INTEGER*4 APLOCA, APLOCB, APLOCC, LEN, KAP, B04,
* ZERO, ONE, TWO
REAL*4 BUFF1(4096), BUFF2(4096), BUFF3(4096), READ, WRITE, CLOSE
INCLUDE 'INCS:DDCH.INC'
INCLUDE 'INCS:CDCH.INC'
DATA READ, WRITE, CLOSE /'READ','WRIT','CLOS'/
DATA NO, N22 /0,22/, ZERO, ONE, TWO /0,1,2/

CALL FILL (N22, NO, FLIST)
FLIST(4,1) « 0

Setup for APIO
Pixel type - floating
Size of arrayFLIST(5,1) - N

FLIST(6,1) - M
Buffer size (4096 reals)FLIST(13,1) - 4096 * 2 * NWDPFP
Copy for other files CALL COPY (N22, FLIST(1,1), FLIST(1,2))

CALL COPY (N22, FLIST(1,1), FLIST(1,3))
Set LUNsFLIST(1,1) - 16

FLIST(1,2) - 17
FLIST(1,3) - 18
FLIST(2,1)
FLIST(2,2)
FLIST(2,3)
APLOCA - 0
LEN - N

ISCRA
ISCRB
ISCRC

APLOCB - APLOCA + LEN
APLOCC - APLOCB + LEN
CALL QINIT (ZERO, ZERO, KAP)
DO 100 LOOP - 1, M

Set /CFILES/ file numbers

Set AP pointers,

Address for B file
Address for C file
Grab AP
Start loop.
F H g ̂ to AP

CALL APIO (READ, FLIST(1,1), APLOCA, BUFFI, IRET)

USING THE ARRAY PROCESSORS
EXAMPLE OP THE USE OF THE AP Page 12-12

15 April 85

C Cheok for error
IF (IRET.NE.O) GO TO 999

C File B to AP
CALL APIO (READ, FLIST(1,2), APLOCB, BUFF2, IRET)

C Cheok for error
IF (IRET.NE.O) GO TO 999

C Wait for data transfer CALL QWD
C Add

CALL QVADD (APLOCA, ONE, APLOCB, ONE, APLOCC, ONE, LEN)
C Wait for opertaion to finish

CALL QWR
C Write result to disk.

CALL APIO (WRITE, FLIST(1,3), APLOCC, BUFF3, IRET)
C Cheok for error

IF (IRET.NE.O) GO TO 999
100 CONTINUE

C Release the AP
CALL QRLSE

C Close files.
CALL APIO (CLOSE, FLIST(1,1), APLOCA, BUFFI, IRET)

C Cheok for error
IF (IRET.NE.O) GO TO 999
CALL APIO (CLOSE, FLIST(1,2), APLOCB, BUFF2, IRET)

C Cheok for error
IF (IRET.NE.O) GO TO 999
CALL APIO (CLOSE, FLIST(1,3), APLOCC, BUFF3, IRET)

999 RETURN
C---

END

12.6 INCLUDES
There are several types of INCLUDE file whioh are distinguished

by the first oharaoter of their name. Different INCLUDE file types
oontain different types of Fortran deolaration statments as
desoribed in the following list.

Dxxx.INC. These INCLUDE files oontain Fortran type (with
dimension) deolarations.
Cxxx.INC. These files oontain Fortran COMMON statments.
Exxx.INC. These oontain Fortran EQUIVALENCE statments.

- Vxxx.INC. These oontain Fortran DATA statments.
Ixxx.INC. Similar to Dxxx.INC files in that they oontain
type deolarations but the deolaration of some varaible is
omitted. This type of inolude is used in the main program
to reserve spaoe for the omitted variable in the
appropriate oommon. The omitted variable must be deolared
and dimensioned separately.
Zxxx.INC. These INCLUDE files oontain deolarations whioh
may ohange from one oomputer or installation to another.

USING THE ARRAY PROCESSORS Page 12-13
INCLUDES 15 April 85

12.6.1 CAPC.INC

C Inolude CAPCCOMMON /APFAKE/ RWORK, APCORE
COMMON /SPF/ SPAD

C End CAPC

12.6.2 CBPR.INC

C Inolude CBPRCOMMON /BPROLC/ XTLAST, DELTIM, DELAY, TRUEAP
C End CBPR

USING THE ARRAY PROCESSORSINCLUDES Page 12-14
15 April 85

12.6

C

C

12.6

C

C

12.6

C

C

12.6

C

.3 CDCD.INC

Inolude CDCHCOMMON /DCHCOM/ NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR,
* CSIZPR, NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP, NBITWD,
* NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, XPRDMM, XTKDMM,
* NTVACC, NTKACC, UCTSIZ, BYTFLP, SYSNAM, VERNAM, USELIM,* IFILIT, RLSNAM
COMMON /FTABCM/ DEVTAB, FTAB

End CDCH.

.4 DAPC.INC

Inolude DAPCREAL*4 APCORE(l), RWORK(4096)
INTEGER*4 APCORI(l), IWORK(4069), SPAD(16)
COMPLEX CWORK(2048)

End DAPC

.5 DBPR.INC

REAL*4 DELAY
REAL*8 XTLAST, DELTIM
LOGICAL*2 TRUEAP

.6 DDCH.INC

Inolude DDCHREAL*4 XPRDMM, XTKDMM, SYSNAM(5), VERNAM, RLSNAM(2)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
* CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP,
* NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC,
* NTKACC, UCTSIZ, BYTFLP, USELIM, IFILIT,* DEVTAB(50), FTAB(l)

End DDCH.

Inolude DBPR

End DBPR

12.6.7 EAPC.INC

c Inolude EAPCEQUIVALENCE (APCORE, APCORI), (RWORK, IWORK, CWORK)
c End EAPC

USING THE ARRAY PROCESSORS Page 12-15
INCLUDES 15 April 85

12.6.8 IDCH.INC

Inolude IDCHREAL*4 XPRDMM, XTKDHM, SYSNAM(5), VERNAM, RLSNAM(2)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
* CSIZPRC2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP,
* NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC,* NTKACC, UCTSIZ, BYTFLP, IFILIT,
* USELIM, DEVTABC50)

End IDCH.

USING THE ARRAY PROCESSORS
ROUTINES Page 12-16

15 April 85

12.7 ROUTINES
12.7.1 Utility Routines
12.7.1.1 APIO - transfers image-like data between disk files and
the array prooessor. The file open and olose and initialization
logio are all oontained in this routine. Information about the file
and the the desired properties of the I/O are oontained in the array
FLIST. APIO oan aooess either oatalogued 'MA' type files or soratoh
files using the /CFILES/ oommon system.

APIO (OPCODE, FLIST, APLOC, BUFFER, IRET)
Inputs:

OPCODE R*4 Code for the desired operation.
'INIT' forces the initialization of the I/O.
'READ' reads a logioal reoord from the disk and

sends it to the speoified AP looation.
'WRIT' Gets data from the AP and writes it to

disk.
'CLOS' Closes the file and flushes the buffer if necessary.

FLIST(22) 1*2 An array containing information about the file
and the I/O. Parts are to be filled in by the
oalling routine and are for use by APIO.

1 = LUN, must be filled in,
2 - disk number for catalogues files or

/CFILES/ number for soratoh files.
3 - oatalogue slot number for oatalogued files,

.LE. 0 indioates that the file is a soratoh
file.

4 - pixel type. 0=>floating, 1-soaled integer.
5 - Length of a logioal reoord (row) in pixels.
6 - Number of rows in a plane.
7,8 = P 1*4 value to be added to 1 for the

blook offset.
9-12 - the window desired in the image, 0's»>

all of image. The logioal reoords must fit
in the buffer and be smaller than 16384
bytes to subimage rows. Reversing the
order of FLIST(IO) and FLIST(12) will
cause the rows to be aocessed in the
reverse order.

13 = Buffer size in bytes. 32767 -> 32768.Used by APIO:
14 - FTAB pointer
15 = Number of MDISK oalls per logioal reoord.
16 - Current OPCODE,

0 - none, INIT on next oall
1 - READ
2 - WRITE

17-18 - aotual length of logioal row as 1*4
19-22 - Spare.

APLOC 1*4 Base address in AP for data.

USING THE ARRAY PROCESSORS
ROUTINES Page 12-1715 April 85

BUFFERC*) R*4 Working buffer.
Output:

IRET 1*2 Return oode, 0 -> OK or
1 - Bad OPCODE,
2 - Attempt to window too large

a file.
3 - Buffer too small (<NBPS bytes)
MDISK error oodes + 10, or
MINIT error oodes +20, or
ZOPEN error oodes + 30.

12.7.1.2 QROLL - oheoks if it is time to roll the AP as determined
by values bet by QINIT, copies the first NWORDs of AP main data
memory to a soratoh file, gives up the AP, does a task delay for
DELAY, goes baok into the AP queue and loads the soratoh file baok
into the AP. If NWORD .le. 0 then the AP is not rolled but the AP
is given up and the task goes baok into the AP queue.
NOTE: APROLL is oalled by QROLL and uses oommon /CFILES/ for the
soratoh file. A soratoh file of "type" 'AR' oreated by APROLL and then destroyed by QROLL after use.
NOTE: LUN 8 is used for I/O and a AIPS "map" I/O slot is opened if
the AP memory is aotually rolled.
IMPORTANT NOTE: QROLL (and APROLL) work properly only for floating
point data. Integer values rolled will not be restored oorreotly.

QROLL (NWORD, BUFFER, BUFSZ, IRET)
Inputs:
NWORD 1*4

BUFFER(*) R*4
BUFSZ 1*2

Inputs from C0MM<
TRUEAP L*2
XTLAST R*8
DELTIM R*8
DELAY R*4

Outputs:
IRET 1*2

Number of words of AP memory to save.
If .le. 0 the oontents of the AP memory are not saved.
Work buffer.
Size of BUFFER in bytes.
I /BPROLC/ (set by QINIT)
True if a real AP (to be rolled)
Real time AP assigned (min).
Time interval between rolls (min).
Time to delay task (seoonds).
Return error oode, 0->OK

2 -> oouldn't reload AP.

USING THE ARRAY PROCESSORS
ROUTINES Page 12-1815 April 85

12.7.1.3 DSKFFT - a disk based, two dimensional FFT. If the FFT
all fits in AP memory then the intermediate result is not written to
disk. Input or output images in the sky plane are in the usual form
(i.e. oenter at the oenter, X the first axis). Input or output
images in the uv plane are transposed (v the first axis) and the
oenter-at-the-edges oonvention with the first element of the array the oenter pixel.

DSKFFT (NR, NC, IDIR, HERM, LI, LW, LO,
* JBUFSZ, BUFFI, BUFF2, SMAX, SMIN, IERR)

Inputs:
NR 1*2

N 1*2
IDIR 1*2

The number of rows in input array (# oolumns in
output). When HERM is TRUE and IDIR— 1, NR is twioe
the number of oomplex rows in the input file.

The number of oolumns in input array
(# rows in output).
1 for forward (+i) transform, -1 for inverse (-i) transform.
If HERM - .TRUE, the follwing are reoognized:

IDIR-1 keep real part only.
IDIR*=2 keep amplitudes only.
IDIR-3 keep full oomplex (half plane)

When HERM - .FALSE., this routine does a oomplex to
oomplex transform.
When HERM - .TRUE, and IDIR - -1, it does a
oomplex to real transform. When HERM - .TRUE, and
IDIR - 1, it does real to oomplex.
File number in /CFILES/ of input.
File number in /CFILES/ of work file (may equal LI).
File number in /CFILES/ of output.

JBUFSZ 1*2 Size of BUFFI, BUFF2 in bytes. Should be large
at least 4096 R*4 words.

HERM

LI
LW
LO

L*2

1*2
1*2
1*2

Output:
BUFFI
BUFF2
SMAX
SMIN
IERR

R*4
R*4
R*4
R*4
1*2

Working buffer
Working buffer
For HERM=.TRUE. the maximum value in the output file
For HERM-.TRUE. the minimum value in the output file
Return error oode, 0»>OK, otherwise error.

NOTE: uses AIPS LUNs 23, 24, 25.

12.7.1.4 PEAKFN - searohes a region around the oenter of an image
to looate the pixel looation of the maximum. Will handle data oubes
and either integer or floating images.

PEAKFN (LUN, VOL, CNO, IDEPTH, CATBLK, IBUFF,
* BUFFER, JBUFSZ, PEAKX, PEAKY, IRET)

Inputs:
LUN 1*2 Logioal unit number to use.

USING THE ARRAY PROCESSORS Page 12-19
ROUTINES 15 April 85

VOL 1*2
CNO 1*2
IDEPTH(5) 1*2
CATBLK(256) 1*2
IBUFF(*) 1*2
BUFFER(*) R*4
JBUFSZ 1*2

Output:
PEAKX R*4
PEAKY R*4
IRET 1*2

Disk on whioh image resides.
Catalog slot number of image.
Depth in image of desired plane.
Catalog header blook for image.
Integer work buffer.
Real work buffer should be physioally the same as
IBUFP.
Size of the IBUFF/BUFFER in bytes
X ooordinate of peak pixel looation.
Y ooordinate of peak pixel looation.
Return oode, 0-> OK, otherwise error.

12.7.1.5 PLNGET - reads a seleoted portion of a seleoted plane
parallel to the front and writes it into a speoified soratoh file.
The output file will be zero padded and a shift of the oenter may be
speoified. Output file is REAL*4 but the input may be either
INTEGER*2 of REAL*4. If the input window is unspeoified (0's) and
the output file is smaller than the input file, the NX x NY region
about position (MX/2+1-OFFX, MY/2+1-OFFY) in the input map will be
used where MX,MY is the size of the input map. NOTE: If both XOFF
and/or YOFF and a window (JWIN) whioh does not oontain the whole map
are given, XOFF and YOFF will still be used to end-around rotate the
region inside the window.

PLNGET (IDISK, ICNO, CORN, JWIN, XOFF, YOFF,
* NOSCR, NX, NY, BUFFI, IBUFF1, BUFF2, BUFSZ1, BUFSZ2,
* LUN1, LUN2, IRET)

Inputs:
IDISK 1*2 Input image disk number.
ICNO 1*2 Input image oatalogue slot number.
C0RN(7) 1*2 BLC in input image (1 Sf 2 ignored)
JWIN(4) 1*2 Window in plane.
XOFF 1*2 offset in oells in first dimension of the
YOFF 1*2

oenter from MX/2+1 (MX 1st dim. of input win.)
offset in oells in seoond dimension of the

NOSCR 1*2
oenter from MY/2+1 (MY 2nd dim. of input win.)
Soratoh file number in oommon /CFILES/ for

NX, NY 1*2
output.
Dimensions of output file.

BUFF1(*) R*4 Work buffer
IBUFFK*) 1*2 Work buffer (should be the same as BUFFI)BUFF2(*) R*4 Work buffer.
BUFSZ1 1*2 Size in bytes of BUFFI/IBUFF1
BUFSZ2 1*2 Size in bytes of BUFF2
LUN1, LUN2 1*2 Log. unit numbers to use.Output:
IRET 1*2 Return error oode, 0 -> OK,

1 - oouldn't oopy input CATBLK
2 - wrong number of bits/pixel in input map.

USING THE ARRAY PROCESSORS
ROUTINES

3 - input map has inhibit bits.
4 - oouldn't open output map file.
5 * oouldn't init input map.
6 - oouldn't init output map.
7 - read error input map.
8 - write error output map.
9 - error oomputing blook offset
10 - output file too small.

Useage notes:
CATBLK in COMMON /MAPHDR/ is set to the input file CATBLK.

12.7.2 Array Prooessor Routines
The names and funotions of the general purpose AP routines are given
in the following brief list. A number of speoialized routines for
CLEANing, gridding uv data and model oomputations have been omitted.

- QGET (HOST, AP, N, TYPE) Transfer data from AP to host
- QGSP (I, NREG) Reads the value of an SPAD register (FPS and pseudo)
- QPUT (HOST, AP, N, TYPE) Transfer data from host to AP.
- QRFT (UDATA, UFT, UPHO, NFT, NDATA) Computes real, inverse

Fourier transform from arbitrarily spaoed data.
- QWAIT (no arguments) Suspends host until all transfers and

oomputations are oomplete.
- QWD (no arguments) Suspends host until all transfers of data are oomplete.
- QWR (no arguments) Suspends host until all oomputations are oomplete.
- QBOXSU (A, I, NB, C, J, N) Does a boxoar sum on a veotor.
- QINIT (II, 12, 13) Assigns and initializes AP.
- QRLSE (no arguments) Releases the AP
- QCFFT (C, N, F) Complex FFT.
- QCRVMU (A, I, B, J, C, K, N) Complex - real veotor multiply.

Page 12-2015 April 85

USING THE ARRAY PROCESSORS Page 12-21
ROUTINES 15 April 85

- QCSQTR (CORNER, SIZE, ROW) In-plaoe transpose of square oomplex matrix.
QCVCMU (A, I, B, C, J, N) Multiplies a oomplex soalar times
the oomplex oonjugate of a oomplex veotor produoing a real veotor.

- QCVCON (A, I, C, K, N) Take oomplex oonjugate of oomplex veotor.
- QCVEXP (A, I, C, K, N) Complex veotor exponentiation.
- QCVJAD (A, I, B, J, C, K, N) Adds a oomplex veotor to the

oomplex oonjugate of another oomplex veotor.
- QCVMAG (A, I, C, K, N) Complex veotor magnitude squared.
- QCVMMA (A, I, C, N) Finds the maximum square modulus of a oomplex veotor.
- QCVMOV (A, I, C, K, N) Copy one oomplex veotor to another.

QCVMUL (A, I, B, J, C, K, N, F) Multiply two oomplex
veotors.
QCVSDI (A, I, B, C, J, N) Divide a weighted oomplex veotor
by a oomplex soalar, weight is multiplied by the amplitude of the soalar.

- QCVSMS (A, I, B, C, J, D, K, N ,FLAG) Subtraot a real
veorot tiems a oomplex soalar from a oomplex veotor.

- QDIRAD (A, IA, B, N) Complex direoted add.
QHIST (A, I, C, N, NB, AMAX, AMIN) Compute histogram of a veotor.
QLVGT (A, I, B, J, C, K, N) Logioal veotor greater than.

- QMAXMI (A, I, MAX, MIN, N) Find maximum and minimum values in a veotor.
- QMAXV (A, I, C, N) Find maximum in an array.

QMINV (A, I, C, N) Find minimum in an array.
- QMTRAN (A, I, C, K, MC, NC) Matrix transpose.
- QPHSRO (A, I, B, J, PHASO, DELPHS, N) Imposes a phase gradient on a oomplex veotor.
- QPOLAR (A, I, C, K, N) Reotangular to polar oonversion.

- QRECT (A, I, C, K, N) Polar to reotangular oonversion.
- QRFFT (C, N, F) Real to oomplex or vioe versa fast Fourier

transform.
- QSVE (A, I, C, N) Sum of veotor elements.
- QSVESQ (A, I, C ,N) Sum of the square of the elements of a veotor.
- QVABS (A, I, C, K, N) Veotor absolute value.
- QVADD (A, I, B, J, C, K, N) Veotor add.
- QVCLIP (A, I, B, C, D, L, N) Veotor olip.
- QVCLR (C, K, N) Veotor olear.
- QVCOS (A, I, C, K, N) Veotor oosine.
- QVDIV (A, I, B, J, C, K, N) Veotor division.
- QVEXP (A, I, C, K, N) Veotor exponentiation.
- QVFILL (A, C, K, N) Veotor fill.
- QVFIX (A, I, C, K, N) Veotor real to integer.
- QVFLT (A, I, C, K, N) Veotor integer to real.
- QVIDIV (A, I, Dl, D2, B, J, N) Divide a veotor by the

produot of two soalar integers.
- QVLN (A, I, C, K, N) Veotor natural logarithm.
- QVMA (A, I, B, J, C, K, D, L, N) Veotor multiply and add.
- QVMOV (A, I, C, K, N) Copy one veotor to another.
- QVMUL (A, I, B, J, C, K, N) Veotor multiply.
- QVNEG (A, I, C, K, N) Take negative of a veotor.
- QVRVRS (C, K, N) Reverse a veotor.
- QVSADD (A, I, B, C, K, N) Veotor soalar add.
- QVSIN (A, I, C, K, N) Veotor sine.
- QVSMA (A, I, B, C, K, D, L, N) Veotor soalar multiply and add.

USING THE ARRAY PROCESSORS Page 12-22
ROUTINES 15 April 85

USING THE ARRAY PROCESSORS Page 12-23
ROUTINES 15 April 85

- QVSMAFX (A, I, B, C, D, L, N) Vector soalar multiply, add
and fix.

- QVSMSA (A, I, B, C, D, L, N) Veotor soalar multiply, soalar
add.

- QVSMUL (A, I, B, C, K, N) Veotor soalar multiply.
- QVSQ (A, I, C, K, N) Veotor square.
- QVSQRT (A, I, C, K, N) Veotor square root.
- QVSUB (A, I, B, J, C, K, N) Subtraot two veotors.
- QVSWAP (A, I, C, K, N) Swap two veotors.
- QVTRAN (M, N, IAD, LV) Transpose a row stored M x N array

of row veotors of length LV.

12.7.3 AP Routine Call Sequences
A note should be made about the conventions used in the

description of the routines. Data addresses are normally denoted by
A, B, C, or D and their inorements (stride) by I, J, K, L and an
element oount by N. In the descriptions of the routines, many of
the values in AP memory are referred by the name given to the
variable giving the address, e.g., A(ml) is used to denote the value
in memory looation A + m*I. All input variables are 1*4 unless
otherwise marked.

12.7.3.1 QGET - Transfer data from AP memory to host oore.
QGET (HOST, AP, N, TYPE)

Inputs:
AP 1*4 Target area in AP; O-relative, inorement-1
N 1*4 Number of elements
TYPE 1*4 Data type:

0 data is 1*4 in host
1 data is 1*2 in host
2 data is R*4 in host

Output:
HOST(*) R*4/I*2 Data array in "host"

USING THE ARRAY PROCESSORSROUTINES Page 12-2415 April 85

12.7.3.2 QGSP - Read oontents of SPAD register. FPS and Pseudo AP only.
QGSP (I, NREG)

Inputs:
NREG 1*4 SPAD register number desired Outputs:
I 1*4 Contents of the SPAD register.

12.7.3.3 QPUT - Transfer data from host memory to AP memory.
QPUT (HOST, AP, N, TYPE)

Inputs:
AP 1*4 Target area in AP; 0 - relative, inorement-1.
N 1*4 Number of elements
TYPE 1*4 Data type:

0 data is 1*4 in host
1 data is 1*2 in host
2 data is R*4 in host

HOST(*) R*4/I*2 Data array in "host"

12.7.3.4 QRFT - Computes a real, inverse fourler transform from arbitarily but uniformly spaced data.
QRFT (UDATA, UFT, UPHO, NFT, NDATA)

Inputs:
UDATA AP base address of input data.
UFT AP base address of output F. T.
UPHO AP base address of phase information for F. T.

0«C0S((TWOPI/(NG*NFT))*(1-ICENT)(1-BIAS))
1«SIN((TWOPI/(NG*NFT))*(1-ICENT)(1-BIAS))
2=C0S((TWOPI/(NG*NFT))*(1-ICENT))
3-SIN((TWOPI/(NG*NFT))*(1-ICENT))
4“C0S((TWOPI/(NG*NFT))*(1-BIAS))
5-SIN((TWOPI/(NG*NFT))*(1-BIAS))
6-COS((TWOPI/(NG*NFT)))
7-SIN((TWOPI/(NG*NFT)))
ICENT - oenter pixel of grid
BIAS - oenter of data array (1 rel)
NG - No. tabulated points per oell.NFT Number of FT points

NDATA Number of data points.

USING THE ARRAY PROCESSORS
ROUTINES Page 12-25

15 April 85

12.7.3.5 QWAIT - Suspend host task until all AP I/O and
computations are oomplete.

QWAIT

12.7.3.6 QWD - Suspend host task until all AP I/O is oomplete.
QWD

12.7.3.7 QWR - Suspend host task until all AP computations are oomplete.
QWR

12.7.3.8 QBOXSU - Do a boxoar sum on a veotor; values at the ends
of the veotor are the sum of the values within one boxoar length of the ends.

QBOXSU (A, I, NB, C, J, N)
Inputs:

A input veotor base addressI input veotor inorementNB boxoar width
C output veotor base address; output veotor

should not overlap inputJ output inorementN number of elements

12.7.3.9 QINIT - Implements AIPS AP priority for true AP, inoreases
the task priority for AIPS batoh tasks using a true AP and assigns an AP.

QINIT (II, 12, 13)
Inputs:
11 1*2 Dummy
12 1*2 Dummy
Outputs:
13 1*2 AP number (Neg. to indioate virtual AP, ie. notto be rolled.

USING THE ARRAY PROCESSORS
ROUTINES Page 12-2615 April 85

12.7.3.10 QRLSE - Releasee the AP, lowers task priority for AIPS batoh tasks using a true AP.
QRLSE

12.7.3.11 QCFFT - Do an in-place oomplex fast Fourier tasnsform.
QCFFT (C, N, F)

Inputs •*
C Base address (0-rel) of oomplex array to transform
N Number of points in array (must be power of two.)
F Transform direotion; 1 -> Forward

-1 -> Baokward

12.7.3.12 QCRVMU - Multiply the elements of a oomplex veotor by the
elements of a real veotor.

C(mK)+iC(mK+l) - (A(ml)*B(mJ)) + i(A(mI+l)*B(mJ))
m=0 to N-l

QCRVMU (A, I, B, J, C, K, N)
Inputs:

A Souroe oomplex veotor base address.
I Inorement of A
B Souroe real veotor base address
J Inorement of B
C Destination veotor base address
K Inorement of C
N Element oount

12.7.3.13 QCSQTR - Do an inplaoe transpose of square matrioes of oomplex values.
QCSQTR (CORNER, SIZE, ROW)

Inputs:
CORNER AP looation of first oorner of matrix enoountered.
SIZE Size (number of reals) of a row or oolumn.
ROW Number of looations in AP between beginnings

of the rows.

USING THE ARRAY PROCESSORS
ROUTINES Pag© 12-2715 April 85

12.7.3.14 QCVCMU - Multiply a soalar oomplex value times th e
oomplex oonjugate of a veotor produoing a real veotor.

C(K) - REAL(B)*A(K)+IMAG(B)*A(K+1) K - 1,N
QCVCMU (A, I, B, C, J, N)

Inputs:
A Souroe oomplex veotor base address.
I Inorement of A
B Address of soalar (real part)
C Destination real veotor base address.J Inorement of C
N Element oount (reals)

12.7.3.15 QCVCON - Take oomplex oonjugate of a veotor.
C(k) - Re(A(k)) - i * Im(A(k)

for k - 0 ,N-1QCVCON (A, I, C, K, N)
Inputs:
A Souroe veotor base address.
I Inorement of A
C Destination veotor base address
K Inorement of C
N Element oount

12.7.3.16 QCVEXP - Exponentiate a oomplex veotor.
C(mK) + iC(mK+l) - COS (A(ml)) + i SIN (A(ml))

m - 0 to N-l
QCVEXP (A, I, C, K, N)

Inputs:
A Souroe veotor base address.
I Inorement of A
C Destination veotor base address
K Inorement of C
N Element oount

USING THE ARRAY PROCESSORS
ROUTINES Page 12-2815 April 85

12.7.3.17 QCVJAD - Add the elements of one oomplex veotor to the
oomplex oonjugate of the elements of another oomplex veotor.

C(k) - Re(A(k))+Re(B(k))+i (Im(A(k))-Im(B(k)))
for k - 0,N~1

QCVJAD(A,I,B,J,C,K,N)
Inputs:
A Souroe veotor base address.
I Inorement of A
B Souroe veotor base address (oonjugate)
J Inorement of B
C Destination veotor base address
K Inorement of C
N Element oount

12.7.3.18 QCVMAG - Square the magnitude of the elements of a oomplex veotor.
C(mK) - A(ml)**2+A(mI+l)* *2 for m - 0,N-1
QCVMAG (A, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.19 QCVMMA - Find the maximum of the square modulus of a oomplex veotor.
QCVMMA (A, I, C, N)

Inputs:
A Souroe veotor base address
I Inorement of A
C Destination veotor.

0 - MAX(A **2) (real)
1 - looation of max

(integer)
N Element oount

Also:
SPAD(15) = index of max.

USING THE ARRAY PROCESSORS
ROUTINES Page 12-2915 April 85

12.7.3.20 QCVMOV - Copy one oomplex veotor to another.
QCVMOV (A, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.21 QCVMUL - Multiply the elements of two oomplex veotors.
(C(mK)+iC(mK+l)) - (B(mJ)+iB(mJ+l)*(A(mI)+iA(mI+l)) if F-l
(C(mK)+iC(mK+l)) - (B(mJ)+iB(mJ+l)*(A(mI)-iA(mI+l)) if F— 1
QCVMUL (A, I, B, J, C, K, N, F)

Inputs:
A Souroe veotor base address
I A address inorement
B Souroe veotor base address
J B address inorement
C Destination veotor base address
K C address inorement
N Element oount
F Conjugate flag, 1 -> normal oomplex multiply

-1 -> multiply with oonj of A

12.7.3.22 QCVSDI - Divide the elements of a oomplex veotor with
weights by a oomplex soalar. The oomplex veotor is expeoted to have
data in the order real, imaginary, weight. The weight is multiplied
by the amplitude of the oomplex soalar. This is used for AIPS uv data.

C(mJ) - (1./(B(l)**2+B(2)**2))*(A(mI)*B(l)+A(mI+l)*B(2))
C(mJ+l) - (1./B(l)**2+B(2)**2))*(A(mI+l)*B(l)-A(mI)*B(2))
C(mJ+2) - A(mI+2) * SQRT(B(1)**2+B(2)**2) for m - 0, N-l
QCVSDI (A, I, B, C, J, N)

Inputs:
A Souroe veotor base address.
I Inorement of A

USING THE ARRAY PROCESSORS
ROUTINES

B Souroe soalar address.
C Destination veotor base address
J Inorement of C
N Element oount

12.7.3.23 QCVSMS - Subtract the elements of a real veotor times the
elements of a oomplex soalar from a oomplex veotor, alternately i
(SQRT(-l)) times the real veotor times the oomplex soalar is
subtraoted from the oomplex veotor. Since the element oount is
expeoted to be small the looping is not very effioient.

If FLAG > 0
D(mK) - A(ml) - B(l) * C(mJ)
DCmK+1) - A(ml+1) - B(2) * C(mJ) for m=0, N-l
If FLAG < 0
D(mK) - A(ml) - i * B(l) * C(mJ)
DCmK+1) - ACmI+1) - i * B(2) * C(mJ) for m-0, N-l
QCVSMS (A, I, B, C, J, D, K, N ,FLAG)

Inputs:
A Souroe oomplex veotor base address.
I Inorement of A
B Souroe oomplex soalar address.
C Souroe real veotor base address
J Inorement of C
D Destination oomplex veotor base addressK Inorement of D
N Element oount
FLAG Flag, if < 0 multiply oomplex soalar by i

12.7.3.24 QDIRAD - Do a oomplex direoted add.
B(A(IA*J)) » B(A(IA*J))+A(IA*J+1) for J - 0,N-1
B(A(IA*J)+l) - B(A(IA*J)+1)+A(IA*J+2)
QDIRAD (A,IA,B,N)
Inputs:

A Souroe veotor base address
0 -> address (integer) to be added to

(address is zero relative)
1,2 «> oomplex value (reals)IA Inorement for A

B Destination veotor base address
N Element oount

Page 12-30
15 April 85

USING THE ARRAY PROCESSORS
ROUTINES Page 12-31

15 April 85

12.7.3.25 QHIST - Compute the histogram of a veotor. Histogram
element (NB-1)*(DATA—MIN)/(MAX-MIN) where DATA is the data value is inoremented.

QHIST (A, I, C, N, NB, AMAX, AMIN)
Inputs:
A Souroe veotor base address.
I A address inorement.
C Histogram base address

Histogram must be oleared before first oall.
N Element oount for A
NB Number of bins in histogram
AMAX Address of histogram maximum.
AMIN Address of histogram minimum.

12.7.3.26 QLVGT - Logioal veotor greater than.
C(mK) - 1.0 if A(ml)>B(mJ)
C(mK) - 0.0 if A(mI)“<B(mJ) for m - O.N-l
QLVGT (A, I, B, J, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
B Souroe veotor base address
J B address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.27 QMAXMI - Searoh the given veotor for maximum and minimum values.
QMAXMI (A, I, MAX, MIN, N)

Inputs:
A Souroe veotor base address
I Inorement of A
MAX Looation for maximum.
MIN Looation for minimum.
N Element oount.

USING THE ARRAY PROCESSORS
ROUTINES Page 12-32

15 April 85

12.7.3.28 QMAXV - Find maximum value of a veotor and address of the maximum.
QMAXV (A, I, C, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination base address

C(0) - Max (A(ml)) m - 0 to N-l
C(l) » address, also in SPAD 15.

N Element oount

12.7.3.29 QMINV - Find minimum value of a veotor and address of the minimum.
QMINV (A, I, C, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination base address

C(0) - Max (A(ml)) m - 0 to N-l
C(l) « address, also in SPAD 15

N Element oount

12.7.3.30 QMTRAN - Transpose a matrix.
C((p+qMC)K) - A((q+pNC)I)

p - 0 to MC-1
q - 0 to NC-1

QMTRAN (A, I, C, K, MC, NC)
Inputs:

A Souroe matrix base address
I A address inorement
C Destination matrix base address
K C address inorement
MC Number of oolumns of A
NC Numbers of rows of A

USING THE ARRAY PROCESSORS
ROUTINES Page 12-33

15 April 85

12.7.3.31 QPHSRO - Add a phase gradient to a oomplex array.
B(j) - A(J)*EXP(-i*(PHASO+j*DELPHS)) for j - 0,N-1

QPHSRO CA, I, B, J, PHASO, DELPHS, N)
Inputs:
A Souroe veotor base address.
I Inorement of A
B Destination base address.
J Inorement of B
PHASO Address of oomplex unit veotor with

phase PHASO
DELPHS Address of oomplex unit veotor with

phase DELPHS
N Element oount

12.7.3.32 QPOLAR - Reotangular to polar oonversion.
CCmK) - SQRT CACmI)**2 + ACmI+l)**2)
CCmK+1) - ARCTAN CACmI+1) / ACml)) for m - 0 to N-l
QPOLAR CA, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.33 QRECT - Polar to reotangular veotor oonversion.
CCmK) - ACml) * COS CACmI+1))
CCmK+1) - ACml) * SIN CACmI+1)) for m - 0 to N-l
QRECT CA, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

USING THE ARRAY PROCESSORS
ROUTINES Page 12-34

15 April 85

12.7.3.34 QRFFT - Does an in-plaoe real-to-oomplex forward or
oomplex-to-real inverse FFT.

QRFFT(C, N, F)
Inputs:

C Base address of souroe and destination veotor
N Real element oount (power of 2)
F flag, 1=>forward FFT, -1=> reverse FFT.

12.7.3.35 QSVE - Sum the elements of a veotor
C - SUM (A(ml)) m = 0 to N-l
QSVE (A, I, C, N)

Inputs:
A Souroe veotor base address.
I Inorement of A
C Destination soalar address
N Element oount

12.7.3.36 QSVESQ - Sum the squares of the elements of a veotor
C - SUM (A(ml) * A(ml)) for m=0 to N-l
QSVESQ (A, I, C ,N)

Inputs:
A Souroe veotor base address.
I Inorement of A
C Destination soalar address
N Element oount

12.7.3.37 QVABS - Take the absolute value of the elements of a veotor.
C(mK) - ABS (A(ml)) for m = 0 to N-l
QVABS (A, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement

USING THE ARRAY PROCESSORS
ROUTINES Page 12-35

15 April 85

N Element oount

12.7.3.38 QVADD - Add the elements of two veotors.
C(mK) - A(ml) + B(mJ) for m - 0 to N-l
QVADD (A, I, B, J, C, K, N)

Inputs:
A First souroe veotor base address
I A address inorement
B Seoond souroe veotor base address
J B address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.39 QVCLIP - Limits the values in a veotor to range.
D(mL) - B if A(ml) < B

- A(ml) if B <- A(ml) < C
- C if C <* A(ml) for m - 0 to N-l

QVCLIP (A, I, B, C, D, L, N)
Inputs:

A Souroe veotor base address
I A address inorement
B Address of lower limit
C Address of upper limit
D Destination veotor base address
L D address inorement
N Element oount

12.7.3.40 QVCLR - Fill a veotor with zeroes.
C(mK) - 0 for m - 0 to N-l
QVCLR (C, K, N)

Inputs:
C Destination veotor base address
K C address inorement
N Element oount

speoified

USING THE ARRAY PROCESSORS
ROUTINES Page 12-36

15 April 85

12.7.3.41 QVCOS - Take the oosine of elements in a veotor.
C(mK) - COS (A(ml)) for m = 0 to N-l
QVCOS (A, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.42 QVDIV - Divide the elements of two veotors.
C(mK) « B(mJ) / A(mJ) for m - 0 to N-l
QVDIV (A, I, B, J, C, K, N)

Inputs:
A First souroe veotor base address
I A address inorement
B Seoond souroe veotor base address
J B address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.43 QVEXP - Exponentiate the elements of a veotor.
C(mK) - EXP (A(ml)) for m = 0 to N-l
QVEXP (A, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

USING THE ARRAY PROCESSORS
ROUTINES Page 12-3715 April 85

12.7.3.44 QVFILL - Fill a veotor with a oonstant.
C(mK) - A for m - 0 , N-l
QVFILL (A, C, K, N)

Inputs:
A Souroe soalar base address
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.45 QVFIX - Convert the elements of a veotor from real to integer.
C(mK) - FIX (A(ml)) for m » 0 to N-l
QVFIX (A, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.46 QVFLT - Convert the elements of a veotor from integer to real.
C(mK) - FLOAT (A(ml)) for m - 0 to N-l
QVFLT (A, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

USING THE ARRAY PROCESSORS
ROUTINES Page 12-3815 April 85

12.7.3.47 QVIDIV - Divide the given veotor by the produot of two integers.
B(mJ) - A(ml)/(D1*D2) for m - 0,N-1

QVIDIV (A, I, Dl, D2, B, J, N)

12.7.3.48 QVLN - Take the natural logrithm of the elements of a veotor.
C(mK) - LOGe (A(ml)) for m=0 to N-l
QVLN (A, I, C, K, N)

Inputs:
A Souroe veotor base address.
I Inorement of A
C Destination veotor base address
K Inorement of C
N Element oount

12.7.3.49 QVMA - Multiply two veotors and adds a third.
D(mL) - (A(ml) * B(mJ)) + C(mK) for m - 0, N-l

Inputs:
A
I
Dl
D2
B
J
N

Source vector base address.
Inorement for A
first dividend. Actual value, not an address.
Seoond dividend. Actual value, not an address.
Destination vector base address.
Inorement for B
Element oount.

QVMA (A, I, B, J, C, K, D, L, N)
Inputs:

A First souroe veotor base address
I A address inorement
B Seoond souroe veotor base address
J B address inorement
C Third souroe veotor base address
K C address inorement
D Destination veotor base address
L D address inorement
N Element oount

USING THE ARRAY PROCESSORSROUTINES Page 12-3915 April 85

12.7.3.50 QVMOV - Copy the elements of one veotor to another.
C(mK) - A(ml) for m - 0, N-l
QVMOV (A, I, C, K, N)

Inputs:
A Souroe veotor base address.
I Inorement of A
C Destination veotor base address
K Inorement of C
N Element oount

12.7.3.51 QVMUL - Multiply the elements of two veotors.
C(mK) - A(mJ) * B(mJ) for m - 0 to N-l
QVMUL (A, I, B, J, C, K, N)

Inputs:
A First souroe veotor base address
I A address inorement
B Seoond souroe veotor base address
J B address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.52 QVNEG - Take the negative of the elements of a veotor.
C(mK) - - A(ml) for m = 0 to N-l
QVNEG (A, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

USING THE ARRAY PROCESSORS
ROUTINES Page 12-4015 April 85

12.7.3.53 QVRVRS - Reverse the elements in a veotor.
C(mK) - C(CN-m)K) for m * 0, N-l
QVRVRS (C, K, N)

Inputs:
C Souroe and destination veotor base address
K C address inorement
N Element oount

12.7.3.54 QVSADD - Add a soalar to the elements of a veotor.
C(mK) « B + A(ml) for m - 0, N-l
QVSADD (A, I, B, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
B Adding soalar address
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.55 QVSIN - Take the sine of the elements of a veotor.
C(mK) « SIN (A(ml)) for m - 0,N-1 (A in radians)
QVSIN (A, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.56 QVSMA - Multiply the elements of a veotor by a soalar and
adds to the elements of another veotor.

D(mL) - (A(ml) * B) + C(mK) for m - 0, N-l
QVSMA (A, I, B, C, K, D, L, N)

USING THE ARRAY PROCESSORS
ROUTINES Page 12-41

15 April 85

Inputs:
A First souroe veotor base address
I A address inorement
B Source soalar base address
C Seoond souroe veotor base address
K C address inorement
D Destination veotor base address
L D address inorement
N Element oount

12.7.3.57 QVSMAFX - Multiply the elements of a veotor by
add a soalar and round to an integer.

D(mL) - FIX (ROUNDC(A(ml)*B)+C)) for m - 0,N-1
QVSMAFX (A, I, B, C, D, L, N)

Inputs:
A Souroe vector base address
I A address inorement
B Multiplying soalar address
C Adding soalar address
D Destination veotor base address
L D address inorement
N Element oount

12.7.3.58 QVSMSA - Multiply the elements of a veotor by
and add a seoond soalar.

D(mL) - (A(mI)*B)+C for m=0,N-l
QVSMSA (A, I, B, C, D, L, N)

Inputs:
A Souroe veotor base address
I A address inorement
B Multiplying soalar address
C Adding soalar address
D Destination veotor base address
L D address inorement
N Element oount

a soalar,

a soalar

USING THE ARRAY PROCESSORS
ROUTINES Page 12-42

15 April 85

12.7.3.59 QVSMUL - Multiply the elements of a veotor by a soalar.
C(mK) - A(ml) * B for m - 0, N-l
QVSMUL (A, I, B, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
B Multiplying soalar address
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.60 QVSQ - Square the elements of a veotor.
C(mK) - A(ml)**2 for m - 0 to N-l

QVSQ (A, I, C, K, N)
Inputs:

A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.61 QVSQRT - Take the square root of the elements of a veotor.
C(mK) - SQRT (A(ml)) for m » 0,N-1
QVSQRT (A, I, C, K, N)

Inputs:
A Souroe veotor base address
I A address inorement
C Destination veotor base address
K C address inorement
N Element oount

USING THE ARRAY PROCESSORS
ROUTINES Page 12-43

15 April 85

12.7.3.62 QVSUB - Subtract the elements of two veotors.
C(mK) - B(mJ) - A(ml) for m - 0 to N-l
QVSUB (A, I, B, J, C, K, N)

Inputs:
A First souroe veotor base address
I A address inorement
B Seoond souroe veotor base address
J B address inorement
C Destination veotor base address
K C address inorement
N Element oount

12.7.3.63 QVSWAP - Swap the elements of a veotor.
A(ml) - C(mK) and C(mK) - A(ml) for m - 0, N-l
QVSWAP (A, I, C, K, N)

Inputs:
A First souroe/destination veotor base address
I A address inorement
C Seoond souroe/destination veotor base address
K C address inorement
N Element oount

12.7.3.64 QVTRAN - Transpose a (row-stored) M X N array of row
veotors of length LV. The starting address is given by IAD. The
algorithm works in plaoe. It is adapted from Boothroyd's CACM
ALG.#302. Other, probably better, algorithms, are CACM #'S 380 and
467, but they're not as simple to program.

QVTRAN (M, N, IAD, LV)
Inputs:
M First dimension of the veotor array
N Seoond dimension of the veotor array
IAD Base address of the array
LV Length of the veotors.

CHAPTER 13
TABLES IN AIPS

13.1 OVERVIEW
This ohapter is an attempt to desoribe the use of AIPS tables

extention files and to desoribe the format design for these files.
The next section describe general tables utility routines followed
by routines whioh simplify the access to specific types of AIPS
tables. The final section describes the struoture of the tables
files and the fundamental routines to aooess AIPS tables.

Table files oonsist of an extensive and rather flexible header
and a table organized as rows and oolumns. Each column has a
speoified format and is stored in the appropriate binary form for
the local oomputer. The oolumns are ordered on disk in an order
appropriate to computer addressing, but are aocessed in any desired logioal column order via a look up list.

The extension file oontains not only the rows and columns, but
also a variety of other information. Eaoh column has an associated
24-oharacter column "title" and an 8-character "units" field. Each
row has a "seleotion" flag which allows the user to access
temporarily a subset of his table. The strings used to speoify the
current seleotion are stored in the file for display. The file may
also contain general information applying to the full table in the
form of keyword/value pairs. This information will be oalled the table "header" data.

13.2 GENERAL TABLES ROUTINES
There are a number of utility routines whioh perform operations

of AIPS tables. Hopefully there will be may more of these as the
use of tables in AIPS inoreases. The following list gives a short
description of these routines; details of the oall sequences are
given at the end of this ohapter. Also of interest to the
programmer is the AIPS task PRTAB for printing the oontents of a table file.

TABLES IN AIPS
GENERAL TABLES ROUTINES Page 13-2

10 May 85

- TABCOP copies the entire oontents of one or more tables of
a given type.

- TABKEY reads or writes keyword value pairs to a table header.
TABSRT sorts the rows in a table file using up to 4 keys.

13.3 SPECIFIC TABLES ROUTINES
Because of the generality of the tables routines, the low level

use of tables is rather cumbersome. For this reason there are a
number of specialized routines which simplify the access to a given
type of table. In general, these routines come in pairs; one to
create/initilize the I/O and the other to read or write to the file.
If there are keyword/value pairs associated with a given table type
they are processed by the initilization routine. These specialized
routines usually return the contents of a row into properly named
variables which avoids the use of equivalenoing in the calling
routine. These routines are briefly desoribed in the following
list; details of the call sequences are given at the end of this ohapter.

CCINI creates/initilizes CC (CLEAN oomponent or gaussian model files).
- CHNDAT reads/writes/oreates the oontents of CH (IF

descriptor) tables.
FLGINI and TABFLG access FM (Flag) tables.

- GAINI and TABGA aooess GA (Gain) tables.
NDXINI and TABNDX aooess NX (Index) tables.
SOUINI and TABSOU aooess SU (Souroe) tables.

13.4 THE FORMAT DETAILS
There are several distinot types of information kept in a table

file. Most important is the data tabulated refered to as "Row
data". Associated with eaoh oolumn is label information; this
inoluded a label and data type for eaoh oolumn and a format to use
if the file needs to be oonverted into a oharaoter file. There is
also a provision for storing general information about the file in
the form of keyword/value pairs. A keyword value pair oonsists of a
string of oharaoters (Keyword) whioh gives a label to a value
(Value) whioh may any of a number of data types.

TABLES IN AIPS
THE FORMAT DETAILS Page 13-3

10 May 85

13.4.1 Row Data
The row data are stored as an integer number of rows per disk

reoord (512 bytes) or as an integer number of disk reoords per row.
The columns are given a physical order appropriate to addressing on
all oomputers. The logioal order is carried in the file header
reoord (physical reoord 1, see below) and in a set of array indioes
for addressing by the programs. The type of data is speoified by
oode numbers. These codes and the physical ordering are as follows:ORDER ARRAY BASIC CODE + LENGTHdouble precision floating R8 1 —

single precision floating R4 2 —

oharaoter (4 / floating) R4 3 + 10 * 1long integer 14 4 —

logical L2 5 —

integer 12 6 —

bit (NBITWD / integer) 12 7 + 10 * 1seleot flag 12 9 -

Deolarations:
INTEGER*2 I2(*)
INTEGER*4 I4(*)
LOGICAL*2 L2(*)
REAL*4 R4(*)
REAL*8 R8(*)
EQUIVALENCE (12, 14, L2

The ordering is ohosen to allow some maohines to preprooess the
LOGICAL*2 statement into a L0GICAL*4 if needed. More esoterio
preprocessing may be required on less standard maohines.

13.4.2 Physical File Format
The data, control, and header information are written in the

Table file via ZFIO in 512-byte (256-integer) blooks. The order on disk, by physioal reoord number, is:
reoord

where

1
2

3 4
5 - m

m+1 - i
i+1 - k
k+1 - *
m «
i - m +
k - i +

Control info / lookup table (see later)
DATPTR(128) subsoript of the appropriate array for

logioal oolumn n
DATYPE(128) type oode for logioal oolumn n
Seleotion strings now in foroe
Titles (6 R*4s, 4 ohars/R*4) in physioal oolumn order
Units (2 R*4s, 4 ohars/R*4) in physioal oolumn order
Table header (keyword/value pairs, see below)
Row data in n rows/reoord or n reoords/row

* NWDPFP))
* NWDPFP))

NCOL
NKEY

+ NCOL / (256 / (6
+ NCOL / (256 / (2
+ NKEY / (256 / (4 * NWDPFP))

number logioal oolumns not inoluding the seleot oolumn
maximum number of keyword/value pairs

TABLES IN AIPS
THE FORMAT DETAILS

Page 13-4
10 May 85

13.4.3 Control Information
Physical record one oontains file control data needed to do the

I/O operations and maintain the physioal file. It is prepared by
subroutine TABINI and modified by TABIO. The latter subroutine
returns the record to disk on OPCODE - 'CLOS'. Its contents are:

1 - 2 (1*4) Number 512-byte reoords now in file
3 - 4 (1*4) Max number rows allowed in ourrent file
5 - 6 (1*4) Number rows (logioal reoords) now in file
7 Number of bytes/value (2 for TA files)
8 # values/logioal (# I*2s/row inol. seleot for TA)
9 > 0 => number rows / physical reoord

< 0 => number physioal reoords / row
10 Number logioal columns/row (not inoluding seleotion

column)
11 - 16 Creation date: ZDATE(ll), ZTIME(14)
17 - 28 Physioal file name (set on eaoh TABINI oall)
2 9 - 3 1 Creation task name (2 chars / integer)
32 Disk number
33 - 38 Last write aooess date: ZDATE(33), ZTIME(36)
39 - 41 Last write aooess task name (2 chars / integer)
42 Number logical records to extend file if needed
43 Sort order: logioal oolumn # of primary sorting
44 Sort order: logioal oolumn # of secondary sorting

0 => unknown, < 0 -> desoending order
45 Disk reoord number for oolumn data pointers (2)
46 Disk reoord number for row seleotion strings (3)
47 Disk reoord number for 1st reoord of titles (5)
48 Disk reoord number for 1st reoord of units
49 Disk reoord number for 1st reoord of keywords
50 Disk reoord number for 1st reoord of table data
51 DATPTR (row seleotion oolumn)
52 Maximum number of keyword/value pairs allowed
53 Current number of keyword/value pairs in file
54 - 60 Reserved
61 Number of seleotion strings now in file
62 Next available R*4 address for a seleotion string
63 First R*4 address of seleotion string 1
64 First R*4 address of seleotion string 2
65 First R*4 address of seleotion string 3
66 First R*4 address of seleotion string 4
67 First R*4 address of seleotion string 5
68 First R*4 address of seleotion string 6
69 First R*4 address of seleotion string 7
70 First R*4 address of seleotion string 8
********** for TABIO / TABINI use only **********
71 IOP : 1 =»> read, 2 -> writ
72 Number 1*2 words per logioal reoord (inol. seleot)
73 - 74 (1*4) Current table row physioal reoord in BUFFER
75 - 76 (1*4) Current table row logioal reoord in BUFFER
77 Type of ourrent reoord in BUFFER (0 - 5)
78 Current oontrol physioal reoord number in BUFFER

TABLES IN AIPSTHE FORMAT DETAILS Page 13-5
10 May 85

79 Current oontrol logioal reoord number in BUFFER
80 Type of ourrent oontrol reoord in BUFFER
81 File logioal unit number (LUN)
82 FTAB pointer for open file (IND)
83 -100 Reserved
101 -128 Table title (4 chars / real)
129 -256 lookup table as COLPTR(logical column) = phys column

13.4.4 Keyword/value Reoords
The keyword/value pairs are stored in 4 single preoision

floating locations, 256 / (4 * NWDPFP) per physical reoord. The
keyword is an 8-charaoter string stored as 4 oharaoters per real.
It is left justified and the first oharaoter must imply the data
type used for the value. The value is stored left justified in the
3rd and 4th reals using as many integer words as needed (see table below).

The first oharaoter of the keyword must speoify the type of the binary value as:
D double preoision floating point
F single preoision floating point
C 8-charaoter string in 4 ohars / real
J long integer
L logical
I integer

In the oall sequence to TABIO, the variable RECORD is an integer
array used to convey the data to the I/O operations. For
keyword/value pairs, RECORD is divided as follows:

RECORD(l) 1st 4 chars of the keyword
RECORD(l+NWDPFP) 2nd 4 ohars of keyword
RECORD(l+2*NWDPFP) value

where the value occupies the following number of integer words
type D NWDPDP

F NWDPFP
C 2 * NWDPFP
J NWDPLI
L NWDPLO I 1

13.4.5 I/O Buffers
The call to TABINI speoifies two buffers, one for I/O soratoh

and oontrol and the other for the data pointers which will be used
by the oalling program to aooess the oolumn data. The first, oalled BUFFER, is used as

BUFFER(1)-BUFFER(128) control pointers
BUFFER(129)-BUFFER(256) lookup table

TABLES IN AIPSTHE FORMAT DETAILS Page 13-6
10 May 85

BUFFER(257)-BUFFER(* * *) ourrent physical reoord(s) of table data
where *** - 512 if there are >- 1 rows/reo,
*** *, (n+1) * 256 if there are n reos/row.

The call sequence of TABINI has an argument NBUF which gives the
length of BUFFER. This is used solely to oheok that BUFFER is large
enough to handle the present table file. BUFFER is also provided by
the programmer to TABIO whioh will modify the oontrol and data
portions. The programmer should not modify BUFFER between the oall
to TABINI and the oall to TABIO with OPCODE 'CLOS' exoept to insert
a title for the table in words 101 - 128 or to oorreot the sort order information.

The seoond buffer, oalled TABP, is used by the non-I/O portions
of the table paokage. TABP(1,1) - TABP(128,1) oontains the
subscript of the appropriate array for the logioal oolumns.
TABP(1,2) - TABP(128,2) oontains the data type for eaoh logioal
column. The programmer must fill in TABP(1,2) - TABP(NCOL,2) before
oalling TABINI when TABINI is to oreate the table extension file.
TABINI will return a oomplete set of TABP under all oiroumstanoes.

13.4.6 Fundamental Table Aooess Subroutines
There are a set of basio table handeling routines whioh apply

to all tables files. The following list gives a short description;
the details of the oall sequenoes and useage are found at the end of
this chapter.

- TABINI oreates/opens/oatalogues an AIPS table.
TABIO does I/O to a tables file. Row data, keyword/value
pairs and oontrol information are passed through this
subroutine.
GETCOL returns the value and value type at a speoified row
and oolumn from an open table.

- FNDCOL looates the logioal oolumn number for a oolumn with
a speoified label.

TABLES IN AIPS
ROUTINES

13.5 ROUTINES
Following are the descriptions of the oall sequenoes and useage

notes for the routines discussed in this ohapter.

Page 13-7
10 May 85

13.5.1 CCINI
oreates and/or opens for writing (and reading) a speoified CC (components table) file.

SUBROUTINE CCINI (LUN, NCOL, VOL, CNO, VER, CATBLK, BUF, IERR)
Logical unit number to use
Disk number
Catalog number
Number of oolumns: 3 or 7 are allowed.
Input: desired version number 0 -> new
Output: that used
File oatalog header blook
First 512 words required for later
oalls to TABIO
Error oodes from TABINI or TABIO

Inputs: LUN 1*2
VOL 1*2
CNO 1*2

In/out: NCOL 1*2VER 1*2
CATBLK 1*2(256)Output: BUF 1*2(768)
IERR 1*2

13.5.2 CHNDAT
creates and fills or reads CH (IF descriptor) extension tables.

CHNDAT (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,* NIF, FOFF, ISBAND, IERR)
Inputs:
OPCODE R*4 Operation code:

'WRIT' - oreate/init for write or read
BUFFER(512)

'READ' = open for read only
1*2 I/O buffer and related storage, also defines if open.DISK 1*2 Disk to use.CNO 1*2 Catalogue slot numberVER 1*2 CH file version

CATBLK(256) 1*2 Catalogue header blook.LUN 1*2 Logioal unit number to use
Input/Output:
NIF 1*2 Number of IFs.FOFF(*) R*8 Frequency offset in Hz from ref. freq.

True - referenoe + offset.ISBAND(*) 1*2 Sideband of eaoh IF.
-1 -> 0 video freq. is high freq. end
1 -> 0 video freq. is low freq;. endOutput:

TABLES IN AIPS
ROUTINES Page 13-8

10 May 85

IERR 1*2 Return error oode, 0=>0K, else TABINI or TABIO
error.

13.5.3 FLGINI
creates and initilizes FLAG (FM) extension tables.

FLGINI (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
* IFMRNO, FMKOLS, IERR)

Inputs:
OPCODE R*4 Operation code:

'WRIT' * oreate/init for write or read
BUFFER (.512)

'READ' - open for read only
1*2 I/O buffer and related storage, also defines file if open.DISK 1*2 Disk to use.

CNO 1*2 Catalogue slot numberVER 1*2 FM file versionCATBLK(256) 1*2 Catalogue header blook.LUN 1*2 Logioal unit number to useOutput:
IFMRNO 1*4 Next scan number, start of the file if READ,

the last+1 if WRITEFMKOLS(12) 1*2 The oolumn pointer array in order, ID. NO.,
SUBARRAY, ANTI, ANT2, BTIME, ETIME, BIF, EIF,
BCHAN, ECHAL, PFLAGS, REASONIERR 1*2 Return error oode, 0=>0K, else TABINI or TABIOerror.

13.5.4 FNDCOL
locates the logioal oolumn number(s) whioh are titled with speoified strings.

FNDCOL (NKEY, KEYS, LKEY, LORDER, BUFFER, KOLS, IERR)
Number oolumns to be found
Column titles to locate (4 ohars/real)
Number R*4 words to oheok in eaoh
of KEYS (legal values 1 through 6)
T -> logioal order desired, else phys.
TABINI/TABIO buffer/ header/ work area
Logioal oolumn numbers: 0 *> none,

- 1 «> more than one (!)
Error oode: 0 *> ok, 1 - 10 from ZFIO

>10 = 10 + # of failed oolumns

Inputs: NKEY 1*2
KEYS R*4(LKEY,N)LKEY 1*2
LORDER L*2In/out: BUFFER I*2(> 512)Output: KOLS I*2(NKEY)
IERR 1*2

TABLES IN AIPS
ROUTINES Page 13-9

10 Hay 85

13.5.5 GAINI
creates and initilizes gain (GA) extension tables.

GAINI (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
* IGARNO, GAKOLS, NUHANT, NUHPOL, NUHIF, NUHNOD, INLEVL, GHHOD,
* RANOD, DECNOD, IERR)

Inputs:
OPCODE R*4 Operation oode:

'WRIT' - oreate/init for write or read
'READ' - open for read only

BUFFER(512) 1*2 I/O buffer and related storage, also defines file
if open.

1*2 Disk to use.
1*2 Catalogue slot number
1*2 GA file version
1*2 Catalogue header blook.
1*2 Logioal unit number to use

DISK
CNO
VER
CATBLK(256)
LUN

Input/output
NUMANT
NUMPOL
NUMIF
NUMNOD
INLEVL
GMMOD
RANOD(*)
DECNOD(*)

Output:
IGARNO
GAKOLS(32)

1*2
1*2
1*2
1*2
1*2
R*4
R*4
R*4

Number of antennas
Number of IFs per group
Number of IF groups
Number of interpolation nodes. Will handle
up to 25 interpolation nodes.
Number of gain levels, 0=Abs., higher*>diff.
calibration also inoluded.
Hean gain modulus
RA offset of interpolation nodes (deg.)
Deo. offset of interpolation nodes (deg.)

IERR

1*4 Next scan number, start of the file if READ,
the last+1 if WRITE

1*2 The oolumn pointer array in order, TIHE,
TIME INT., SOURCE ID., ANTENNA NO., SUBARRAY,
REF. ANT., CALIBRATION LEVEL,
IF NUHBER, REAL1, IHAG1, I0NIPH1, TSYS1, DELAY1,
RATE1, TGRDEL1, TPHDEL1, TDGRDEL1, TDPHDEL1,
WEIGHT1, SNR1,
Following used if 2 polarizations per IF
REAL2, IHAG2, IONIPH2, TSYS2, DELAY2,
RATE2, TGRDEL2, TPHDEL2, TDGRDEL2, TDPHDEL2,
WEIGHT2, SNR2,

1*2 Return error oode, 0=>OK, else TABINI or TABIO
error.

TABLES IN AIPS
ROUTINES Page 13-10

10 May 85

13.5.6 GETCOL
returns the value and value type found in an open table file at the speoified logioal oolumn and row.

GETCOL (IRNO, ICOL, DATP, BUFFER, RTYPE, RESULT,
* SCRTCH, IERR)

Inputs:

In/out:

IRNO
ICOL
DATP
BUFFER

SCRTCH
IERR

1*4
1*2
1*2(256)
I*2(*)

Output: RTYPE 1*2

RESULT ???
I*2(*)
1*2

Table row number: n.b. 1*4
Table oolumn number
Pointer array returned by TABINI
Control area set up by TABINI, used in
TABIO
Type of oolumn: 1 -> R*8, 2 -> R*4,
4 -> 1*4, 5 -> L*?, 6 -> 1*2
3+10*L -> character length L unpacked
7+10*L -> bit array length L packed
Value of oolumn: use R*8, R*4, 1*4, 1*2
equivalenoed arrays
Soratoh large enough to hold a row
Error oode: 0 «> OK.
-1 -> OK, but row is flagged
1 file not open, 2 input error
3 I/O error, 4 read past EOF
5 bad data type

13.5.7 INDXIN
initilizes index (NX) file, finds first scan seleoted. If there is
no index file the first and last reoords are set to the first and
last reoords of the data file.

INDXIN (IERR)
Inputs from common /SELCAL/
NSOUWD 1*2 Number of souroes inoluded or excluded; if

0 all souroes are inoluded.DOSWNT L*2 If .TRUE, then souroes in SOUWAN are inoluded
If .FALSE, then exoluded.SOUWAN(30) 1*2 The souroe numbers of souroes inoluded or
exoluded.TIMRNG(8) R*4 Start day, hour, min, seo, end day, hour,
min,seo. 0's -> allOutput:

IERR 1*2 Return oode, 0->OK, otherwise INDEX file
exists but oannot be read.Output to common /SELCAL/:

INXRNO 1*4 Current INDEX file reoord number.
If .LT. 0 then there is no index file.

FSTVIS 1*4 First visibility number of ourrent soan.
LSTVIS 1*4 Last visibility number of current soan.

TABLES IN AIPS
ROUTINES Page 13-11

10 May 85

CURSOU 1*2 Current souroe number.
NXKOLS(6) 1*2 Pointer array for index reoords.

In order: TIME, TIME INT, SOURCE I, SUBARRAY,
START VIS, ENDVIS.

13.5.8 SOUINI
creates and initilizes souroe (SU) extension tables.

SOUINI (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
* ISURNO, SUKOLS, IERR)

Inputs:
OPCODE

BUFFER(512)
DISK
CNO
VER
CATBLK(256)
LUN

Output:
ISURNO
SUKOLS(15)

IERR

R*4 Operation oode:
'WRIT' - oreate/init for write or read
'READ' - open for read only

1*2 I/O buffer and related storage, also defines file
if open.

1*2 Disk to use.
1*2 Catalogue slot number
1*2 SU file version
1*2 Catalogue header blook.
1*2 Logioal unit number to use
1*4 Next soan number, start of the file if READ,

the last+1 if WRITE
1*2 The oolumn pointer array in order, ID. NO.,

SOURCE, QUAL, CALCODE, IFLUX, QFLUX, UFLUX,
VFLUX, FREQOFF, BANDWIDTH, RAEPO, DECEPO, EPOCH, RAAPP, DECAPP

1*2 Return error oode, 0->OK, else TABINI or TABIO
error.

13.5.9 TABCOP
oopies Table extension file(s). The output file must be a new
extension - old ones oannot be rewritten. The output file must be
opened WRIT in the oatalog and will have its CATBLK updated on disk.

TABCOP (TYPE, INVER, OUTVER, LUNOLD, LUNNEW, VOLOLD,
* VOLNEW, CNOOLD, CNONEW, CATNEW, BUFFI, BUFF2, IRET)

Inputs:
TYPE 1*2
INVER 1*2
OUTVER 1*2

Extension table type (e.g. 'CC','AN')
Version number to oopy, 0 -> oopy all.
Version number on output file, if more than one
oopied (INVER=0) this will be the number of the
first file. If OUTVER - 0, it will be taken as

TABLES IN AIPS
ROUTINES Page 13-12

10 May 85

1*2
1*2
1*2
1*2
1*2
1*2

LUNOLD
LUNNEW
VOLOLD
VOLNEW
CNOOLD
CNONEW
In/out:
CATNEW(256)I*2

Output:
BUFF1C256) 1*2
BUFF2C256) 1*2
IRET 1*2

1 higher than the previous highest version.
LUN for old file
LUN for new file
Disk number for old file.
Disk number for new file.
Catalog slot number for old file
Catalog slot number for new file
Catalog header for new file.
Work buffer
Work buffer - will have CATBLK of old file
Return error oode 0

1
2
3
4
5

ok
files the same, no oopy
no input files exist
failed
no output files oreated,
failed to update CATNEW

13.5.10 TABGA
does I/O to GAIN extention tables. Usually used after setup by
GAINI.

TABGA (OPCODE, BUFFER, IGARNO, GAKOLS, NUMPOL,
* TIME, TIMEI, SOURID, ANTNO, SUBA, REFAN, LEVNO, IFNO,
* CREAL, CIMAG, IONIPH, TSYS, DELAY, RATE, TGRDEL, TPHDEL,
* TDGDEL, TDPDEL, WEIGHT, SNR, IERR)

IGARNO
GAKOLS(32)

1*4
1*2

Inputs:
OPCODE R*4 Operation oode:

'READ' - read entry from table.
'WRIT' = write entry in table.
'CLOS' - olose file, flush on write

BUFFER(512) 1*2 I/O buffer and related storage, also defines file
if open. Should have been returned by TABINI or
GAINI.
Next soan number to read or write.
The oolumn pointer array in order, TIME,
TIME INT., SOURCE ID., ANTENNA NO., SUBARRAY,
REF. ANT., CALIBRATION LEVEL,
IF NUMBER, REAL1, IMAG1, IONIPH1, TSYS1, DELAY1,
RATE1, TGRDEL1, TPHDEL1, TDGRDEL1, TDPHDEL1,
WEIGHT1, SNR1,
Following used if 2 polarizations per IF
REAL2, IMAG2, IONIPH2, TSYS2, DELAY2,
RATE2, TGRDEL2, TPHDEL2, TDGRDEL2, TDPHDEL2,
WEIGHT2, SNR2,
Number of polarizations per IF.

(written to or read from GAIN file)
R*4 Center time of GAIN reoord (Days)

NUMPOL
Input/output
TIME

1*2

Page 13-13
10 May 85

R*4 Time interval oovered by reoord (days)
1*2 Souroe ID as defined in the SOURCE table.1*2 Antenna number.
1*2 Subarray number.
1*2 If pixel number.
R*4 Real part of the oomplex gain, one for eaoh poln
R*4 Imag part of the oomplex gain, one for eaoh poln
R*4 Ionispherio phase oorreotion, one for eaoh poln
R*4 System temperature (K), one for eaoh poln.
R*4 Residual group delay (seo), one for eaoh poln.
R*4 Residual fringe rate (Hz), one for eaoh poln.
R*4 Total group delay (seo), one for eaoh poln.
R*4 Total phase delay (seo), one for eaoh poln.
R*4 Total time derivative of group delay (seo/seo),

one for eaoh poln.
R*4 Total time derivative of phase delay (seo/seo), one for eaoh poln.
R*4 Total fringe rate (Hz), one for eaoh poln.
R*4 Weight of solution, one for eaoh poln.
R*4 Signal to noise ratio from fit.
1*4 Next GAIN number.
1*2 Error oode, 0=>0K else TABIO error.

Note: -l=> read but reoord deselected.

13.5.11 TABINI
oreates/opens a table extension file. If a file is oreated, it is
catalogued by a call to CATIO whioh saves the updated CATBLK.

TABINI (OPCODE, PTYP, VOL, CNO, VER, CATBLK, LUN,
* NKEY, NREC, NCOL, DATP, NBUF, BUFFER, IERR)

Input:
OPCODE
PTYPE
VOL
CNO
VER

CATBLK
LUN
NKEY

NREC
NCOL

'READ' only, 'WRIT' read or write
1*2 File physioal type: 2 oharaoters1*2 Disk number
1*2 Primary file catalog number
1*2 Version number: <« 0 highest on READ

highest+1 on WRIT (i.e. oreate one)
output: version number used

1*2(256) Primary file catalog header reoord
1*2 Logioal unit number to use
1*2 Maximum number of keyword/value pairs

input: used on oreate, oheoked on WRIT
(<- reoorded); output: aotual

1*2 Number rows for oreate/extend
input: used on WRIT only.

I#2 Number of logioal columns (not inol seleot)
input: used on oreate, oheoked on WRIT
(0 «> any); output: aotual

TABLES IN AIPS
ROUTINES

TIMEI
SOURID
ANTNO
SUBA
IFNO
CREAL(2)
CIMAG(2)
I0NIPH(2)
TSYS(2)
DELAY(2)
RATE(2)
TGRDEL(2)
TPHDEL(2)
TDGDEL(2)
TDPDEL(2)
TRATE(2)
WEIGHT(2)
SNR(2)

Output:
IGARNO
IERR

TABLES IN AIPS
ROUTINES Page 13-14

10 Hay 85

DATP
NBUF
BUFFER
IERR

1*2(128,2)
1*2
I*2(*)
1*2

DATPTR, DATYPE: DATYPE input on oreate,
output aotual for both
Number 1*2 words in BUFFER
I/O buffer (* >- 512 as needed)
Error oodes: 0 => OK,

-1 => OK, new file oreated,
1 -> bad input,
2 -> cannot find/open,
3 => I/O error
4 => oreate error

13.5.12 TABIO
does random aooess I/O to Tables extension files. Mixed reads and
writes are allowed if TABINI was oalled 'WRIT'. Writes are limited
by the size of the struoture (i.e. columns for units and titles)
or to the ourrent maximum logioal reoord plus one. Files opened for WRITe are updated and oompressed on CLOS.

TABIO (OPCODE, IRCODE, IRNO, RECORD, BUFFER, IERR)
Inputs:
OPCODE R:

IRCODE 1*2

IRNO 1*4 (!)

Input/Output
RECORD I!2(*)

BUFFER I
Output:
IERR I

2(> =768)

'READ', 'CLOS',
'WRIT' write with row seleoted
'FLAG' write with row de-selected
Type of reoord: 0 => table row

1 »> DATPTR/DATYPE record
2 -> data seleotion string
3 -> titles
4 -> units
5 -> keyword/value pairs

Logioal record number:
IRCODE - 0 = > row numberIRCODE - 1 = > ignored
IRCODE - 2 * > string numberIRCODE - 3 = > oolumn number
IRCODE - 4 - > oolumn number
IRCODE = 5 = > keyword number

Appropriate data (input or output):IRCODE - 0 - > row
IRCODE - 1 - > DATP
IRCODE - 2 -> seleot stringIRCODE - 3 = > oolumn titleIRCODE - 4 «> oolumn unitsIRCODE - 5 -> keyword/valueI/O oontrol,.soratoh buffer (in/out)

Error oode: 0 _ > ok
-1 -> row read, but it is flagged
1 file not open, 2 input error
3 I/O error 4 logioal EOF

5 error in file expansion

TABLES IN AIPS Page 13-15
ROUTINES 10 May 85

13.5.13 TABKEY
reads or writes KEYWORDS from or to an AIPS table file header. The
order of the keywords is arbitrary. Table file must have been
previously opened with TABINI.

TABKEY (OPCODE, KEYWRD, NUMKEY, BUFFER, LOCS, VALUES,
* IERR)

Inputs:
OPCODE
KEYWRD(2,*)
NUMKEY
BUFFER(*)

Output/Inputs
LOCS(NUMKEY)

VALUES(*)

Output:
IERR

R*4
R*4
1*2
1*2
1*2

1*2

1*2

Operation desired, 'READ', 'WRIT'
Keywords to read/write, 4 ohar. per word.
Number of keywords to read/write.
Buffer being use for table I/O.
The word offset of first short integer
word of keyword value in array VALUES.
Output on READ, input on WRIT.
On READ this value will be -1 for keywords not found.
The array of keyword values; due to word
alignment problems on some maohines values
longer than a short integer should be copied,
eg. if the 5th keyword (XXX) is a R*4:

IPOINT - LOCS(5)
CALL COPY (NWDPFP, VALUES(IPOINT), XXX)

Output on READ, input on WRIT
Return oode, 0->OK,
1-10 »>TABIO error
19 => unreoognized data type.
20 «> bad OPCODE
20+n => n keywords not found on READ.

13.5.14 TABFLG
does I/O to FLAG (FM) extention tables. Usually used after setup bv FLGINI.

TABFLG (OPCODE, BUFFER, IFMRNO, FMKOLS, SOURID, SUBA,
* ANTI, ANT2, BTIME, ETIME, BIF, EIF, BCHAN, ECHAN, PFLAGS,* REASON, IERR)

Inputs:
OPCODE R*4 Operation oode:

TABLES IN AIPS
ROUTINES Page 13-1610 May 85

BUFFER(512)

IFMRNO
FMKOLS(12)

Input/output
SOURID
SUBA
ANTI
ANT 2
ETIME
BTIME
BIF
EIF
BCHAN
ECHAN
PFLAGS(4)
REAS0N(6)

Output:
IFMRNO
IERR

'READ' - read entry from table.
'WRIT' - write entry in table (must have been
opened with 'WRIT'.
'CLOS' - olose file, flush on write

1*2 I/O buffer and related storage, also defines file
if open. Should have been returned by FLGINI or
TABINI.

1*4 Next FLAG entry number to read or write.
1*2 The oolumn pointer array in order, ID. NO. ,

SUBARRAY, ANTI, ANT2, BTIME, ETIME, BIF, EIF,
BCHAN, ECHAN, PFLAGS, REASON

(written to or read from FLAG file)
1*2 Souroe ID as defined in the SOURCE table.
1*2 Subarray number.
1*2 First antenna number, 0=>all
1*2 Seoond antenna number, 0=>all
R*4 Start time of data to be flagged (Days)
R*4 End time of data to be flagged (Days)
1*2 First IF number to flag. 0=>all
1*2 Last IF number to flag. 0=>all higher than BIF

First ohannel number to flag. 0»>all
Last ohannel number to flag. 0»>all higher.
Polarization flags, same order as in data.
.TRUE. -> polarization flagged.
Reason for flagging, 24 ohar. at 4 ohar/R*4.

1*2
1*2
L*2
R*4
1*4 Next soan number.
1*2 Error oode, 0=>0K else TABIO error.

Note: -1=> read but reoord deseleoted.

13.5.15 TABNDX
does I/O to INDEX extention tables.
NDXINI. Usually used after setup by

TABNDX (OPCODE, BUFFER, INXRNO, NXKOLS, TIME, DTIME,
* IDSOUR, SUBARR, VSTART, VEND, IERR)

Inputs:
OPCODE

BUFFER(512)

INXRNO
NXKOLS(6)

R*4 Operation oode:
'READ' - read entry from table.
'WRIT' - write entry in table.
'CLOS' - olose file, flush on write

1*2 I/O buffer and related storage, also defines file
if open. Should have been returned by NDXINI or TABINI.

1*4 Next soan number to read or write.
1*2 The oolumn pointer array in order, TIME,

TIME INTERVAL, SOURCE ID, SUBARRAY, START VIS,END VIS.

TABLES IN AIPS
ROUTINES Page 13-17

10 Hay 85

Input/output: (written to or read from INDEX file)
TIME R*4 Start time of the soan (Days)
DTIHE R*4 Duration of soan (Days)
IDSOUR 1*2 Souroe ID as defined in then SOURCE table.
SUBARR 1*2 Subarray number.
VSTART 1*4 First visibility number in file.
VEND 1*4 Last visibility number in file.Output:
INXRNO 1*4 Next soan number.
IERR 1*2 Error oode, 0=>OK else TABIO error.

Note: -1=> read but reoord deselected.

13.5.16 TABSOU
does I/O to source (SU) extention tables. Usually used after setup by SOUINI.

TABSOU (OPCODE, BUFFER, ISURNO, SUKOLS, IDSOU, SOUNAH,
* QUAL, CALCOD, FLUX, FREQO, BANDW, RAEPO, DECEPO, EPOCH,* RAAPP, DECAPP, IERR)

Inputs:
OPCODE

BUFFER(512)

ISURNO
SUKOLS(15)

Input/output:
IDSOUR
S0UNAM(4)
QUAL
CALCOD
FLUX(4)
FREQO
BANDW
RAEPO
DECEPO
EPOCH
RAAPP
DECAPP

Output:
ISURNO
IERR

R*4 Operation code:
'READ' = read entry from table.
'WRIT' - write entry in table.
'CLOS' - olose file, flush on write

1*2 I/O buffer and related storage, also defines file
if open. Should have been returned by SOUINI or TABINI.

1*4 Next soan number to read or write.
1*2 The oolumn pointer array in order, ID. NO.,

SOURCE, QUAL, CALCODE, IFLUX, QFLUX, UFLUX,
VFLUX, FREQOFF, BANDWIDTH, RAEPO, DECEPO, EPOCH, RAAPP, DECAPP

(written to or read from INDEX file)
1*2 Souroe ID as defined in then SOURCE table.
R*4 Source name (AIPS Packed string)
1*2 Souroe qualifier.
R*4 Calibrator oode 4 ohar.
R*4 Total flux density I, Q, u, V pol, (Jy)
R*8 Frequenoy offset (Hz)
R*8 Bandwidth (Hz)
R*8 Right asoension at mean EPOCH (degrees)
R*8 Declination at mean EPOCH (degrees)
R*8 Hean Epooh for position in yr. sinoe year 0.0
R*8 Apparent Right asoension (degrees)
R*8 Apparent Deolination(degrees)
1*4 Next soan number.
1*2 Error oode, 0«>OK else TABIO error.

Note: -l-> read but reoord deseleoted.

TABLES IN AIPS
ROUTINES Page 13-18

10 Hay 85

13.5.17 TABSRT
sorts an AIPS table extention file. First key ohanges the most
slowly. A linear combination of two columns or a substring of a bit
or oharaoter string may be used. The columns and faotors are
speoified in KEY and FKEY, the first (Slowest varying key) is:

KEY_VALUE1 = C0L_VALUE(KEY(1,1) * FKEY(1,1) +
C0L_VALUE(KEY(2,1) * FKEY(2,1)

The faster changing key value is:
KEY_VALUE2 = COL_VALUE(KEY(1,2) * FKEY(1,2) +

C0L_VALUE(KEY(2,2) * FKEY(2,2)
In the case of bit or character strings only one column is used to
generate the key values.

TABSRT (DISK, CNO, TYPE, INVER, OUTVER, KEY, FKEY,
* BUFFER, BUFSZ, TABUFF, NBUF, CATBLK, IERR)

Inputs:
DISK
CNO
TYPE
INVER
OUTVER
KEY(2,2)

1*2
1*2
1*2
1*2
1*2
1*2

FKEY(2,2)
BUFSZ
NBUF
CATBLK(256)

Output:
TABUFF(*)
BUFFER(*)
IERR

R*4
1*2
1*2
1*2

Disk number of the file.
Catalogue slot number.
Two character type code (e.g. 'CC')
Input version number
Output version number
Sort keys; may be linear combination
of two numeric value columns. KEY oontains
the oolumn numbers and FKEY oontains the
faotors. If the oolumn is a string (bit or
ohar.) then FKEY(1,n)*first char/bit and
FKEY(2,n)=number of ohar/bit and KEY(2,n) is
ignored. KEY(2,n)=0 => ignore. Column no.
is the physical no.
Key coefficients, 0=>1, see above.
Size of BUFFER in bytes.
Size of TABUFF in (1*2) words.
Catalogue header reoord.

1*2
R*4
1*2

Buffer large enough to handle I/O to table.
I/O work buffer
Error oode, 0 -> OK, else error.
10 => Couldn't find or open file.Useage Notes:

Normally the keys are sorted into ascending order, to sort into
desoending order negate the values of FKEYn.

TWO standard soratoh files will be oreated and entered into the
/CFILES/ oommon. Inoludes DFIL.INC and CFIL.INC should be inoluded
in the main routine and a oall made to DIE rather than DIETSK should
be made at the end of the program exeoution. The values in BADD
(adverb BADDISK) in the /CFILES/ oommon should be initilized.

IF a disk based sort is required, then a 4-way merge sort will
be used; the FTAB deolaration in the main program and the oall to
ZDCHIN should be large enough to handle 8 map-like files and 2
Non-map files at the same time. (Additional files may be required
if they are left open by the oalling program).

Sinoe keys are oonverted into floating point numbers some

TABLES IN AIPS Page 13-19
ROUTINES 10 May 85

acouraoy may be lost sorting on oharaoter or bit strings.
For a 1 key sort use KEY2(1) * 0.

CHAPTER 14
FITS TAPES

14.1 OVERVIEW
The prinoiple route for getting data and images into and out of

AIPS is by FITS (Flexible Image Transport System) format tape files.
FITS is an internationally adopted medium of exchange of
astronomical data and allows easy interchange of data between
observatories and image processing systems. FITS also has the
advantage that it is a self-defining format and the actual bit
pattern on the tape is independent of the maohine on which the tape
was written. The purpose of this ohapter is to desoribe the general
features of FITS and the details of the AIPS implementation of FITS.
This ohapter is not intended to be a rigorous description of the FITS standards.

The fundamental definition of the FITS system is given in
Wells, Greisen, and Harten (1981), with an extension described in
Greisen and Harten (1981). A proposed further extension is given in
Harten, Grosbol, Tritton, Greisen and Wells, (1984). FITS has been
adopted as the reoommended medium of exohange of astronomioal data
by the IAU, the Working Group on Astronomioal Software (WGAS) of the AAS, and WGLAS.

Because of the great flexibility of the FITS system, many of
its features have been adopted for the internal data storage format
in AIPS. See the ohapter on the oatalogue header for more details
on the AIPS internal storage format.

There are three main portions of a FITS file 1) the main
header, 2) the main data and 3) any number of reoords containing
auxilary information. In addition, an extension of the original
definition of the FITS struoture allows storage of ungridded
visibility data. Eaoh of these is discussed in detail in the following sections.

14.2 PHILOSPHY
FITS is a philosophy as muoh as a data format. The underlying

philosophy is to provide a standardized, simple, and flexible means

FITS TAPES
PHILOSPHY Page 14-2

27 May 84

to transport data between oomputers or image prooessing systems.
FITS is standarized in the sense that any FITS reader should be able
to read any FITS image, at least to the degree that the array read
is of the oorreot dimension and pixel values have at least the
oorreot relative soaling. In addition, any FITS reader should be
able to oope with any FITS format tape and at least skip over
portions or ignore keywords that it doesn't understand.

The requirement of simplicity means that the implementation of
FITS reading and writing be fairly straight forward on any oomputer
used for astronomical image processing. Simple also implies that
the structure of the file be self defining and to a large degree self documenting.

The main advantage of FITS is its flexibility. Due to the self
defining nature of the files, a large range of data transport needs
are fulfilled. The introduction of new keywords gives the ability
to add new pieces of information as needed and the use of
generalized extension files allows almost unlimited flexibility in
the type of information to be stored. Thus FITS oan grow with the
needs of the Astronomioal oommunity.

The great flexibility of FITS is a potential weakness as well
as a strength. There is a great temptation to proliferate keywords
and new extension file types. This should be done with great
caution. Since FITS is a worldwide medium of data exchange, there
needs to be coordination of keywords and extension files to prevent
duplication and inconsistencies in usage.

The most fundamental philosophical ideal of FITS is that no
change in the system should render old tapes illegal or unreadable.
This philosophy is reflected in the AIPS implementation of FITS in
that all obselete implementations (e.g. old CLEAN component or
antenna extension files) are trapped and processed in the most
accurate manner possible.

14.3 IMAGE FILES
The most common form of astronomical information is the image

and historically the first FITS tape files were for multidimensional
images. The following seotions desoribe FITS image files.

14.3.1 Overall Struoture
The struoture of a FITS image file consists of one or more

reoords oontaining ASCII header information followed by one or more
binary data reoords. (These may be followed by other reoords whioh
are discussed in another section.)

FITS TAPES
IMAGE FILES Page 14-3

27 May 84

All "logioal" reoords on FITS tapes are 2880 8-bit bytes long
with one reoord per tape blook. (Larger blooking faotors are being
oonsidered but have not yet been implemented.) The number of bits in
a FITS reoord is an even multiple of words and bytes on any oomputer
ever sold commercially. The definition of FITS allows standard ANSI
labeled tapes but the AIPS implementation only writes unlabeled
tapes. Labeled tapes may be read by AIPS by skipping header and trailer reoords.

Eaoh FITS header reoord oontains 36 80-byte "card images"
written in 7-bit ASCII (sign bit set to zero). These header records
contain all the information neoessary to read, and hopefully, label
the image. In addition, other information including the processing history may be given.

Following the header reoords oome the data reoords. These
reoords contain the pixel values in one of several binary formats.

14.3.2 Header Reoords
Eaoh "card image" in the header is in the form,

Keywords should be no more than 8 oharaoters long and the
keyword = value should be readable by Fortran 77 list directed I/O.
To accomodate more primitive systems, a fixed format is mandatory
for the required keywords and suggested for the optional keywords. This fixed format is as follows:

- Keyword name beginning in oolumn 1.
in oolumn 9

- T or F (logioal true or false) in oolumn 30.
- Real part (integer or floating) right justified, ending in oolumn 30.
- Imaginary part (integer or floating) right justified, ending in oolumn 50.
- character string with a beginning "'" in oolumn 11 and an

ending "'" in or after oolumn 20

The first keyword in a header must be SIMPLE and have a value
of T (true) if the file oonforms to FITS standards and an F (false)
if it doesn't. (The ASCII string "SIMPLE - T" oooupying the first
30 bytes of a file of 2880-byte reoords is the "signature" of FITS).
The keywords and values must oonvey the size of the image and the
number of bits per pixel value. Optionally, the ooordinate system,

keyword - value / oomment

FITS TAPESIMAGE FILES Page 14-4
27 May 84

soaling and other information may be given. In the AIPS
implementation a considerable amount of information is given.

14.3.2.1 Keywords - The following keywords (data type) are required
for ALL FITS files (for all time) in the order given.

1. SIMPLE (logioal) says if the file oonforms to FITS standards.
2. BITPIX (integer) is the number of bits used to represent

the pixel value; 8 = > 8 bit unsigned integers, 16 => 16
bit, twos oomplement signed integers, 32 => 32 bit, twos
complement signed integers.

3. NAXIS (integer) is the number of axes in the array.
4. NAXIS1 (integer) is the number of pixels on the fastest varying axis.
5. up to NAXIS999 (integer) is the number of pixels on the 999 th fastest varying axis.
6. END , the last keyword must be END. The last header reoord

should be blank filled past the END keyword.
AIPS routines oan accept up to 7 dimensional images.

The following optional keywords were suggested by Wells et.
alu. (1981). Their order (between the required keywords and the END
keyword) is arbitrary; in general, all of these keywords appear in an AIPS FITS header.

- BSCALE (floating) is the soale faotor used to oonvert tape
pixel values to true values (true - [tape BSCALE] + BZERO).

- BZERO (floating) is the offset applied to true pixel values (see BSCALE).
BUNIT (oharaoter) gives the brightness units.

- BLANK (integer) is the tape pixel value assigned to undefined pixels.
- OBJECT (oharaoter) is the image name.
- DATE (oharaoter) is the date the file was written ('dd/mm/yy')
- DATE-OBS (oharaoter) is the date of data aocruition ('dd/mm/yy').

FITS TAPESIMAGE FILES Page 14-5
27 May 84

- ORIGIN (character)is the tape writing institution.
- INSTRUME (character) is the data acquisition instrument.
- TELESCOP (oharaoter) is the data acquisition telesoope.
- OBSERVER (character) is the observer name / identification,

blank in col 1-8 (none) means oolumns 9 - 8 0 are a comment.
- COMMENT (none) means oolumns 9 - 8 0 are a comment.
- HISTORY (none) means oolumns 9 - 8 0 are a comment.

CRVALn (floating) is the value of physical ooordinate on
axis n at the reference pixel.

- CRPIXn (floating) is the array location of reference pixel
along axis n. CRPIX may be a fractional pixel and/or be
outside of the limits of the array.

- CDELTn (floating) is the increment in physical coordinate
along axis n as FORTRAN counter inoreases by 1.

- CTYPEn (character) is the type of physioal ooordinate on axis n.
- CROTAn (floating) is the rotation angle of aotual axis n

from stated ooordinate type.
- DATAMAX (floating) is the maximum data value in file (after soaling).
- DATAMIN (floating) is the minimum data value in file.
- EPOCH (floating) is the epooh of ooordinate system (years).

Of these keywords, all are well defined exoept the rotation; see the
ohapter on the oatalogue header for more details on the ourrent AIPS
rotation conventions. AIPS routines oan currently read up to 32768
header reoords eaoh consisting of 36 oard images.

14.3.2.2 History - In the AIPS implementation, the "HISTORY" cards
contain the entries of the history file associated with the image.
As they appear on the tape, these history entries are in the form:

FITS TAPESIMAGE FILES Page 14-6
27 May 84

HISTORY tsknam keywordl=valuel, keyword2=value2 ... / oomment
Where "tsknam" is the name of the task (or AIPS) making the entry
and the keywords are the AIPS adverbs used. Thus these history
reoords may be used to oarry AIPS speoifio values whioh don't have
official keywords. This feature is used, for example, to determine
the default file name, olass eto. when reading a file whioh was
written on an AIPS system.

14.3.2.3 AIPS Nonstandard Image File Keywords - There are a number
of keywords used by AIPS whioh are not standard.

- TABLES (integer) is the number of tables following the
file, (now obsolete)

- DATE-MAP (oharaoter) is the date the map was made.
('dd/mm/yy')
OBSRA (floating) is the Right ascension of the antenna and
delay tracking position used for the observations.

- OBSDEG (floating) is the deolination of the antenna and
delay traoking position used for the observations.

- VELREF (floating) is the reference velooity.
- ALTRVAL (floating) is the value of the alternate

(frequency/velocity) axis at the alternate reference pixel (ALTPIX).
ALTRPIX (floating) is the alternate (frequenoy/velocity)
referenoe pixel.

- RESTFREQ (floating) is the rest frequency of the speotral
line being observed.
XSHIFT (floating) is the offset of the phase center from
the tangent point of the Right ascension after any
rotation.

- YSHIFT(floating) is the offset of the phase oenter from the
tangent point of the deolination after any rotation.

FITS TAPESIMAGE FILES Page 14-7
27 May 84

A number of keywords whioh are speoifio to AIPS are hidden on
HISTORY cards. These keywords are reoognized if the first symbol in
oolumns 10 - 17 is one of the following: 'AIPS', 'VLACV', or 'RANCID'.

IMNAME (oharaoter) the name of the file in an AIPS (or
RANCID) system used to generate the FITS tape.
IMCLASS (oharaoter) the olass of the AIPS file.

- IMSEQ (integer) the sequenoe number of the AIPS file.
- USERNO (integer) the AIPS user number.
- PRODUCT (integer) the type of CLEAN image. 1=>normal

olean, 2=components, 3=>residual, 4=>points.
NITER (integer) the number of CLEAN components used for the image.

- BMAJ (floating) the major axis (FWHP) of the restoring
beam. (degrees)

- BMIN (floating) the minor axis (FWHP) of the restoring beam.
BPA (floating) the position angle (from north thru east) of
the major axis of the restoring beam.

AIPS also recognizes, but does not write, the following non-standard keywords:
- OPHRAE11 (floating) an obscure number related to the Right

asoension of the oenter on an image made on the VLA
pipeline PDP11.

- OPHDCE11(floating) an obsoure number related to the
declination of the center on an image made on the VLA pipeline PDP11.

- MAPNAM11 (oharaoter) the name of the file on the VLA
pipeline PDP11.

Any keywords whioh are not reoognized by AIPS are written into the history file.

14.3.2.4 Coordinate Systems - The ooordinate type and the system
used for eaoh type is given by the CTYPEn values. The oharaoter
strings used for these values are identioal to the strings used in
the AIPS oatalogue header reoord (CAT4(K4CTP+n-l)). The ooordinate
type is enooded into the first 4 oharaoters of the ooordinate type

FITS TAPES
IMAGE FILES Page 14-8

27 May 84

string (e.g. 'RA— ' indioating Right asoension) and the system used
is enooded into oharaoters 5 - 8 (e.g. '-SIN' indioating a sine
projection onto the sky). The ooordinate systems and their symbolic
names are desoribed in detail in the ohapter on the oatalogue header
and AIPS memo number 27. The ooordinate system used to desoribe the
polarization of an image needs oareful attention.

The AIPS convention for projected geometries is to speoify the
tangent point of the projeotion as the reference pixel even though
this need not correspond to an integer pixel and need not even be
contained in the array given. The tangent point is the position on
the sky where the plane on whioh the image is projeoted is tangent
to the celestial sphere. For images derived from synthesis arrays,
this is the position for which u, v, and w were computed. The
reference pixel for a synthesis array beam image is the phase
reference of the image; this should be the position of the peak of
the beam (pixel value = 1.0).

The use of one rotation angle per axis cannot be used to define
a general rotation of the axis system. Sinoe the AIPS oatalogue
header uses the same convention, the same problems ooour internally
to AIPS. See the ohapter on the AIPS oatalogue header for a brief
discussion of the conventions used in AIPS. The same conventions
are used when reading and writing FITS tapes.

14.3.2.5 Example Image Header - The following is an example of an
image header written by AIPS (with most of the HISTORY entries removed).

FITS TAPES
IMAGE FILES Page 14-9

27 May 84

000000000111111111122222222223333333333444444444455555555556666666666
123456789012345678901234567890123456789012345678901234567890123456789SIMPLE T /
BITPIX 16 /
NAXIS - 4 /
NAXIS1 = 2048 /
NAXIS2 = 1024 /
NAXIS3 = 1 /NAXIS4 = 1 /
OBJECT '3C405 / SOURCE NAME
TELESCOP- i t /INSTRUME- t / /OBSERVER- ' PERL /
DATE-OBS- '27/10/82' /OBSERVATION START DATE DD/MM/YYDATE-MAP- '14/07/83' /DATE OF LAST PROCESSING DD/MM/YYBSCALE = 7.04625720812E-05 /REAL - TAPE * BSCALE + BZEROBZERO - 2.18688869476E+00 /BUNIT = 'JY/BEAM ' /UNITS OF FLUXEPOCH = 1.950000000E+03 /EPOCH OF RA DECDATAMAX - 4.495524406E+00 /MAX PIXEL VALUEDATAMIN = -1.217470840E-01 /MIN PIXEL VALUECTYPE1 = 'RA-- SIN' /CRVAL1 — 2.99435165226E+02 /CDELT1 - -4.166666986E-05 /CRPIX1 = 1.024000000E+03 /CROTA1 « 0.000000000E+00 /CTYPE2 =* 'DEC— SIN' /
CRVAL2 - 4.05961940065E+01 /
CDELT2 - 4.166666986E-05 /CRPIX2 5.130000000E+03 /
CROTA2 * 0.000000000E+00 /CTYPE3 - 'FREQ /CRVAL3 4.86635000000E+09 /CDELT3 = 1.250000000E+07 /CRPIX3 = 1.000000000E+00 /CROTA3 * O.OOOOOOOOOE+OO /CTYPE4 = 'STOKES ' /CRVAL4 — 1.00000000000E+00 /CDELT4 - 1.000000000E+00 /CRPIX4 = 1.000000000E+00 /CR0TA4 - 0.000000000E+00 /HISTORY UVLOD /DATA BASE CREATED BY USER 76 AT 14-JUL-1983 10:17:HISTORY UVLOD OUTNAME-'CYGA OUTCLASS-'XYHISTORY UVLOD OUTSEQ- 1 OUTDISK- 3
ORIGIN 'AIPSNRAO VLA VAX3 1 /DATE - '19/08/83' / TAPE WRITTEN ON DD/MM/YYHISTORY AIPS IMNAME-'CYGA / IMCLASS-'IMAP ' IMSEQ- 1HISTORY AIPS USERNO- 76 /END

FITS TAPES
IMAGE FILES Page 14-10

27 May 84

14.3.2.6 Units - The units for pixel values and ooordinate systems
should be SI units where appropriate (e.g. velocities in
meters/seo); angles in degrees; pixel values in Jy, Jy/beam, magnitudes, or magnitudes/pixel.

14.3.3 Data Records
The data array starts at the beginning of the record following

the last header record. The data occurs in the order defined by the
header; in increasing pixel number with axis 1 the fastest varying
and the last axis defined the slowest varying. Data is paoked into
the 2880 byte reoords with no gaps; that is, the first pixel of any
given axis does not neoessarily appear in the first word of a new record.

The bits in eaoh word are in order of deoreasing signifiganoe
with the sign bit first. This convention means the PDP-11 and VAX
maohines will have to reverse the order of the bytes in 16 and 32
bit words before writing or after reading the tape. There are a
number of AIPS utility routines for converting FITS tape data to the
local convention; these are briefly desoribed in the following list.
Complete details of the oall sequences eto. are given at the end of the ohapter on the Z routines.

1. ZCLC8 oonverts local oharaoters to standard 8-bit ASCII.
2. ZC8CL extraots 8-bit standard oharaoters from a buffer and

stores them in the looal oharaoter form.
3. ZI16IL extraots 16-bit twos complement integers from a

buffer and puts them in a looal small integer array.
4. ZI32IL extraots 32-bit twos complement integers from a

buffer and puts them in a looal array of pseudo 1*4 integers.
5. ZI8L8 converts 8-bit unsigned binary numbers to "bytes" (half of a looal small integer).
6. ZILI16 oonverts a buffer of looal small integers to a

buffer of standard 16-bit, twos complement integers. ZR8P4
oonverts between pseudo 1*4 and double preoision (R*8).

14.4 RANDOM GROUP (UV DATA) FILES
The extension of the original FITS standards desoribed by

Greisen and Harten 1981 allows uv data to be written in FITS files.
These files are oalled "Random group" FITS files. This extension is
to allow multiple "images" i.e. reotangular data arrays eaoh of

FITS TAPES
RANDOM GROUP (UV DATA) FILES

whioh is arbitrarily looated on some "axes". Thus eaoh data array
is preoeeded by a number of "random" parameters whioh desoribe its
looation on axes on whioh it is not regularly gridded, e.g, u, v, w,
time, and baseline. The definition of what constitutes an "axis" is
extremely vague. Currently AIPS FITS routines oan aooept up to 7
actual axes in the regular portion of a group and up to 20 random
parameter words. The struoture of a group is shown in the following.

I rl, r2, r3, ... rk I pll, pl2, ... pmn I
where rl ... rk are random parameters 1 thru k

pll ... pmn are the pixel value in the order
defined for image arrays. Two dimensions
are used only for demonstration.

FITS image files are aotually a subset of this more general
structure but for historical reasons the random group FITS is
treated as a speoial case of the image file. This has unfortunate
oonsequenoes as will shortly beoome obvious. Host of the features
of random group files are identioal to image files and the
disoussion in the following seotion will oonoern the differences
between image and random group FITS files.

14.4.1 Header Reoord
For obsoure historical reasons, random group FITS files are

deolared to have zero pixels on the first axis; the first real axis
is labeled axis 2 and so on. This will allow FITS image readers
that don't know about random group files to do something reasonable,
i.e. skip over the file. Thus a random group FITS file has one
more axis desoribed in the header than aotually ooours in the data.

In addition to playing games with the axis numbers, random
group FITS headers have the following required keywords (in any order):

1. GROUPS (logioal) is true (T) if the data file is a random group FITS file.
2. PCOUNT (integer) is the number of random parameters

preoeding eaoh data array.
3. GCOUNT (floating) is the number of groups in the file.

The random parameters may be labeled and soaled in a fashion
similar to image axes and pixels. In addition, multiple word
preoislon in some of the random parameters is allowed by giving
multiple random parameters the same label. If several random
parameters have the same name (PTYPE), their values should be summed

Page 14-11
27 Hay 84

FITS TAPES
RANDOM GROUP (UV DATA) FILES Page 14-12

27 May 84

after soaling. Labeling and soaling use the following optional keywords (arbitrary order):
- PTYPEn (oharaoter) is the label for the n-th random

parameter. If several random parameters have the same
value of PTYPEn they should be summed after soaling.

- PSCALn (floating) gives the soale faotor for random
parameter n. True_value = tape_value * PSCALn + PZEROn

- PZEROn (floating) gives the soaling offset for random parameter n.
A number of keywords whioh are speoifio to AIPS are hidden on
HISTORY oards. These keywords are reoognized if the first symbol in
oolumns 10 - 17 is one of the following: 'AIPS', 'VLACV' or 'RANCID'.

- SORT ORDER (oharaoter) the order of the groups.
- WTSCAL (floating) an additional soaling faotor for visibility weights.

14.4.2 Data Reoords
The binary data reoords are stored beginning in the first

reoord following the last header reoord in muoh the same way that
image files are stored; the beginning of a group does not
necessarily oorrespond to the beginning of a reoord. The same pixel
data types are allowed as for image files (note: the data type must
be the same for all values both random parameters and the "data" array).

14.4.2.1 Weights And Flagging - Uv FITS files written by AIPS have
as their first (real, i.e. seoond in the header) axis the 'COMPLEX'
axis whioh is dimensioned 3. The values along this axis (ooordinate
values 1, 2, and 3) are real part (in Jy), imaginary part, and
weight. A non positive weight indioates that the the visibility has
been flagged. The soaling desired for the weight may be different
for the real and imaginary parts so an additional soaling faotor is
stored in the header as a HISTORY entry as follows:
HISTORY AIPS WTSCAL - 2.76756756757E+01

/ CMPLX WTS-WTSCAL*(TAPE*BSCALE+BZERO)
The use of WTSCAL allows the reader to recover the same values for
the weights as the AIPS file which was used to generate the FITS
file. If WTSCAL is ignored (or absent) the relative but not
absolute scaling of the weights is preserved.

FITS TAPESRANDOM GROUP (UV DATA) FILES Page 14-13
27 May 84

In addition to the form desoribed above, AIPS will aooept other
forms of weighting/flagging data.

1. M&gis y&lus blanking. In this oase the COMPLEX axis is
dimensioned 2 (real and imaginary) and the header keyword
BLANK is used to indioate undefined data values. Thus if
either the real or imaginary parts are 'blanked' the data
is assumed to be flagged (invalid).

2. Eandfim parameter flagging. Data written on the VLA
pipeline is in this format. The weights and flags are
passed as random parameters. More on this later in the
broadoast.

14.4.2.2 Antennas And Subarrays - If data from different arrays (or
different VLA configurations) are oombined, the physioal identity of
a given antenna may not be oonstant in a given data base. In order
to identify the physioal antennas involved in a given visibility
reoord, AIPS uses a subarray number. The (subarray number - 1) *
0.01 is added to the baseline number to identify the subarray.

There is an antenna file or list for eaoh subarray. The
information about the antennas (e.g. locations etc.) is given in
the antenna files. Currently AIPS writes these files as extension
table files (desoribed later) with the file version number
corresponding to the subarray number.

AIPS will also reoognize antenna locations given in the HISTORY
cards. An example (from Greisen and Harten 1981) of this follows:
COMMENT ANTENNA LOCATIONS IN NANOSECONDS:
HISTORY VLACV ANT N- 2 X-
HI STORY VLACV ANT N- 4 X=
HISTORY VLACV ANT N- 5 X-
HI STORY VLACV ANT N= 6 X-
HISTORY VLACV ANT N- 7 X-

5470.525 Y--14443.276 Z- -8061.210 ST
1667.280 Y-- 4396.334 Z= -2452.399 ST

37.719 Y» 135.627 Z
3353.710 Y-- 8816.123 Z
118.761 Y= 445.786 Z

='AW4'
■'CW8'

-50.585 ST-'DE2'
-4910.700 ST-'BW6'
-170.397 ST-'DE4'

HISTORY VLACV ANT N- 9 X- 10924.708 Y— 28961.684 Z— 16194.042 ST-'AW6'
COMMENT FORMULA FOR BASELINES BETWEEN ANTENNA I AND J (I<J):
COMMENT BASELINE(IJ) - LOCATION(I) - LOCATION(J)
COMMENT FORMULA FOR UU, VV,
COMMENT UU - BX * SIN(HA) + BY * COS(HA)
COMMENT VV - BZ * COS(DEC) + SIN(DEC) * (BY * SIN(HA) - BX * COS(HA))
COMMENT WW - BZ * SIN(DEC) + COS(DEC) * (BX * COS(HA) - BY * SIN(HA))

WHERE UU AND VV ARE THEN ROTATED TO THE EPOCH
The above example also defines the antenna geometry and u, v, and w terms used for VLA data.

FITS TAPESRANDOM GROUP (UV DATA) FILES Page 14-14
27 May 84

14.4.2.3 Coordinates - The ooordinate systems used to write FITS uv
data tapes are very similar to the AIPS internal systems; the major
differenoe being the use of 'DATE' (giving the Julian date) for time
tagging the data rather than 'TIME1' (giving the time in days from
the beginning of the experiment). See the uv data seotion of the
disk I/O chapter for more details of the AIPS internal uv data
ooordinate systems.

14.4.2.4 Sort Order - The ordering of visibility reoords is
variable and may be ohanged by programs suoh as AIPS task UVSRT.
The sort order is given as a two oharaoter oode in the FITS header
as in the following example:
HISTORY AIPS SORT ORDER - 'XY'
Data sorted in AIPS has a two key sort order with the first key
varying the slowest. The two keys are ooded as oharaoters given by
the following table:

B = > baseline number
T «> time order
U -> u spatial freq. ooordinate
V => v spatial freq. ooordinate
W => w spatial freq. ooordinate
R => baseline length.
P => baseline position angle.
X -> desoending ABS(u)
Y «> desoending ABS(v)
Z => ascending ABS(u)
M -> ascending ABS(v)* mt> not sorted

14.4.3 Typical VLA Reoord Struoture
The following is a uv FITS header for oontinuum VLA data whioh

demonstrates the use of multiple preoision random parameters. Most
of the HISTORY reoords are removed from this example. The header
indioates that the data in this example is followed by two antenna
files in the old AIPS tables format.

FITS TAPES
RANDOM GROUP (UV DATA) FILES Page 14-15

27 May 84

000000000111111111122222222223333333333444444444455555555556666666666
123456789012345678901234567890123456789012345678901234567890123456789SIMPLE
BITPIX -
NAXIS
NAXIS1 =
NAXIS2 -
NAXIS3 -
NAXIS4 -
NAXIS5 -
NAXIS6 -
OBJECT =
TELESCOP*
INSTRUME*
OBSERVER*
DATE-OBS=
DATE-MAP*
BSCALE -
BZERO
BUNIT
EPOCH
OBSRA
OBSDEC -
TABLES -
CTYPE2 -
CRVAL2 -
CDELT2 -
CRPIX2 =
CROTA2 =
CTYPE3 -
CRVAL3 -
CDELT3 -
CRPIX3 -
CROTA3 -
CTYPE4 -
CRVAL4 -
CDELT4 -
CRPIX4 -
CR0TA4 -
CTYPE5 -
CRVAL5 =
CDELT5 *
CRPIX5 -
CROTA5 -
CTYPE6 -
CRVAL6 -
CDELT6 -
CRPIX6 -
CROTA6 -
GROUPS -
GCOUNT -
PCOUNT -
PTYPE1 -

0923+350

T /
16 /
6 /
0 /NO STANDARD IMAGE JUST GROUP
3 /
4 /
1 /
1 /
1 /

/ SOURCE NAME
/
/
/
/OBSERVATION START DATE DD/MM/YY
/DATE OF LAST PROCESSING DD/MM/YY

* BSCALE + BZERO

COTT
30/04/82
11/10/83

3.30987595420E-06 /REAL = TAPE
0.00000000000E+00 /

'JY ' /UNITS OF FLUX
1.950000000E+03 /EPOCH OF RA DEC

1.40795415491E+02 /ANTENNA POINTING RA
3.50133331865E+01 /ANTENNA POINTING DEC

2 /THIS IS THE ANTENNA FILE#COMPLEX ' /
1.00000000000E+00 /

1.000000000E+00 /
1.000000000E+00 /
0.000000000E+00 /

'STOKES ' /
-1.00000000000E+00 /

-1.000000000E+00 /
1.000000000E+00 /

STOKES AS RR; LL, RL, LR

0.000000000E+00
' FREQ

4.88510000000E+09
5.000000000E+07
1.000000000E+00
0.000000000E+00'RA

1.40795415491E+02
O.OOOOOOOOOE+OO
1.OOOOOOOOOE+OO
0.000000000E+00

'DEC
3 50133331865E+01

O.OOOOOOOOOE+OO
1.OOOOOOOOOE+OO
O.OOOOOOOOOE+OO

T
21389.

7
'UU-L

FITS TAPESRANDOM GROUP (UV DATA) FILES Page 14-16
27 May 84

PSCAL1 = 2.56659543954E-09 /
PZEROl = 0.00000000000E+00 /
PTYPE2 ■ ' VV-L /
PSCAL2 — 3.46332811989E-09 /
PZER02 = 0.00000000000E+00 /
PTYPE3 ■ ' WW-L /
PSCAL3 - 2.33722136998E-09 /
PZER03 = 0.00000000000E+00 /
PTYPE4 - 'BASELINE' /
PSCAL4 = 1.00000000000E+00 /
PZER04 0.00000000000E+00 /
PTYPE5 - 'BASELINE' /
PSCAL5 = 1.00000000000E-02 /
PZER05 - 0.00000000000E+00 /
PTYPE5 * 'DATE /
PSCAL5 — 2.50000000000E-01 /
PZER05 * 2.44508950000E+06 /
PTYPE7 = 'DATE /
PSCAL7 1.52587890600E-05 /
PZER07 = 0.00000000000E+00 /

/ WHERE BASELINE * 256*ANTI + ANT2 + (ARRAY#-1)/100
HISTORY UVLOD RELEASE-'15NOV83 ' /CREATED AT ll-OCT-1983 13:34:50
HISTORY UVLOD OUTNAME-'0923+350 # OUTCLASS-'UVDATA'
HISTORY UVLOD OUTSEQ- 1 OUTDISK- 3
ORIGIN - 'AIPSNRAO node CVAX 15NOV83' /
DATE = 711/10/83' / TAPE WRITTEN ON DD/MM/YY
HISTORY AIPS IMNAME-'0923+350 ' IMCLASS-'XYAC 7 IMSEQ- 1 /
HISTORY AIPS USERNO- 413 /
HISTORY AIPS SORT ORDER - 'XY#

/ WHERE X MEANS DESC ABS(U)
/ WHERE Y MEANS DESC ABS(V)

HISTORY AIPS WTSCAL - 2.76756756757E+01 / CMPLX WTS-WTSCAL*(TAPE*BSCALE+BZE! END

FITS TAPES
EXTENSION FILES Page 14-1727 May 84

14.5 EXTENSION FILES
There is frequently auxilary information associated with an

image or data set whioh needs to be saved in the same tape file.
Examples of this in AIPS are the Antenna files and CLEAN oomponent
files. There is currently a draft proposal to the IAU (Harten et.
aJL. 1984) defining a standard format for the invention of extension
files to be written after the main data reoords (if any) and
defining a "Tables" type extension file. The Tables extension files
will be able to oarry information whioh oan be expressed in the form
of a table. The following section will desoribe the proposed
standards whioh are being incorporated into AIPS.

14.5.1 Standard Extension
The standard, generalized extension file is not a true tape

file in the sense that it is separated by tape EOF marks, but is a
number of records inside a FITS tape file which contains information
of relevence to the file. Eaoh standard extension "file" will have
a header whioh is very similar to the main FITS header. This header
consists of one or more 2880 8-bit byte "logioal" reoords eaoh
oontaining 36 80-byte "oard images" in the form:

keyword - value / oomment

The extension file header begins in the first record following
the last reoord of main data (if any) or the last reoord of the
previous extension file. The format of the generalized extension
"file" header is suoh that a given FITS reader oan deoide if it
wants (or understands) a given extension file type and oan skip over
the extension file if the reader deoides it doesn't.

Most of the standards concerning data types and bit orders for
the main FITS data reoords also apply to extension files. One
difference is that 8-bit pixel values oan be used to indicate ASCII oode.

The use of the generalized extension "files" requires the use
of a single additional keyword in the main header:

- EXTEND (logioal) if true (T) indioates that there may be
extension files following the data reoords and if there
are, that they conform to the generalized extension file header standards.

The required keywords in an extension file header record are, in order:

FITS TAPES
EXTENSION FILES Page 14-1827 Hay 84

1. XTENSION (oharaoter) indioates the type of extension file,
this must be the first keyword in the header.

2. BITPIX (integer) gives the number of bits per "pixel"
value. The types defined for the main data reoords plus
8-bit ASCII are allowed.

3. NAXIS (integer) gives the number of “axes"; a value of zero
is allowed whioh indioates that no data reoords follow the
header.

4. NAXIS1 (integer) is the number of "pixels" along the first
axis (if any).

5. NAXISn (integer) is the number of "pixels" along the last
axis.

6. PCOUNT (integer) is the number of "random" parameters
before eaoh group. This is similar to the definition of
random group main data reoords. The value may be zero.

7. GCOUNT (integer) is the number of groups of data defined as
for the random group main data reoords. If an image-like
file (e.g. a table file) is being written this will be 1.

8. END is always the last keyword in a header. The remainder
of the reoord following the END keyword is blank filled.

There are three optional standard keywords for extension file
header records. The order, between the required keywords and the END keyword, is arbitrary.

- EXTNAHE (oharaoter) oan be used to give a name to the
extension file to distinguish it from other similar files.
The name may have a hierarohioal struoture giving its
relation to other files (e.g. "mapl.oleanoomp")

- EXTVER (integer) is a version number whioh oan be used with
EXTNAME to identify a file.
EXTLEVEL (integer) speoifies the level of the extension
file in a hierarohioal struoture. The default value for
EXTLEVEL should be 1.

The number of bits in an extension file (exoluding the header)
should be given by the formula:
NBITS - BITPIX * GCOUNT * (PCOUNT + NAXIS1 * NAXIS2 * ... * NAXISn)
The number of data reoords following the header reoord are then given by:

FITS TAPES
EXTENSION FILES Page 14-19

27 Hay 84

NRECORDS = INT ((NBITS + 23039) / 23040)
It Is important that the above formulas aoourately predlot the
number of data reoords in an extension "file" so that readers oan
skip over these "files". The data begins in the first reoord
following the last reoord of the header.

Extreme caution must be exeroized when inventing new types of
extension files. In particular, duplication of types or several
types with the same funotion must be avoided. This means that when
a new extension file type is invented, it should be as general as
possible so that it may be used for other similar problems.

14.5.2 Tables Extension
A very oommon type of extension file is one containing data

that oan be expressed in the form of a table. That is, a number of
entries whioh are all identioal in form. A general, self defining
table extension file type is proposed by Harten et. al. (1984).
The following sections desoribe the proposed format.

The table extension file uses ASCII reoords to carry the
tabular information. Each table entry will oontain a fixed number
of entries (although the number oan vary between different extension
files). For eaoh entry is given 1) a label (optional), 2) the
beginning oolumn, 3) an undefined value (optional) , 4) a Fortran
format to decode the entry, 5) soaling and offset information
(optional), 6) the units (optional).

14.5.2.1 Tables Header Reoord - The keywords for tables extension
file headers are given in the following:

- XTENSION (oharaoter) is required to be the first keyword
and has a value 'TABLE ' for table extension files.

- BITPIX (integer) is a required keyword whioh must have a
value of 8 indioating printable ASCII oharaoters.

- NAXIS (integer) is a required keyword whioh must have a
value of 2 for tables extension files.

- NAXIS1 (integer) is a required keyword whioh given the
number of oharaoters in a table entry.

- NAXIS2 (integer) is a required keyword whioh gives the
number of entries in the table. A value of 1 is allowed.

- PCOUNT (Integer) is a required keyword whioh must have the
value of 0 for tables extension files.

FITS TAPES
EXTENSION FILES Page 14-2027 May 84

- GCOUNT (integer) is a required keyword whioh must have the
value of 1 for tables extension files.

- TFIELDS (integer) is a required keyword whioh must follow
the GCOUNT keyword. TFIELDS gives the number of fields in eaoh table entry.
EXTNAME (character) is the name of the table.

- EXTVER (integer) is the version number of the table.
- EXTLEVEL (integer) is the hierarchical level number of the

table, 1 is recommended, (optional)
- TBCOLnnn (integer) the pixel number of the first oharaoter in the nnn th field .
- TFORMnnn (oharaoter) the Fortran format of field nnn (I,A,E,D)
- TTYPEnnnn (oharaoter) the label for field nnn. (optional,

order arbitrary)
- TUNITnnn (oharaoter) the physioal units of field nnn.

(optional, order arbitrary)
- TSCALnnn (floating) the scale faotor for field nnn.

True_value - tape_value * TSCAL + TZERO. Note: TSCALnnn
and TZEROnnn are not relevant to A-format fields. Default
value is 1.0 (optional, order arbitrary)

- TZEROnnn (floating) the offset for field nnn. (See
TSCALnnn.) Default value is 0.0 (optional, order arbitrary)

- TNULLnnn (oharaoter) the (tape) value of an undefined
value. Note: an exact left-justified matoh to the field
width as speoified by TFORMnnn is required. (optional, order arbitrary)

- AUTHOR (oharaoter) the name of the author or oreator of the
table, (optional, order arbitrary)

- REFERENC (oharaoter) the reference for the table,
(optional, order arbitrary)

- END must always be the last keyword and the remainder of
the reoord must be blank filled.

The TFORMnnn keywords should speoify the width of the field and
are of the form Iww, Aww, Eww.dd, or Dww.dd (integers, oharaoters,
single precision and double preoision). If -0 is ever to be
distinguished from +0 (e.g. degrees of deolination) the sign field
should be declared to be a separate oharaoter field.

FITS TAPESEXTENSION FILES Page 14-21
27 May 84

The FITS tables agreement does not inolude a number of data
types used with AIPS tables: Short integer, logioal and bit string.
The following conventions are used to indicate these data types.

1. Extentisn name_u The table name is given by the table
header keyword 'EXTNAME'. AIPS will invoke the following
conventions if the EXTNAME keyword is of the form 'AIPS xx'
where xx is a two oharaoter table type. Likewise, tables
files written by AIPS will use the same oonvention.

2. Integer length An integer will be considered to be short
(e.g. 16 bits) if the width of the field given by the
TFORMn keyword is 6 or less and long if the width is 7 or more.

3. LfigiQ&l Logioal variables will be written as a oharaoter
string of length 1 oontaining either the value 'T' or 'F'
indicating true or false. The units of this field will be 'LOGICAL'.

4. Bit strings Bit strings will be enooded as hexideoimal
numbers in a oharaoter string. The first set of four bits
will be enooded into the first oharaoter with the first bit
being the most signifigant in determining the hexideoimal
representation. The following bits oome in the same order.
The units of this field will be 'HEXnnnn' where nnnn gives
the number of bits in the string.

Arbitrary Table keywords do not have a defined data type in
FITS. FITS written by AIPS tapes will use the AIPS tables
convention for keywords not defined by the FITS agreement and will
indicate the data type by the first letter of the keyword name:

First letter data type
F Single preoision floating
D Double preoision floating
C Charaoter string (8 ohar)
I Short integer
J Long integer
L Logioal

14.5.2.2 Table Data Reoords - The table file data reoords begin
with the next reoord following the last header reoord and eaoh
contains 2880 ASCII oharaoters in the order defined by the header.
Table entries do not neoessarily begin at the beginning of a new
reoord. The last reoord should be blank filled past the end of the valid data.

FITS TAPESEXTENSION FILES Page 14-2227 Hay 84

14.5.2.3 Example Table Header And Data - The first two lines of
numbers are only present to show oard oolumns and are not part of the extension file.

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890123456XTENSION- 'TABLE / / EXTENSION TYPEBITPIX = 8 / PRINTABLE ASCII CODESNAXIS = 2 / TABLE IS A HATRIX
NAXIS1 - 60 / WIDTH OF TABLE IN CHARACTERSNAXIS2 = 449 / NUHBER OF ENTRIES IN TABLEPCOUNT = 0 / RANDOH PARAHETER COUNTGCOUNT = 1 / GROUP COUNT
TFIELDS = 3 / NUHBER OF FIELDS IN EACH ROWEXTNAME - 'AIPS CC / / AIPS CLEAN COMPONENTSEXTVER = 1 / VERSION NUHBER OF TABLETBCOL1 - 1 / STARTING CHAR. POS. OF FIELDTFORH1 'E15.6 / / FORTRAN FORHAT OF FIELD NTTYPE1 2 'FLUX / / TYPE (HEADING) OF FIELD NTUNIT1 - 'JY i / PHYSICAL UNITS OF FIELD NTSCAL1 - 1.0 / SCALE FACTOR FOR FIELD NTZEROl = 0.0 / ZERO POINT FOR FIELD NTBCOL2 - 17 / STARTING CHAR. POS. OF FIELDTF0RM2 - 'E15.6 i / FORTRAN FORHAT OF FIELD NTTYPE2 - 'DELTAX t / TYPE (HEADING) OF FIELD NTUNIT2 'DEGREES i / PHYSICAL UNITS OF FIELD NTSCAL2 - 1.0 / SCALE FACTOR FOR FIELD NTZER02 - 0.0 / ZERO POINT FOR FIELD NTBCOL3 - 33 / STARTING CHAR. POS. OF FIELDTFORM3 SB 'E15.6 t / FORTRAN FORHAT OF FIELD NTTYPE3 = 'DELTAY / / TYPE (HEADING) OF FIELD NTUNIT3 = 'DEGREES / / PHYSICAL UNITS OF FIELD NTSCAL3 - 1.0 / SCALE FACTOR FOR FIELD NTZER03 — 0.0 / ZERO POINT FOR FIELD NEND
The rest of the header blook is blank filled. The data oards start on the next blook boundary.

0.183387E+00
0.146710E+00
0.117368E+00
0.938941E-01
0.183387E+00

-0.138889E-03
-0.138889E-03
-0.138889E-03
-0.138889E-03
-0.138889E-03

0.694444E-04
0.694444E-04
0.694444E-04
0.694444E-04
0.694444E-04

FITS TAPES
EXTENSION FILES Page 14-23

27 Hay 84

14.5.3 Older AIPS Tables
Prior to the (presumed) establishment of the standard tables

extension files, AIPS had it own tables file format and a large
number of tapes have been written with these tables. These old
tables were enooded in ASCII and oould have any number of oolumns in
the table. However, all values in the table had to be of the same
data type and written with the same format. AIPS FITS readers will
oontinue to reoognize and deal with these obsolete tables
indefinitely. The following seotions desoribe these tables.

14.5.3.1 General Form Of Header - The presenoe of the old format
AIPS tables is indicated in the main header by the presenoe of the
integer keyword TABLES whioh gives the number of tables following
the data reoords. Eaoh table has a header reoord in a manner
similar to the now standard extension file header but with different
keywords. The header oontains the following keywords:

1. TABNAHE (oharaoter) gives the name of the file.
2. TABVER (integer) gives the version number of the file.
3. TABCOUNT (integer) gives the number of entries in the

table.
4. TABWIDTH (integer) gives the number of values per table entry
5. TABCARDS (integer) gives the number of values per oard

image.
6. TTYPEn (oharaoter) gives a label for the n th oolumn.
7. NUHTYPE (oharaoter) gives the data type used for internal

storage (1*2, R*4, R*8)
8. FORMAT (oharaoter) gives the format for the table elements.
9. END is the last keyword.

14.5.3.2 Data Reoords - The data reoords oonsist of floating point
values enooded in ASCII in 36 80-byte oard images per reoord in a
free field format. The values are enooded TABCARDS values per 80 byte oard image.

FITS TAPES Page 14-24
EXTENSION FILES 27 Hay 84

14.5.3.3 CC Files - The details of the AIPS old CLEAN oomponent
(CC) table file are illustrated in t h e following example of a
header. Component positions are given in degrees from the tangent
point (referenoe pixel) of the image in the projeoted and rotated
plane (i.e. not true RA and deo). Component flux densities are in
Janskys. CLEAN components are stored 2 per oard image written as
6E13.5.
TABNAHE - 'AIPS CC' / AIPS CLEAN COHPONENTSTABVER = 1 / VERSION NUMBER
TABCOUNT- 100 / # LOGICAL RECORDS IN TABLETABWIDTH- 3 / # VALUES PER LOGICAL RECORD
TABCARDS- 6 / # VALUES PER CARD IHAGETTYPE1 - 'DELTAX ' / COLUMN 1 LABEL
TTYPE2 - 'DELTAY ' / COLUHN 2 LABELTTYPE3 - 'FLUX(JY)' / COLUHN 3 LABELNUMTYPE - 'R*4 / OUR INTERNAL STORAGE SIZEFORHAT - 'E13.5 / FORHAT ACTUALLY USED HEREEND

14.5.3.4 AN Files - The details of the AIPS old antenna table file
are illustrated in the following example of a header. Antenna
positions are given in seoonds (light travel time).TABNAHE - 'AIPS AN' /ANTENNA IDS, LOCATIONSTABVER - 1 /VERSION NUMBERTABCOUNT- 28 / # LOGICAL RECORDS IN TABLETABWIDTH- 5 / # VALUES PER LOGICAL RECORD
TABCARDS- 5 / # VALUES PER CARD IHAGETTYPE1 - 'AN NO. / COLUHN 1 LABELTTYPE2 - 'STATION ' / COLUHN 2 LABELTTYPE3 - 'LX / COLUHN 3 LABELTTYPE4 - 'LY / COLUHN 4 LABELTTYPE5 - 'LZ / COLUHN 5 LABELEND

FITS TAPES
AIPS FITS INCLUDES Page 14-25

27 May 84

14.6 AIPS FITS INCLUDES
There are several AIPS INCLUDES whioh oontain tables of KEYWORD

names, data types and pointers to the AIPS oatalogue header. Eaoh
of the sets oonsists of a deolaration inolude (Dnnn.ino), an
EQUIVALENCE inolude (Ennn.ino) and a DATA inolude (Vnnn.ino). These
inoludes oan be used direotly by routines suoh as FPARSE. The basio
components of these inoludes is shown below:

- AWORD (R*4) - this array oontains the reoognized keywords,
two R*4 words per keyword with four oharaoters per R*4
word. This array oan be sent to GETCRD as the list of keywords.

- NCT (1*2) - this gives the number of required keyword names
in CWORD whioh is equivalences at the beginning of AWORD.

- NKT (1*2) - this given the number of optional keywords
names in KWORD whioh is equivalenoed into AWORD after CWORD.

- ATYPE (1*2) - this array gives the data types corresponding
to keywords in AWORD. 1«>logioal variable, 2->numerical value, and 3»>string.

- APOINT (1*2) - this array oontains pointers in the oommon
in the inoludes DHDR.INC and CHDR.INC to the AIPS oatalogue
header in the form lOOOnbytes + lOOoffset + position of
pointer in oommon. Here nbytes given the number of bytes
used in the AIPS oatalogue header and the offset is the
oharaoter offset past the position indicated by the header
pointer. The text of these inoludes is in the following seotions.

14.6.1 DFUV.INC

Inolude DFUVINTEGER*2 ATYPE(150), APOINT(150), CTYPE(ll), KTYPE(139),
* CPOINT(ll), POINT(139), NKT, NCT
REAL*4 AW0RD(2,150), CWORD(2,ll), KWORD(2,139), Kl(2,73),* K2(2,66)

End DFUV

FITS
AIPS

14.6.

G

C

14.6.

C

C

14.6.

C

C

14.6.

C

TAPES page 14-26
FITS INCLUDES 27 May 84

2 DFIT.INC

Inolude DFUVINTEGER*2 ATYPE(82), APOINT(82), CTYPE(IO), KTYPE(72), CPOINT(IO),* POINT(72), NKT, NCT
REAL*4 AWORD(2,82), CW0RD(2,10), KW0RD(2,72)

End DFUV

3 EFUV.INC

Include EFUVEQUIVALENCE (AWORD(l,l), CWORD(l,l)), (AWORD(1,85), K2(l,l)),* (AWORD(1,12), KWORD(l,l), Kl(l,l))
EQUIVALENCE (APOINT(l), CPOINT(l)), (APOINT(12), POINT(l))
EQUIVALENCE (ATYPE(l), CTYPE(l)), (ATYPE(12), KTYPE(1))

End EFUV

4 EFIT.INC

Inolude EFUVEQUIVALENCE (AWORD(l,l), CWORD(l,l)), (AWORD(1,11), KWORD(l,l))
EQUIVALENCE (APOINT(l), CPOINT(l)), (APOINT(ll), POINT(l))
EQUIVALENCE (ATYPE(l), CTYPE(l)), (ATYPE(ll), KTYPE(1))

End EFUV

5 VFUV.INC

Inolude VFUVDATA NCT/11/, NKT/139/
DATA CWORD/'SIMP','LE ','BITP','IX ','NAXI','S ','NAXI',* 'SI ','NAXI' ' S2 ','NAXI' 'S3 ','NAXI' ' S4 ,'NAXI',' S5 '♦ 'NAXI' ' S6 ','NAXI' ' S7 ','NAXI' ' S8 /DATA K1 /'OBJE ' 'CT ','TELE' 'SCOP','INST' 'RUME ,'OBSE', ' RVER'* 'DATE' '-OBS','DATE' '-MAP','BSCA' 'LE , 'BZER' ,'0* 'BUNI' 'T ,'CTYP' 'El ','CTYP' 'E2 , 'CTYP' ,'E3 '* 'CTYP' 'E4 ','CTYP' ' E5 ','CTYP' 'E6 , 'CTYP ' ,'E7 '* 'CTYP' ' E8 ','CRVA' 'LI ','CRVA' 'L2 ,'CRVA', 'L3 '* 'CRVA' 'L4 ','CRVA' 'L5 ','CRVA' 'L6 , 'CRVA' ,'L7 '* 'CRVA' ' L8 ','CDEL' ' T1 ','CDEL' ' T2 , 'CDEL' ,'T3 '* 'CDEL1 ' T4 ','CDEL' ' T5 ','CDEL' 'T6 ,'CDEL','T7 '* 'CDEL' ' T8 ','CRPI' 'XI ','CRPI' 'X2 ,'CRPI' ,' X3 '

o
o o

u u

FITS TAPES
AIPS FITS INCLUDES Page 14-27

27 May 84

* 'CRPI', 'X4 ' 'CRPI' 'X5 ,'CRPI','X6 ,'CRPI' 'X7* 'CRPI', 'X8 ' 'CROT' ' A1 ,'CROT',' A2 ,'CROT' 'A3* 'CROT',' A4 ' 'CROT' ' A5 ,'CROT',' A6 ,'CROT' ' A7* 'CROT',' A8 ' 'EPOC' 'H ,'DATA','MAX ,'DATA' 'MIN* 'BLAN', 'K 'INHI' 'BIT ,'IMNA', 'ME ,'IMCL' 'ASS* 'IMSE', 'Q # 'USER' 'NO ,'PROD','UCT ,'NITE' 'R♦ # BMAJ', i t 'BMIN' / ,'BPA ', / ,'VELR' 'EF* 'ALTR', 'VAL ' 'ALTR' 'PIX ,'OBSR', 'A ,'OBSD' 'EC* 'REST','FREQ' 'XSHI' 'FT ,'YSHI', 'FT ,'DATE' /* 'ORIG','IN '/
DATA K2 /'GROU', 'PS ' 'GCOU' 'NT ,'PCOU','NT ,'PTYP' 'El* # PTYP', ' E2 ' 'PTYP' ' E3 ,'PTYP', ' E4 ,'PTYP' ' E5* 'PTYP', 'E6 ' 'PTYP' ' E7 ,'PTYP', 'E8 ,'PTYP' ' E9* 'PTYP','E10 ' 'PTYP' 'Ell ,'PTYP', ' E12 ,'PTYP' ' E13* 'PTYP','E14 ' 'PTYP' ' E15 ,'PTYP', ' E16 ,'PTYP' 'E17* /pTYp /f' E18 ' 'PTYP' ' E19 ,'PTYP', 'E20 ,'PSCA' 'LI* 'PSCA', 'L2 ' 'PSCA' 'L3 ,'PSCA','L4 ,'PSCA' 'L5* 'PSCA', 'L6 ' 'PSCA' 'L7 ,'PSCA','L8 ,'PSCA' 'L9* 'PSCA', 'L10 ' 'PSCA' 'Lll ,'PSCA','L12 ,'PSCA' 'L13* 'PSCA', 'L14 ' 'PSCA' 'L15 ,'PSCA','L16 ,'PSCA' 'L17* 'PSCA','L18 ' 'PSCA' 'L19 ,'PSCA','L20 ,'PZER' '01* 'PZER', '02 ' 'PZER' '03 ,'PZER', '04 ,'PZER' '05* 'PZER', '06 ' 'PZER' '07 ,'PZER', '08 ,'PZER' '09* 'PZER','010 ' 'PZER' 'Oil ,'PZER', '012 ,'PZER' '013* 'PZER','014 ' 'PZER' '015 ,'PZER', '016 ,'PZER' '017* 'PZER', '018 ' 'PZER' '019 ,'PZER', '020 ,'TABL' 'ES* 'SORT','ORDR' 'WTSC' 'AL /

1 =Logioal variable
2=Number
3=StringDATA CTYPE /l,2,2,2, 2 , 2,2,2, 2,2,2/DATA KTYPE /3,3, 3,3, 3 , 3,2,2, 3,3,3, 3, 3,3,3 ,3, 3,2,2,2,* 2,2, 2,2, 2 , 2,2,2, 2,2,2, 2, 2,2,2 * 2, 2,2,2,2,* 2,2, 2,2, 2,2,2,2, 2,2,2, 2, 2,2,3 , 3, 2,2,2,2,* 2,2, 2,2, 2,2,2,2, 2,2,2, 3, 3,1,2 ,2,* 20*3, 20*2, 20*2, 2,3,2/
1000*nbytes + 100*o££set +
position of pointer in oommonDATA CPOINT / o, 2043, 2041, 2042, 2142, 2242, 2342, 2442,* 2542, 2642, 2742/DATA POINT / 8001, 8002, 8003, 8004, 8005, 8006, 8029, 8030,* 8007, 8009, 8109, 8209, 8309, 8409, 8509, 8609,* 8709, 8031, 8131, 8231, 8331, 8431, 8531, 8631,* 8731, 4010, 4110, 4210, 4310, 4410, 4510, 4610,* 4710, 4011, 4111, 4211, 4311, 4411, 4511, 4611,* 4711, 4012, 4112, 4212, 4312, 4412, 4512, 4612,* 4712, 4013, 4014, 4015, 4016, 2044,12017, 6218,* 2045, 2046, 2048, 2047, 4020, 4021, 4022, 2049,* 8035, 4023, 8032, 8033, 8034, 4024, 4025, 0,* 0, 1001, 2039, 2040,* 20*8008, 20*4004, 20*4004, 4004, 2048, 4004/

End VFUV.

ooo
o o

FITS TAPES
AIPS FITS INCLUDES Page 14-28

27 May 84

14.6.6 VFIT.INC

DATA NCT/10/, Inolude VFITNKT/72/
DATA CWORD/'SIMP','LE ','BITP','IX ','NAXI','S ' , 'NAXI' ,* 'SI ','NAXI' , ' S2 ','NAXI' , 'S3 ','NAXI' , ' S4 ','NAXI',' S5 '* 'NAXI' , ' S6 ','NAXI' , ' S7 '/
DATA KWORD /'OBJE','CT ','TELE','SCOP','INST','RUME','OBSE',
* 'RVER','DATE','-OBS','DATE' ,'-MAP ','BSCA' , 'LE ', ' BZER', '0* 'BUNI', 'T ','CTYP' , 'El ','CTYP', ' E2 ','CTYP','E3 '* 'CTYP', 'E4 ','CTYP' , 'E5 ','CTYP' , 'E6 ','CTYP','E7 '* 'CRVA', 'LI ','CRVA' , 'L2 ','CRVA' , 'L3 ','CRVA','L4 '* 'CRVA', 'L5 ','CRVA' , ' L6 ','CRVA' , 'L7 ','CDEL','T1 '* 'CDEL', 'T2 ','CDEL' , 'T3 ','CDEL' , 'T4 ','CDEL','T5 '* 'CDEL', ' T6 ','CDEL' , 'T7 ','CRPI', 'XI ', 'CRPI',' X2 '* 'CRPI', 'X3 ','CRPI' , 'X4 ','CRPI', 'X5 ','CRPI', 'X6 '* 'CRPI', 'X7 ','CROT' , ' A1 ','CROT' , ' A2 ', 'CROT','A3 '* 'CROT' , ' A4 ','CROT' , ' A5 ','CROT', ' A6 ','CROT',' A7 '* 'EPOC' , 'H ','DATA' , 'MAX ','DATA' , 'MIN ', 'BLAN','K* 'INHI', 'BIT ','IMNA', 'ME ','IMCL', 'ASS ', ' IMSE', 'Q '/ t* 'USER' , 'NO ','PROD' , 'UCT ','NITE' , 'R ', 'BMAJ' ,* 'BMIN' /f ','BPA ' t» ','VELR', 'EF ' , 'ALTR','VAL '* 'ALTR', 'PIX ','OBSR', 'A ','OBSD', 'EC ','REST','FREQ'* 'XSHI', 'FT ','YSHI', 'FT ','DATE' t

9 ','ORIG','IN '* 'TABL', 'ES ','OPHR','AE11','OPHD','CE11 ', 'MAPN' ,' AM11'1-Logioal variable
2-Number
3-StringDATA CTYPE /I,2 ,2,2, 2,2,2,2,2,2/DATA KTYPE /3,3,3,3, 3, 3,2,2,3,3,3,3, 3,3, 3,3, 2 ,2,2,2,* 2,2 ,2,2, 2, 2, 2,2,2,2,2,2, 2,2, 2,2, 2 ,2,2,2,* 2,2 ,2,2, 2, 2, 2,2,2,3,3,2, 2,2, 2,2, 2 ,2,2,2,* 2,2,2,2,2, 2, 3, 3,2,2,2 ,3/
1000*nbytes + 100*o££set +

CPOINT / position of pointer in commonDATA 0, 2043, 2041, 2042, 2142, 2242, 2342, 2442,2542, 2642/
DATA POINT / 8001, 8002, 8003, 8004, 8005, 8006, 8029, 8030,

8007, 8009, 8109, 8209, 8309, 8409, 8509, 8609,
8031, 8131, 8231, 8331, 8431, 8531, 8631, 4010,
4110, 4210, 4310, 4410, 4510, 4610, 4011, 4111,
4211, 4311, 4411, 4511, 4611, 4012, 4112, 4212,
4312, 4412, 4512, 4612, 4013, 4014, 4015, 4016,
2044,12017, 6218, 2045, 2046, 2048, 2047, 4020,
4021, 4022, 2049, 8035, 4023, 8032, 8033, 8034,
4024, 4025, 0, 0, 4001, 4101, 4201,12017/

End VFIT.

FITS TAPES
AIPS FITS PARSING ROUTINES Page 14-29

27 May 84

14.7 AIPS FITS PARSING ROUTINES
There are several AIPS utility routines whioh. are useful for

parsing (reading) FITS header reoords. These routines are briefly
described in the following; details of the oall sequences eto. will be given later.

- FPARSE parses a FITS header oard, unpaoking the card image,
interpreting it and putting the data value into the oorreot
location in the AIPS oatalogue header. This routine is for
standard FITS headers but with the substitution of the
INCLUDES DFIT.INC, EFIT.INC and VFIT.INC for DFUV.INC,
EFUV.INC and VFUV.INC the routine will work for FITS image tapes written on the VLA pipeline.

- GETCRD unpacks a given oard image from a header blook of
FITS data and looks for keywords in a supplied table.

- GETSYM finds the next symbol in an unpaoked buffer. A
symbol is defined to begin with a letter and have up to 8 alpha-numeric oharaoters.

- GETLOG obtains the value of a logioal variable from an unpaoked buffer.
- GETNUM oonverts an ASCII numeric field into a REAL*8 value.
- GETSTR obtains a oharaoter string from an unpaoked buffer.

Following are the details of the oall sequence and funotion of the AIPS FITS parsing utility routines.

14.7.1 FPARSE - (parse FITS oard) will unpack and interpret a card
image from a blook of FITS data and put that data into the internal
AIPS header. Works for standard uv or image FITS headers.

FPARSE (ICARD, FITBLK, PSCAL, POFF, PTYPES, TABLES,* END, IERR)
Inputs:

ICARD
FITBLK

Outputs:
PSCAL
POFF
PTYPES
TABLES
END
IERR

1*2
1*2(1440)
R*8(20)
R*8(20)
R*4(20)
1*2
L*2
1*2

COMMON /MAPHDR/

The oard number (1-36) in blook to interpret
A blook of FITS header data.
Random parameter soalings
Random parameter offsets
Random parameter types (packed ohars every other one)
Tables extension
True if end oard found, else false.
error oode 0=ok. l»error.

FITS TAPES
AIPS FITS PARSING ROUTINES Page 14-30

27 May 84

14.7.2 GETCRD - (get oard) will unpaok a given oard image from a
header blook of FITS data, look for a recognizable key word from a
supplied table and return information to the oalling routine.

GETCRD (ICARD, NOSYM, STRSYM, SYMTAB, FITBLK, NPNT,
* KL, SYMBOL, TABNO, ISHIST, END, IERR)

Inputs:
ICARD
NOSYM
STRSYM
SYMTAB
FITBLK

In/Out:
NPNT
KL

Outputs:
SYMBOL
TABNO
ISHIST
END
IERR

1*2 the oard image (1-36) in FITS data blook.
1*2 the number of entries in key word table.
1*2 Start search with symbol # STRSYM
I*2(2,NOSYM) unpaoked keywords, two per 1*2.
1*2(1440) the blook of FITS header cards.
1*2
1*2(80)

1*2(2)
1*2
L*2
L*2
1*2

The position to start scan in array KL.
Returns the last position scanned plus one.
input the unpaoked oard image if NPNT > 1,
else returns the unpacked oard image.
the unpaoked symbol found on the oard.
SYMBOL matohes SYMTAB(ltf2,TABNO) .
True if history oard else false.
True if end oard found, else false.
0=matoh found, l=no matoh on otherwise
valid keyword, 2=oard ends or other trouble

14.7.3 GETLOG - obtains the value of a logioal variable from buffer. loose

GETLOG (KB, LIMIT, KBP, IL)
Inputs:

KB(80) 1*2
LIMIT 1*2KBP 1*2

Outputs:
KBP 1*2IL 1*2

Loose buffer of oard image
Number of words in loose buffer
Pointer position at start
Pointer position of next field
Value of logioal field
0— > .false.
1— > .true.
2— > invalid

FITS TAPES
AIPS FITS PARSING ROUTINES Page 14-31

27 May 84

14.7.4 GETNUM - oonverts ASCII immerlo field into REAL*8 number.
GETNUM (KB, KBPLIM, KBP, X)

Inputs: KB I*2() loose oharaoter buffer
KBPLIM 1*2 # oharaoters in buffer
KBP 1*2 start of numerio field

Outputs: KBP 1*2 start of next field (inol blanks)
X R*8 numerioal value

14.7.5 GETSTR - obtains a hollerith value from a loose buffer.
GETSTR (KB, KBPLIM, NMAX, KBP, ISTR, NCHAR)

Inputs: KB 1*2(80)
KBPLIM 1*2
NMAX 1*2
KBP 1*2

Outputs: KBP 1*2
ISTR R*4(*)
NCHAR 1*2

loose buffer
size of loose buffer
max string length in oharaoters
start position in KB
start position in KB next field
paoked string, blank filled
oharaoters (0 => no string found)

14.7.6 GETSYM - sorutinizes a oard image to look for the next
symbol. A symbol begins with a letter and oontains up to eight
alpha-numerio oharaoters (A-Z,0-9,_). This routine is used for
interpreting a FITS tape and for interpreting the HI files.

GETSYM (LBUFF, NPNT, SYM, IERR)
Inputs:

LBUFF(80) 1*2
NPNT 1*2

Output:
NPNT 1*2
SYM (2) R*4
IERR 1*2

Loose paoked oard image
Pointer to first oharaoter
Pointer value after getting symbol
Symbol, padded with blanks
Return oode
0— >
1— >
2— >
3— >
4— >
5— >

Found legal symbol followed by
Ran off the end of the oard
Symbol had >8 oharaoters
Found legal symbol with no
or SYM is HISTORY or COMMENT
Found a ' / ' symbol
Symbol oontains an illegar ohar

FITS TAPES
REFERENCES Page 14-32

27 May 84

14.8 REFERENCES
Wells, Greisen, and Harten 1981, Astronomy and Astrophysics

Supplement series, vol. 44, pp 363 - 370.
Greisen and Harten, 1981, AsiE&rmmy and Astrophysics Supplement Series, vol. 44, pp 371 - 374.
Harten, Grosbol, Tritton, Greisen and Wells 1984, draft reproduced

in the IAU Comission 9 AfitiCQBGmiQftl Image Processing Circular.

CHAPTER 15
THE Z ROUTINES

The AIPS system has a number of types of routines the details
of whioh depend on the hardware and/or operating system upon whioh
the system is running. These types of routines are denoted by the
first letter of the name. The types of routines whioh may vary from
system to system are: 1) those whioh depend primarily on the
operating system or CPU hardware (denoted by a "Z", thus the "ZH
routines), 2) those whioh depend on the image display (TV) hardware
and/or software (the "Y" routines) and 3) those whioh depend on
array or veotor hardware and/or software (the "Q" routines). This
ohapter disousses the "Z" routines; the "Y" and "Q" routines are
dlsoussed elsewhere in this manual.

In principle, all that is required to make AIPS work on a new
machine is to develop a disk file struoture and oreate a set of "Z",
"Q" and "Y" routines to interfaoe AIPS programs to the operating
system, the file struoture, the array or veotor funotions and the
image display. If routines other than "Z" (or "Y" and "Q") routines
are modified then they will have to be modified every time the AIPS
system is updated. For this reason we reoommend that routines
Gilien I ' l l ££ 1Q1 routines should, fes modified.

This ohapter will desoribe the funotions of the upper layer of
Z routines; in any implementation there will probably be additional
lower level machine-dependent routines. These Z routines form the
basis of a virtual operating system under whioh the applications
oode runs. Careful study of an existing implementation of AIPS is
recommended before attempting a new installation.

HQIEl The routines desoribed in this ohapter are intended to
oonstitute a oomplete and neoessary set to implement ALL AIPS
applications oode exolusive of the image display (TV) related
funotions. Any (non-TV) "Z" routines not desoribed in this ohapter
are lower level routines and should NEVER be oalled from non-'*Z"
routines.

15.1 OVERVIEW

THE Z ROUTINES
OVERVIEW Page 15-2

2 April 85

For purposes of discussion the Z routines will be divided up into a
number of overlapping categories:

1. Data Manipulation Routines - These routines oonvert data
formats from external (tape) integers and oharaoters to
looal and vice versa, and move bits and bytes.

2. Disk IZQ and Eile Manipulation - These routines oreate,
destroy, expand, oontraot, open, olose, read, and write
disk files.

3. System Eunotions - These routines do various system
funotions suoh as starting and stoping prooesses, inquiring
what prooesses are running, and inquiring how muoh spaoe is
available on a given disk drive.

4. Dexioe IZQ - These routines talk to the terminals, the tape
drive, graphios devioes, image displays, eto. This area
overlaps heavily with the disk I/O area.

5. Directory and lest Eile Routines - These routines read the
directories for, and oontents of, text files.

6. Miscellaneous - There are a number of routines suoh as that
whioh initializes the Devioe Characteristics Common whioh
do not easily fit in one of the other oatagories.

7. Television IZQ routines^ These routines are disoussed in
the ohapter on televisions and are not disoussed further here.

A detailed description of the oall sequences to eaoh of these
routines and listings of the relevant INCLUDE files are at the end of this ohapter.

15.1.1 Device Characteristics Common
Many of the parameters describing the host operating system and

installation in AIPS programs are carried in the Device
Charaoteristios Common whioh is obtained using the inoludes
IDCH.INC, DDCH.INC and CDCH.INC. The text of these inolude files
can be found at the end of this ohapter.

The oontents of the Devioe Charaoteristios oommon are
initialized by a oall to ZDCHIN. Details of the oall sequence oan be found at the end of this ohapter.

Many of the values in the Devioe Charaoteristios oommon are
read from a disk file. The values in this file oan be read and
ohanged using the standalone utility program SETPAR. The constants
kept in this oommon, the values in DEVTAB, and the use of logioal
unit numbers are desoribed in the ohapter on disk I/O.

THE Z ROUTINESOVERVIEW Page 15-3
2 April 85

15.1.2 FTAB
The FTAB array in the devioe oharaoteristios oommon is used to

keep AIPS and system I/O tables. The FTAB has separate areas for
the three different kinds of I/O: l) devioe I/O to devioes whioh
may not need I/O tables, 2) non-map or regular I/O whioh is single
buffered, nonwait-mode I/O and 3) map I/O whioh oan be double buffered, wait mode I/O.

The FTAB has spaoe for one system I/O table for non-map files
and two system I/O tables for map files and spaoe for 16 integer
words for applioation routine use for map I/O. The size of the
entries in FTAB for the different types of I/O are carried in the
Devioe Oharaoteristios Common. The type of the I/O (map or non-map)
is deolared by the oalling routine to the file/devioe open routine
ZOPEN. In general, the FTAB is used to carry any system dependent
information neoessary for I/O to the devioe or file. Note: the
size of FTAB is dimensioned in eaoh applioation program and ZDCHIN
is not told what the aotual dimension is; this may lead to problems
if FTAB is dimensioned too small in a given applications task.

The FTAB is divided up by ZDCHIN into three areas, one for eaoh
type of I/O. These areas are desoribed in the following:

1. Hgb-EXAB IIQ - This area has NTAB1 entries each NBTB1 bytes
long. The first integer word in eaoh entry is zero if that
entry is not in use and the LUN of the corresponding devioe if the entry is in use.

2. ETAS InGnzffi&Bl IZQ - This area has NTAB2 entries eaoh NBTB2
bytes long. The first of these is zero if that entry is
not in use and the LUN of the corresponding devioe if the
entry is in use. Following is spaoe for one oopy of
whatever system I/O table is required for the host system.

3. EIAB IZQ - This area has NTAB3 entries eaoh NBTB3
bytes long. The first 16 integer words in eaoh entry are
reserved for applioation routines; the first of these is
zero if that entry is not in use and the LUN of the
corresponding devioe if the entry is in use. Following
these 16 integers is spaoe for two copies of whatever
system I/O table is required for the host system.

Note that a byte is defined in this manual as half a short integer.

THE Z ROUTINES
OVERVIEW Page 15-42 April 85

15.1.3 Disk Files
The AIPS system uses binary files for data and text files for

souroe oode and oontrol information. The location and physioal name
of the various files depends very muoh on the host system and
installation. The physioal name of a file is derived by ZPHFIL and
the looatlon of a file is determined by ZPHFIL and ZOPEN (or ZTOPEN
for text files).

15.1.3.1 Binary (data) Files - Binary files are divided into two
types, "map" and "non-map" files corresponding to the two types of
I/O. Normally most AIPS binary files on a given disk are put in a
single area or directory. Current implementations of AIPS use 8
oharaoters for the basio physical name and 3 more if private
catalogues are supported. Applications software will handle up to
24 oharaoters in a name.

An example from a VAX system with private oatalogues is
"DAOn:ttdooovv.uuu" ; where n is the one relative disk drive number,
DAOn: is a logioal variable which is assigned to a directory, tt is
a two oharaoter file type (eg. 'MA'), d is the one relative disk
drive number(hex), ooo is the catalogue slot number(hex), vv is the
version (hex) (01 for "MA" and "UV" files), and uuu is the users
number in hexideoimal notation.

"Map" type files are files on which it should be possible to
double buffer. It should be possible to oontraot "map" files but it
is not necessary to expand "map" files so these files may be foroed
to be oontigious on the disk. Contigious files are more effioient
but they cause problems for users with large files. These files
should be oapable of random aooess with I/O beginning on a disk seotor boundary.

"Non-map" files should be expandable and oontraotable. These
files should be oapable of random aooess with I/O beginning on a
disk seotor boundary.

15.1.3.2 Text Files - Text files are used primarily for storing
souroe oode and oontrol information suoh as the RUN and HELP/INPUT
files. Currently text files may be read but not written using AIPS
routines. The souroe oode routines are accessed primarily by AIPS
managment routines suoh as the AIPS manual printing program.

Different types of text files are kept in different areas whioh
have direotories. The type of the text file is speoified to ZPHFIL
as one of several types; the direotory may be further seleoted by
the ZTOPEN argument VERSON whioh oan specify the version (direotory
or area). The member (or file) name is speoified to ZTOPEN and may
oontain up to eight oharaoters. These types and the files kept in
eaoh area are desoribed in the following:

THE Z ROUTINES
OVERVIEW Page 15-5

2 April 85

- HE - These are the HELP files whioh speoify whioh AIPS
adverbs are to be sent to tasks and oontain the primary user documentation.

- IN - Same as HE. This is a relio of older versions in
whioh the HELP files and INPUTS files were distinot.

- RU - The RUN files usually oontain instructions for the
AIPS program. Other types of text files may appear in this area as input for AIPS tasks.

- D C - These are the programmer documentation files,
primarily seotions of the AIPS manual.
SO - These are the "standard" souroe oode routines. These
routines are those whioh should oonform to all AIPS ooding standards.

- SR - This area oontains source oode whioh is used only by
the AIPS program and standalone utility programs but not AIPS tasks.

- SI - This area oontains the inolude files.
- SN - This area oontains souroe oode whioh has not been

determined to meet all AIPS ooding standards. Code in this
area may give problems in a new installation.
SF - This area oontains the souroe oode for the true array prooessor routines.

- SP - This area oontains the souroe oode for the pseudo array prooessor routines.
SL - This area oontains miscellaneous files.

15.2 DATA MANIPULATION ROUTINES
The internal form in whioh oharaoters and integers are stored

varies from oomputer to oomputer but a given FITS data tape should
be able to be read on any AIPS system. Thus it is neoessary to be
able to oonvert between the external (FITS) formats to the internal
formats. The format of data on FITS tape files is disoussed in another ohapter.

The following list gives the names and uses of the upper level
data manipulation "Z" routines; in praotioal installations more Z
routines will be required. Details of the oall sequenoes are given later in this ohapter.

- ZBYTFL - Flip the order of bytes if neoessary on looal
maohine.
ZCLC8 - oonverts looal oharaoters to standard ASCII.

- ZC8CL - oonverts standard ASCII to the looal oharaoters.
- ZMCACL - oonverts Modoomp oompressed ASCII to looal ASCII.
- ZDM2DL oonverts Modoomp double preoision real numbers to looal.
- ZGETCH - extraots a single oharaoter from a R4 word.
- ZGTBIT - extraot bits from a word.
- ZGTBYT - extraot byte from a word.
- ZI16IL - oonverts standard 16 bit integers to the looal short integer.
- ZI32IL - oonverts standard 32 bit integers to a pair of

looal short integers.
ZI8L8 - oonverts 8 - bit unsigned binary numbers to bytes.

- ZILI16 - oonverts looal short integers to external format
16 bit integers.
ZPTBIT - sets bits in a word.

- ZPTBYT - sets a byte in a word.
ZPUTCH - inserts a oharaoter into a string.

- ZP4I4 - oonverts pseudo 1*4 to true 1*4.
- ZRDMF - oonverts data paoked in DEC-Magtape format to pairs of 16 bit integers.
- ZRM2RL - Converts Modoomp single preoesion floating numbers to looal.
- ZR8P4 - oonverts between pseudo 1*4 and REAL*8.

THE Z ROUTINES Page 15-6
DATA MANIPULATION ROUTINES 2 April 85

THE Z ROUTINES
DISK I/O AND FILE MANIPULATION ROUTINES Page 15-7

2 April 85

15.3 DISK I/O AND FILE MANIPULATION ROUTINES
This seotion desoribes the routines needed for manipulating

disk data (binary) files. The physioal names of disk data files are
always oonstruoted by ZPHFIL and these files are always opened by
ZOPEN. There are separate routines for writing to the message file
(ZMSGCL, ZMSGDK, and ZMSGOP) to avoid reoursion when reporting an
error message from one of the I/O routines.

A short desoription of the disk file routines are given in the
following list; detailed descriptions of the oall sequences are given at the end of the ohapter.

ZCLOSE - oloses disk files or devioes.
- ZCMPRS - oontraots disk files.
- ZCREAT - oreates disk files.
- ZDESTR - destroys disk files
- ZEXIST - determines if a given file exists.
- ZEXPND - expands "non-map" files.
- ZFIO - does "non-map" (single buffer) I/O to disk files and devioes.
- ZMIO - does "map" (double buffer, wait mode) I/O to disk files and devioes.

ZMSGCL - oloses the message file.
- ZMSGDK - writes to the message file.
- ZMSGOP - opens the message file.

ZOPEN - opens disk files and devioes.
- ZPHFIL - oonstruots physioal file names.
- ZRENAM - ohanges the physioal name of a file.
- ZWAIT - suspends the oalling task until an I/O operation Initiated by ZMIO is oomplete.

THE Z ROUTINES
SYSTEM FUNCTIONS Page 15-8

2 April 85

15.4 SYSTEM FUNCTIONS
There are a number of funotions involving prooesses or system

resources whioh must be done in a system dependent fashion. These
inolude controlling prooesses (starting, killing, suspending and
resuming) and determining the time, date, name of the ourrent
prooess, and the amount of CPU time used by the ourrent task. Some
of these may require speoial privileges.

The AIPS interactive program may start independent prooesses
called tasks whioh do most of the computations. In order to start a
task, AIPS first writes the task's adverbs (determined from the
assooiated HELP file and the ourrent POPS adverb values) together
with an initial value of the task return oode (-999) into the task
data (TD) file, oloses the TD file and starts the task.

AIPS then loops with a fixed time delay (3 seo. for
interactive, 8 seo. for interactive with POPS adverb D0WAIT=TRUE
and 20 seo. for batoh) until one of two conditions exist. These
conditions are 1) the value in the TD file of the return oode has
ohanged or 2) the task is no longer running. In case 1, AIPS
resumes normal operation; in oase 2, if the value of the return oode
is unchanged the task is assumed to have failed and the soratoh
files are destroyed. In oase 1 or oase 2 if the value of the return
oode is modified, AIPS continues and prooesses the return oode. A
non-zero return oode indioates that the task failed.

The following list gives a short description of these routines;
oomplete descriptions of the oall sequenoe oan be found at the end
of this ohapter. In any implementation there will be lower level Z
routines oalled by these routines.

- ZACTV8 - aotivates a speoified task.
- ZCPU - returns the amount of CPU time used by the ourrent

prooess.
- ZDATE - returns the ourrent oalender date.
- ZDELAY - delays the oalling task for a speoified period.
- ZFREE - determines the amount of disk spaoe available on

eaoh of the disks.
ZGNAME - returns the aotual task/process name.

THE Z ROUTINES
SYSTEM FUNCTIONS Page 15-9

2 April 85

- ZMYVER - determines the default version of AIPS (NEW, OLD, TST).
- ZPRIO - raises or lowers a task's priority.

ZPRPAS - prompted read for password.
ZTACTQ - oheoks if a given prooess is aotive.

- ZTIME - returns the ourrent time.
- ZSTAIP - restores the prooess to its normal state on the

oompletion of an interaotive AIPS prooess.
- ZTKILL - kills (aborts) a speoified task.

ZTQSPY - writes a list of the ourrent AIPS prooesses
running to the user monitor terminal and the message file.

- ZWHOMI - returns the name of the executing task.

15.5 DEVICE (NON-DISK) I/O ROUTINES
Many of the routines disoussed in the disk I/O seotion will

also work on other devioes. There are a number of speoial funotions
required for non-disk devioes. One example of these is the routine
to talk to a terminal; some operating systems don't allow Fortran
I/O to a terminal so this I/O is done through the routine ZTTYIO.

The following list gives a short description of these routines;
oomplete descriptions of the oall sequenoe oan be found at the end of this ohapter.

- ZDOPRT - plots a bit map onto the plotter.
ZENDPG - does a page ejeot on the line printer.

- ZQMSIO - Opens and/or writes to a QMS Lasergraphix
- ZTAPE - positions a tape and writes file marks.
- ZTKBUF - formats the output buffer for the graphios output devioe.

THE Z ROUTINES Page 15-10DEVICE (NON-DISK) I/O ROUTINES 2 April 85

- ZTKCLS - oloses a TK devioe.
- ZTKOPN - opens a TK devioe.
- ZTTYIO - reads and writes to the terminal.
- ZPRMPT - does a prompted read from the terminal.

15.6 DIRECTORY AND TEXT FILE ROUTINES
Text files are used for souroe oode and oontrol information and

have been discussed previously in this ohapter. Currently text
files may be read but not written from AIPS routines.

The following list briefly describes the funotion of the
special routines for text files; detailed descriptions of the oall
sequences are found at the end of this ohapter.

- ZTOPEN - opens a text file.
- ZTREAD - reads a text file.
- ZTCLOS - oloses a text file.
- ZTXMAT - searohes a direotory for files whose names begin

with a given oharaoter string.
- ZGTDIR - returns the direotory for a text file area.

15.7 MISCELLANEOUS
Several Z routines don't naturally fit in any of the above

categories. The following list gives a brief description of eaoh;
details of the oall sequenoe and funotion are given at the end of
this ohapter.

ZDCHIN - initializes the Devioe Charaoteristios Common.
- ZMATH4 - does pesudo 1*4 arithmetio.

THE Z ROUTINES
MISCELLANEOUS Page 15-112 April 85

ZTFILL - initializes the FTAB array in the Devioe
Oharaoteristios Common.

- ZKDUMP - dumps an array to the user message monitor and
message file in a number of different formats.

15.8 INCLUDES
There are several types of INCLUDE file whioh are distinguished

by the first oharaoter of their name. Different INCLUDE file types
oontain different types of Fortran deolaration statments as
desoribed in the following list.

Dxxx.INC. These INCLUDE files oontain Fortran type (with
dimension) declarations.

- Cxxx.INC. These files oontain Fortran COMMON statments.
- Exxx.INC. These oontain Fortran EQUIVALENCE statments.
- Vxxx.INC. These oontain Fortran DATA statments.

Ixxx.INC. Similar to Dxxx.INC files in that they oontain
type declarations but the deolaration of some varaible is
omitted. This type of inolude is used in the main program
to reserve spaoe for the omitted variable in the
appropriate oommon. The omitted variable must be deolared
and dimensioned separately.
Zxxx.INC. These INCLUDE files oontain declarations whioh
may ohange from one computer or installation to another.

15.8.1 CDCH.INC

Inolude CDCHCOMMON /DCHCOM/ XPRDMM, XTKDMM, SYSNAM, VERNAM, RLSNAM, TIMEDA,
* TIMESG, TIMEMS, TIMESC, TIMECA, TIMEBA, TIMEAP, RFILIT,
* NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2, NBTB3, NTAB3,
* NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR, CSIZPR, NINTRN,
* KAPWRD, NCHPFP, NWDPFP, NWDPDP, NWDPLI, NWDPLO, NBITWD,
* NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV, NTVACC, NTKACC,* UCTSIZ, BYTFLP, USELIM, NBITCH
COMMON /FTABCM/ DEVTAB, FTAB

End CDCH.

THE Z ROUTINES
INCLUDES Page 15-12

2 April 85

15.8.2 CMSG.INC

C Inolude CMSGCOMMON /MSGCOM/ MSGCNT, TSKNAM, NPOPS, NLUSER, MSGTXT,
* NACOUN, MSGSUP, MSGREC, MSGKIL

C End CMSG.

15.8.3 DDCH.INC

C Inolude DDCHREAL*4 XPRDMM, XTKDMM, SYSNAM(5), VERNAM, RLSNAM(2), TIMEDA(15),
* TIMESG, TIMEMS, TIMESC, TIMECA, TIMEBA(4), TIMEAP(3),
* RFILIT(14)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
* CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP, NWDPLI,
* NWDPLO, NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV,
* NTVACC, NTKACC, UCTSIZ, BYTFLP, USELIM, NBITCH,
* DEVTABC50), FTAB(l)

C End DDCH.

15.8.4 DMSG.INC

C Inolude DMSGINTEGER*2 MSGCNT, TSKNAM(3), NPOPS, NLUSER, MSGSUP, MSGREC,* MSGKIL
INTEGER*4 NACOUN
REAL*4 MSGTXT(20)

C End DMSG.

15.8.5 IDCH.INC

REAL*4 XPRDMM, XTKDMM, SYSNAM(5), VERNAM, RLSNAM(2), TIMEDA(15),
* TIMESG, TIMEMS, TIMESC, TIMECA, TIMEBA(4), TIMEAP(3),* RFILIT(14)
INTEGER*2 NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2,
* NBTB3, NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2),
* CSIZPR(2), NINTRN, KAPWRD, NCHPFP, NWDPFP, NWDPDP, NWDPLI,
* NWDPLO, NBITWD, NWDLIN, NCHLIN, NTVDEV, NTKDEV, BLANKV,
* NTVACC, NTKACC, UCTSIZ, BYTFLP, USELIM, NBITCH,

C Inolude IDCH

THE Z ROUTINES
INCLUDES Page 15-132 April 85

DEVTAB(50)
End IDCH

15.9 ROUTINES
15.9.1 Data Manipulation
15.9.1.1 ZBYTFL - interohange the low order and high order bytes
for all words in the input buffer and put the results in an output
buffer. The input buffer is unohanged exoept in the speoial oase
where the input buffer has the same starting address as the output buffer.

ZBYTFL(NWORDS, INBUF, OUTBUF)
Inputs:
Output:

NWORDS
INBUF
OUTBUF

1*2 The length of the input buffer in 1*2 words
I*2() The input buffer.
I*2() The output buffer oontaining byte swapped words.

15.9.1.2 ZCLC8 - oonverts looal oharaoters in a buffer to standard
8-bit ASCII in another buffer - whioh may be the same buffer.

ZCLC8 (NCHAR, INB, NP, OUTB)
Inputs: NCHAR 1*2 Number of oharaotersINB R*4(*) Input buffer in looal ohars: start at 1NP 1*2 Start index in output buffer

8-bit ohars, 1-relative in units of
Output: OUTB R*4(*) Output buffer

15.9.1.3 ZC8CL - extracts 8-bit ASCII standard oharaoters from a
buffer and stores them in the looal oharaoter form. Must work even
when INARR and OUTARR start at the same address.

ZC8CL (NCHAR,NP,INARR,OUTARR)
Inputs

Output

NCHAR
NP
INARR
OUTARR

1*2
1*2
R*4(*)
R*4(*)

Number of oharaoters to extraot
Start position in input buffer in units
of 8-bit oharaoters
Input buffer
Output buffer

THE Z ROUTINES
ROUTINES Page 15-142 April 85

15.9.1.4 ZMCACL - converts Modoomp oompressed ASCII oharaoters to
blank filled 80 byte reoords in looal oharaoter form. Two
oharaoters per short integer are assumed. A blank reoord will be
plaoed in the output between files. This routine is only used by
task FILLR whioh reads VLA Modoomp/arohive format data tapes.

NOTE: this routine will not work inplaoe.
MODCOMP oompressed ASCII format for eaoh logioal reoord:

BYTE Use
0 ASCII ETX (Hex 03)
1 oheoksum (optional)

2-3 byte oount, negative => end of file.
(Note may be bytes 1-2)

4- Compressed ASCII oharaoters, a NUL (Hex 00) terminates.
A negative value (most signifigant bit on) indioates a
repeatition of the previous oharaoter the number of times
indioated by the absolute value of the negative number.
Example: an ASCII 'C' followed by a byte with the HEX value
FF (twos oomplement -1) indioated two 'C's.

NOTE: logioal reoords may span physioal reoords.
NOTE: padding to 80 byte reoords is already done on tape.

ZMCACL (NBYTES, INBUF, OUTBUF, LASTCH)
Inputs:
NBYTES
INBUF(*)
LASTCH

Outputs:
NBYTES
OUTBUF(*)

LASTCH

1*2 The length of the input buffer in bytes.
1*2 Input buffer of MODCOMP oompressed ASCII 2 bytes

per word.
1*4 Address (in RECORD) of previous last oharaoter

written. Should be zero for first oall.
1*2
1*2

1*4

The number of bytes in the output buffer
Output buffer, paok oharaoter string. Eaoh MODCOMP
logioal reoord is oonverted to 80 bytes with blank
filling. Eaoh reoord begins at the first byte
of every 40 th looal short integer.
Due to the expansion of the data the size
of the output buffer is not striotly prediotible.
Position in RECORD of last oharaoter written.
Will oontain the address - DON'T touoh!

15.9.1.5 ZDM2DL - oonverts Modoomp R*6 or R*8 floating point data
into looal double preoision floating point. Expects, after word
flip, sign bit in bit 31 (l->negative), bits 22:30 are the exponent
biased by 512, bits 0:21 are the normalized fraotion. Negative
values are obtained by 2's oompliment of the whole word. Before
oalling ZDM2DL the data should have the bytes flipped (ZI16IL) whioh
will leave the values split between four short integers. Should
work inplaoe. This routine is only used by task FILLR whioh reads
VLA Modoomp/arohive format data tapes.

THE Z ROUTINES
ROUTINES Page 15-15

2 April 85

ZDM2DL (NWORDS, INBUF, OUTBUF)
Inputs:
NWORDS 1*2 The length of the input buffer in words
INBUF(*) R*8 The input array in MODCOMP R*6 or R*8

If R*6 the low order two bytes should be zeroed.Outputs:
OUTBUF(*) R*8 The output array in looal REAL*8

15.9.1.6 ZGETCH - extraots a single oharaoter from a real variable
and plaoes it in the least signifioant bits of an otherwise zero
integer. This routine allows an NCHAR of 1 to NCHPFP.

ZGETCH (CHAR, WORD, NCHAR)
Inputs: WORD R*4 Word to be extracted from (paoked string).

NCHAR 1*2 Char number (1 - NCHPFP)
where ohar n is n #th oharaoter printed
under format An

Output: CHAR 1*2 Char is LS bits, 0 in rest.

15.9.1.7 ZGTBIT - gets the lowest order NBITS of WORD and returns
them in BITS with the lsb in BITS(l)...sign bit in BITS(16).

ZGTBIT (NBITS, WORD, BITS)
Inputs: NBITS 1*2 Number of bits to oopy

WORD 1*2 Input word from whioh bits are extracted.
Output: BITS(*) 1*2 Resulting "Bit" array (values 0 or 1)

15.9.1.8 ZGTBYT - extraots a byte (half a short integer) from IWORD
and returns the byte in the low order byte of DATA with zero in the
upper byte. NBYTE - 1 corresponds to the left byte, and NBYTE - 2
corresponds to the right byte as printed using FORTRAN A2 format.ZGTBYT (DATA, IWORD, NBYTE)

Inputs:
IWORD 1*2 The word containing the input oharaoter.
NBYTE 1*2 1 for the "left" byte of IWORD and 2 for the "right" byte.

Outputs:
DATA 1*2 The desired oharaoter in the low order byte, padded

with zeros in the upper byte.

THE Z ROUTINES
ROUTINES Page 15-16

2 April 85

15.9.1.9 ZI16IL - extraots 16-bit, 2's oomplement integers from a
buffer and puts them into the looal small integer form. Must work
even when INB and OUTB have the same address.

ZI16IL (NVAL, NP, INB, OUTB)
Inputs: NVAL

NP
INB

Output: OUTB

1*2 # values to extraot
1*2 start position in input counting from 1

in units of 16-bit integers
I* 2(*) Input buffer
I*2(NVAL) Output buffer

15.9.1.10 ZI32IL - extraots 32-bit, 2's oomplement integers from a
buffer and puts them into the looal small integer form. Must work
even when INB and OUTB have the same address. The IBM order must
apply to the output: i.e. the most significant part of the 32-bit
integer must be at a lower index in OUTB than the least significant
part. They will be picked up into standard pseudo 1*4 via IP(2) - OUTB(i), IP(l) - OUTBCi+1).

ZI32IL (NVAL, NP, INB, OUTB)
Inputs: NVAL 1*2 # values to extraot

NP 1*2 start position in input counting from 1
in units of 32-bit integers INB I*2(*) Input buffer

Output: OUTB I*2(2*NVAL) Output buffer

15.9.1.11 ZI8L8 - oonverts 8-bit unsigned binary numbers to "bytes"
(one-half of a looal small integer). Must work when input and output buffers are the same.

ZI8L8 (NVAL, NP, INB, OUTB)
Inputs: NVAL 1*2 # values

NP 1*2 First value to get from INB oounting from 1
in units of 8-bit numbers INB I*2(*) Input buffer

Output: OUTB I*2(NVAL/2) Output buffer

THE Z ROUTINES
ROUTINES Page 15-172 April 85

15.9.1.12 ZILI16 - oonverts a buffer of looal small integers
buffer of standard 16-bit, 2's oomplement Integers.

ZILI16 (NINT, INB, NP, OUTB)

to

Inputs: NINT
INB
NP

1*2
I*2(*)
1*2

Output s :OUTB I* 2(*)

Number of integers
Input buffer: start at index 1
start point in output buffer 1-relative in
units of standard 16-bit integers
Out buffer

15.9.1.13 ZP4I4 - Converts Pseudo 1*4 integer to true 1*4.
ZP4I4 (P4, 14)

Input:
P4 1*2(2) pseudo 1*4 value

Output:
14 1*4 1*4 value

15.9.1.14 ZPTBIT - builds WORD from NBITS bit values in the array
BITS, where BITS(l) supplies the lsb, BITS(2) the next higher bit. Unspecified bits are zero filled.

ZPTBIT (NBITS, WORD, BITS)
Inputs: NBITS 1*2 Number of bits.

BITS(*) 1*2 "Bit" array.
Output: WORD 1*2 Word into whioh bits are placed.

15.9.1.15 ZPTBYT - puts the low order byte of DATA in either the
"left" or the "right" byte of IWORD. The oonvention is that NBYTE -
1 corresponds to the left byte, and NBYTE - 2 corresponds to the
right byte as printed using FORTRAN A2 format.

ZPTBYT (DATA, IWORD, NBYTE)
Inputs:
DATA 1*2 The word containing the input oharaoter.
NBYTE 1*2 1 for the "left" byte of IWORD and 2 for the "right" byte.

Outputs:
IWORD 1*2 The word to reoeive the byte.

THE Z ROUTINES
ROUTINES Page 15-182 April 85

15.9.1.16 ZPUTCH - inserts the appropriate number of bits of CHAR
Cone oharaoter worth, taken from the least significant bits) into the speoified oharaoter position of WORD.

ZPUTCH (CHAR, WORD, NCHAR)
Inputs: CHAR 1*2

NCHAR 1*2
In/out: WORD R*4

oharaoter in lsb's.
oharaoter position in whioh to insert: ohar n
is the n'th oharaoter printed by An.
'word' to have oharaoter inserted, (paoked string)

15.9.1.17
to pairs
format is

Traok
Byte
1
2
3
4
5

ZRDMF - converts data paoked in DEC-Magtape format (DMF)
of 16 bit integers, 1 per looal short integer. The DMF

FO
F8
F16
R6
0

FI
F9
F17
R7
0

F2
F10
RO
R8
0

F3
Fll
R1
R9
0

5
F4

F12
R2

RIO
R14

6

F5
F13
R3

Rll
R15

F6
F14
R4

R12
R16

8
F7

F15
R5
R13
R17The Rn refer to the right halfword, Fn to the left halfword. Sinoe

the purpose of this routine is to read MODCOMP tapes written with
this peouliar format F16, F17, R16 and R17 (the high order bits) are
zero for VLA data but are used for the word oount.

The first word (5 bytes) of a tape blook oontains the word
oount of the blook. For 16 bit output bits R2-R17 are returned for
the word oount for all other data bits F0-F15 and R0-R15 are
returned. Input data is assumed paoked into 2 1/2 short integers
and output data will be returned in a pair of looal short integers
per DEC-10 word. This routine is only used by task FILLR whioh
reads VLA Modoomp/arohive format data tapes.

ZRDMF (NWORDS, INBUF, OUTBUF, FLAG)
Inputs:
NWORDS
INBUF(*)
FLAG

Outputs:
OUTBUF(*)

1*2 The length of the input buffer in DEC-10 words
1*2 Input buffer of DMF format data.
1*2 If .gt. 0 then the first word word is the beginning of a tape blook.
1*2 Output buffer, two looal short integers per

input DEC-10 word.

THE Z ROUTINES
ROUTINES Page 15-192 April 85

15.9.1.18 ZRM2RL - oonverts Modoomp single preoision floating point
data into looal single preoision floating point. Expeots, after
word flip, sign bit in bit 31 (l->negative), bits 22:30 are the
exponent biased by 512, bits 0:21 are the normalized fraotion.
Negative values are obtained by 2's oompliment of the whole word.
Before oalling ZRM2RL the data should have the bytes flipped
(ZI16IL) whioh will leave the values split between two short
integers. Should work inplaoe. This routine is only used by task
FILLR whioh reads VLA Modoomp/arohive format data tapes.

ZRM2RL (NWORDS, INBUF, OUTBUF)
Inputs:
NWORDS 1*2 The length of the input buffer in words
INBUFC*) R*4 The input array in MODGOMP R*4

Outputs:
OUTBUF(*) R*4 The output array in looal REAL*4

15.9.1.19 ZR8P4 - oonverts between pseudo 1*4 and R*8.
ZR8P4 (OP, INTG, DX)

Inputs: OP R*4 '4T08' Pseudo 1*4 to R*8
'8T04' R*8 to pseudo 1*4
'4IB8' IBM i*4 to R*8
'8IB4' R*8 to IBM 1*4 In/out: INTG 1*2(2) the 1*4

DX R*8 the R*8
Pseudo 1*4 has the form of two short integers with the least
signifioant half at the lower 1*2 index.
IBM 1*4 has the form of a 2's oomplement, 32-bit integer with the
most signifioant 16 bits in the 1*2 word of lower index and the
least signifioant 16 bits in the 1*2 word of higher index.

15.9.2 Disk I/O
15.9.2.1 ZCMPRS - releases unused disk spaoe from a non-map file.
Will also allow "map" files. File must be open. "Byte" defined as 1/2 of a small integer.

ZCMPRS (IVOL, PNAME, LUN, LSIZE, SCRTCH, IERR)
Inputs: IVOL 1*2 volume number

PNAME R*4(6) physioal file name
LUN 1*2 logioal unit number under whioh file isopen.

In/Out: LSIZE 1*4 (In) desired final size in bytes.
(out) aotual final size in bytes.

THE Z ROUTINES
ROUTINES Page 15-202 April 85

Outputs: SCRTCH 1*2(256) Soratoh buffer
IERR 1*2 error oode: 0 «> ok

1 -> input data error
2 => oompress error FMGR

15.9.2.2 ZCREAT - oreates a disk file.
ZCREAT (IVOL, PNAME, ISIZE, MAP, ASIZE, SCRTCH, IERR)

Inputs:
IVOL
PNAME
ISIZE
MAP

outputs:
ASIZE
SCRTCH
IERR

R*4(6)
1*4
L*2
1*4
1*2(256)
1*2

Disk drive unit number(l-8).
Physioal file name given by ZPHFIL.(ASCII)
left justified, padded with blanks.
Requested size of the file in bytes. Will be
rounded to next higher granual.
True if map file.
Actual number of bytes in the new file.
(byte - half of a short integer)
Soratoh buffer.
Error return oode. The values mean:0 - suooess.
1 - file already exists.
2 - volume is not available.
3 - spaoe is not available.4 - Other.

15.9.2.3 ZDESTR - Destroys the file associated with PNAME. The file must already be dosed.
ZDESTR (IVOL, PNAME, IERR)

Input:
IVOL 1*2 Volume number of disk.
PNAME R*4(6) Physioal file name.Output:
IERR 1*2 Completion oode. 0-good.

1-file not found
2-failed

THE Z ROUTINES
ROUTINES Page IB-212 April 85

15.9.2.4 ZEXIST - determines if a file exists. If so, the size of the file is returned.
ZEXIST (IVOL, PHNAME, ISIZE, SCRTCH, IERR)

Inputs:
IVOL 1*2 The disk volume to seaoh.

This information is found in PHNAME.PHNAME R*4(6) File name.
Outputs:

ISIZE 1*4 Size of the file in 512 byte blooks.
SCRTCH 1*2(256) Soratoh buffer.
IERR 1*2 Error oode 0 - file exists, 1-file not found,2 - other.

15.9.2.5 ZEXPND - inoreases the size of a non-map file.
ZEXPND (LUN, IVOL, PHNAME, NREC, IERR)

Inputs: LUN 1*2
IVOL 1*2
PHNAME R*4(6)

In/Out: NREC 1*2
Output: IERR 1*2

LUN of file (already open)
disk volume number of file
physioal file name of file
256-integer reoords requested/reoeived error oode 0 -> ok

1 -> input error
2 -> FMGR error

15.9.2.6 ZFIO - reads or writes one logioal reoord between oore and
devioe LUN. For disk devioes, the reoord length is always 512 bytes
(a byte being defined as half of a short integer). NREC gives the
random aooess reoord number (in units of 512 bytes). For non-disk
devioes, NREC oontains the number of bytes. Used for non-map files.

Note: there is a temporary version named ZFI3 differing from
ZFIO only in that NREC is an 1*2 value. This version will disappear
onoe all applloation oode has been oonverted.

ZFIO (OPER, LUN, FIND, NREC, BUF, IERR)
Inputs:

OPER R*4 Operation - 'READ' or 'WRIT'LUN 1*2 logioal unit numberFIND 1*2 pointer to file area in FTABNREC 1*4 reoord number in file: starts with 1
number of bytes (Sequential DEVICES)In/Out:

BUF 1*2(256) array to hold reoordOutput:

(DISKS);

THE Z ROUTINES
ROUTINES Page 15-22

2 April 85

IERR 1*2 error oode: 0
1
2
3
4
5
6

ok
file not open
input error
I/O error
end of file
begin of medium
end of medium

15.9.2.7 ZMIO - a low level random aooess, large
buffered devioe I/O routine. Used for "map" files. reoord, double

Note: there is a temporary version named ZMI3 differing from
ZMIO only in that BLKNO is a pseudo 1*4 value. This version will
disappear onoe all applioation oode has been oonverted.

ZMIO (OP, LUN, FIND, BLKNO, NBYTES, BUFF, IBUFF, IERR)Inputs:
OP
LUN
FIND
BLKNO
NBYTES BUFF
IBUFF

Outputs:
IERR

R*4
1*2
1*2
1*4

Operation - 'READ', 'WRIT'. ASCII - 4 oharaoters.
Logioal unit number of a previously opened file.
Pointer to FTAB returned by ZOPEN.
One relative beginning block number. The size of a

blook is given by NBPS in COMMON/DCHCOM/.
1*2 Number of bytes to transfer.

The i/o buffer.
Buffer number to be used - 1 or 2.

R*4
1*2
1*2 Error return oode:

0 - Success.
1 - File not open.
2 - Operation inoorreotly speoified.3 - I/O error.
4 - end of file (no messages)

15.9.2.8 ZMSGCL - closes message file assooiated with LUN removing
any exolusive use state and dears up the FTAB.

ZMSGCL (LUN, FIND, IERR)
Inputs: LUN 1*2 logioal unit number (6 or 12)
Output: IERR 1*2 error oode: 0 -> no error

1 -> Deaooess or Deassign error
2 -> file already dosed in FTAB
3 -> both errors
4 -> erroneous LUN

THE Z ROUTINES
ROUTINES Pag© 15-232 April 85

15.9.2.9 ZMSGDK - reads or writes one 512-byte logioal reoord
between the buffer BUF and disk unit LUN. Speoial version for message writing.

ZMSGDK (OPER, LUN, FIND, NREC, BUF, IERR)
Inputs:

OPER R*4 Operation - 'READ' or 'WRIT'LUN 1*2 logioal unit number (12)FIND 1*2 pointer to file area in FTABNREC 1*2 reoord number in file: startsBUF 1*2 (256) array to hold reoordOutput:
IERR 1*2 error oode: 0 -> ok

1 -> file not open
2 -> input error
other -> I/O error

15.9.2.10 ZMSGOP - opens message files.
ZMSGOP (LUN, IND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)

Fortran Logioal file number. (6 or 12)
Disk volume oontaining file, 1,2,3,...

> 8 Charaoter physioal file name,left justi:
Is this a map file.
Desire exolusive use.
I will wait.

Index into FTAB for the file oontrol blook error oode

Inputs:
LUN 1*2
IVOL 1*2
PNAME R*4
MAP L*2
EXCL L*2
WAIT L*2

Output:
IND 1*2
IERR 1*2

0
1
2
3
4
5
6

No error
LUN already in use
File not found
Volume not found
Exol requested but not available
No room for LUN
Other open errors

15.9.2.11 ZOPEN - opens logioal files, fills FTAB entries and
performs full open on disk files. Tape units are assigned an I/O ohannel.

ZOPEN (LUN, IND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)
Inputs:

LUN 1*2 Logioal unit number.

THE Z ROUTINES
ROUTINES Page 15-24

2 April 85

IVOL 1*2
PNAME R*4(6)
MAP
EXCL
WAIT

Output:
IND
IERR

L*2
L*2
L*2
1*2
1*2

volume number, 1,2,3,...
24-charaoter physical file name,left justified,
packed, and padded with blanks,
is this a map file ?
desire exclusive use?
I will wait?
Index into PTAB for the file oontrol blook.
Error return oode:

0 - no error
1 - LUN already in use
2 - file not found
3 - volume not found
4 - exol requested but not available
5 - no room for lun
6 - other open errors

15.9.2.12 ZPHFIL - oonstruots a physioal file name in PNAM from
ITYPE, IVOL, NSEQ, and IVER. New version designed either for publio
data files or user speoifio files. This routine oontains the
logioal assignment list for Graphios devioes. Numerioal values are enooded as hexideoimal numbers.

EXAMPLE: If ITYPE-'MA', IVOL-8, NSEQ-801, IVER-153, NLUSER=768 then
PNAME-'DA08:MA832199;1' for publio data or
PNAME-'DA08:MA832199.300;1' for private data

ITYPE - 'MT' leads to speoial name for tapes
ITYPE - 'TK' leads to speoial name for TEK4012 plotter CRT
ITYPE - 'TV7 leads to speoial name for TV devioe
ITYPE - 'ME' leads to speoial logioal for POPS memory files

ZPHFIL (ITYPE, IVOL, NSEQ, IVER, PNAM, IERR)Inputs:
ITYPE 1*2 Two oharaoters denoting type of file. For example,

'MA' for map file.
IVOL 1*2 Number of the disk volume to be used.
NSEQ 1*2 User supplied sequenoe number. 000-999.
IVER 1*2 User suppplied version number. 00-255.Outputs:
PNAM R*4(6) >- 24-byte field to reoeive the physioal file name,

left justified (paoked) and padded with blanks.IERR 1*2 Error return oode.
0 - good return. 1 - error.

THE Z ROUTINES
ROUTINES Page 15-25

2 April 85

15.9.2.13 ZRENAM - Renames a disk file.
ZRENAM (IVOL, NAME1, NAME2, IERR)

Inputs:
IVOL
NAME1
NAME 2

Outputs:
IERR

1*2
R*4(6) Volume number (1 relative).

Old file name. 24 ohar., left justified, padded
on the right with blanks, and paoked.

R*4(6) New file name, like NAME1.
1*2 error oode.

suooessful oompletion
old file not found
volume not found or not ready
new file name already exists in direotory.
other errors.

0
2
3
6
7

15.9.2.14
oomplete. ZWAIT - waits until an I/O operation started by ZMIO is

ZWAIT (LUN, IND, IBUF, IERR)
Inputs:

LUN
IND
IBUF

Output:
IERR

1*2
1*2
1*2

logioal unit number
Pointer to FTAB
Wait for 1st or 2nd buffer in double buffered I/O

1*2 Error return 0
1
3
4
7

ok
LUN not open
I/O error
end of file
wait servioe error

THE Z ROUTINES
ROUTINES Page 15-262 April 85

15.9.3 System Funotions
15.9.3.1 ZACTV8 - activates the speoified task. This routine is
normally in the AIPS program library (for AIPS and other standalone
programs but not tasks).

ZACTV8 (NAME, INPOPS, VERSON, PID, IERR)
Inputs: NAME

INPOPS
VERSON

Output: PID

IERR

1*2(3)
1*2
R*4(5)

1*2(4)

1*2

root task name. (2 ohar / integer)
Pops # to be used by task.
Logioal name or absolute name of
devioe/direotory for area oontaining
the exeoutable module.
Prooess "ID" oode of aotivated task
for use by direotly subsequent ZTACTQs
PID(l) - user number on systems whioh

use that (=0 otherwise and on all
AIPSB invocations)

PID(2-4) process ID number (as needed)
error code:

0 -> ok.
1 -> name invalid or not task.
2 »> activation error.

15.9.3.2 ZCPU - determines oumulative opu usage in seoonds for this
prooess: i.e. eaoh time a prooess oalls ZCPU during an exeoution,
TIME is larger.

ZCPU (TIME, IOCNT)
Output: TIME R*4 Current CPU accumulation in seoonds

IOCNT 1*4 I/O oount

15.9.3.3 ZDATE - returns looal time of day.
ZDATE (ID)

Output: ID(1) year sinoe 0.
ID(2) month (1-12).
ID(3) day (1-31).

THE Z ROUTINES
ROUTINES Page 15-27

2 April 85

15.9.3.4 ZDELAY - causes the oalling program to suspend itself for
a speoified length of time.

ZDELAY (SECS, IERR)
Input:

SECS R*4 Number of seoonds to delay.
Output:

IERR 1*2 Error oode. 0 - o k , 1 - error.

15.9.3.5 ZGNAME - returns the aotual task/prooess name.
ZGNAME (NAME, IERR)

Outputs: NAME 1*2(3) Aotual name (2 ohars / word)
IERR 1*2 Error oode : 0 -> ok

15.9.3.6 ZMYVER - determines the default version (OLD or NEW or
TST). This routine is normally in the AIPS program library (for
AIPS and other standalone programs but not tasks).

ZMYVER
Output: in Common /DCHCOM/ variable VERNAM

Unpacked String oontaining 'OLD:','NEW:','TST:'

15.9.3.7 ZPRIO - ohanges the ourrent program's maohine priority
between that of batoh programs and that of interaotive programs.
This routine is used by tasks using true array prooessors.

ZPRIO (OP, IERR)
Inputs: OP R*4 'UPPP' to inter., 'DOWN' to batoh

IERR 1*2 Error oode: 0 -> ok
1 -> bad OP
2 -> illegal request
3 -> other failures

THE Z ROUTINES
ROUTINES Page 15-28

2 April 85

15.9.3.8 ZPRPAS - prompts the user on his terminal with the prompt
string "Password: " and then reads baok a 12-oharaoter "password"
without echoing on the soreen.

ZPRPAS (PASS, BUFF, IERR)
Outputs: PASS R*4(3) Password - 12 unpaoked oharaoters: left

justified and blank filled.
BUFF 1*2(256) soratoh buffer (if needed)
IERR 1*2 error oode: 0 -> ok

??? -> I/O error of some sort

15.9.3.9 ZTACTQ - determines if a speoified task is active.
ZTACTQ (NAME, ACTIVE, IERR)

Inputs: NAME 1*2(3) aotual task name.(2 ohar/integer)
Output: ACTIVE L*2 T -> task aotive.

IERR 1*2 error number:
0 -> ok.
1 -> invalid task name.

15.9.3.10 ZTIME - returns the looal time of day.
ZTIME (IT)

Output: IT(1) 1*2 hours (0-23)
IT(2) 1*2 min (0-59)
IT(3) 1*2 seo (0-59)

15.9.3.11 ZFREE - This routine will oaloulate the number of free
512 byte blooks that are available on the disks used for AIPS data
and print the information on the soreen. This routine is normally
in the AIPS program library (for AIPS and other standalone programs but not tasks).

ZFREE (IERR)
Inputs:

From oommon /DCHCOM/
NVOL 1*2 Number of AIPS disks.Output:
IERR 1*2 0 - o k , 1-error in disk logioal name.

THE Z ROUTINES
ROUTINES Page 15-292 April 85

15.9.3.12 ZSTAIP - performs any operations needed to normalize the
looal operating system at the oonolusion of an interaotive AIPS
session. This routine is normally kept in the AIPS program library (not for tasks).

ZSTAIP (SCRTCH)

Outputs: SCRTCH 1*2(256) Soratoh buffer

15.9.3.13 ZTKILL - will delete the task/prooess speoified by NAME.
This routine is normally in the AIPS program library (for AIPS and
other standalone programs but not tasks).

ZTKILL (NAME, IERR)
Inputs: NAME 1*2(3) aotual task name.(2 char/integer)
Output: IERR 1*2 error number:

0 -> ok.
1 -> error.

15.9.3.14 ZTQSPY - obtains entire list of AlPS-originated tasks now
running in system and prints info about them via MSGWRT. This
routine is normally in the AIPS program library (for AIPS and other
standalone programs but not tasks).

ZTQSPY (TLIST)
Output: TLIST 1*2(256) Soratoh buffer

15.9.3.15 ZWHOMI - determines the aotual task name under whioh the
present version of AIPS is running. It uses this information to set
the value of NPOPS in the oommon /MSGCOM/. It then assigns the TV
and TK devioes setting NTVDEV and NTKDEV in oommon /DCHCOM/. It
oheoks for remote entries at this stage and uses the true devioe
numbers (set by ZDCHIN) to do the assignments. This routine is
normally in the AIPS program library (for AIPS and other standalone
programs but not tasks).

ZWHOMI (IERR)
Output: IERR 1*2 error oode: 0 ok.

1 -> task is AIPS, but NPOPS illegal.
2 «> task is not AIPS.

THE Z ROUTINES
ROUTINES Page 15-30

2 April 85

15.9.4 Non-disk I/O Routines
15.9.4.1 ZDOPRT - reads a bit map suck as produoed by PRTDRW and
oonverts it into a FORTRAN file that oan be spooled to the prlnter-plotter as a plot.

ZDOPRT (IVOL, IBMLUN, NCOPY, FILNAM, DESTRY, ISIZE,
* INBLK, IERR)
Inputs:

IVOL
IBMLUN
NCOPY
FILNAM
DESTRY
ISIZE

In/Out:
INBLK

Outputs:
IERR

1*2 volume no. of bit map disk (1 rel)
1*2 bit map logioal unit number.
1*2 Number of copies of the plot to make
R*4(6) physioal file name of bit map.
L*2 destroy bit file when done?
1*2 size of INBLK in words.
I*2(*) soratoh buffer
1*2 error return oode.

0 -> OK, otherwise failed.

15.9.4.2 ZENDPG - advances the line printer to avoid "burn-out" on
eleotrostatio type printers.

ZENDPG CLINE)
Inputs: LINE 1*2 # lines printed on page so far

15.9.4.3 ZQMSIO - opens a file for printing a plot on the QMS
Lasergraphix using the name QMS.PLT (OP - 'OPEN') or writes data to the QMS devioe Cor temp file) COP - 'WRIT').

ZQMSIO COP, QMSLUN, N, LINE, IERR)
Inputs: OP

QMSLUN
N
LINE

Output: IERR

1*2 'OPEN', 'WRIT'
1*2 LUN to use
1*2 Number of oharaoters in LINE CWRIT only)
L*lCN) Charaoters to go to QMS CWRIT only)
1*2 Error oode: 0 -> ok

1 -> bad OP
2 -> OPEN oan't find logioal name queue
3 »> OPEN oan't assign logioal name
6 «> OPEN or WRIT I/O error

THE Z ROUTINES
ROUTINES Page 15-31

2 April 85

15.9.4.4 ZTAPE - Performs standard tape manipulating funotions.
ZTAPE (OP, LUN, FIND, COUNT, IERR)

Inputs:
OP R*4

LUN 1*2
FIND 1*2
COUNT 1*2

Outputs:
IERR 1*2

Operation to be performed. 4 oharaoters ASCII.
'ADVF' - advanoe file marks
'ADVR' - advanoe reoords
'BAKF' - baokspaoe file marks.
1BAKR1 - baokspaoe reoords.
'DMNT' - dismount tape. Works for VMS 3.0 Gf later
'MONT' - mount tape. Works for VMS 3.0 and later.
'REWI ' - rewind the tape on unit LUN
'WEOF' - write end of file on unit LUN: writes 4

EOFs, positions tape after first one
'MEOF' - write 4 EOF marks on tape, position tape

before the first one
logioal unit number
FTAB pointer. Drive number for MOUNT/DISMOUNT.
Number of reoords or file marks to skip. On MOUNT
this value is the density.
Error return: 0 -> ok

1 - File not open
2 - Input speoifioation error.
3 - I/O error.
4 - End Of File
5 - Beginning Of Medium
6 - End Of Medium

15.9.4.5 ZTKBUF - puts the low order byte of IN into
byte of the TEKTRONIX output buffer (TKBUFF). The "Z"
other conversions as required looally.

ZTKBUF (IN, IT, FIND, IERR)

the proper
is to allow

Input: IN
IT
FIND

Output: IERR
COMMON: TKPOS

TKBUFF

1*2 the low order byte of this word is put into DRBUFF.
Type of data: 1 oontrol, 2 position, 3 ohar
FTAB position of TEK 4012 data.

1*2 error oode. 0-ok, 1-write error.
Byte position in TKBUFF to plaoe IN.
TEKTRONIX output buffer.

1*2
1*2

THE Z ROUTINES
ROUTINES Page 15-32

2 April 85

15.9.4.6 ZTKCLS - oloses a TK (Tektronix) devioe.
ZTKCLS (LUN, IND, IERR)

Inputs: LUN 1*2 Logioal unit number
IND 1*2 Pointer to FTAB

Output: IERR 1*2 Error oode: 0 -> ok, else from ZCLOSE.

15.9.4.7 ZTKOPN - opens a TK (Tektronix) devioe.
ZTKOPN (LUN, IND, IERR)

Inputs: LUN 1*2 Logioal unit number for TK devioe
Output: IND 1*2 pointer to FTAB

IERR 1*2 error oode: 0 -> ok, else failed.

15.9.4.8 ZTTYIO - performs I/O to a terminal.
ZTTYIO (OPER, LUN, FIND, NBYTES, BUFFER, IERR)

Inputs: OPER R*4
LUN 1*2
FIND 1*2
NBYTES 1*2

In/out: BUFFER R*4(*)
Output: IERR 1*2

'READ' or 'WRIT'
LUN of open devioe (usually 5 or 6)
Pointer to FTAB for open devioe
bytes (oharaoters) to transmit (<- 132)
I/O buffer

0 -> ok
1 *> file not open
2 -> input parameter error
3 -> I/O error
4 -> end of file

Error oode:

15.9.4.9 ZPRMPT - prompts user on CRT soreen and reads a line.
This routine is normally in the AIPS program library (for AIPS and
other standalone programs but not tasks).

ZPRMPT (IPC, BUFF, IERR)
INPUT: IPC 1*2 prompt oharaoter.
OUTPUT: BUFF 1*2(40) line of user input.

IERR 1*2 error oode: 0 -> ok.
1 «> read/write error.

THE Z ROUTINES
ROUTINES Page 15-332 April 85

15.9.5 Direotory And Text File
15.9.5.1 ZTCLOS - oloses a text file.

ZTCLOS (LUN, FIND,
Inputs:
Output:

LUN
FIND
IERR

1*2
1*2
1*2

IERR)
logioal unit number.
Not used with, this routine
Error oode.

0 -> no error.
1 -> RMS error.
2 -> file not open.

15.9.5.2 ZTOPEN - opens a text file.
ZTOPEN (LUN, FIND, IVOL, PNAME, MNAME, VERSON, WAIT,IERR)

Inputs

Output

1*2 logioal unit number.
1*2 disk drive number.
R*4(6) dlsk-file type. Only type ('HE' eot)

used. Should be generated by ZPHFIL.
R*4(2) file name.
R*4(5) Version (determines in whioh dir/subdir

to look for the file).
L*2 T -> wait until file is available.
1*2 error oode:

0 -> No error.
1 -> LUN already in use.
2 «> File not found.
3 -> Volume not found.
4 -> File looked.
5 -> No room for LUN
6 «> Other open errors.FIND 1*2 pointer to FTAB looation.

LUN
IVOL
PNAME
MNAME
VERSON
WAIT
IERR

15.9.5.3 ZTREAD - reads the next sequential oard image from a text file.
ZTREAD (LUN, FIND, BUF, IERR)

Inputs: LUN 1*2 logioal unit number
FIND 1*2 FTAB pointer for LUN

THE Z ROUTINES
ROUTINES Page 15-342 April 85

Output: BUF(*) 1*2 array oard image.(> * 80 ohars paoked)
IERR 1*2 Error oode:

0 -> No error
1 «> File not open.
2 -> End of file.
4 -> Other.

15.9.5.4 ZTXMAT - opens the direotory for a souroe file area and
returns a list of member names whose first NCH oharaoters match the
first NCH oharaoters of MNAME.

ZTXMAT (IVOL, PNAME, MNAME, NCH, VERSON, NAMES,
* NNAM, IERR)

Inputs:

Output:

IVOL
PNAME
MNAME
NCH
VERSON
NAMES
NNAM
IERR

1*2
R*4(6)
1*2(4)
J * 0

R*4(5)
1*2(4,64)
1*2
1*2

Volume number.
File name: 24 paoked ohars
Text file member name
Number of oharaoters to oompare
Tells whioh dir to get names from.
Names whioh matoh NCH ohars of MNAME
(unpaoked, 2 per integer)
Number of names in NAMES
Error oode: 0 => ok
1 «> none
2 -> error in inputs or Open
3 -> I/O error

15.9.5.5 ZGTDIR - gets alphabetized list of members of text files.
ZGTDIR (ITYPE, LNAME, HNAME, VERSON, NUM, NAMES, IERR)

Inputs: ITYPE 1*2 type of file (HE, SO, eto).
LNAME 1*2(4) lowest name to inolude.
HNAME 1*2(4) inolude names lower than this one.
VERSON R*4(5) Version. Set in AIPS as the adverb VERSION,

Output: NUM 1*2 number of names found.
NAMES 1*2(4,1000) sorted file names.
IERR 1*2 error oode.

THE Z ROUTINES
ROUTINES Page 15-35

2 April 85

15.9.6 Miscellaneous
15.9.6.1 ZDCHIN - initializes the disk oharaoteristios oommon. If
NDISK < 0, ZDCHIN uses ABS (NDISK) but skips reading parameters from
the parameter disk file. Otherwise, ZDCHIN starts by hardooded
parameter values and then resets some based on values on an alterable disk file.

ZDCHIN (NDEV, NDISK, NMAP, IOBLK)
Inputs.* NDISK 1*2 max number regular disk files open at onoe

NMAP 1*2 max number of map (double buf) files open at onoe
NDEV 1*2 max number of devioes open at onoe
IOBLK 1*2(256) I/O buffer for reading values off disk.

15.9.6.2 ZMATH4 — does 1*4 arithmetio on pseudo 1*4 arguments.
ZMATH4 (ARG1, OP, ARG2, RESULT)
Inputs:

ARG1 P 1*4 First P 1*4 argument
OP 1*2 OPeration -'PL'(+);'MI'(-);'MU'(x);'DI'(/)

'MN'(min); 'MX'(max)
ARG2 P 1*4 Seoond P 1*4 argument Outputs:
RESULT P 1*4 Result

15.9.6.3 ZKDUMP - dumps portions of an array in INTEGER*2, ohar*4,
hex*2, and REAL*4: i.e. in as many forms as possible ZKDUMP is
oalled a Z routine beoause the formats may not be aooeptable on all
maohines. This routine is normally in the AIPS program library (for
AIPS and other standalone programs but not tasks).

ZKDUMP (II, 12, K, C)
Inputs: II

12
K
C

1*2 start subsoript in integer array
1*2 end subsoript in integer array
I*2(*) integer array
R*4(*) real array equivalenoed to K

THE Z ROUTINES
ROUTINES Page 15-362 April 85

15.9.6.4 ZTFILL - fills in initial values in FTAB.
ZTFILL (FIND, MAP)

Inputs: FIND 1*2 looation in FTAB
MAP 1*2 T -> map part of FTAB

Page Index-1

INDEX

AIPS batch, 9-1, 12-5
APIO, 12-10, 12-16
AXSTRN, 10-21
CAPC.INC, 12-13
CBPR.INC, 12-5, 12-13
CCINI, 13-2, 13-7
CDCD.INC, 12-14
CDCH.INC, 12-5, 15-2, 15-11
/CFILES/, 12-10, 12-18
CHNDAT, 13-2, 13-7
CMSG.INC, 15-12
CTKS.INC, 9-8
CTVC.INC, 9-8, 10-26
CTVD.INC, 10-26
DAPC.INC, 12-14
DBPR.INC, 12-5, 12-14
DDCH.INC, 12-5, 12-14, 15-2,

15-12
DECBIT, 10-12 to 10-13, 10-42
Devioe Characteristics Common,

12-5, 15-2 to 15-3, 15-10
DFIT.INC, 14-26
DFUV.INC, 14-25
DLINTR, 10-20, 10-41
DMSG.INC, 15-12
DSKFFT, 12-9 to 12-10, 12-18
DTKS.INC, 9-8
DTVC.INC, 9-9, 10-26
DTVD.INC, 10-26
EAPC.INC, 12-15
EFIT.INC, 14-26
EFUV.INC, 14-26
FITS, 15-5
FLGINI, 13-2, 13-8
Floating Point Systems, 12-2,

12-4, 12-8
FNDCOL, 13-6, 13-8
FPARSE, 14-29
FTAB, 15-3
GAINI, 13-2, 13-9, 13-12
GETCOL,
GETCRD,
GETLOG,
GETNUM,
GETSTR,
GETSYM,

13-6, 13-10
14-29 to 14-30
14-29 to 14-30
14-29, 14-31
14-29, 14-31
14-29, 14-31

ICINIT, 9-6, 9-9, 10-12
ICREAD, 10-21
ICWRIT, 9-6, 9-9
IDCH.INC, 12-15, 15-2, 15-12
IENHNS, 10-41
IMA2MP, 10-21
IMANOT, 10-40
IMCHAR, 10-40
IMVECT, 10-41
INDXIN, 13-10
keyword/value pairs, 13-1 to 13-2,

13-5
LUN, 9-2, 9-4
MAPOPN, 10-13
MDIS3, 9-3, 9-10
MINI3, 9-3, 9-10
MOVIST, 10-12 to 10-13, 10-42
MP2SKY, 10-21
NDXINI, 13-2
PEAKFN, 12-10, 12-18
PLNGET, 12-10, 12-19
PRTAB, 13-1
QBOXSU, 12-25
QCFFT, 12-26
QCRVMU, 12-26
QCSQTR, 12-26
QCVCMU, 12-27
QCVCON, 12-27
QCVEXP, 12-27
QCVJAD, 12-28
QCVMAG, 12-28
QCVMMA, 12-28
QCVMOV, 12-29
QCVMUL, 12-29
QCVSDI, 12-29
QCVSMS, 12-30
QDIRAD, 12-30
QGET, 12-23
QGSP, 12-24
QHIST, 12-31
QINIT, 12-5, 12-25
QLVGT, 12-31
QMAXMI, 12-31
QMAXV, 12-32
QMINV, 12-32

Page Index-2

QMTRAN, 12-32
QPHSRO, 12-33
QPOLAR, 12-33
QPUT, 12-24
QRECT, 12-33
QRFFT, 12-34
QRFT, 12-24
QRLSE, 12-5, 12-26
QROLL, 12-5, 12-17
QSVE, 12-34
QSVESQ, 12-34
QVABS, 12-34
QVADD, 12-35
QVCLIP, 12-35
QVCLR, 12-35
QVCOS, 12-36
QVDIV, 12-36
QVEXP, 12-36
QVFILL, 12-37
QVFIX, 12-37
QVFLT, 12-37
QVIDIV, 12-38
QVLN, 12-38
QVHA, 12-38
QVMOV, 12-39
QVMUL, 12-39
QVNEG, 12-39
QVRVRS, 12-40
QVSADD, 12-40
QVSIN, 12-40
QVSMA, 12-40
QVSMAFX, 12-41
QVSMSA, 12-41
QVSMUL, 12-42
QVSQ, 12-42
QVSQRT, 12-42
QVSUB, 12-43
QVSWAP, 12-43
QVTRAN, 12-43
QWAIT, 12-25
QWD, 12-25
QWR, 12-25
RNGSET, 10-13, 10-42
SETPAR, 15-2
sort order, 14-14
SOUINI, 13-2, 13-11
TABCOP, 13-2, 13-11
TABFLG, 13-2, 13-15
TABGA, 13-2, 13-12
TABINI, 13-5 to 13-6, 13-13
TABIO, 13-5 to 13-6, 13-14
TABKEY, 13-2, 13-15

TABNDX, 13-2, 13-16
TABSOU, 13-2, 13-17
TABSRT, 13-2, 13-18
tape files, 9-1 to 9-3
TEKFLS, 9-5 to 9-6, 9-11
TEKVEC, 9-5 to 9-6, 9-12
TKCHAR, 9-4 to 9-6, 9-12
TKCLR, 9-4 to 9-6, 9-12
TKCURS, 9-6, 9-13
TKDVEC, 9-4, 9-13
TKPL, 9-4
TKVEC, 9-5
TV displays, 10-1
TVCLEAR, 10-12
TVCLOS, 10-12 to 10-13, 10-20 to

10-21, 10-37
TVFIDL, 10-39
TVFIND, 10-38
TVLOAD, 10-13, 10-39
TVOPEN, 10-12 to 10-13, 10-20 to

10-21, 10-37
TVSCROLL, 10-20
TVWHER, 10-21
TVWIND, 10-13, 10-38
u,v,w, computing, 14-13
UVDISK, 9-3, 9-13 to 9-14
UVINIT, 9-3, 9-13 to 9-14
variable length reoords, 9-1
VBOUT, 9-1, 9-3, 9-16
Veotor Funotion Chainer, 12-8 to

12-9
VFIT.INC, 14-28
VFUV.INC, 14-26
Y routines, 10-2, 10-7
YALUCT, 10-10, 10-35
YCHRW, 10-8, 10-27
YCNECT, 10-8, 10-27
YCONST, 10-10
YCRCTL, 10-9, 10-32
YCUCOR, 10-8, 10-28
YCURSE, 10-8, 10-20, 10-28
YDEA.INC, 10-11
YFDBCK, 10-10, 10-35
YGGRAM, 10-10 to 10-11
YGRAFE, 10-10
YGRAPH, 10-8, 10-29
YGYHDR, 10-10, 10-36
YIFM, 10-10, 10-36
YIMGIO, 10-9, 10-32
YINIT, 10-9, 10-33
YLNCLR, 10-8, 10-29
YLOWON, 10-11

Page Index-3

YLUT, 10-9, 10-33
YMAGIC, 10-10
YMKCUR
YMKHDR
YMNMAX
YOFM, 10-9, 10-33

10-11
10-10
10-10

ZI32IL, 14-10, 15-6, 15-16
ZI8L8, 14-10, 15-6, 15-16
ZILI16, 14-10, 15-6, 15-17
ZKDUMP, 15-11, 15-35
ZM70CL, 10-6
ZM70MG, 10-7YRHIST, 10-10, 10-37 ZM700P, 10-6YSCROL, 10-9, 10-20, 10-33 ZM70XF, 10-7

YSHIFT, 10-10 ZMATH4, 15-10, 15-35YSLECT, 10-9, 10-30 ZMCACL, 15-6, 15-14YSPLIT, 10-9, 10-34 ZMI3, 15-22
YSTCUR, 10-10 ZMIO, 15-7, 15-22YTCOMP, 10-11 ZMSGCL, 15-7, 15-22YTVCIN, 9 5 "to 9—6, 9-16, 10-9, ZMSGDK, 15-7, 15-2310-30 ZMSGOP, 15-7, 15-23
YTVCLS, 10-9, 10-31 ZMYVER, 15-9, 15-27YTVMC, 10-9, 10-31 ZOPEN, CO i 10 CO i * CO 1 p CO-16, 15YTVOPN, 10-9, 10-31 15-7, 15-23YZERO, 10-9, 10-12, 10-30 ZP4I4, 15-6, 15-17YZOOMC, 10-9, 10-34 ZPFIL, 9-2

ZPHFIL, 9-4, 9-6, 9-17, 15-7,ZACTV8, 15-8, 15-26 15-24ZBYTFL, 15-6, 15-13 ZPRIO, 15-9, 15-27ZC8CL, 14-10, 15-6, 15-13 ZPRMPT, 15-10, 15-32ZCLC8, 14-10, 15-6, 15-13 ZPRPAS, 15-9, 15-28ZCLOSE, 9-6, 15-7 ZPTBIT, 15-6, 15-17ZCMPRS, 15-7, 15-19 ZPTBYT, 15-6, 15-17ZCPU, 15-8, 15-26 ZPUTCH, 15-6, 15-18ZCREAT, 15-7, 15-20 ZQMS10, 15-9, 15-30ZDATE, 15-8, 15-26 ZR8P4, 14-10, 15-6, 15-19ZDCHIN, 15-2, 15-10, 15-35 ZRDMF, 15-6, 15-18ZDEACL, 10-6 ZRENAM, 15-7, 15-25ZDEAMC, 10-7 ZRM2RL, 15-6, 15-19ZDEAOP, 10-6 ZSTAIP, 15-9, 15-29ZDEAXF, 10-7 ZTACTQ, 15-9, 15-28ZDELAY, 15-8, 15-27 ZTAPE, 9-2, 9-17, 15-9, 15-31ZDESTR, 15-7, 15-20 ZTCLOS, 15-10, 15-33ZDM2DL, 15-6, 15-14 ZTFILL, 15-11, 15-36ZDOPRT, 15-9, 15-30 ZTIME, 15-9, 15-28ZENDPG, 15-9, 15-30 ZTKBUF, 15-9, 15-31ZEXIST, 15-7, 15-21 ZTKCLS, 15-10, 15-32ZEXPND, 15-7, 15-21 ZTKILL, 15-9, 15-29ZFI3, 15-21 ZTKOPN, 15-10, 15-32ZFIO, 9-3, 15-7, 15-21 ZTOPEN, 15-10, 15-33ZFREE, 15-8, 15-28 ZTQSPY, 15-9, 15-29ZGETCH, 15-6, 15-15 ZTREAD, 15-10, 15-33ZGNAME, 15-8, 15-27 ZTTYIO, 15-9 to 15-10, 15-32ZGTBIT, 15-6, 15-15 ZTXMAT, 15-10, 15-34ZGTBYT, 15-6, 15-15 ZWAIT, 15-7, 15-25ZGTDIR, 15-10, 15-34 ZWHOMI, 15-9, 15-29ZI16IL, 14-10, 15-6, 15-16

