
Revision 1.1 1992/04/09 19:53:50 bglenden # Initial revision #

Class Documentation Standards
for the AIPS++ Project

(Pre-release Version)

Chris Flatters

This page deliberately not left blank.

Class Documentation Standards

This document contains standards and recommendations for writing reference documentation for
AIPS++ classes. The authoritative documentation for a class is assumed to be a commented C++
header file. The standards set out in this document support the use of automated tools which can
extract the documentation from the header file and transform it to a form suitable for a typesetting
program such as TfcX.

These standards comprise mandatory requirements and advisory recommendations. Requirements
and recommendations are written as follows.

Requirement:

you must do this.

Recommendation:

it is advisable to this.

This pre-release edition is being distributed to solicit comments. Please send any comments to
cflatterQnrao.edu.

1 Basic Principles

Class documentation should provide programmers with all of the detailed information they need in
order to be able to use instances of a given class. It should never be necessary for a programmer
to refer to the actual implementation of an object; examining implementation code is a tedious
and error prone business. If this is to be avoided then the class documentation must be accurate,
precise and (most importantly) complete as well as comprehensible.

A C++ class declaration contains a great deal of information about a class that is guaranteed
to be reliable. For example, it lists the names of the member functions, their arguments and
any exceptions that they may raise1. The C++ code alone does not, however supply complete
information about a class and must be supplemented by a commentary.

1.1 Contractual Obligations

Programming by contract is a common paradigm in object-oriented programming. The behaviour
of any class can be defined by a set of contracts between the class and its clients that take this
form.

I have a member function called X taking formal arguments Y and returning Z. If you
ensure that condition P is true and then call member function X then I guarantee to
do Q.

The class documentation should be a statement of the relevant contracts: it should say exactly
what the class guarantees to do and what the obligations of the class' clients are. There should be
no loopholes.

Class invariants, preconditions and postconditions are useful in documenting contractual obliga¬
tions. A class invariant is a condition that must hold for all objects of a given class, a postcondition
is a condition that will hold after a function is executed (representing a responsibility of the class)
and a precondition is a condition that must hold before a function is called (representing an obli¬
gation on the client). All three are mathematical in nature and are best written in mathematical
notation. Unfortunately, many AIPS++ programmers are not comfortable with the mathematics
required. This leads to the first recommendation.

1 Current versions of C++ do not support exceptions

Recommendation:

you should use class invariants, preconditions and postconditions and write them using
mathematical notation if you are comfortable with these concepts.

However, if these concepts are used, we can not guarantee that all AIPS++ programmers will
understand them.

Recommendation:

if you document a class using mathematical conditions that are not immediately obvious
to a reader with a working knwoledge of C++ then you should either describe the same
conditions informally in plain English or provide them with a descriptive label.

An example of a mathematical condition with a descriptive label follows.

all array elements are zero:
foralK int i; 0 <= i && i < current.lengthO; current[i] = 0)

1.2 Writing Mathematics

If mathematical notation is used it must be written in a form that can be easily read and under¬
stood in a header file. This rules out the use of mathematical mark-up languages such a TEX- A
programmer may assume, however, that the readers of his documentation understand C++ notation.

Recommendation:

write mathematical conditions in a form that is as close to C++ as possible.

C++ notation is rather too limited to be useful on its own and some conventions must be adopted
to extend it for documentation purposes. The following notations are recommended.

result Use the pseudovariable result to represent the return value of a function.

current Use the name current to refer to the current object; current is less clumsy than the
♦this notation that must be used in actual C++ code.

f orall Write universal quentifications using the template f orall (declarations; restrictions;
condition).

exists Write existential quantifications using the template exists(declarations; restric¬
tions; condition)

1.3 Comment Delimiters

Comments that contain documentation must be written in a form that can be easily recognized
and extracted by a mechanical processor. All documentation comments have the following form.

/*X*
*
* Some text
*
X/

X is a single letter code that is used to denote what is being documented in the comment. Valid
codes are

H file headers

C class headers

F function headers

T constants

E named and unnamed enumerations

A documentation extraction program uses the /*X* and *X*/ delimiters to recognize comments
that should be extracted. Comments that are delimited by plain /* and */ are discarded as are
comments that begin with //. The leading column of asterisks makes it easy for a human reader
to distinguish text in the comment from C++ code.

2 Header File Layout

A header file contains the definition of one or more C++ classes.

Requirement:

header files must conform to the template shown below.

/*H* -*- C++ -*-

* header Hie description
*
* copyright statement
*
H/

#ifndef identifier
#def ine identifier

class definition list

inline functions

#endif

GNU emacs uses the -*- C++ -*- string to distinguish files containing C++ code from those con¬
taining C code.

The header file description should say what publicly available classes are defined in the file and
briefly describe how they are related to one another. The form of the copyright statement has yet
to be decided at the time of writing.

The ciass definition list is a list of class definitions. Definitions of all inline functions must follow
the last class definition and will be ignored by documentation extraction tools.

2.1 Class Definition Layout

Requirement:

class definitions must conform to the template shown below.

/*c*

* class description
*
* INVARIANTS

* label: condition
* label: condition
*
C/

class name : ancestors
friend class declarations
i
public:

constant definitions
enum type definitions
function declarations

protected:
constant definitions
enum type definitions
function declarations

private:
constant definitions
enum type definitions
function declarations

>;

Recommendation:

put the public, protected and private parts of a class definition in that order so
that a human reader can find those parts of the class definition that are most relevant
to him near the top of the definition.

The class description should be an informal description of the class in plain English. It should state
what the class represents and give a good idea of the responsibilities of the class. If the class has
particular memory requirements then they should be described here.

The INVARIANTS section is optional. Each label should be a short phrase describing the invariant
condition and the condition should be a mathematical description of the same condition (see Sec¬
tion 1.2 [Writing Mathematics], page 5). The label may be omitted if the meaning of the condition
is self-evident or both the label and condition may be replaced by an English phrase if the condition
can not easily be written in mathematical form.

2.1.1 Constant Definitions

A class may define one or more constants.

Requirement

constant definitions should conform to the following template.

/*T*

* constant description
*
T/

C++ constant definition

The constant description should state what the constant represents and, if the value of the constant
does not appear in the C++ definition (ie. if the constant is a static class member), then the value
of the constant should be included in the description as in the following example.

/*T*
*
* The mathematical constant pi (3.14159265358978).

T/
static const double pi;

2.1.2 Enum Type Definitions

Classes often define enum types to represent such things as states.

Requirement:

Definitions of enumerated types must conform to the following template.

/*E*

* enum type description
*
E/

C++ enum type declaration

The enum type description should state, in plain English, what the enumerated type represents. It
should also list the symboUc values of the enumeration and what they represent as in the following
example.

/*E*

* This enumeration represents the possible status returns from a
* Stack operation.
♦
* ok operation successful
* overflow stack would have overflowed: stack unchanged
* underflow stack would have underflowed: stack unchanged

E/
enum stackState {ok, overflow, underflow};

2.1.3 Function Declarations

Member functions and friend functions require extensive documentation.

Requirement:

Function declarations must conform to the following template.

function description

/*F*

* PRECONDITIONS

* label: condition

* POSTCONDITIONS

* label: condition
*
F/

C++ function declaration

The function description should describe what the function does, what conditions it will
work under, what it returns and what its arguments are. The option PRECONDITIONS
and POSTCONDITIONS clauses repeat parts of this description in a more precise math¬
ematical form. They may be written as a mathematical statement with an optional
label (see Section 1.2 [Writing Mathematics], page 5) or in plain English. Here is an
example of a function declaration1.

/*F*

*

*

F/
stackState popQ;

Pop an item from the stack. If the operation is completed
successfully then the value returned is ok. If the stack is
already empty the the value returned is underflow.

PRECONDITIONS
true

POSTCONDITIONS
(!current.empty() && result == ok)
II (current.empty() && result =- underflow)

1 The true precondition indicates that the behaviour of Stack::pop() is defined under all
circumstances

3 An Example Header File

/*H* -*- C++ -*-

* This file contains the definitions for the Stack class.

* « Copyright statement belongs here »

H/

/*C*
♦
* The BoundedStack class represents a Stack (LIFO) of an arbitrary
* type and of fixed size. The number of entries that can be placed
* on a Stack is given as a template argument when the Stack is
* instantiated.
*
* Objects of type T may be pushed onto or popped from the top of
* the Stack using push() and popQ. The topmost element on the
* Stack may be examined using topO . A program can test whether
* a Stack is empty of full using empty() or fullQ .

C/

#ifndef STACK.H
#define STACK.H

class Stack<class T, int size>
■C
public:

/*F*

* The default constructor.
♦
* PRECONDITIONS
* true
♦
* POSTCONDITIONS
* stack is empty: current.empty()
♦
F/

Stack();

/*F*

* Return true (a non-zero integer) if the Stack is empty or
* false (zero) if the Stack is not empty.
*
F/

int empty() const;

/*F*

* Return true (a non-zero integer) if the Stack is full or
* false (zero) if the Stack is not full.
*
F/

int fullQ const;

/*F*
*
* Return the value of the item at the top of the Stack. The
* The value returned is the same as the last value pushed onto
* the stack. The Stack may not be empty.

* PRECONDITIONS
* stack not empty: '.current.empty()
*
F/

T top() const;

/*F*
*
* Push the value ton to the Stack. The Stack must not be
* full when this function is called.
♦
* PRECONDITIONS
* stack not full: !current.fullQ
*
F/

void push(T t);

/*F*

* Remove (pop) the topmost value from the Stack. The Stack
* must not be empty when this function is called.

* PRECONDITION
* stack not full: !current.fullQ
*
F/
void pop();

private:
T implementation[size] ; // Array of values
int max.size; // Max. number of values on stack
int cur.size; // Current number of values on stack

};

#endif

Index

E

♦this 5

Class definition list 7

Class description 8

Class invariant 4

Comment delimiters 6

Condition 8

Constant description 9

Contract 4

Contractual obligations 4

Copyright statement 7

Current object 5

enum type description 10

Existential quantification 6

exists 6

H

L

P

R

U

forall 5

Function description 11

Function return value 5

Header file description 7

Label 8

Postcondition 4

Precondition 4

Programming by contract 4

Return value 5

Universal quantification 5

Table of Contents

Class Documentation Standards 3

1 Basic Principles 4
1.1 Contractual Obligations 4
1.2 Writing Mathematics 5
1.3 Comment Delimiters 6

2 Header File Layout 7
2.1 Class Definition Layout 7

2.1.1 Constant Definitions 9
2.1.2 Enum Type Definitions 9
2.1.3 Function Declarations 10

3 An Example Header File 12

Index 15

