
System management for aipsH—|- 
Part 2: activation, generation, and verification 

Mark Calabretta 
aips++ programmer group 

1992/Feb/14 

1 Introduction 
Part 2 in this series of discussion papers deals with the activation of aips++ and associated server 
processes, the generation of the aips++ system from its source code, and also several topics which can 
be grouped loosely under the term "verification". It has been distilled from material presented in the 
"aips2-tools" email exploder between July and December 1991. 

The subject of "activation" particularly includes the mechanism used for defining the aips++ en¬ 
vironment and starting aips++ and its server processes. This includes batch processing as well as 
interactive. Some aspects overlap with that of the aips++ user interface. 

System "generation" encompasses all that is required to generate the aips++ libraries, executables, 
scripts, documentation and any other system files from the aips++ source code. In particular, this 
includes installation of aips++ at end-user sites. 

"Verification" refers to anything related to testing the correctness of aips++ • In particular, de¬ 
bugging aips++ source code and verifying that it produces sensible answers. Also included would be a 
tool or tools which check that source code conforms to a basic style of formatting, and perhaps applies 
it. Although the subjects of assertion testing, pre- and post-conditions, class invariants, and class test 
suites could be considered a part of verification, they are not considered in this document, but instead 
left for the discussion on general coding standards. 

2 System databases 
The local characteristics of an aips++ installation will be described in system databases. Note that 
the term database in this context simply refers to a file or set of files which store information, much like 
the passwd, group, services, etc. files in unix. The SP (system parameter) and ID (imaging device) 
files in AIVS are further examples of such databases. The SP file stored information on peripherals such 
as data disks (including disk bookings and TIMDEST limits), tape drives, TV, graphics, print and plot 
devices, the (pseudo-) array processor system, access restrictions, local system identification, and so on. 
The ID files stored a detailed description of each image display device, and were themselves used as a 
lock file for arbitrating TV access, aips-f + will probably not need to duplicate the AIVS parameter 
set, but some databases certainly will be needed. 

A problem with the AIVS system databases came to light in the late 1980s when multiple-host 
installations of AIVS in a network environment started to become the norm. The design implicitly 
assumed a single-host installation, the norm in the preceeding decade. Having a separate SP file for 
each host did not cater for large areas of commonality between hosts at the same site. For example, 
changing a system parameter common to all machines at a particular site required changing the SP 
file for each individual machine. The fact that SP and ID files could only be modified by using special 
purpose programs was an added inconvenience. 

These problems can be circumvented in aips+-|- by using a heirarchical scheme based on ASCII text 
files. Each of a sequence of ASCII files would be read in a set order. The first file in the sequence would 



3   ACTIVATION 

contain a complete set of default definitions. Subsequent files would refer to an ever more restrictive 
domain of applicability and contain definitions overriding those of preceeding files. Given the directory 
heirarchy proposed in part 1 of this discussion document, the following sequence suggests itself 

$AIPS/$ARCH/$VERS/aipsrc 
$AIPS/$ARCH/$VERS/$SITE/aipsrc 
$AIPS/$ARCH/$VERS/$SITE/$HOST/aipsrc 

where the variables (not necessarily environment variables) have the following meanings 

AIPS 
ARCH 
VERS 
SITE 
HOST 

.root of the aips++ directory tree (e.g. /aips++) 

.host architecture (e.g. sim4, ibm) 

.released (base) or development (apex) version 

.site name (e.g. aoc) 

.host name (e.g.  baboon) 

The first file in the sequence $AIPS/$ARCH/$VERS/aipsrc, containing default definitions, would be dis¬ 
tributed with aips++ and not be changed in the installed system. Instead, any site specific parameters 
would be defined in $AIPS/$ARCH/$VERS/$SITE/aipsrc. The hosts within each site would each have 
their own aipsrc file, and typically this would be used for attached peripherals. It has been argued 
that a "/.aipsrc file should also be provided for users to override system defaults. This would re¬ 
quire a mechanism to prevent them from circumventing access restrictions. The routine which reads the 
databases should allow that the host, and possibly the site aipsrc files be empty or missing. 

The fact that site-specific databases reside in a subdirectory with a site-specific name allows for easy 
maintenance of aips++ among multiple sites belonging to a single institution. Given that a particular 
site holds the master copy for an institution, all that should be required to keep the slave copies up-to- 
date is to copy the directory tree from the master. The fact that the master and slave sites have different 
names will prevent the slave's databases from being overwritten. 

3    Activation 

It is clear from the user requirements that it must be possible to run aips+-|- tasks from an ordinary 
user account rather than a generic "aips" account, and from a unix shell, such as Bourne shell or C 
shell. These requirements have a significant bearing on the way that task activation is implemented. In 
particular, it means that tasks must be able to determine system parameters for themselves at run-time. 
For example, a task might need to determine the amount of memory installed in the machine on which 
it is running (this would be stored in $AIPS/$ARCH/$VERS/$SITE/$HOST/aipsrc). It is unrealistic to 
suppose that all information of this type be translated into environment variables defined from the user's 
login script, so the aipsrc databases themselves would have to be consulted at run-time. That is, an 
aips-|-+ task or script which needs to know about devices etc. will read the aipsrc files as required. 

The information stored in the aipsrc databases could be said to be static in that it does not change 
between invokations of aips++ tasks. However, some parameters may change between a user's login 
sessions, in particular, $ARCH and $H0ST. Moreover, $PATH, must be known in order to start a task, and 
$AIPS, $VERS, and $SITE are required to find the aipsrc files themselves. Information of this kind would 
be stored in "activation" databases. 

It would be desirable to minimize the number of environment variables that need to be defined in 
order for a task to be activated. The most basic requirement is that the user's PATH be modified to 
include the aips++ binaries and scripts. In general this would involve evaluating $ARCH and is more 
than can be done by a single line entry in a user's login file, unless it be an invokation of a special 
purpose script, i.e. 

. /aips++/aipsinit.sh 

for Bourne-like shells, such as sh, bash, ksh, and zsh, or 

source /aips++/aipsinit.csh 



4   SYSTEM GENERATION 

for C shell-like shells, such as csh and tcsh. Although it is possible to determine a host's architecture 
by indirect means (as does the "pvi/wave/bin/arch script in PVwave), these are rather kludgy and a 
$AIPS/hosts database would be needed to resolve $SITE as well as $ARCH. $VERS should default to base 
unless overridden by a command-line argument to the aipsinit. [c] sh script. 

Apart from redefining the user's path, the aipsinit. [c]sh script must also define $AIPS as an 
environment variable so that any aips++ task can find the $AIPS/hosts database and rederive $ARCH, 
$SITE and $HOST for itself, since it will need these to find the aipsrc databases. Since the users 
specify $VERS at login time, it must also be recorded by aipsinit. [c]sh as an environment variable. 
Alternatively, it may be more efficient to store $ARCH, $SITE and $H0ST as environment variables also, 
or instead have one single environment variable which stores all five components. 

As discussed below, aips-|—|- will probably use server processes for image display, remote tape access, 
and other functions. It would be best to free aips+-|- users from responsibility for the activation of 
these servers; tasks should start them automatically where required. The inetd mechanism, in which 
a server is activated when a client requests a connection, would be ideal for this purpose. However, it 
would require a root installation on all server machines and this is inadmissable. One solution would 
be for the client to try to connect () to the server and, if this fails, try once to systemO an rsh script 
which activates it. Certain implementation problems have been glossed over here. Suffice it to say that 
efficient, automatic activation of servers, particularly image display servers, may be challenging. 

The problem of assigning tcp or udp port numbers to network services has been discussed at length 
in the aips2-tools exploder. There is a potential for conflicts if port numbers are adopted arbitrarily, 
but registration of port numbers in the /etc/services file would require root privilege and so is inad¬ 
missable. aips-|-+ therefore needs a mechanism for the flexible allocation of port numbers, and to this 
end, a site-specific set of numbers for each service could be specified in the aipsrc databases. When a 
task invokes a server via rsh as described above, the port number would be passed to the server as a 
command-line option. 

Where aips+-f tasks are being initiated from an interactive unix shell, users will be required to 
implement multi-tasking for themselves by backgrounding and foregrounding jobs in the usual way. 
Multi-tasking should probably be implemented automatically within the aips+-|- shell itself. 

One of the advantages of providing for aips++ tasks to be run from a unix shell is that it provides 
a simple method for creating procedure scripts. Within these scripts it is conceivable that non-aips++ 
tasks might be interspersed with those of aips++ . These scripts would also be suitable for submission 
to the host operating system's batch facility. However, there was a clear requirement in the user speci¬ 
fications for a batch system in aips++ , and given the poorness of some unix batch systems, aips++ 
will probably have to implement its own batch system eventually. 

Any procedure scripts required in aips++ , for example those required for activating servers, may 
be written in peri The simple aipsinit. [c]sh Bourne shell and csh scripts which define environment 
variables would still be required. Likewise the scripts used to define directory logicals for programmers 
who want them. 

Given that aips++ will be installed and provided at many sites by a centralized management, a 
standard mechanism for sending messages to users should be included in the distribution. A simple 
system called GRUNT has been operating for some time within AIVS at the ATNF and has proved 
invaluable. It records which users have read each message so as to avoid printing the same message 
twice. We have found that users are much more likely to pay attention to messages if the only messages 
they receive are new ones, although they still have the option of reviewing old messages via the "HEWS" 
command if they want. GRUHT allows for multiple message classes, and for deactivating old messages 
without deleting them so they can be kept as a record. It does, however, require that users run from their 
own account so they can be identified. We will probably also want to integrate it with the documentation 
system. 

4    System generation 
The discussion on system generation starts with the question of how imported FORTRAN libraries such as 
PGPLOT, SLALIB, etc. are to be treated. It was suggested in the aips2-tools exploder that these be con- 



4   SYSTEM GENERATION 

verted to C/C++ by using f2c followed by hand editing. However, several contributors felt uncomfortable 
with this, specifically because 

• Conversion to C could introduce subtle bugs, particularly in numerical routines. 

• FORTRAN is more easily vectorizable than C and number crunching packages converted to C might 
suffer. 

• These libraries can be expected to evolve over time and the conversion would have to be done 
afresh for each release. 

• Patches couldn't be applied mechanically. 

• Hand-editing, if required, allows an added opportunity for bugs to creep in, especially since it 
probably wouldn't be done the same way for different releases. 

• If a bug is discovered in a library routine it will take some time to ascertain whether it was native 
or introduced. 

• It will consume somebody's time. 

C++ does not have a calling convention for FORTRAN routines but it does provide for C. One alternative 
to conversion, therefore, would be to write a set of wrapper C-routines for each library which call the 
FORTRAN routines. However, in the absence of a universally accepted mechanism for calling FORTRAN 
from C, we would have to allow that these wrapper routines be operating system specific. 

The programmer environment for aips++ must support private workspaces and would be imple¬ 
mented via a set of environment variables. In particular, these must define the host architecture of the 
machine the programmer is currently working on, and transparently lock out the possibility of mistakenly 
interfering with the binaries for any other architecture. When a library or executable is recompiled it 
should only affect the lib, bin or tmp directories for the current architecture. Likewise, any code search 
paths should be resolved automatically for the current architecture without programmer intervention. 

Logical names should be assigned to all aips++ directories soley for the purpose of making it 
easier to move around the aips+-|- directory tree. They should only be defined at the discression of 
the particular programmer, since many programmers already use shells or utilities (such as filemgr in 
SunOS) for moving around directory trees. In particular, the aips++ build mechanism should not rely 
on these logicals being defined. 

Compilation of all source files, including libraries, executables and online documentation should be 
under the control of the make utility. There are almost as many flavours of make as there are flavours 
of unix, some of them quite primitive. The approach adopted in POSIX.2 has been to define a very 
restricted set of capabilities which are basically a subset of all known makes. The mafcescript itself must 
be POSIX.2 compliant and this is enforced by adding a .POSIX target. In particular, POSIX.2 make 
does not allow the shell function, source code search paths, or parallel execution options of GNUmafce. 
I believe that this will be too restrictive for aips++ , and we should adopt GNUmafce in toto. This 
will still be within the bounds of POSIX compliance since GNUmafce itself is POSIX.1 and POSIX.2 
compliant. 

With Q- and Z-routines, and possibly wrapper routines for FORTRAN libraries, aips++ will need a 
source code search path mechanism. GNUmaJbe provides this in the build phase, but we will need a 
facility for finding files independently of recompiling. This could well be implemented as a special target 
in the makefiles themselves. 

The makefiles will need to be tailored for particular operating systems or sites, but we would really 
like to avoid having to edit makefiles to tailor them for a particular installation. One way of doing this 
may be to construct the makefiles in such a way that they look in site-specific database(s) for local macro 
definitions. If this proves unworkable, we may have to abandon make and revert to imake, the utility 
used for installing X-windows. However, writing imake configuration templates seems to be sufficiently 
complex that we will probably only want to take it on as a last resort. 

Unlike the usual practice with makefiles, those for aips++ must be careful to store object modules 
and other intermediate products of compilation in an architecture-specific area rather than in the same 



4   SYSTEM GENERATION 

directory as the code. The reason is simply that the code areas will be visible to machines of different 
architectures, two of which could conceivably be running make at the same time. 

Another area where potential clashes can occur is when programmers on two different machines of the 
same architecture attempt to update an object library at the same time. The mechanism used in AIVS 
only accounted for two different programmers on the same machine, so something more sophisticated 
will be required. GNUmafce does not provide a solution to this problem, and unless someone can think of 
a better idea, we will probably have to use a variation on the AIVS scheme incorporating the machine 
name as well as the process id in the name of the lock file. Since rsh to a crashed host usually hangs, 
ping should be used first to check that it's still alive. 

Since libraries are the only sensible way to manage link lists, object modules for static executables 
should be stored in archive libraries and the *.o files deleted. However, aips++ should provide for 
sharable libraries 1 to be used optionally where operating systems provide this facility, as does SunOS. 
Normally speaking, sharable objects must be reconstructed from a complete set of their constituent 
object modules. Unless there was a requirement to link some executables statically, there would be no 
point in packaging and unpackaging the object modules in archive libraries whenever an object module 
changes, and they should therefore be kept in atomic form. This makes updating sharable objects very 
fast. 

The strategy to be used in designing the makefiles must be considered carefully, otherwise we will find 
that recompiling a single application (to debug it for example) will take ages while all of the modules 
in all of the libraries are checked to see whether they're up-to-date. Dependencies for object libraries 
should follow a scheme where 

• Each object library depends on all of its modules. 

• Each module in an object library depends on all of its sources. 

Concerning the second point, it may be simpler and more efficient in the long run for class implementa¬ 
tions to depend on all class header files rather than attempt to list dependencies explicitly. Dependencies 
for applications should be as follows 

• Each application should depend on all of its sources. 

• Each application should depend on the last modification time of its libraries, but not so as to cause 
them to be remade. 

Concerning the last point, timestamp files could be used if necessary to record the last update time 
for the libraries. In order to remote the whole of aips-|-+ , the libraries should be made, then the 
applications. 

In principle aips++ may have to be completely rebuilt each night, especially in the early stages when 
class header files might be expected to change on a daily basis. The rebuild would happen automatically 
at consortium sites after the latest revision of the code had been fetched, and will be required to have 
been completed by the following morning. Eventually this job may become too much for one machine, 
and we should investigate the possibility of spreading the load over several machines. GNUmaibe allows 
parallel execution, but only within the same machine. However, this seems like a promising point to 
start from. 

Concerning support for multiple devices, AIVS originally used alternate LOAD (bin) areas to support 
different types of device of a particular kind within a single system, principally TVs and array processors. 
Later, with the advent of networks, a much more flexible model was adopted - that of a device server. 
This model was developed for image display devices with TVMON, then SSS, and later XVSS and XAS. A 
tape server, TPMON has recently been added, and aips++ can expect to have compute servers as well. 
The aips2-tools exploder reached a consensus on avoiding alternate load areas. The device server model 

The vise of sharable libraries constrains the way memory is used within object modules. In particular, uninitialized 
data should not be statically declared (i.e. as large arrays) but rather allocated from the heap so that the uninitialized 
data segment for the sharable object as a whole is kept as small as possible. Otherwise, large amounts of static memory 
may needlessly be allocated to processes which do not require it. However, this topic is properly the domain of coding 
standards and is not addressed here. 



5   INSTALLATION 

is the obvious solution, and has the obvious benefit of providing net access. The use of shared memory 
may increase the efficiency of servers running on the same machine as their clients. 

Support for multiple plot devices is a somewhat different problem in that the devices are only logically 
different, i.e. the output is always ASCII text, only the graphics commands are different. PGPLOT handles 
multiple devices by using run-time switches for different device libraries. As delivered, one decides at 
install-time whether or not to include support for a particular device in PGPLOT by hand-modifying the 
GREXEC routine. Rather than modify code, however, aips-|-+ should handle this at the makefile level 
by conditional compilation, e.g. (using cpp for FORTRAN!) 

#ifdef GFDRIV 
1 CALL GRDRIV 

RETURN 
(.. .) 

#else 
1 CALL ERROR ( 

RETURN 
['No GFDRIV support' ') 

#endil 

#ildef IMDRIV 
2 CALL IMDRIV 

RETURN 
(.. .) 

#else 

RETURN 
#endif 

The key to the PGPLOT scheme is that only a very limited number of routines (only one in PGPLOT) 
should contain the device switch. One might remove support for devices which are not available simply 
in order to reduce the size of the executables. In applying this mechanism in the general case, however, 
the particular device libraries simply may not be available, and this would have been the situation with 
TVs and APs in ALVS. 

Documentation, whether it be online help, printed manuals for users, or class documentation for 
programmers, will be discussed elsewhere. However, the documentation system will be more sophisti¬ 
cated than in ALVS, and in general will entail compilation from its sources. For example, it is intended 
that aips+4- applications will define their input parameters within their prologue section, and a special 
purpose tool will be required to extract the definitions and add them to the documentation for the task. 
The documentation may need to be compiled in different ways to serve as input for different purposes, 
such as an X-windows client, a terminal, or for printing. Compilation of the documentation from its 
sources should be under the control of makefiles. A separate copy of the compiled documentation should 
be maintained for each machine architecture to ensure that the $AIPS/$ARCH/.. . subtrees contain an 
independent and fully functioning system as described in part 1 of this document. 

5    Installation 
Many aspects of the installation process have been discussed in passing in the preceding sections. How¬ 
ever, this topic is of sufficient importance that it deserves separate attention. 

In the first instance an end user site will obtain a copy of aips++ from their local aips+-|- consortium 
member, via anonymous ftp or tape. Many sites will be able to copy the aips-|--|- binaries directly, 
thereby saving them the trouble of recompiling the system. These binaries must therefore be "exportable" 
in the sense that they contain no hard-coded site-specific information. The installation would thus be 
completed by encoding the site-specific information into ASCII databases such as the $AIPS/hosts and 
$AIPS/$ARCH/$VERS/$SITE/aipsrc files. 



6   VERIFICATION 

Inevitably, many sites will not be able to take advantage of the binary distribution, either be¬ 
cause they have incompatible hardware, or incompatible releases of their operating system or utilities. 
These sites will have to rebuild aips+4- from its source code, and we must ensure that the aips+-|- 
system is completely constructible from the $AIPS/$VERS/code subtree. This includes architecture- 
specific procedure scripts (if any). Apart from defining site-specific parameters in databases like those 
mentioned above, the installation would first involve editing a file used by the aips++ makefiles, 
$AIPS/$ARCH/$VERS/$SITE/sysconf, containing a more detailed description of the system. This might 
include the location of various public domain libraries or utilities required by aips++ and which the 
site had already installed, but in a place different to where the makefiles expect to find them by default. 
Template versions of this ASCII descriptor file should contain defaults which the installer may change 
as required by using a text editor. After editing the sysconf file, a single recursive make should rebuild 
the whole of aips-|-+ . 

6    Verification 

There was a protracted discussion concerning debugging strategies in the aips2-tools exploder. I do not 
intend to retrace all of the ground covered there, but simply propose a solution to the problems raised, 
the main one of which is that debugging optimized code is difficult for most existing debuggers, and 
impossible for some, for example Sun's. The only debugger which is claimed to work well at even the 
lowest level of optimization is Convex's CXdb, and even it seems less than perfect. However, given that 
optimizers for RISC machines can achieve a speedup of 100% or more, aips++ simply can't afford to do 
without it, Q-routine encapsulation not withstanding. An added complication is that the optimization 
may also introduce compiler-based bugs. The solution proposed here has been implemented in AIVS 
at the ATNF and appears to be quite workable. It is assumed that the working enviroment is one where 
aips++ is used simultaneously for production and development. 

The idea is simply to have two sets of object libraries, one compiled optimized/no-debug, the other 
unoptimized/debug. The executables would normally be stored in optimized/no-debug form, but when 
debugging is required, it would be a simple matter to rebuild an executable in debug mode, since all 
libraries are present. Recompilation of static executables before debugging is good practice since it 
removes the possibility of an executable having been linked with a stale library. Debug executables 
would not normally be left in the system, and as set up at the ATNF, they are automatically deleted 
after three days. 

If a compiler optimization bug is suspected, it should be a simple matter to do an unoptimized 
recompilation, rerun the task, and compare the output. If compiler optimization bugs are found, the 
offending functions may be added to a list of routines not to optimize. 

Sharable libraries, if available, should only be used for the optimized executables. The debug libraries 
should be static for the following reasons 

• It avoids confusion. If several programmers were debugging a number of applications or functions 
independently, the last thing they'd want is to have sharable objects changing while they worked. 

• Since only a few executables should exist in debug form at any time, the use of sharable libraries 
is actually less efficient in terms of disk usage. 

In other words, the two main features which make the use of sharable libraries attractive for the pro¬ 
duction system make them undesirable in the development system. 

Some participants in the aips2-tools exploder felt it was important that it be possible to have a 
debugger start automatically from an exception handling routine. This can be done for the VMS 
debugger, but not so for any unix debuggers. Also, it may not be appropriate for users running an 
aips++ task to be thrown into a debugger automatically. A simple alternative would be for the 
exception handler simply to ask a question, thereby allowing time to start up a debugger and connect 
to the process. Something like 

"Exception xxx occurred, debugger may connect to 
process yyy now,  otherwise hit <cr> to continue:" 



6   VERIFICATION 

Naturally this should only happen in interactive mode! 
aips++ will have a set of coding standards which can be considered to be of two types, those of 

style and those of substance. The latter, which might include the use of C++ constructs that a putative 
lint++ would deal with, are beyond the scope of this discussion. The former, category includes what 
are sometimes called "typing" standards and deal with indentation, the placement of braces, and so on. 
Although it is also outside the scope of this document to define these standards, it is relevant to mention 
here the need for a tool which ensures that code conforms to, and if possible applies these standards. 
For example, a version of the indent utility exists which will format C++ code, and the aips++ typing 
standards could well be defined as a standard set of options to this utility. 

A related topic is that of pretty-printing C and C++ source code. The tgrind utility is built on TfeX 
and operates on plain source code. It uses different fonts to distinguish between comments, keywords, 
strings, and the rest. Although fairly limited in scope, tgrind does make source code more aesthetically 
pleasing and arguably easier to follow. Although it uses an unsuitable proportionally spaced TfcjX font 
by default, it can be modified to use the fixed-spaced Courier POSTSCRIPT font. 


