Subject: answers to some questions
Date: Mon, 9 Mar 92 10:20:26 EST

Some questions came up yesterday dealing with C++. I’1l1 answer them
here with the attached code example.

First, on Lloyd’s question of how to write a ‘‘logically’’ const
member function: one that should be allowed to modify some part of its
data. C++ strictly does not allow logical const-ness; see the
examples on page 177 of the ARM or on pages 231-233 of Lippman’s C++
Primer (2nd ed.), where it is explained that the type of ‘this’ in a
const member function of class X is ‘const X* const’ (constant pointer
to a constant object of type X). To get around this you can forcibly
cast away the const-ness of 'this’ (see comment 1 in the class defn.
of Inner).

The other question came from Mark Holdaway; he found different behavior
between passing an inner object vs. passing an explicit reference to
the object, when passing the argument to a function that expected

a reference:

void foo(Inner&) ; // expects a reference to an Inner
Inner& iref = outobj.innerobj ; // explicit reference

foo(outobj.innerobj) ;
vs.
foo(iref) ;

Should these yield the same result? Yes. The code below demonstrates
this.

#include <iostream.h>

class Inner {
public:
int itag ;
int v[20} ;
Inner(int) ;

// comment 1
// Allow Addl0 to modify the data member ‘itag’, even
// though Add1l0 is a const member function.

void Addl0() const { ((Inner* const)this)->itag += 10 ; } ;
void Print () const ;

|

Inner: :Inner (int arg) : itag(arg)

{
}

cout << "Inner: ctor entered with itag =" << itag << endl

~e

void
Inner: :Print () const

{
)

cout << " Inner::FPrint itag = " << itag << endl ;

class OQuter {
public:
int otag ;
Inner innerobj ;
Outer (int) ;
void Print () const ;

|

Outer::Outer (int arg) : otag(arg), innerobj(arg*2)

{
)

cout << "Outer: ctor entered, otag=" << otag << endl ;

void
Outer::Print () const

{
cout << " Outer::Print otag = " << otag << endl ;

innerobj.Print () ;

)

void
foo(const Inner& iarg)

{

cout << " foo-—- iarg is at address: " << (long*) &iarg << endl ;
cout << " foo—- invoking Addl0 on iarg" << endl ;

iarg.Add10() ;

cout << " foo-- invoking Print on iarg"™ << endl ;

iarg.Print () ;

}

int
main(int, char**)
{
Outer outobj(111) ;
cout << "Entered main!\n" << endl ;

// BAbout to do stuff with Inner now...

Inner& iref = outobj.innerobj ;

cout << "outobj.innerobj is at address " << &outobj.innerobj << endl ;
cout << "iref is at address " << &iref << "\n" << endl ;

cout << "1. invoking Print on outobj (before actions)" << endl ;

outobj.Print () ;

// About to call foo...

cout << "call foo with arg outobj.innerobj..." << endl ;
foo(outobj.innerobj) ;

cout << "2. invoking Print on outobj (after 1lst call)" << endl ;
outobj.Print () ;

cout << "call foo with arg iref..." << endl ;

foo(iref) ;

cout << "3. invoking Print on outobj (after 2nd call)" << endl ;
outobj.Print () ;

cout << "\nExiting main!" << endl ;

And here is the output produced:

Inner: ctor entered with itag =222
Outer: ctor entered, otag=111
Entered main!

outobj.innerobj is at address Oxf7fffad4
iref is at address Oxf7fffadd

1. invoking Print on outobj (before actions)
Outer::Print otag = 111
Inner::Print itag = 222

call foo with arg outobj.innerobj...
foo-- iarg is at address: Oxf7fffadd4
foo—- invoking Addl10 on iarg
foo-- invoking Print on iarg
Inner::Print itag = 232

2. invoking Print on outobj (after 1lst call)
Outer::Print otag = 111
Inner: :Print itag = 232

call foo with arg iref...
foo-- iarg is at address: Oxf7fffad4
foo-- invoking Add1l0 on iarg
foo~-- invoking Print on iarg
Inner: :Print itag = 242

3. invoking Print on outobj (after 2nd call)
Outer::Print otag = 111
Inner::Print itag = 242

Exiting main!

Andrew Klein

