
Users Guide to Image Coordinate Systems 

Mark Holdaway 
Sanjay Bhatnagar 

14 March 1992 

The following is our evaluation of the use and design of the Image class 
and its underlying coordinate systems. We are writing from the perspective of 
programmers who wish to use the Image class as a service. While the Image 
class and its coordinate structure looks very pleasing and seems to obey encap¬ 
sulation, its use in application programs is not easy, conceptual encapsulation 
is broken, and optimization of routines such as DFTs and FFTs breaks the 
encapsulation. 

1    The Coordinate System is Cumbersome 

Any application programmer must know a lot about the underlying conceptual 
structure of the Image and its three coordinate systems. For example, if I 
want to set the parameters associated with a coordinate system, I must write 
something like 

nx = outImage.GetDim(l); ny = outImage.6etDim(2); 

CoordSys *myCoords = out Image. Get CoordSysQ ; 

ImageCoord myDelta = myCoords.GetDeltaCoordO; 
double zcell = myDelta.GetlmageCoord(l); 
double ycell = myDelta.GetImageCoord(2); 

ImPizelCoord myRefPix = myCoords.GetRefPixO; 
double xrelpix = myRefPix.GetlmPixCoord(l); 
double yrefpix = myRefPix.GetImPixCoord(2); 

while in the system SDE the analogous operation is implemented with a single 
line of code: 

CALL CRDPUT (IMAGE,  NAX,  TYPE,  HAXIS,  RVAL, RPIX, DELT,  ROTA) 



2    Conceptually Complicated and Uncleanly Di¬ 
vided 

The AIPS++ coordinate information access might be simplified soon, but the 
application programmer still must know about and understand Image Coordi¬ 
nates, Image Pixel Coordinates, and Pixel Coordinates. While these three levels 
of abstraction facilitate some operations and enable the applications program¬ 
mer to consider any corner of an image to be 0, 0, they also lead to a great 
deal of confusion. The primary confusion arises from the fact that the data 
are firmly connected to the Pixel coordinate system and the fact that there are 
operations one can do on the levels of any of the three coordinate systems. For 
example, in implementing a CLEAN algorithm, one gets the maximum value of 
an array with 

Pixel maxpix = mylmage.MaximumO; 

To designate the center of the image to be the pixel where the maximum was 
reported, one has to do 

PixelCoord myPixCoord = maxpix.GetPixelCoordQ 
myImage.SetCenPix(myPixCoord); 

If, for some reason, one has to shift the center of the image, one needs to get 
the ImPixelCoord out in the code as well. The net effect of this is that the Pixel, 
PixelCoord and ImPixelCoord are all visibile at the application level throught 
out the code. While there might be good reasons to encapsulate functionality 
into the three coordinate systems, the concepts are not encapsulated and the 
programmer must be thinking about them all simultaneously and must remem¬ 
ber which functions belong to which coordinate systems. A bare minimum of 
two coordinate systems (data storage coordinates and a mapping of the data 
storage coordinates onto the sky) are required. The programmer should have, 
as much as possible, an independent and complete set of permisible operations 
in each coordinate system's interface (or the Image's interface). As it stands 
now, it is impossible to think of the Image as a set of values on a regular grid 
defined by "one" coordinate system. While the Image and its coordinate sys¬ 
tem must be flexible enough to deal with difficult cases such as non-linear or 
non-orthogonal coordinate systems, this generality should not overburden the 
simple coordinate geometries. 

We also note that the Image class has 38 methods in it, and more classes 
than we wish to count. These will obviously grow. 

2.1    Coordinate Wish List 

Here are a number of things which I find useful about SDE and some random 
thoughts about the current coordinate systems. 



OBSRA and OBSDEC are required. Perhaps even a vector of OBSRA and 
OBSDEC. We should keep our eyes open for a better way of doing this. 

There seems to be no axis type data member of CoordSys. One cannot 
assume a spectral line cube will always be in X, Y, F order. For that matter, 
we will probably stick things onto coordinate axes that none of us have thought 
of yet. 

The coordinates of an image and the coordinates of a Fourier Transform of 
that image will be related to each other. The coordinate system must know 
about this. The parameters nx and ny are not considered to be part of the co¬ 
ordinate system. However, when the transform image is considered, the CELL- 
SIZE of the transform image is equal to 1.0 / (CELLSIZE of the image * NX). 
In this way, NX and NY get a little insestuous with the coordinate system, and 
perhaps should be considered as part of the coordinates. Needs some thought. 

Also, a piece of thought which is in the YEG domain: what astronomical 
coordinates are needed for the YEGS? The OBSRA, OBSDEC, reference RA, 
reference DEC, and coordinate projection type. We YEGGERS need to see 
what parts of the Image coordinate system we can steal for ourselves, and we 
need to make the interface between the YEG coordinate system and the UV 
grid, which should be considered to be just another image, except with different 
coordinate axis types ("UU—SIN", "VV—SIN"...). 

Consider a MEM based program in which you want to take the current 
iteration's model (128 x 128) and convolve it with the PSF. An efficient way of 
doing this is to take the psf (256 x 256) and do an FFT to make the transfer 
function (256 x 256). Then, when we want to convolve the (128 x 128) image, 
we just do a (128 x 128) — i (256 x 256) FFT, multiply by the transfer function, 
then back-FFT (256 x 256) — i (128 x 128). In doing these FFT's, it is useful 
to store the dimensions and coordinate systems of the previous image in the 
current (FFT'd) image...it aids in going back. 

3    Efficiency vs Incapsulation 

Access of the data in the Image class is not consistent with optimized code. 
Currently, the Image data can be accessed one pixel at a time or by a pointer 
to a copy of the image (the copy can be read back into the image). DFTs and 
FFTs should not have to access the data one pixel at a time. However, if the 
pointer-to- array-copy access is chosen, we mo longer have access to the power 
of the Image class and its methods: we might as well be writing in FORTRAN. 

There is a subtle interaction between the problem of data access and the 
problem with coordinate confusion. Remember, the data are stored in the order 
of Pixel coordinates. However, the values returned for xrelpix and xcell in the 
example code above refer to the ImPixel coordinate system and its relationship 
to the Image coordinate system. Great confusion results when one tries to 
access the data efficiently through the pointer-to-copy and then tries to use 



the higher level coordinate information to determine the pixel location. One 
suggested solution to this is to use the methods of the image class to access 
the data and to indicate the astronomical (Image) coordinates of that point. 
This, however, leads to very inefficient code for highly vectorizable operations 
on regular orthogonal coordinate systems. 

4    Recomendations 

We feel that there has not been strong communication between the («, v) group 
and the Image group. The Image group has created an independent system 
of code which is logically consistent but does not mesh very well with the re¬ 
quirements of the (u, v) data group. The («, v) group developed its code with a 
Dummylmage class which was very simple and supplied us with everything we 
needed. In retrospect, the («, v) group should have asked the Image group to 
supply certain data members and functions in a preliminary image class so the 
Image class and one of its primary clients could evolve together. 

At this point, we feel strongly that the coordinate systems and Image classes 
need to be thought about in terms of ease of use, minimization of confusion, 
and the capability of writing efficient code without breaking the encapsulation 
of the Image class. We do not like the ImPixel coordinate system, but we are 
open to solutions which use the ImPixel system if our objections can be met. 


