
From: Ed Fomalont
Subject: Note from Ed Fomalont

Dear Brian,

You are getting to the stage where you need good input from people
who have met all kings of astronomical data. I am committed to
debugging the VLBA and this will occupy most of my time, so I^m sorry
that I can't spend much time on the aips++ design. But, I want to say
a few things about what you should be thinking about for the design.

The most important point, in my opinion, is that to design a good,
flexible system, you need only worry about how to APPLY calibration.
This is basically the TELESCOPEMODEL object. This means taking
measured data and transforming them to obtain something called
calibrated data. These algorithms are general simple matrix
transforms of the input data. How to determine the parameters in the
APPLY calibration matrices is called SOLVE. The complexities involved
in solving from parameters from a set of data is enormous. But, I
don^t think you have to worry about this. You have to make sure, that
the structure of aips++ can handle the APPLY calibration process and
transfer sufficient information (data and calibration parameters) to
SOLVE, which the gives better calibration parameters. But, what and
how SOLVE does is unimportant at this stage of design.

One important assumption is that APPLY calibration need only
handle data at one particular time interval. If this is true, then
this must say something about the fundamental ordering of the data
base. Clearly the APPLY parameters will change with time and the
information (tables? algorithms?) must have to be repeated as often as
necessary. And the proper interpolation methods must be used.

On polarization calibration. At most you observe four independent
polarization data points for any baseline and time. The general
calibration procedure is a 4x4 matrix which transforms these four
inputs points to four output points. It doesn't matter what type of
polarization state is measured (RR, LL, RL, LR or linears or some
Westerbork style) or what output is desired (I, Q, U, V or RR, LL, RL,
LR), I think that a 4x4 matrix will do it. Of course each matrix
element will depend on the style of polarization measurement and
calibration. And SOLVING for the parameters for a specific telescope
is tough, egs. VLBI polarization mapping.

BUT, in determining the properties of aips++, I think you only have
to convince yourself that a 4x4 matrix is all that you need. How to
fill in the matrix is not important as long as you know how to send
the appropriate data (now over a long period of time) and a description
of the parameters to SOLVE and let it do its job, somehow, and return
better estimates of the parameters which you stick in the proper matrix.

Some complications: It is possible to measure many more than four
input values which are then not all independent. The APPLY would then
be a sort of least square solution which obtained the four desired
independent polarization parameters. On the other hand, only one or
two polarization parmeters can be measured. The output then cannot
determine the four polarization states and simplifying assumptions (ie
some of the 4x4 matrix elements will be zero) must be made. BUT, this
can all be buried in some Matrix (nxM) where n is the number of input
polarization measurements and M is the number of output (M<n). I'm
not sure if all this is correct, but this shows you the kind of things
that have to be designed into aips++ for proper APPLY calibration.
Again, DON'T WORRY ABOUT SOLVE. As long as you have defined the APPLY
part correctly and can send data and parameter information to SOLVE,
it can do something.

In self cal we generally assume that the atmospheric/tropospheric
phase correction over the entire primary beam is constant. We,
therefore determine one phase for each antenna. In principle, the
phase may change over the primary beam and the changes may have a
different form between antennas. Close antennas should have the
similar phase behavior over the primary beam, distant antennas should
be independent. The main question facing the aips++ design is how to
structure the parameters needed for this problem in sufficient detail
so that you can add on this complicated self-cal in the future. It

will take many years of experience to know how to SOLVE this problem,
but that is not of concern now. The present problem is how best to
define the APPLY calibration part. Of course, we rely on experience
of SOLVING this problem in the past to guess at a good APPLY for
aips++.

A calibration model might be: a phase at the center of the primary
beam, a wedge of arbitrary direction, and maybe a second order term. This
already has about 10 parameters, so that with 27 antennas, you have 260
parameters (one reference antenna). with the VLA with 351 baselines, it
would be difficult SOLVING for all parameters. The SOLVE program would
have to be very smart. Couple some parameters for close antennas, for
example. Of course, you would need a field which contained lots of radio
sources so that these parameters could be well sampled in the primary beam.
Maybe, a more general calibration model could be thought of so that you
don^t have to decide now on what is should be. Maybe, just a 2d-powerlaw
of refraction across each primary beam. So, I guess what I am saying
is that an isoplanicity APPLY system might include some algorithm which
has some functional dependence (upto second order) in the primary beam
of each antenna. You might want to add in weather data from which you
can predict the differential refraction of a smooth atmosphere. This
APPLY calibration would only be applicable to data and associated sky
models (not point sources) which contain lots of sources.

I guess what I am saying is: just make sure you are able to
define the spatial phase behavior over each antenna primary beam in
some way. How it is used (most of it will hardly ever be used, only
the phase at the center of the beam) . Also, have descriptors which
say how much of the description is used (or actually stored) and at
what time intervals.

Although APPLY calibration works for any one time duration, the
parameters will change with time. So that each part of APPLY must have
many entries, separated by appropriate amount of time. The frequency of
the entries must be arbitrary and aips++ needs a good way of dealing
with this.

This has been a rambling note. I hope my basic point has come out.
Again, I'm sorry I can't spend more time on this.

Ed

From: Andrew Klein
Date: Fri, 3 Apr 92 13:27:24 CST

Brian, et.al. -

Well, my thinking cap has been somewhat overused recently dealing with
starting up this project at Motorola. I've seen the aips2 mail off
and on, including Ed Fomalont's recent reply. I wish I could tell you
the perfect answer and hand you the ideal design (you probably wish I
could too!) but that isn't possible.

Let me restate the basic point: the object-oriented design should
reflect what it is you want the system to do now and what you think it
will do in the future. The class structure is a static picture that
reflects how you are managing your code for current ease-of-use and
future reuse. The object structure — which objects are created at
run-time, who they talk to and what they say to each other — is a
dynamic picture that reflects the functionality of your system.

Returning to the static picture, when I say nease-of-usen I am
referring to the ease of the aips++ designers/programmers in designing
and building aips++ and to the ease of your customers (and yourself)
in extending aips++. I am not referring to the end-user/astronomer
who will use aips++ to do data reduction and analysis: he or she
should find that the system presents a user interface that they
understand and can use to make the system do the job that they want it
to do.

So, to make your own job as designer and programmer easier, you've
turned to OOD/OOP and C++. It promises a cleaner mapping from the
entities of the problem domain to the objects of the solution domain.
With that cleaner mapping comes a greater localization of knowledge.

so that problem domain details can stay together in a single class,
avoiding the entangling interactions that diffuse details all over the
code.

The problem is that it isn't easy to find these clean divisions. And
in fact, the aips++ group has been fighting over what the right kind
of divisions should be. The usual tests, whereby you evaluate a class
by the cohesiveness of the data it holds and the services it provides,
and by its match to the natural entities of the problem domain, aren't
helping very much. From my point of view it appears that there aren't
any ^natural' problem domain entities that you can agree on. The
entities that have been identified (by the Green Bank group, by Chris
Flatters, and by Ed Fomalont) are abstractions of one sort or another,
models and model corrections and model parameters, that interact in
different ways.

Since I don't have answers to these problems, let me offer the next
best thing: questions.

1. What are the processing steps that you want to use on your data?
What would make it easier to organize the code to do those steps?

If it is essential that blocks of observations must be called up,
combined together, processed, evaluated — and then based on the
evaluation, split apart for different processing in different
combinations — then this would argue for the need for an object
that holds onto these dynamic associations. It also means that
you need to keep track of the original data, the mutated (no, I
didn't say "nutated") data, and its processing history.

2. Is the data (I'm thinking of the differences in the data you get
from different instruments) you process similar, or at least
similar enough that it shares a common set of behaviors? At
design time (that is, right now) can you say of a kind of data
that you know what operations you can apply to it, and what
parameters each of these operations require?

If an operation that can be applied to the data is common over
several kinds of data, so that the type returned by the operation
and the number and types of parameters taken by the operation are
the same, then you have discovered a conventional member function.
And in the process you have also discovered that the commonality of
"the several kinds of data" can form a C++ class.

If an operation that can be applied to different kinds of data is
only similar conceptually (e.g. thisdata.solve()), where the design
of the operation is wildly different in each case, taking entirely
different kinds and numbers of parameters, then what do you do?

Well, you could still use conventional member functions.
To get the parameters to the operation you could:

1. Pass them in a general parameter object. This hides the
basic problem one level away. The code for the parameter
object would have to be modified every time you added another
item to the parameter protocol, as I'm imagining that the
parameter object contains all possible parameter items.
If the parameter object was initialized incompletely (it is
missing a valid value for a parameter item that the current
operation needs to have) you won't find out about the problem
unt i1 run-1 ime.

2. Get the parameters you need from the data you are processing.
This is just like 1., except you've moved the problem.

3. Get the parameters from some global store or association object
Again, just like 1.

4. Use a parameter object, but this time make it an association
list of keyword/value pairs (e.g., (("offset" 1.337)
("fieldbrt" 234.12)...)). The operation could search the
association for what it needs. The advantage is that you
could extend (but never retract) the parameter protocol
without having to recompile the world. You still have the
problem of dealing with run-time errors as in 1. This is not

the kind of processing overhead that belongs in tight loops;
the assumption is that the processing time of the operation
on the data far exceeds the overhead of getting the
parameters.

To the extent that this dynamic kind of processing becomes primary,
you will find that you are leaving behind the compile-time type
safety of C++ and creating your own world of run-time type
identification and method dispatch.

Andrew V. Klein

