
System management for AIPS++
Report on progress to 1992/May/06

Mark Calabretta
AIPS++ programmer group

1992/May/06

1 Introduction
The design of the AIPS++ system has been described in two previous documents "System manage¬
ment for AIPS++ - Part 1: organization and distribution", and "Part 2: activation, generation, and
verification". A report describing progress to 1992/Mar/14 was delivered to the March AIPS++ steer¬
ing committee meeting in Socorro. This paper describes further progress in implementing the design,
particularly concerning the code distribution system.

Most of the major functional elements of AXVS system management are now present to some extent
in AIPS++. Although not necessarily a good indicator of progress, the statistics of code written may
be of interest:

shell scripts: 2778
aipsinit and aipshosts: 354

aipsrc, aipsrc templates, and getrc: 260
makefiles, makedefs, and makedefs templates: 1417

man pages for the above: 676

total: 5485

Development will be required throughout the life of AIPS++, but I would estimate very subjectively
that the system is about 70% complete,

2 The directory tree

The AIPS++ code and system directories have been implemented essentially as described in the original
documents. One issue which was not canvassed previously is the location of the -RCS source code reposito¬
ries. These have been implemented as a separate and parallel directory hierarchy under "'aips++/master.
At the moment the source code management consists of plain RCS, but this structure will readily acco¬
modate CVS. Plain-text copies of the code are kept under the "'aips++/code tree as originally planned.

Another point of departure from the original design has been to incorporate the ftp directories directly
under "aips++. This was prompted by the realization that *'aips++ could itself be NFS mounted under
"ftp, thereby circumventing the chroot limitation imposed by anonymous ftp. All of AIPS++ is now
available for access via this method.

One modification required to meet this change was that of renaming the ftp directories so that they
could be accomodated under "aips+t. Certain other minor changes were also made, particularly with
respect to the code distribution files. The structure currently resembles the following:

2 THE DIRECTORY TREE

+ import +-

+- import_ftp —

+ code

 +

 install +

 kernel +

Cpp

- Iwf_a

- include
implement —

scripts

- data

doc +-
+-
+-

PBook

memos

notes

-+

+— synthesis —+.
+ vlbi +.

+ dish +.
+ atnf +.
+ bima +.

+ drao +,

+ nfra +.
+ nral +,
+ nrao +.

+ tifr +.

+ contrib +.

+— code_ftp

+ install +

I +-

 kernel +

master

+ -Crcs} -

slave

I
+

I
I
I
I
I

-+

+—

+—

+—

+—

+—

— cpp

— Iwf_a

■ include
implement —
scripts

— data

doc +-
+-

+-

PBook
memos

notes

synthesis —+.

— vlbi +.

— dish +,
— atnf +,

+— master_ftp -

I

3 DISTRIBUTION

A typical AIPS++ installation would only have the import and code subdirectories. Consortium
sites would also have the import_f tp, and code_f tp subdirectories for redistribution of AIPS++ source
code to local AIPS++ recipients. Consortium sites other than Charlottesville will also have a slave
subdirectory containing a copy of the master RCS files. Charlottesville will instead have the master,
and master-ftp subdirectories, the latter of which contains updates for the slave subdirectories at the
other consortium sites.

All AIPS++ installations will have system directories with a structure similar to the following, except
that only consortium sites will have ftp subdirectories:

+ data

 +

+ lib -
+ libdbg

I
+ bin -
+ bindbg

I
+ tmp -
+ tmpdbg

I
+ data -

+ apex

+ sun4

doc +—
I
I
I
I
+ (sitel) +—

— ascn -
— info —
— raanl —
— catl —

I
+ (site2)
+ :

+-
-+-
+-
+-

 +,

- msgs —
- (host!)
- (host2)

+ base

+— sun4_ftp
I
+ (arch2) +...
+- (arch2)_ftp -
+ :

This hierarchy is identical to that originally envisaged.

3 Distribution

Packaging of the AIPS++ source code for distribution to end-users, and also of updates for the RCS repos¬
itories to consortium sites, is handled at Charlottesville by a single script called exhale, exhale's behaviour
is determined by the contents of, and last modification time of the VERSION file in ~aips++/master .ftp.

3 DISTRIBUTION

If the VERSION file contains the string "mm.-", where mm is a two digit number which defines the
major version number, exhale interprets this as a signal to produce a new base release. It produces a
compressed tar file for the "aips+t/master tree, and also for each of the "aips++/code subdirectories.
If all goes well it then installs these in the "aipst+Zmaster.ftp and "'aips++/code.ftp directories. If
this succeeds, exhale finishes by installing a new VERSION file containing the major and minor version
number with a timestamp and file modification time pertaining to when exhale started execution.

If, on the other hand, exhale finds a string of the form "mm.nnn" in the VERSION file, where nnn is the
minor version number, it will produce an update for the "'aips++/slave repositories at the consortium
sites. Incremental updates consist of a compressed tar file containing all files in the "aipst+Zmaster
repository which are newer than the VERSION file itself. In addition, it produces a cumulative update
which consists of all master files modified since the base release for the current major version. Only
after successfully installing these in "*aips++/master.ftp does it update the VERSION file.

The master guarantees to create two new updates per day for the slave, one by 0700 and the other
by 1900 Charlottesville time via cron jobs which activate exhale a half-hour beforehand.

exhale maintains a LOGFILE which it updates every time it executes. It is designed to be fail-safe,
and to date it has operated flawlessly for about a month, except on one occasion when it ran out of disk
space and did fail safe. The AIPS++ ftp directories currently contain the following:

+—
+—
+—
+—

+- import_ftp —+—
+—
+—
+—

- README
- VERSION
- compress-4.0.l.tar
- cpp-O.OO.tar.Z
- make-3.62.tar.Z
- make_doc-3.62.tar.Z
- perl-4.019.tar.Z
- rcs-5.6.tar.Z

+—
+—
+—
+—
+—
+—
+—
+—
+—

 +— code_ftp +—
+—
+—
+—
+—
+—
+—
+—

- LOGFILE
- README
- VERSION
- atnf-00.000.tar.Z
- bima-OO.OOO.tar.Z
- configure

contrib-00.000.tar.Z
dish-00.000.tar.Z
drao-00.000.tar.Z
install-00.000.tar.Z
kemel-00.000. tar. Z
nfra-00.000.tar.Z
nral-00.000.tar.Z
nrao-00.000.tar.Z

- synthesis-OO.OOO.tar.Z
- tifr-OO.OOO.tar.Z
- vlbi-OO.OOO.tar.Z

+—
+—
+—

+— master.ftp -+—
+—
+—
+—
+—

- LOGFILE
- README
- VERSION
- master-00.000.tar.Z
- master-00.001.tar.Z
- master-00.002.tar.Z
- master-00.003.tar.Z
- master-00.003.ALL.tar.Z

At the remote consortium sites a script called inhale fetches the latest consortium updates and applies

4 INSTALLATION

them. On its first invokation inhale constructs the "aips++/slave subdirectory and fetches the base file
plus cumulative update. Thereafter it maintains a VERSION file in '*aips++/slave, and decides which
incremental updates it needs to fetch from Charlottesville on the basis of the version stored therein. It
does, however, accept a "-c" option which forces it to fetch the cumulative update. This should be done
every once in a while at the remote site in order to ensure that the slave is faithfully synchronized with
the master.

After fetching the compressed tax files inhale unloads them in reverse order. It then invokes GNU make
to recursively rebuild AIPS++. inhale also maintains VERSION files in "'aips++/code and "aips+t/SARCH.
There are corresponding LOGFILEs for each of the three VERSION files used by inhale

Like exhale, inhale is designed to be fail-safe and can be invoked at any time. However, it should
normally be invoked by cron after 1900 hours local time, and not within an hour of the time scheduled
for exhale to run in Charlottesville. It works directly on '*aips++/slave so there should never be any
danger of it overwriting '"aips++/master.

4 Installation
Installation of AIPS++ is under the control of a script called configure. One of exhale's jobs in creating
a new base release is to install the latest version of the configure script in "aips+t/code-ftp. Intending
users of AIPS++ would ftp anonymously to their local consortium site and fetch the entire contents of
"f tp/pub/aips++/code_f tp. In detail, the sequence would resemble the following:

yourhost'/, mkdir "aips**
yourhost'/, chgrp aips2mgr "'aips++
yourhost'/, chmod 775,g+s "'aips++
yourhost*/ mkdir "aips+t/code
yourhostX cd "'aips++/code
yourhost'/, ftp baboon.cv.nrao.edu
Connected to baboon.cv.nrao.edu.
220 baboon FTP server (SunOS 4.1) ready.
Name (baboon.cv.nrao.edu:you): ftp
331 Guest login ok, send ident as password.
Password:youQyourhost.there
230 Guest login ok, access restrictions apply.
ftp> cd pub/aips++/code_ftp
250 CVD command successful.
ftp> binary
200 Type set to I.
ftp> prompt
Interactive mode off.
ftp> hash
Hash mark printing on (8192 bytes/hash mark).
ftp> mget *

lots of messages describing what ftp is fetching

ftp> quit
221 Goodbye.
yourhost'/, chmod 544 configure
yourhost'/, configure

Once configure has been activated the installation consists of answering a few questions, most of which
have sensible default answers, configure first ensures that certain utilities that it needs are available
(compress and GNU make). If they aren't it will fetch them from the consortium site and if necessary,
install compress in the current directory. It then unloads any compressed tar files present in the current
directory.

5 AIPSINIT

configure next installs the aipsinit scripts (see below) and constructs the "'aips++/aipshosts database
via a simple inbuilt editor. Once the host architectures, site-, and host-names are known, configure in¬
vokes aipsinit for itself and then creates the AIPS++ system directory tree for each architecture. With
a bin directory now in existence, configure reinstalls compress if necessary, and likewise GNU make.

Before make can be invoked, however, the site-specific makedefs file must be defined. This con¬
tains definitions used by maibe for directories, compiler options and the like. Generic definitions are
provided in "'aips++/$ARCH/$VERS/makedefs but several of these have no sensible default and must
be defined on a site-wide basis. If none already exists, configure installs a template makedefs file in
'"aips++/$ARCH/$VERS/$SITE and invites the installer to make the appropriate entries with a text edi¬
tor in another window (or by suspending configure). When the user is satisfied, configure checks to make
sure that all definitions have been made, and then repeats the process for the site-specific aipsrc file
(see below).

At this point the system should have been bootstrapped to a state where a recursive make may be
used to check-out all code and rebuild the system, and this configure now does.

5 aipsinit

AIPS++ programmers and users define their AIPS++ "environment" by means of the aipsinit. [c]sh
scripts. One or other of the two scripts can be used for Bourne-like shells (s/i, bash, ksh), or C-like
shells (csh, tcsh). aipsinit defines a single environment variable, AIPSPATH, which contains five space-
separated character strings describing the root of the AIPS++ directory tree, the host architecture,
the AIPS++ version, the local site name, and the local host name. This information is fundamental
and must be known in order to access the aipsrc databases, aipsinit also redefines the PATH (and
MANPATH) environment variables, adding the AIPS++ binary (and man page) directories to it. The user
can control the precise position of the AIPS++ binary directories in PATH, or else can accept the default
of prepending it (after "." it that was first).

6 Source code management
A set of AIPS++ accounts and groups have been defined to perform the following functions:

• aipsBmgr (uid=31415, gid=31415): Owns the AIPS++ directories, and all RCS and ftp distribution
files. aips2mgr, and those in the aips2mgr group, are RCS and ftp administrators for AIPS++.
In particular, they can directly invoke the res command on the AIPS++ RCS files. aips2mgr will
have an active login account only on selected machines. aips2mgr is responsible for maintaining
the ftp directories, and in particular, runs the daily exhale and inhale cron jobs.

• aips2prg (uid=31416, gid=31416): A generic programmer account, although in practice this may
not often be used. The aips2prg group lists those who have permission to check code into AIPS++,
or check it out with a write lock (anyone can check code out without a write lock).

• aips2usr (uid=31417, gid=31417): The aips2usr account itself could serve as a generic AIPS++
usage account if this is so desired. The aips2usr group could be used to control access to AIPS++
executables and AIPS++ data areas if this degree of control is desired by the AIPS++ administrator
(the alternative being to give world execute and/or write permission).

Remote consortium sites with access to the internet can choose to NFS mount the master AIPS++
RCS directories on their local development machines. This is most conveniently done via the /net
automounter map. All that is required is for the fully qualified hostname to be entered in the aips2-
consortium netgroup which has been created at Charlottesville for the purpose. A symbolic link is
created at the remote site as

"aips+t/master -> /net/baboon.cv.nrao.edu/aips2/aips++/master

This gives a view into the master RCS repositories in addition to the local copy in

7 SYSTEM GENERATION 7

"aips++/slave

which is updated once a day. All AIPS++ makefiles access the RCS repositories via a symbolic link

"'aips++/rcs

which is set to point to one or the other. At remote sites it normally points to slave and in Charlottesville
it always points to master.

When a library or executable is rebuilt, the local res directories are normally the ones consulted.
However, it is possible to reset the res "switch" to master at a remote site to cause maAre to checkout
and/or rebuild AIPS++ from the master repositories. This has been tried at ATNF Epping with
encouraging results.

AIPS++ programmers create their own "shadow" representation of the AIPS++ code directory tree
by using the mktree utility which also creates symbolic links into the "aips+t/master directories. They
then appear to have their own private workspace with a window directly into the master RCS repositories
at Charlottesville. Whenever they check code out of, or into the system from their private work area
they will be dealing directly with the RCS repositories in Charlottesville.

Source code checkin and checkout is mediated by ai and ao. ai activates its alter-ego, at_mas<er,
which resides in the "aips++/master directory itself, and runs setuid to 31415 - aips2mgr's uid in
Charlottesville. This mechanism allows programmers at remote sites to check code into Charlottesville,
which will certainly have a different set of uids and gids to those at their own site. The remote consortium
sites will, however, be encouraged to adopt the uids and gids defined at Charlottesville for AIPS++.
These were deliberately chosen to be large random numbers to minimize the likelihood of conflict with
the remote site's set of uids and gids.

Whenever code is checked in to the master, ai updates the local slave copy (if present - and it won't
be at Charlottesville), and also the plain text copy in "'aips++/code. Since the slave repositories are
owned by the local aips2mgr, ai itself runs setuid to its uid (hopefully also 31415).

ai's counterpart, ao, has a similar alter-ego called ao_mas<er which operates in precisely the same way
as ai_mas<er, thereby allowing code to be checked out of the master with a lock on it (which requires
write permission on the RCS version file).

A third useful utility, au runs setuid to the local aips2mgr account and updates slave (if present)
and code with the named files from the master.

7 System generation

POSIX.2 compliance for make applies largely to the way makefiles themselves are written, and essentially
restricts functionality to the lowest common denominator of all the many varieties of make. This means
it would be it very difficult to write portable POSIX.2 compliant makefiles for AIPS++, so GNU make
has been adopted instead. GNU make is itself POSIX.l and POSIX.2 compliant, and so satisfies the
"POSIX compliance" criteria originally set for AIPS++.

AIPS++ uses a hierarchical system of GNU makefiles. The head resides in "aips+t/code and
recursively invokes all makefiles residing in the subdirectories beneath it. The makefiles have the following
features:

• The makefiles "tnc/«de" architecture, site-, and possibly host-dependent makedefs files which allow
local definitions to override the defaults, for example, architecture-specific libraries, the location
of directories, compiler options, etc.

• The makefiles recognize that the AIPS++ installation may or may not have a copy of the res
repositories. If the repositories are present, make automatically updates the plain-text copy if
necessary. This should rarely be necessary though since ai keeps it up-to-date.

• The makefiles all contain a makefile target thereby causing GNU make to invoke its clever mech¬
anism which ensures that makefiles remake themselves before attempting to remake anything else.

7 SYSTEM GENERATION

• Programmer workspaces are supported by means of GNU male's VPATH function. If the program¬
mer has a . h or . C file in the current directory it will be used instead of those in the code areas.
In this case the AIPS++ libraries and executables will not be updated. Instead, the preprocessed
code, object module, and/or executable will be left in the programmer's own directory.

• The makefiles construct lists of dependency files via GNU male's wildcard function. Any .h or
.C file in the relevant code directory (or res directory if present) is automatically included.

• Any subdirectory is recognized as a target. The allsys target of the makefile in the subdirectory
is invoked. (This does not apply to include subdirectories which do not have makefiles but instead
rely on the implement makefile for targets such as chkout).

• The implement makefiles know about the TESTBED mechanism by which class test programs are
embedded within the class implementation files in an "#if def TESTBED" wrapper. Executables
for the class test programs are handled by a pattern rule triggered by appending TEST to the class
name.

• The diagnostic targets testjdef and test_env can be invoked for informational and debugging
purposes.

By allowing programmers to compile code in their own workspace without having to extract related
files from the res repository, the makefiles minimize the number of files that need to be present in the
programmer's own workspace. This reduces the possibility that these may be "stale".

The AIPS++ makefiles use a standard set of target names; references to a directory in the following
list refers to the directory in which the makefile exists, or the corresponding AIPS++ directory:

• all (programmer): Remake all object modules, executables, etc. from files in the current directory.

• allsys (system): Remake all object modules, executables, etc. from files in the AIPS++ directory.

• clean (programmer): Delete "rubbish" files in the current directory.

• cleansys (system): Delete "rubbish" files in the AIPS++ directory.

• chkout (system): Update the AIPS++ code directories by checking out files from the res directory
as required.

• makef ile (general): Update the makefile itself by checking it out of the res directory, or (for
programmers) copying it from the AIPS++ code directory.

• class, i (programmer): Preprocess class implementation file class. C (from the current directory if
present) and leave it in the current directory.

• class.o (programmer): Recompile class implementation file class.C (from the current directory if
present) and leave it in the current directory.

• c/assTEST (programmer): Recompile the class test program for class. C (from the current directory
if present) and leave it in the current directory.

• lib(c/ass.o) (system): Remake an object module class.o from class.C in the AIPS++ directory
and replace it in the library

• lib (system): Remake the object library associated with an implement directory.

• ranlib (system): ranlib the object library.

• applic (progammer): Recompile application applic.C and leave it in the current directory.

• bin/applic (system): Recompile application applic.C in the AIPS++ directory and install it in the
bin directory.

8 SYSTEM DATABASES 9

• bin (system): Recompile all applications in the AIPS++ directory.

• test-env (general): Print out all relevant make variables defined within the makefile.

• testjdef (general): Print out all relevant make variables defined in the makedefs files included by
the makefile.

Library maintenance requires special attention to avoiding conflicts which may arise when two pro¬
grammers independently try to update the library. This is handled by a script used by the make¬
files called updatelib. Object modules are deposited by make in a library-specific subdirectory of
aips++/$ARCH/$VERS/tmp, for example .. .tmp/libkemel. When all modules have been produced
the makefile invokes updatelib which copies the library to the temporary area, updates it, ran/t&s it, then
copies it back to the lib area.

8 System databases
The aipsrc databases have been implemented via a C-program called getrc. It looks for device and other
definitions in a format similar to that of the .Xdefaults database used by X-windows. In resolving a
reference it searches the following sequence of aipsrc files:

"/.aipsrc
$AIPS/$ARCH/$VERS/$SITE/$HOST/aipsrc
$AIPS/$ARCH/$VERS/$SITE/aipsrc
$AIPS/$ARCH/$VERS/aipsrc

The last of these contains default values, and the other three allow these to be overridden on a user-,
host-, and site-specific basis. A -i option provides for getrc to ignore the user's aipsrc file - it would
not be appropriate for them to override access restrictions set by the local AIPS++ administrator for
example. A -v option causes getrc to indicate how it resolved the reference, and is useful for debugging.

The aipsrc mechanism works well and getrc is now used in a number of AIPS++ scripts, including
a simple and easily configurable set of printer utilities, and a utility for printing class header and
implementation files in a compact and convenient form.

9 Future work
The following list indicates some areas of development/refinement in AIPS++ system management.
Some of the jobs listed could be done in under an hour, others would take several days.

• exhale should limit the number of incremental update files maintained in "aipst+Zmaster-f tp to
about two-weeks worth.

• exhale should create a new RCS version when it creates a new base release.

• When inhale fetches a new base release from the master it should also update the import_f tp and
code_f tp directories for redistribution to local end-users.

• Bug fixes should be stored in '*aips++/code_f tp and a special-purpose script should be provided
to fetch and apply them, configure needs to know that bug fixes must be unloaded after the base
release files.

• As far as is possible, configure should check to see that entries made in the makedefs and aipsrc
files are valid.

• Deletions from the master must be propagated to the slave.

• updatelib should test library modules (other than Input. o) to ensure they don't contain a main().

9 FUTURE WORK 10

• at should test the code being checked in to ensure that it conforms to AIPS++ coding style rules.

• All of the AIPS++ shell scripts are written in Bourne shell. It may be advantageous in the long
run to convert them to perl which is probably more portable. The exceptions are aipsinit, which
must have Bourne and C-shell versions, and configure which can't assume that perl is available,
and would have to install it if it wasn't.

• man pages are required for at, aipshosts, ao, au, configure, makedefs, and updatelib.

• Makefile enhancements:

- At the moment make will recompile everything if one header file has been changed because
the makefiles don't contain a proper dependency analysis. Dependency information should
be generated.

- Separate optimized/nodebug (sharable) and nooptimize/debug (static) libraries should be
maintained.

- Library and application rebuilds should be structured in such a way that several machines
can work together to rebuild the system.

- The makefile target in all makefiles should copy from the AIPS++ code directory if no res
directory is present.

- Directory search should be used for link libraries.

- A makefile is required for the "'aips++/code/kemel/doc areas.

