
Command Language Syntax and Functionality

This is an informal description of the syntax and semantics that the aips++ Command Language (CL) will
follow. The philosophy is a hybrid of AIPS, IRAF, APL/IDL and C/C++.

W.Jaffe, 28-August-1992

Some Syntax

A session consists of a series of commands, terminated by the command exit

A command is a string of symbols terminated by a semicolon ; or a newline (nl). If the newline is preceeded
by a backslash (\) (and optional whitespace) it is ignored. This allow continuation of multiline statements.
In general all commands on a line (i.e. up to a newline) are read in one gulp, then parsed and executed one
by one. An exception is compound (multiple) statements which are read and parsed one by one, but only
executed when the compound statement is completed. On encountering a syntax error in a single statement
the parser prints a message and aborts. In the middle of a compound statement only the current statement
is aborted the user can complete the compound statement. Special keystrokes (e.g. control sequences) will
exist to retrieve and edit earlier lines, as well as operations like aborting an entire compound statement.

A single statement consists of a string of control symbols and expressions. Expressions consist of operators,
operands and separators. All such symbols must be known (i.e. predefined or defined earlier in the session)
except possibly the leftmost symbol if this is immediately followed by the = operator. In this case, an operand
with this name will be created dynamically, and is thereafter known to the system, until it is destroyed,
explicitly or otherwise. If a previously known operand is placed before an = operator, it is destroyed and a
new one is created.

Most symbols, including all user-defined symbols, must start with an alphabetic character, and consist of
(case sensitive) alphabetic characters, digits, and the underscore character.

Control symbols

Normally statements are executed syncronously in the order encountered, but certain control symbols alter
this flow:
COMPOUND:

{statement; statement; statement;}
is considered to be one statement

IF:
if (expression) then statement
if (expression) then statement else statement

FOR:
for (initial-statement; test-expression; increment-statement) statement

WHILE:
while (expression) do statement

DO:
do variable = initial:final:increment statement

BACKGROUND:
statement &

In the last case the statement is executed asyncronously in the background. Certain special conditions then
apply on the statement to assure the integrity of the environment (i.e. all currently known symbols). More
on this below.

Operators

All operators are either predefined, or defined in the session itself. They may take none or more operands,
and the number of operands can be variable, but the application programmer or user who creates an operator
must specify which operands are optional. Maximally one operand can be prefixed (occur before the operand);
the rest must be postfixed. The most common use of prefixed operands are things like +,*,-... where A +
B produces the result of the binary operator + operating on the operands A and B. Postfix operands can
be surrounded by parenthesis, but this is unnecessary if the syntax is unambiguous.

Operands should be separated from operators by white space, and from each other by white space or
commas. Optional ommited non-final operands must be indicated by a pair of commas; optional ommited
final operands need not be indicated unless they could be confused with a prefixed operand of a following
operator. Then parentheses should be used to close the operand list.

All operators return a result operand which may, however, be void. A hanging operand left over when a
statement is completely executed is discarded. Thus the statement sin(x) will calculate the sine of x, and
then discard it. Output to the screen is arranged by defining stream variables.

Probably all arguments to operators should be passed by value, not by reference. This means that input
parameters cannot be directly altered by the operators; they operators only alter the output result. Input
parameters can cause indirect changes however: e.g. a file name in an input parameter list might indicate
they name of a file to be created by a function. This is similar to the action of a pointer in C. We do not
include explicit pointers in the CL because we think they are too confusing for general users.

A very special operator is the assignment operator = which has one prefix and one postfix operand. The
prefix operand, an hide has some specialized behaviour. If it is specified as a single symbol, then it is created
dynamically, with type given by what is on the right side of the = sign, and filled in upon evaluation of the
expression. Any previous definition of the symbol is deleted. If given with subset syntax e.g.:

A[l : 20,2 : 5] = SIN(B)

it will be assumed (and checked) that A already exists, that the subset syntax makes sense on A , and that
the output of the right-hand-side can be converted to the type of A .In this case the subset syntax might
include the whole of A . e.g. A[*]. The specified elements of A will be updated.

Special Symbols

We name here a number of symbols with special meaning:
& indicates asyncronous processing.
$ is the first character is a number of special system operands or operators.
() specify subscripts of arrays, precedence when not default, and optionall eenclose groups of operands.
The period . separates elements of a structure.
[] enclose subscripts of an array.
The vertical bar | is for temporary, IRAF-like substitution
of parameters in task calls.

Arrays, Structures etc.

Operands can be single cases of various atomic things like (int, float, double, complex, double-complex,
char, etc.) or more complicated composites called Structures. The form of a Structure is defined with the
Structdef operator:

B = Structdef(Q)

where B, the result, is of type Structdef, and Q is a string with things like

Q = "sizes mt[5],temp float,position dou6/e[2],name c/iar[20]"

and such. Don't take this suggested syntax too seriously, but typically at least a name, type, and size
will be specified for each sub-element. Possibly other attributes can be specified such as "Readonly" or
"Interactive". The elements in a Structure may be atomic elements, or previously defined Structures, so
that if the above statement has already been executed, the statement

C = Structdef {Hype int, instances B[Z]")

defines a new type of structure, containing one integer and an array of three substructures of type B. In the
predefined symbols int, float etc. are in fact Operands of type Structdef. An empty structure is created
with:

C = Makestruct(B)

This creates an empty operand, C with form defined by B. The definition of an existing structure can be
obtained with the Getstruct operator:

D = Getstruct(C)

will create a Structdef operand D identical with B.

Generally Structure operands can only be used by operators expecting exactly that type of structure as
input, but there are some exceptions: for instance the = operator creates an identical copy of any structure.

Arrays are collections of identical elements or structures. They can be created and manipulated with some
special operators. For instance

B = Array(Size, Def)

where Size is a number like 27 and Def is a Strucdef, creates an operand called B consisting of 27 empty
elements of type Def. Size may also be an array such as [4 2 5], in which case a multidimensional array is
created. As indicated above the values int or double may be used as Definitions.

The square brackets [] can create a one-dimensional array on the CL line. Thus A = [2 3.1 0.] creates
a 3 element float array. Symbols as well as numbers may be included, but they must all be of the same type.

The Concat operator abutts two arrays together in their last dimension. The must have the same number
of dimensions, and all dimensions but the last must be equal.

The Reform operator reshapes an existing array to other specifications. C = Reform(B, [3 3 3]),
where B is defined as a 27 element vectors, converts 5toa3x3x3 3-dimensional matrix.

The Dimension operator returns an integer vector with the dimensions of its arguements.

The Indarray operator generates a series of integers starting from 0. A = Indarray(6) creates the 6
element array [012345].

The common built-in Unary operators like sin, cos, -, ... can be applied to an array (of numbers of course)
and they produce a similarly dimensioned output array.

The same is true of built-in binary operators (+,*,**,...) with the proviso that both operands have the
same dimensions, or that all the non-equal dimensions be trailing dimensions equal to 1. This last exception
allow combinations between scalars and vectors etc. by replication of the trailing dimensions. Thus an array
of size [6] can be added to an array of size [1] (or a scalar); the scalar is replicated 6 times. An array of

size [2 3 5 4] can be multiplied by an array of size [2 3]; twenty copies of the second array are made before
multipling. The output array is of the larger dimensions. User supplied operators that are for general use
should follow this convention.

Substructures

The period . is used to specify substructure elements by name. In the above definition of Q, Q.sizes(2)
selects the third (indices are zero based) element of the 5 element integer array specified above.

Subarrays are specified with parenthesis. Thus as just used, sazes(2) specifies a single element in an array.
Vector subscripts may also be used so that sizes([2 0 2 13 4]) specifies a 6 element integer array consisting
of the 3rd, 1st, 3rd, Ind, 4th and 5th elements of sizes. Multiple dimensions are separated by commas. If
Matrix = Array([4 3], float) creates a 4 x 3 array, Matrix([0 3], [0 2]) creates a 2 x 2 subarray. The
asterisk * represents all elements in a specific dimension, and the colon syntax represents ranges of elements,
i.e. [3:6] is equal to [3 4 5 6] and [3:22:3] is equal to [3 6 9 12 15 18 21]. Elements and ranges may be
combined within the [] notation.

Tasking

Tasks should appear as similar as possible to functions, either system functions or user defined procedures.
The essential difference in tasks is that they have some complicated characteristics defined by their designer
(summarized by HELP, DEFAULT, RANGE structures), they are compiled externally to the CL , and
they should be able to operate asynchonously. This last means that their access to shell objects must be
tightly controlled.

Input arguements to complicated operators, be they functions or tasks, are typically complicated structures.
For example the AIPS task MX would in the new CL be an operator with a syntax like:

A = MX(B) or A = MX B

where A is a CL variable of type MXOUTPUT and B is of type MXINPUT. This last is a large structure
with elements such as String MXINPUT.INNAME or float[2] MXINPUT.CELLSIZE. The output A would
probably not contain the output image; this would clutter up the CL with very large objects. It probably
contains at most an output identifier (e.g. file name), some general information (e.g. number of iterations
actually used in clean, rms residual at end of clean) and status and done members, (see below about
Asynchronous operations)

There is a system operator EPARAM such that C = EP ARAM ('MX', B) invokes a full screen editor
that reads the MXINPUT structure B; allows you to alter it contents, and writes the updated version into
the MXINPUT structure C. Of course B = EPARAM('MX',B) causes an in place update. Also
Outstream = B causes formatted output of the contents of B, similar to the current use of INPUTS
in AIPS. At any time you may have any number of input structures to MX. You can also have an array

MANYMXRUNS = Array(M XIN PUT, 20)

This essentially replaces the TPUT and TGET functions in AIPS and allows the user to maintain his/her
own "database" of parameters. The same is true of output parameters.

We suggest additional IRAF-like syntax constructions to make small changes in input structures simple.
For example

A = MX{B\IMSIZE = [128 256])

means use the current value of B as input to MX, except change the value of the IMSIZE vector to 128,
256 temporarily (i.e. do not change B). Perhaps MX(B\\IMSIZE = [128 256)] causes a permanent change
to B i.e. is the equivalent of

B.IMSIZE = [128 256]; MX(B)

We also suggest that for major tasks there be a current default $MX and a system default $OMX. If MX
is called without inputs A = MX or A = MX(), then $MX is used as input. $MX can be changed by
the user, as can any input structure, but it cannot be destroyed or its structure redefined. $OMX, the
system default, cannot be altered. Thus $MX = $OMX resets the current defaults to the system defaults.
Although it can be confusing, a task may have multiple arguements: CLEAN(A, B) whose defaults are
SCLEANl and $CLEAN2 and whose system defaults are $0CLEAN1 etc.

Since Tasks are defined and compiled externally to the CL it is necessary to inform the CL that they exist.
Otherwise if you type A = BLABLA(C) and BLABLA is not in the current symbol table, the CL can't
determine whether BLABLA is a typographical error or a Task. To resolve this it would have to search
all possible Task libraries. This ambiguity is (one) justification for the GO construct in AIPS. We propose
to remove this ambiguity with an INCLUDETASK (Taskname, LibraryPath) command. This has the
effect of:
Including Taskname in the CL symbol table
Including structure definitions for TasklNPUT and TaskOUTPUT (predefined
by the Task Designer and available in LibraryPath) in the CL
Creating Links to HELP, RANGE, and DEFAULT equipment created by the designer

Aspects of Asynchronous (background) operations

Some special conditions are necessary for putting commands, especially functions returning values, into the
background. These are necessary to avoid unpredictable behavior if the user alters input shell variables while
the command is executing or if the command alters shell variables itself.

The special conditions are essentially: all shell variables (objects) used in the command are passed to it by
value and cannot be modified by it in the parent shell. The output of the command goes into a structure
that is locked i.e. cannot be modified or deleted until the command returns. Hopefully,given the possibility of
using structures as inputs, it is never necessary to access global variables from within a function or procedure.

The output Iside has in fact two implicit members, Iside.done and Iside.status. Iside.done can be ac¬
cessed at any time, and is true when the background operation is complete. The system function wait (Iside)
waits until Iside.done is true. Iside.status returns the status of the operation.

Metavariables

In some case the values filled in task structures are not actual values but special system operators. These
would be indicated with a special sytax, for instance the % sign.

For example, to combine the advantages of global and local variables for complicated task calls, we suggest the
concept of deferred evaluation. That is; it is acceptable to specify a value in an input structure as a CL expres¬
sion that is only evaluated at execution time. For example, supposing that we use signs to indicate deferred
execution, we could write MX.INNAME = %PROJECT% and UVSRT.INNAME = %PROJECT%
With this syntax, the values of MX.INNAME and UVSRT.INNAME are not the current value of
PROJECT, but its value when they are executed. Thus if the user changes PROJECT from "3C129"
to "VirgoA", this change will apply to both UVSRT and MX. On the other hand, this coupling can be
removed at any time simply by reassigning MX.INNAME to a non-deferred variable. Expressions as well
as objects can be deferred. In essence, we are allowing the user to write a "mini-procedure" as an arguement
to a function, without invoking a cumbersome procedure writing step.

Other metavariables are also useful. We can define the symbols %IP and %DP to mean Immediate
Prompt and Deferred Prompt. Using these symbols as inputs to a task would force the task input
processing facility to prompt the user for input at execution time (form %IP) or when the parameter is
requested by the task (form %DP). For this last feature to be useful there must be some kind of agreement

(perhaps using an "interactive" attribute) as to which parameters can be so deferred. Normally all task
parameters are read in at one time at task startup. In batch modes these prompts would revert back to the
task defaults.

Graphics objects can be defined and used as the right hand side of assignments (and possibly as left hand
sides, resulting in leaving markers on a graphics display). Assigning a task input element to one of these
objects causes a cursor appear together with a request for input to the task. The graphics object must be
predefined by the task writer, or by the CL system writer, or possibly in a procedure by the user from
elementary objects, so that it produces an output of type that matches that expected by the task input
structure.

Other Metavariables include File Managers or Catalogues. When the CL detects these symbols it actives a
new window containing the Manager or Catalogue, allows the user to click on the requested item, and this
is entered as the value of the requested variable.

Input/Output

These are handled by creating variables of type Stream. Some of these are built-in variables and refer
to stdin, stout, and stderr, but others can be created and destroyed with open and close operators which
connect them with devices (files, terminals...) A Tee operator can connect two output streams together to
form a new one. Streams should probably be opened as either ASCII or binary. Assigning a value to an
ASCII stream results in a default formatting of the value (which may be an array or structure) into the
stream. Various output formatting operations should exist, similar to those in C. Simple input formatting
could follow the C model, or also the Mongo model, where a stream could be defined to be a single column
in an ASCII table.

Packages

The Package(Packagename, Symbol) operator can be used to group symbols, either operands or oper¬
ators, into packages which can be manipulated as groups in certain operations such as Save or Default.
The Symbols added to a package are frozen, that is they cannot be redefined or deleted, unless the package
is deleted first.

Some Fancy Extensions

Possibly, although this complicates the syntax, a general reduction operator can be defined. This could have
the syntax A = REDUCE(bop,B), where bop is any binary operator defined for A and B. This is the
equivalent of A = B[l]bopB[2]bopB[3]... Thus the dot product of two vectors is simply A = REDUCE(+, B * C).|
The notation in APL is actually simpler: A = +/B * C. The sum of the elements in A is +/A. If A is the
index vector [1 2 3...] then */A is A!.

External Classes

We would like some of the objects and methods developed by system and application programmers to be
available directly to users. This cannot be done at arbitrary times, since the classes are defined in C++
and only available after compiling and linking to the CL . We suggest that the CL be generated, at least in
part from a metaCL definition. This, an analog to the old POPSDEF, is a list of classes to be included,
which objects and methods should be available to the CL user, and the aliases (or possibly more complicated
syntax description) of how CL symbol sytnax maps into the C++ calling sequence of the methods. The
CL is compiled by reading this metaCL file, which informs the CL parser that the necessary object types
are defined, and tells it which methods to call when the appropriate commands are typed in.

While all this is probably fairly simple to implement, it can easily get out of hand and generate an unman¬
ageable shell. In principle the kernel AIPS++ group would distribute a vanilla version of the metaCL
definition, that would generate a small and simple system. Local site managers could then follow a recipie
for adding new classes to the kernel.

Some More System Functions

SAVE (Workspace, Variable) saves the current value of Variable in the named Workspace. Any
existing variable in the same workspace with the same name is destroyed. RESTORE (Workspace,
Variable) restores it, overwriting any current variable with the same name. SAVEALL(Workspace)and
RESTOREALL(Workspace) save and restore the entire working environment. RESTORED restores
the default environment. On EXIT, STOREALL is executed to a specific workspace that is RESTORED
as next login.

DELETE(Variable) destroys reference to that variable and releases dynamic storage assigned to it.

D=DESCRIBE(Structure) generates an ASCII description of the structure of that object. D can then
be used (edited??) as the input to a new Structdef command. A = B, if A and B are structures, copies
B into A . A = NEW(B) creates a new object with the same structure as B, but empty.

DRYRUN (Task, Taskinput) verifies whether Taskinput is acceptable to Task, and prints various diag¬
nostics.

RESET (Packagename) resets the current default input structures for all tasks in a package to the system
defaults.

WAIT(TaskOutputStucture) waits for completion of that task.

