
Run Time Type Identification in AIPS++
DRAFT Version

Darrell Schiebel

Last modified: SDate: 1992/12/14 16:35:41 $ By: SAuthor: dschieb $

Chapter 1: Introduction

1 Introduction

This document discusses the run time type identification system (RTTI). This system was
implemented using the Tl C preprocessor. It implements the standard proposed by B. Stroustrup
and D. Lenkov12. However, the implemented system also provides "hooks" for much more extensive
type information.

We will first discuss the "sanctioned" interface. This is the basic system proposed by Stroustrup
et. al. with minor syntactic changes to ease implementation. Stroustrup proposes the concept of
a "checked cast", and a type comparison operation. The last section will discuss the functionality
beyond what was proposed by Stroustrup.

1 Stroustrup, Lenkov, "Runtime Type Identification for C++n, The C++ Report, March-April,
1992, pp.32-42

2 Stroustrup, Lenkov, "Run-Time Type Identification for C++ (Revised)", Usenix C++ Proceed¬
ings, Aug. 1992, pp. 313-339

Chapter 2: Sanctioned Interface

2 Sanctioned Interface

This interface provides a mechanism which allows the user to safeiy cast a pointer. If the pointer
is coercible to the indicated type then a valid pointer is "returned" otherwise a NULL pointer is
"returned". Stroustrup's proposed syntax1 is similar to the syntax used for any cast in C++:

class A {virtual void dummyO;};
class B : public A O;
class C : public A O;

A *a = new B;
B *b = (? B *)a;
C *c = (? B *)a;

With respect to Stroustrup's system, b == a and c == 0. The virtual function A::dummy() is
necessary because run time type information is only generated for classes if they have a virtual
function table2. This is necessary because the virtual table and the virtual mechanism provides the
ingredients necessary for the construction of a run time type system:

1. A place to store a function pointer as a hook for each object to return its type information.

2. A mechanism to access the object at the "end" of the inheritance chain.

So in this manner, one can perform a "checked" cast on a pointer, and perform the necessary
comparisons to downcast a pointer from a base object to a pointer to the desired derived object.

The implementation for AIPS++ follows this standard closely. The only difference is the syntax.
The above example would look like:

rtti class A {virtual void dummyO;};
class B : public A {};
class C : public A {>;

A *a = new B;
B *b = (checked (B *) a);

Usenix C++ Proceedings, Aug. 1992

In the general case, this is nontrivial to determine (expound latter)

Chapter 2: Sanctioned Interface

C *c = (checked (B *) a);

The rtti qualifier was added to underscore the work that was going on behind the scenes. The
run time type information will be added only if the class is prefixed with rtti and if the class
has a virtual function. The rtti qualifier can simply be #def ined to nothing if run time type
information should become available as a language feature. The "?" syntax would be difficult
to support in our implementation mainly because it is implemented using a preprocessor. The Tl
preprocessor operates by pulling out sections of the code between a starting delimiter, character
string, and an ending character. Thus, the closing paren is necessary to allow the preprocessor to
process both the casting type and the variable which needs to be cast. In any event, these checked
casts can easily be converted to the ARM style with a simple sed script.

If a checked cast is applied to an object pointer which does not have run time type information
a compile time error will result. In the case of templates implemented with the Tl C preprocessor,
the syntax for declaring an object with run time type information is as follows:

template<class t> class X<t> {
virtual void dummyO;
t *variable;>;

template<class t> class Y<t> : public A {t ♦variable;};

RTTI_DECLARE_ONCE X<int>;
DECLARE.ONCE Y<int>;

In this case, (assuming that the A which Y<t> is inherited from is the A in the above examples) both
X<int> and Y<int> would both have run time type information. X<int> would have it because it is
specified in the RTTI .DECLARE. ONCE statement, and Y<int> would have it because this information
is inherited from A. This syntax will change when templates become available as language features,
i.e. the keywords DECLARE, DECLARE.ONCE, RTTI.DECLARE.ONCE, etc. will no longer exist.

In addition to a checked cast, Stroustrup's proposal provides for a method of comparing two
types to see if one type matches another either directly or through possible casts. The format for
this type of comparison is as follows (were A, B, and C are from the above examples):

A *b ■ new B;
A a;
A *c = new C;

typeid(b) == typeid(A)
typeid(a) == typeid(A)
typeid(c) == typeid(A)

Chapter 2: Sanctioned Interface

typeid(b) == typeid(a)
typeid(c) == typeid(a)
typeid(c) == typeid(B)

All of the comparisons would be true except for the last comparison. The AIPS RTTI system
supports this syntax of typeidO applied to both variables and types which have run time type
information.

Chapter 3: Un-sanctioned Interface

3 Un-sanctioned Interface

The use of the interface described here is discouraged, because it may not be available if an
RTTI should become available as a language feature in C++. A string representing the name of a
type can be obtained by using the typeidO function which is a member of the Typeid objects.
A reference to a Typeid object is returned by the typeidO global function previously discussed.
This type name can be obtained as follows:

A *a = new B;
A *a2 = new A;
A *a3 ■ new A;
B *b = new B;

const char *a_type = typeid(a).typeidO;
const char *a2_type = typeid(a2).typeidO;
const char *a3_type = typeid(a3).typeidO;
const char *b_type = typeid(b).typeidO;

In this example, strcmp(a_type, b.type) == 0, and strcmp(a2_type, a3_type) == 0, but str-
cmp(a_type, a2_type) != 0. This is the case because the typeid(a) returns the most specific
type available, i.e. the type of B.

The final useful member function of the object returned by typeidO, Typeid, is const Typeid
**typesigO. This function returns an array of Typeid object pointers. The first element of the
array is a pointer to the Typeid of the current object. The subsequent entries are pointers to the
Typeids of each of this objects parents, if it has any. The end of the array is denoted by a NULL
entry. So for example, the following code will print out the inheritance tree:

rtti class Base {virtual void dummyO;}:
class Derivedl : virtual public Base O
class Derived2 : virtual public Base {};
class Derived3 : public Derivedl, public Derived2 {};

void _printTree(const Typeid *type, int count) {
if (type) {
for (int j s 0; j < count; j++)

cout « "\t";
cout « (*type) .typeidO « endl;
for (int i = 1; ((*type).typesig())[i]; i++) {

for (int j = 0; j < count; j++)
cout « "\t";

_printTree(((*type) .typesigO) [i] ,count+l);
}

Chapter 3: Un-sanctioned Interface

>
}

void printTree(const Typeid fttype) {
cout « type.typeidO « endl;
for (int i - 1; (type.typesig())[i]; i++)

.printTree((type.typesigO) [i] ,1);
}

void Base::dummy() {>;
mainO {

DerivedS d;

printTree(typeid(d));
}

This piece of code will result in output resembling the following:

DerivedS
Derivedl

Base
Derived2

Base

Chapter 3: Implementation

The object deletions are managed by maintaining two stacks. The first stack contains all of the
installed exception handlers; pushed on as they were created. The second stack contains all of the
Cleanup objects which are created, including the exception handlers. Each exception handler is
given the chance to handle the exception, until a handler chooses to abort or retry. If a handler
chooses to abort, objects are popped from the stack of Cleanup objects and the objects deleted until
the handler which threw the exception is encountered. At this point, longjmpO returns control to
the point where the handler was installed. This is the process which takes place to service ARM
style exceptions.

3.2 ARM Interface

The ARM interface is a thin layer atop the exceptions described previously. Much use is made
of the standard cpp #def ine, to implement the catch and try blocks. Beyond this, it is mainly
bookkeeping. The important pieces of information which are maintained are:

• The thrown exception.

• Which catch blocks have been executed. This is important for a rethrow (). The cpp standard
macros FILE and LINE are useful here.

• The exception which was last thrown, again for rethrow().

• An indicator to signal if an exception is uncaught to allow exit.

• The file and line where the exception was thrown for a descriptive error message when an
exception goes imcaugiit.

• The true type of the uncaught exception, obtained via RTTI

• An indicator to signal if an exception has been rethrown to allow special processing in the
exception handler.

This is most of the information which is maintained to provide an ARM compatible exception
interface with descriptive error messages when an exception goes unhandled. The following is a
typical error message:

Uncaught Exception(aips_MinorError_):
File - test.C
Line - 44
Throwing Class - trying

All of this information is collected "automatically" through the use of preprocessor macros. The
Throwing Class information is collected via an extra RTTI member function, aips.typeName (),
which was added by the RTTI expander for use by the exception mechanism.

