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In this document we will discuss the mathematical nature of telescopic measurements 
of the intensity of radiation from the sky, focusing our attention upon intensitometers, that 
large class of instruments which perform multichannel measurements of the sky intensity. 
The discussion will summarize and expand upon the conclusions of the November meet¬ 
ing of the AIPS++ design team, making explicit connections between the mathematical 
structures and the object diagrams within AIPS++. Throughout this document, signifi¬ 
cant program objects (such as Measurement, Measurement Set and MeasurementEquation) 
will be capitalized to distinguish them from more normal English uses of the same words. 

Measurement Equations 
—» —♦ 

We may represent the intensity of radiation from the sky as S(u, t,a,6) where S 
is a Stokes vector (/, Q, U, V). In this expression we will refer to the independent vari¬ 
ables as the "radiation coordinates", representing them collectively as the vector r with 
n-dimensional volume element dr. Technically, the polarization components axe also radi¬ 
ation coordinates, and they will be included as such in the AIPS4-+ software, but their 
discrete nature makes them easier to deal with symbolically as vectors, with a summation 
over the components (implicit in a dot product) taking the place of an integral over dr. The 
set of functions S(r) which represent the sky intensity form a Hilbert space Sj = {»S'(r), *} 
with the product 

F*G =   [ F{r) • G{r) dr. (1) 

After an intensity measurement has been calibrated its value may generally be repre¬ 
sented as 

s = JP(r) - S(r) dr = P*S. (2) 

Equation (2) is referred to as the measurement equation. The function P is the point spread 
function (PSF) of the measurement in radiation coordinates, and within the program will 
be called the MeasurementEquation. It defines explicitly such quantities as the center 
frequency of the channel, the start and stop times of the integration, and the polarization 
sensitivity of the receiver. Conceptually, we may consider a calibrated Measurement to 
consist of a pair (s, P) giving the measured sample value and a precise description of how 
it was measured. More concretely, the calibrated Measurement consists of the measured 
value s with enough descriptive parameters to reconstruct the function P. 

A single, isolated measurement is raxely of much interest in astronomy. The instru¬ 
mentation usually packages large, well-defined blocks of measurements, such as spectra or 
images, which move through the system as units. As our long discussions have revealed too 
clearly, it is important at this very abstract level of discussion to avoid assigning names to 
these blocks whose physical meanings are understood clearly, but differently, in different 
fields of astronomy. Let us therefore refer to a well-defined Measurement Set which will 
travel through the data processing system as a unit by the term MeasurementBlock. 



The Measurements in a MeasurementBlock {(SJ, Pi)} will normally have some regular 
structure imposed by the instrumentation, so that the Pi differ only in one or two pa¬ 
rameters. It will often be useful to work with the entire set of functions {Pi} which for 
convenience will be refered to as the MeasurementEquation of the MeasurementBlock. 

II - MeasurementBlocks and Projection Operators 
After we have made a measurement, how much can we reconstruct of the sky intensity 

5(r)? We will start this discussion with the observation in this section that any linear 
measurement of the intensity defines in a natural way a projection operator from the full 
Hilbert space Sj onto a finite dimensional subspace of 5/. We will show how to construct 
this projection and examine a few of its more important properties. 

Consider a MeasurementBlock B = {(si,Pi),i = l,iV}. Within the Hilbert space Sj 
of all possible sky intensities the functions Pi span a linear subspace SB = •£•£» -P*(r)} 

"* —» 
which is optimally matched to the measurement process.  Any function F = 22 Fj Pj in 
5B can be reconstructed from its measured values fi by noting that 

ft = £ * F = J2(Pi * Pj) Fj = £ Pii Fj, (3a) 

where 
[Pij] = [Pi * Pj] . (36) 

To avoid breaking the flow of the discussion, let us assume that the functions Pi axe 
linearly independent (we will return to this point in a later section). We can then recover 
the original function F by solving this set of equations for the Fj. 

Although the functions Pi span 5B, they axe not the natural basis for 5B as a subspace 
representing the measurements. By choosing the correct basis for 5B we can arrange 
that the coefficients of the basis vectors axe given directly by the measured samples; the 
discussion above shows that this natural basis is 

so that for any F in 5B 

/; = £*#        ^        F = Y,fiPi- (4) 

With this machinery in place, the functions Pi in the MeasurementBlock define a 
projection P, 

P:57—*SB 3 P[§\ = Y, (^ *S) Pi' (5) 

With only a slight abuse of notation, we may identify the MeasurementEquation of the 
MeasurementBlock with the projection operator P. We will use the term MeasurementE¬ 
quation when we wish to emphasize the physical significance of the operator P and the 
term "projection" to emphasize the purely mathematical significance of P. The function 
P[5] will be referred to as the projected intensity. 



A useful distinction should be made at this point between the equations on the left 
and right sides of the arrow in Equation (4). The left-hand equation describes how to de¬ 
rive measurements fi from a theoretically known function F. We use this when we wish to 
compaxe a theoretical model of the sky to an existing set of data. The right-hand equation 
describes how to reconstruct a function F from the measurements fi and the basis vectors 
p,-, but is agnostic about the origin of the measurements. The projection operator P uses 
the left-hand equation to sample a theoretical model sky, then reconstructs the projected 
intensity with the right-hand equation. For comparison, astronomical observations use a 
real telescope to sample the physical sky, yielding the raw samples Si. One or more Tele- 
scopeModels convert the raw samples into calibrated samples /j, and define the functions 
Pi. If the original basis set pi is not convenient, one or more Measurement Models may be 
used to convert the measurements to a more appropriate basis. This process is sufficiently 
different from the construction of a projected intensity that it deserves a different name; the 
term "measured intensity" seems appropriate. Data reduction involves the construction of 
a measured intensity from the raw measurements. Data analysis involves compaxison of 
the projected intensity derived from a model sky with the measured intensity from 
the physical sky. Figure 1 presents the normal infomation flow as a Rumbaugh functional 
diagram, with the physical sky seen through a real telescope and a model sky being the 
two actors, and the data store of calibrated measurements containing the representations 
within AIPS-I-+ of the measured and projected intensity functions. 

Figure 1 — The information flow from the physical or model sky into 
a store of calibrated measurements. 

In the remainder of this section we will examine the utility of the projected intensity 
P[5], and of the projection P itself, in the data reduction process. In general, we will find 
that the projected intensity constructed directly from a telescope model often does a poor 
job of representing the sky intensity.   The solution is to choose a set of basis functions 
which will represent the sky intensity well, then to model the measurement process by 
applying the projection P to these basis functions before fitting them to the data. 

—♦ 

The most important (and obvious) property of the projected intensity P[5] is that the 
projection has discarded (set to zero) all the aspects of 5 which cannot be represented in 
5B. Formally, if 5 = £ SiPi + 5j. where 5_L * P, = 0 for all i, then P[S\ = £ 5;Pi + 0 • Sfj.. 
This offers a clue which can help us to recognise the projected intensity in more familiar 



objects. 

I believe that interferometrists axe already familiar with one example of the projected 
intensity in the form of a dirty map. For an interferometer the spatial part of the PSF 
Pi for each visibility sample is the product of the beam shapes of the two antennae times 
a cosine term due to the antenna separation. To the extent that the samples axe well 
separated, the cosine terms will make the Pj from different samples neaxly orthogonal so 
that the sum in Equation (5) becomes simply a Fourier transform of the visibilities, with 
the unmeasured components set to zero. The many flaws inherent in dirty maps are well 
known in interferometry and many complex procedures have been devised to find improved 
images. We may expect similax problems to arise for single-dish data. 

Unlike interferometrists, spectroscopists will usually not be familiar with the notion 
of the projected intensity. This is at least paxtly because of the sloppy way in which we 
treat simple data structures such as spectra. Astronomers usually plot spectra either as 
histograms or a points joined by straight lines. No account at all is taken of the sensitivity 
profile of each channel. This simple-minded approach is normally quite acceptable as long 
as the channel width is small compared to the line width of the spectral features. For 
naxrow features, however, it can provide a misleading representation of the data. In the 
past, unwaxy programmers (yes, even myself!) have often ignored the sensitivity profiles, 
and sabotaged important aspects of the data by writing inappropriate "shift-and-add" 
routines into their data reduction programs. In a later section we will discuss how to 
provide both histogram and dot-to-dot representations of the data correctly, with their 
virtues and drawbacks plainly visible. 

Figure 2 — The point spread functions Pt(x) = e  (x  ^   for i = 1... 10 

Although spectra axe intrinsically simpler data structures than interferometer visibil¬ 
ities, a naive use of the projected intensity derived from the spectrometer can result in a 
spectrum just as ugly as any dirty map. Let us consider the simple case of a multi-channel 
spectrometer, with a bank of identical channels evenly spaced in frequency. For simplicity, 
let us restrict the radiation coordinates to a single real dimension a:, and the intensity to 
a real valued function I(x). Suppose we have a 10-channel instrument whose point spread 
functions axe a set of Gaussians with unit standard deviation centered on the integers 1 
through 10, as shown in Figure 2. (Gaussians were chosen for the PSF's simply because 



they axe easy to integrate.) 

It will be noticed that these functions are not orthogonal. As a consequence, the 
corresponding basis vectors Pi(x) look distinctly different from the original Pi(x), as seen 
in Figure (3). 

Figure 3 — The basis functions pi(x) corresponding to the Pi(x) in Figure (2) 

These basis functions have laxge sidelobes, extending across the entire spectrum. They 
do not necessarily peak at the nominal center of the channel, and axe not usually zero at 
the centers of the other channels. These axe all warning signs that this basis will not 
provide the most intuitive representation of the data. 

As a simple test to see how well this basis can represent a commonly encountered 
intensity, we can apply the projection operator to the constant function I(x) = 1 whose 
measured values will just be the 10-tuple {1,1,1,1,1,1,1,1,1,1}; the projected function 
P[l] is shown in Figure (4). 

P[l] does not look very constant across the band, and few of us would accept it as a 
suitable representation of the data. There are laxge edge effects. Evaluating the function 
at the channel centers does not return anything like a constant function, and in fact 
Figure (4) shows that the channel centers axe neaxly the worst possible places to evaluate 
the function. It is possible to find other sums of the same 10 Gaussians which appear much 
flatter to the eye than P[l], but they do not return a 10-tuple of 1's when sampled with 
the [Pj(a:)]. In spite of its appeaxance, P[l] is the unique function in 5p which returns 
exactly {1,1,1,1,1,1,1,1,1,1}. 



Figure 4 — The projection P[l] onto the subspace 5c 
It is clear that the projected intensity defined by an instrument is often not useful as 

a functional representation of the data. We may summarize the nature of the problem by 
recalling that for a MeasurementBlock P, the projection PB is optimally matched to the 
measurement process, not to the sky. When we need a subspace of 5/ to model the expected 
sky intensity, we should choose that subspace, call it 5p, and its associated projection P, 
openly and deliberately. This choice should be guided by our understanding of the physical 
origin of the intensity. Since the MeasurementBlock is related to the physical sky intensity 
5 by [si] = [PB,» * 5|, we should compaxe any model sky intensity J in 5p to the measured 
intensity using the same measurement process PB[^]« 

To illustrate this for a simple case, let us return to our 10 channel spectrometer. 
Suppose we know that P[l] is an observation of a slowly varying source so that a suitable 
representation of the data might be a quadratic polynomial. The monomials 1, x, and x2 

project onto 1, x, and 1/2 + x2 respectively. Fitting these to the data, we would conclude 
correctly that the original sky intensity was well represented by the constant 1. We note 
that simply fitting a quadratic to the data would risk corrupting the final solution by 
mixing the constant and quadratic terms. 

Imaging Models 
Transformations from one representation of the data to another have been discussed by 

T. Cornwell (DRAFT: Recommendations for the AIPS++ Telescope Model, October 29, 
1992) and by R. M. Hjellming (Some Thoughts on Telescope Data Handling in AIPS-(-+, 
November 12, 1992) in the context of an imaging model. Although their notation is 
now officially obsolete, it is important to see how the current concepts mesh with their 
discussion. In their work the MeasurementEquation for a set of raw measurements is 
decomposed into two operations 

ATMATMI = Y (6) 

where / represents the desired image, ATM is a telescope model which we hope will remove 
the corrupting effects of the telescope and instrumentation, AIM is a MeasurementModel, 
referred to in their work as an "imaging model", which transforms an image of the desired 
form into the form of the calibrated data, and Y is the raw data. Since they were primarily 
concerned with the ATM and AIM operators, they did not concern themselves deeply with 



the nature of the image J, which was mostly treated as though it was just an array 
of numbers. However, each element in the array / has associated with it a start and 
stop time, a center frequency and frequency width, a beam center and a beam shape: 
in short, all of the properties of a measurement equation like Equation (2). Within the 
framework of the present document, the sky intensity 5 will be related to the image J by 
some projection J = P[5] (which may involve delta functions, all-time averages and other 
generalized functions) so that Equation (6) now reads 

ATMAIMP[§\ = Y. (7) 

Note that the projection P need not be derived from a telescope model, but may be chosen 
quite arbitrarily to suit the nature of the astronomical source. Note also that moving from 
Equation (6) to Equation (7) entails a fundamental shift in the mathematical interpretation 
of the image J, which becomes a function in the subspace 5p of 5/. The purpose of the 
MeasurementModel AIM is to simulate a measurement of this image for comparison with 
the calibrated data. 

As we discussed in the first sections, each TelescopeModel has associated with it 
a natural representation of the data and an associated MeasurementEquation T. The 
MeasurementModel AIM for the natural representation is trivial, so that 

ATMT[§\ = Y. 

If we choose to represent the data in some other basis whose measurement model is P, the 
projection from 5p onto 5T which models the measurement process defines the non-trivial 
Measurement Model 

AIM = Ti + Pj  . (8) 

The documents by Cornwell and Hjellming give numerous examples of these imaging mod¬ 
els without explicitly considering how they might be related to the projections T and P. 
The explicit representation of AIM given in Equation (8) clarifies the mathematical content 
of their models, and allows them to be generalized consistently and unambiguously. 

The operators ATM and AIM are presented using a matrix-like notation, but they can 
represent any invertible transformation, linear or nonlineax. Many important operations 
appear as linear transforms on the data with nonlineax internal paxameters (the telescope 
model ATM often has this form). It is not difficult to make the connection between lineax 
and nonlineax operators (although nonlineax operations can be very difficult to impliment!). 
Consider a (possibly nonlineax) representation P(r; m) £ 5j where ra is an axray of paxam¬ 
eters. This representation defines a manifold M in 5/ whose coordinates are defined by the 
paxameters m. For a lineax representation, the manifold is a subspace and the coordinates 
m axe provided by the coefficients of the basis vectors. Provided we take sufficient care 
about the invertibility of the operations, and do not allow ourselves to become trapped 
by existence and uniqueness problems, the discussions in the documents of Cornwell and 
Hjellming, and in this one as well, remain valid if one simply makes the substitutions 

subspace manifold 
basis coordinate patch 
coefficient of a basis vector  coordinate 
change of basis coordinate transformation. 

Bearing this in mind, we will continue to use a lineax algebraic approach in this discussion. 



How often will we need to consider a nontrivial MeasurementModel? The most obvious 
examples occur in interferometery, where the MeasurementModel sits at the core of the 
entire data reduction process. MeasurementModels, however, occur in a laxge number of 
circumstances, in spite of the fact that previous single dish data reduction programs have 
mostly ignored the entire concept. 

The most glaring, although somewhat artificial, problem to be dealt with in an Mea¬ 
surementModel is that the support in time of the projection associated with a Measure¬ 
mentBlock is determined by the start and stop times of the integrations within the block. 
Different MeasurementBlocks will only raxely overlap in time. The natural basis of a set 
of MeasurementBlocks thus allows explicitly for the possibility of block-to-block changes 
in the intensity of a source, even if we expect the real timescale for variation to be > 106 

yeaxs. In the past this problem has been circumvented by politely ignoring the start and 
stop times of the component integrations while averaging the data. In the current con¬ 
text, we would prefer to choose a representation of the sky intensity which was explicitly 
time-invariant over the period of the observing run and to construct (very simple) Mea¬ 
surementModels to relate the time-invariant representation to the time-limited samples in 
each Measurement. This is mostly a matter of keeping the language consistent, and would 
only be reflected in code if we explicitly chose a time-variable representation. 

It will usually be necessaxy to construct a new MeasurementModel for each Measure¬ 
mentBlock in the Measurement Set because the details of how the instrumentation sampled 
the sky intensity would have changed with time. Consider, for example, a spectrometer 
whose channel spacing is smaller than the diurnal change in radial velocity for an equa¬ 
torial source. The Doppler correction due to the rotation of the earth is often neglected 
during data collection because it is small and because regular changes to the LO can detune 
a receiver. During data reduction, as a consequence, the spectrometer channels will not 
line up. Adding spectra together conventionally requires that the the spectra be brought 
into alignment, usually by some completely arbitrary interpolation method, and a decision 
must be made whether to keep or discard the end channels which do not overlap. The 
final representation of the spectrum thus depends upon the axbitraxy choice of the first 
spectrum in the average, when the feature of interest may not even be visible above the 
noise. Naxrow features axe quite normally smeared across several channels by the interpo¬ 
lation algorithms. In the terms being developed here, the two MeasurementBlocks being 
added have different MeasurementEquations. Because the spectra have been treated as 
simple arrays of numbers, ignoring significant information in the MeasurementEquations, 
the data has been corrupted. A better data reduction procedure would first choose a repre¬ 
sentation for the data which includes enough basis functions to represent the data over the 
required frequency interval, explicitly defines the time-dependence and includes or ignores 
the end channels. Each MeasurementBlock would be related to the chosen representation 
by its own MeasurementModel. The final spectrum would be found by applying a suitable 
generalized inverse to the simultaneous MeasurementModels for all of the spectra included 
in the average. 

More dramatic examples include frequency-switched spectra or beam-switched images, 
where the PSF of the measurement may be represented as the difference between two 
shifted copies of the fundamental PSF of the telescope. In these cases we explicitly do not 
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want to use the natural bases of the MeasurementBlocks, requiring instead an estimate of 
the sky intensity with the effects of switching removed. Methods to accomodate frequency- 
switched data axe often added as after-thoughts to spectral line data reduction programs. 
The same methods axe often used (and may be better implimented) in continuum mapping 
programs. Both fit naturally into the formalism being developed for AlPS-f+. 

The ultimate change of representation which can be implimented in a data reduction 
program is a generic "user specified" representation, with a finite but unspecified number 
of internal parameters whose meaning is defined only by its relationship to the calibrated 
data. To handle this kind of model may be outside the limits of practical programming, 
but would surely be a worthwhile goal. In the forwaxd direction the problem is simple to 
state: for a representation whose associated projection is P, and a user model M(m) € 5/ 
with fixed paxameters m, we must be able to evaluate the projected intensity P[M(m)], 
i.e. we must provide a means to evaluate the integrals J Pi(r) • M(r; m) dr. These integrals 
might be evaluated either numerically or symbolically. This would allow us to convert the 
external representation M into an internal representation which the program will be able 
to manipulate and display. The backwaxds problem would require the provision of some 
kind of generalized handles by which the program could manipulate the paxameters m of 
the external representation, perhaps with some very general optimization algorithms to fit 
the model to the data. 

Combining Data from Different MeasurementBlocks 
The previous section skipped rather lightly over the problem of combining data from 

different MeasurementBlocks. In this section we will examine a semi-practical approach 
to this central problem of data reduction. In the process we will also handle the problem 
of MeasurementBlocks whose natural bases axe not linearly independent. 

The key is to choose a representation (defined by its measurement model P) for the 
sky intensity whose basis is known to be linearly independent. This is normally very 
easy. Any kind of image which covers the domain in radiation coordinates accessed by the 
measurements with at least the required resolution, and whose pixels do not completely 
overlap, will usually do the job. In this representation, let us denote the averaged intensity 
model as / 6 5p. For a MeasurementBlock 6, we denote the data as y&, the associated 
MeasurementEquation as P& and the corresponding subspace in Si as Sb- For each block 6 

to be included in the average we can then contruct a MeasurementModel Af, = \Pb,i * Pj • 

Within the subspacej 56 we can employ a penalty function N^. The solution / can then 
be found by minimizing 

N(i) = YiMy»-P<>li])- (9) 

Although this expression may not seem familiar, if the penalty functions Nf, axe just the 
I2 norms weighted by the integration times, minimizing the RHS of Equation (9) becomes 
just a normal, weighted least squares, and if the channels align in all of the representations 
(i.e. P = P&,V6), we will get in each channel of 7 a weighted average of the measured 
signals in the corresponding channels of the contributing MeasurementBlocks. The extreme 
generality of Equation (9) encompasses more complex data reduction methods such as 
maximum likelihood or maximum entropy, which axe commonly used in astronomy. 



Minimization methods often become unwieldy and slow, but the form of Equation (9) 
is only a common language to frame the problem and does not commit us to any paxticulax 
method of solution. Let us return to the task of aligning spectra to see how practical the 
problem is when approached from this direction. In the notation of the last paxagraph, we 
will use the I2 norm weighted by the integration time so that 

£ Nb [yb - PM] = £ £ Atb  ( ybti - £ PM * P, Ij 
b b      i \ j 

Minimizing this for Ik gives the normal equations 

E (E E A*» (A.* * A) • (A,« * Pi)) h = E E A'» y>'p^ * A.    (io) 
j     \   b       i / b       i 

There axe, of course, better ways to solve least squares problems than the normal equations, 
but they will serve for the purpose of illustration. For most spectrometers the PSF's of 
each channel will be quite naxrow, effectively overlapping with only one or two of its nearest 

neighbours on either side. Without much loss in accuracy, the matrix [P&.t,;] = Pb,% * Pj 

may be approximated by a narrow band matrix and the normal equations will similarly 
have a band structure which may be constructed and solved without imposing difficult 
storage problems. The most time-consuming parts of the calculation axe likely to be the 
products P^j * Pj, but even these can be made tractable with a little effort on the part of 
the softwaxe engineers in chaxge of the instrument. For most spectrometers these products 
will depend only upon the choice of representation P and the seperation Ub,i — Vj between 
the centers of the channels. If this can be approximated to a tolerable accuracy by a 
rational function, we will still be able to compute the average spectrum efficiently. 

Choosing a Good Basis 
It has been emphasised several times that the astronomer should carefully and de¬ 

liberately choose a representation for the sky intensity, i.e.  a set of basis functions {Pj} 
■"* -* 

which will be used to represent the intensity during the period of observations, / = Jy J,Pj. 
What properties do we expect of a good basis set? These will, of course, depend upon the 
physical system under study, but it is easy to list several properties which axe generally 
useful. 

-*     -» 
1 ) Orthogonality — if Pj * Pj = §ij many of the equations in this document axe greatly 

simplified. Spectra axe often plotted as histograms; letting {i/j} be the set of channel 
center frequencies, the basis set for a histogram is a set of box functions 

f 1 (!/,-_! + 1/0/2 <I/<(I/< + i/,-+i)/2 
Pi\y) = < 

I 0 otherwise. 

Since these functions axe orthogonal, the corresponding measurement equation is sim- 
piy 

p.^) = I (vi+i - ^t-i)/2    (i/j-i + i/i)/2 < v < (i/j + Ui+i)/2 
10 otherwise. 

10 



2 ) Local Support — If the basis is not orthogonal, it may still be possible to arrange 
that the support for each basis function overlaps the supports of only a small number 
of neighbouring functions. For example, another popular display for spectra plots the 
power in each channel as a point at the center frequency i/j and joins the points with 
straight lines. The basis functions for this representation axe the hat functions 

/    V-Vi-x 

hi{v) = < 
Vi-Vi-l 
Vi + l-V 
Ui+i-Vi 

0 

J/j_l < 1/ < I/j, 

I/j < V < I/j+i, 

otherwise. 

These functions axe not orthogonal, but the matrix \pij] = [pj * Pj] is tridigonal (and, 
of course, symmetric), with 

Pit =(^+i - ^)2/3 + (vi - Vi-i)2/3 

pa-i =(^i-^-i)2/6. 

For a simple system like this it is easy to calculate the projection functions on the fly. 
A typical example is shown in Figure 5. 

Figure 5 — The projection Hsfe) corresponding to the hat function hsfa) with 
ten channels centered at 1... 10. 

It will be noted that if the basis has local support, the projection usually does not, 
and vice versa. 

3 ) Finite Bandwidth — If our instrumentation, which always has a finite bandwidth, 
has the same PSF P for each channel but with a different center position, i.e. Pj = 
P(r — rj), we can view each MeasurementBlock as a discrete sample of the convolution 
of the sky S with the P, Sj = SP(rj) = J P(r - n) • 5(r) dr. Since P has a finite 
bandwidth, the convolved sky intensity SP will as well, and it would be desireable if 
our final representation of the data was similarly band-limited. Indeed, reconstructing 
the "perfect sky" SP for a given telescope is a common way to express the immediate 
purpose of data calibration. Neither the box function basis nor the hat function basis 
preserves the band limitation of the original data, so more complicated bases might 
be needed if band-limitation is an important property of the image. 

4 ) Channel-Center Interpolation — If we can arrange that Pi(rj) = £j;-, then the pro¬ 
jected intensity p(r) = ^2siPi(r) w^ interpolate between the points (,Sj,rj).   This 
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makes the projected intensity much easier to understand. Both the box function ba¬ 
sis and the hat function basis have this property, but the natural basis derived from 
a telescope model often does not (recall Figure 4).  Note that Local Support is not 
the same as Channel Center Interpolation; the functions 2irz which appear in the 
projection operator for an autocorrelator have Orthogonality, Finite Bandwidth and 
Channel Center Interpolation, but not Local Support. 

5 ) Analytic Simplicity — The MeasurementModel relating an image whose Measure¬ 
mentEquation is P to a MeasurementBlock taken with a telescopic MeasurementE¬ 
quation T requires that we calculate the products 7j * Pj. Since we do not have any 
choice in the form of T, we would be well advised to choose P so that these products 
may be computed quickly. Simplicity here is almost surely a key to success. 

6 ) Independent Noise — Any image derived from a measurement will include some 
noise, and it is usually desireable if the noise is distributed uniformly and indepen¬ 
dently among the channels of the final image. This will often happen naturally if the 
number of channels in the final image is similax to the number of channels in each 
of the MeasurementBlocks used to produce it. Often, however, it is useful to include 
fax more channels in the final image than are justified by the data. In this case some 
non-linear process, such as maximum entropy or CLEAN, must be used to determine 
a unique answer and the noise properties of non-lineax transformations can be quite 
unpredictable. In a similar vein, smoothing data can introduce strong correlations in 
the noise in adjacent channels. This can make it very difficult to determine when a 
weak feature is real and when it is just correlated noise. The noise in the final image 
is a property of both the MeasurementModel and of the algorithm used to solve the 
MeasurementModel; both should be chosen carefully if misleading answers axe to be 
avoided. 

7 ) Consistency — Corruption of the data, such as is caused by "shift-and-add" routines 
to align spectra, may be avoided by consistent use of the MeasurementEquations and 
MeasurementModels throughout the system. This principle can be extended to display- 
as well. If the astronomer wishes to plot spectra as histograms, it would be desireable 
to reduce the spectra using the box function basis discussed above. The histograms 
in the display would then consistently reproduce the sky intensity computed in the 
program. This kind of consistency is logically desireable, but not strictly necessaxy 
for haxdcopy outputs, which are only raxely re-entered into another program, but can 
be quite crucial for images which axe partial results, to be retained for additional 
processing later. 

Implications for AIPS++ 
The final output from the data reduction process, be it an image, a spectrum, a 

data cube, or whatever, is just another form of calibrated data, i.e. a MeasurementBlock. 
For exactly the same reasons that a Measurement should be viewed as the pair (s, P), the 
finished data should be viewed as a pair (J, P) where / is an axray containing the data, and 
P is the MeasurementEquation (projection operator) which defines the physical meaning 
of the data in /. In haxdcopy output we normally display the data in the body of a figure 
and the physically important parts of the MeasurementEquation in the axes, labels, and 
captions. 
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The data structures and their relationships which we derive for AIPS-I—f- axe shown in 
Figure 6. This figure summaxizes the conclusions of the design team at the Charlottesville 
meeting of November 16-18, 1992. 

Table 
Attributes 

^^TelescopeDataAssociatic 
i       <                   Attributes 

>* 

TelescopeModel 
Attributes 

Operations Operations Operations 

A 
f 

MeasurementSet 
Attributes 

l-l MeasurementEquation 
Attributes 

Operations ■-] Operations 

"2 

MeasurementModel 
Attributes 

Figure 6 — The Object Model Diagram for the classes related to Measurements. 

There was some discussion about whether a MeasurementSet "isa" Table containing 
data with extra properties or "hasa" Table containing the data. Although there was a 
strong feeling that a MeasurementSet "hasa" Table, this author prefers the "isa" relation. 
The Table in a MeasurementSet must include all of the physical parameters (possibly 
indirectly through other Tables) needed to construct the MeasurementEquations. Also, 
although MeasurementEquations figure very prominently in the analysis of data from in¬ 
tensitometers, they axe much less useful in the other great class of instruments which 
record "events" in the radiation and instrumental coordinates, such as the arrival of an 
individual photon at a time t and a position (a;, y) in a detector, or the position x\ on a 
photographic plate of a spectral line of wavelength A. This kind of data will often use the 
internal operations of the Table class directly, without much of the extra analysis needed 
to work with MeasurementEquations. A MeasurementSet will therefore need access to all 
of the operations which apply to Tables, and hiding the Table as a class member will add 
complexity to the code without improving the security of the operations or the clarity of 
the model. 

Note that a TelescopeDataAssociation has associated with it a MeasurementEqua¬ 
tion class which defines the natural basis for the MeasurementBlocks within the Measure¬ 
mentSet. It is not necessary for a MeasurementEquation to have an associated Telescope¬ 
DataAssociation. Unfortunately, it is not possible to represent this in an ObjectMaker 
diagram, since the set of connectors allowed for an "association as class" includes a one- 
to-optional, but not an optional-to-one. Similarly a MeasurementSet does not require a 
TelescopeDataAssociation unless the MeasurementSet includes raw data to be calibrated. 
ObjectMaker does not provide an optional-to-many connector for "association as class" 
either. 

Although the MeasurementEquation is officially a function of all of the radiation co¬ 
ordinates, it is most often true that the PSF factors into a product of terms for each 
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independent coordinate. For these cases, it would be useful to provide subclasses of Mea¬ 
surementEquation which provide the factored forms, with seperate member functions for 
each radiation coordinate. 

A MeasurementModel is defined by its two associated MeasurementEquations. This 
association must dynamic, with the MeasurementModel constructor building the matrix 
relating the two MeasurementEquations on the fly. Initially this will probably have to 
be a restricted service, handling only a limitted selection of MeasurementEquations with 
simple offsets in frequency and space. Later, it may be useful to include formulae in the 
MeasurementEquations which could be passed to through a Paxser and an Integrator to 
generate these formulae in real time for axbitraxy MeasurementEquations. This would be 
extremely challenging, however, and may not be important for the first version of AIPS-I—h 
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