
Note 155: Array Tutorial
Using the AIPS++ n-dimensional array classes

M. P. Healey (DRAO)
B. E. Glendenning (NRAO)
A. G. Willis (DRAO)

Copyright © 1993 AIPS++

Chapter 1: Introduction

1 Introduction

Many data processing operations in aperture synthesis radio astronomy involve the handling of
one, two or three dimensional arrays. An example of a vector, or one dimensional array, would be
a spectral line observation (intensity vs frequency at a single position on the sky). A picture of a
piece of sky would be stored as a two dimensional array, or matrix. A spectral line data cube (a
series of pictures, each made at a different frequency) is an example of a three dimensional array.

For AIPS++ it was decided that rather than develop specific classes to separately handle vectors,
matrices and cubes, we would first develop a class that can handle a n-dimensional array, the actual
number of dimensions being defined by the application programmer. Since vectors, matrices and
cubes are just arrays having specific dimensions we can then define Vector, Matrix and Cube classes
which inherit from the generic n-dimensional array class. That way, most of the methods which are
generic to arrays, such as the standard arithmetic methods, needed only to be developed once, since
derived classes inherit these methods. Methods specific to one of the derived classes, for example
indexing into a Matrix, are then implemented in that derived class.

Base class

Inherited Classes

The AIPS-H- Array Classes

An additional advantage of this approach is that we can create methods in other classes which
define the generic Array class as an input or output parameter, but then use these methods with
Vector, Matrix or Cube objects.

The purpose of this document is to provide an introduction to the AIPS++ array classes for those
unfamiliar with C++ and object-oriented programming. There are four array classes: Array, an
n-dimensional array class; Vector, a 1-dimensional array; Matrix, a two-dimensional array; and
Cube, a three dimensional array.

Since classes Vector, Matrix and Cube are all arrays, they inherit all properties of the class

Chapter 2: Classes Vector, Matrix, and Cube

Array, as well as adding specializations of their own. Most readers will be familiar with constructs
similar to Vector, Matrix, and Cube from other languages; these will therefore be introduced first,
followed by the more general class Array.

2 Classes Vector, Matrix, and Cube

These are classes which inherit properties from the class Array. As you would expect, they
are one, two and three dimensional arrays, respectively. In order to use these classes, you must
include the appropriate AIPS++ header files, #include <aips/Vector.h> for Vectors, #include
<aips/Matrix.h> for Matrixes, and #include <aips/Cube.h> for cubes.

2.1 Declarations

Here are some example declarations, with explanations:

Vector<float> v;
Matrix<Complex> m;
Cube<Int> c; //Int == int

The vector v is a zero-length vector of floating point numbers. The matrix m is a zero-element
matrix of complex numbers. Cube c is a zero-element cube of integers.

ulnt length ■ 5; //ulnt -= unsigned int
Int origin = 3;
Vector<Int> v(length, origin);
Vector<Int> w(length);

ulnt width - 5;
ulnt height = 6;
Int x.origin ■ y.origin ■ 1;
Matrix<float> mCwidth, height, x.origin, y.origin);

The vector v is a vector with 5 undefined integer elements, and has its origin at three. Vector w
is the same, but by default its origin is zero. The Matrix m is a 5x6 matrix with origin (1,1). The
same declarations extend logically to 3-dimensions for Cubes.

In all cases, if the origin is omitted, the array is zero-based.

Chapter 2: Classes Vector, Matrix, and Cube

2.2 Indexing

Indexing is achieved by use of operator(). For example:

Int i ■ v(5); //if "v" is a defined Vector<Int> with an element 5, then
//"i" is assigned the value of that element.

m(5, 2) = 3; //assign 3 to element (5, 2) of the matrix "m".

2.3 Output

The operator « is overloaded for the classes Vector, Matrix, and Cube. Output may be to
iostream or AipsIO objects. Here are examples of the output produced: Output for a Vector is
as expected:

[0, 1, 2, 3, 4]

As with all AIPS++ arrays, matrices are stored in FORTRAN order. To run through consecutive
elements in memory, vary the first index fastest, then the second. Here is a Matrix with consecutive
elements labelled:

Matrix origin [0, 0] shape [5, 4]
[0, 5, 10, 15

1, 6, 11, 16
2, 7, 12, 17
3, 8, 13, 18
4, 9, 14, 19]

Chapter 2: Classes Vector, Matrix, and Cube

Given a 5x5x2 Cube, output is explained this way:

45 46 ..4.7- -rt"" 49

 40 41 42 43 44

20 21 22 23 24 35 36 37 39 39

IS 16 17 18 19 30 31 32 33 34

10 11 12 13 14 25 26 27 28 29

5 6 7 8 *••

We'd like to think of a cube in terms of matrices:

X 0 5 10 IS 20

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

3 L

X 25 30 35 40 45

26 31 36 41 46

27 32 37 42 47

28 33 38 43 48

z = 0

z = 1

But for actual output, the columns are printed as rows:

CO, 0, 0][0, 1, 2, 3, 4]
[0, 1, 0][5, 6, 7, 8, 9]
[0, 2, OHIO, 11, 12, 13, 14]
[0, 3, 0][15, 16, 17, 18, 19]
[0, 4, 0][20, 21, 22, 23, 24]
[0, 0, 1][25, 26, 27, 28, 29]
[0, 1, 1][30, 31, 32, 33, 34]
[0, 2, 1][35, 36, 37, 38, 39]
[0, 3, 1]C40, 41, 42, 43, 44]
CO, 4, 1][45, 46, 47, 48, 49]

Chapter 2: Classes Vector, Matrix, and Cube

2.4 Slicing

A slice is a reference to a portion of an array. The Vector, Matrix, and Cube classes can be
sliced using the class Slice. In order to use this class, you must include the appropriate AIPS++
header file, #include <aips/Slice.h>. The class Slice is used to define a range on a certain axis.
It can be called like Slice (start, length, increment). Since vectors have only one axis, they are
sliced this way:

Vector<int> v(10);
v(Slice(0, 5)) * 3;
v(Slice(5, 5)) = 2;

The result is the vector <3, 3, 3, 3, 3, 2, 2, 2, 2, 2>. For a Matrix, you would use syntax like:

m(Slice(0, 4), Sliced, 5)) = 0.0;

to set to zero the sub-matrix that is all elements from 0 to 3 on the x-axis and all elements from
1 to 5 on the y-axis. The same idea logically extends to cubes.

2.5 Inquiry

Functions are provided for finding the properties of these array classes. One may wish to
determine the size, origin, shape, and end of one of these objects:

Matrix<float> m;

n = m.nelementsO; //function returns the number of elements in "m".
Int o.x, o_y, shape.x, shape.y, end_x, end_y;
m.origin(o_x, o_y); //Place origin in integers o_x and o_y
m.shape(shape.x, shape.y); //Get the shape of "m".
m.end(end_x, end_y); //get the last element of "m".

//Now, this assigns "0.0" to the first element of "m".
m(o_x, o_y) ■ 0.0;

For more information about these classes, refer to the AIPS++ header files Vector.h, Matrix.h,
Cube.h, and Array.h, and the corresponding source files.

Chapter 2: Classes Vector, Matrix, and Cube 6

2.6 Changing Shape

The resize() function may be used with integers for the Vector, Matrix, and Cube classes:

Matrix<Int> m(5,5);
m.resize(2, 2, 1, 1); // "m" is now a 2x2 matrix with origin (1,1)
m.resize(4,3); // "m" is now a 4x3 matrix with origin (0,0)

The resizeQ function is defined similarly for Vectors and Cubes.

2.7 Math

Functions are provided to support traditional linear algebra with the Vector and Matrix classes.
These include, for Vectors: dotProduct, crossProduct, and norm; and for Matrices: multiplica¬
tion, transpose, conjugate, and adjoint. Other linear algebra functions are currently under de¬
velopment. See the section "Vector and Matrix Math" in the AIPS++ Programming Manual for
details.

Also, simple element-by-element arithmetic functions (a += b, etc.) are provided, along with
comparison operators, and transcendental functions (sin, cos, sqrt, ...). To use these, you must
#include<aips/ArrayMath.h>. They are illustrated in more detail in the section describing class
Array.

2.8 Operations specific to matrices:

Operations are provided to permit access to rows, columns, and diagonals of matrices. For
example:

Matrix<Int> m(4,4);
m = 2; //set all elements of m to 2.
m.row(l) = 4; //set row 1 of "m" to 4.

result:
I 2, 2, 2, 2 I
I 4, 4, 4, 4 I
I 2, 2, 2, 2 I
I 2, 2, 2, 2 I

Chapter 2: Classes Vector, Matrix, and Cube

m.column(2) = 3; //set column 2 of "m" to 3.

// result:
// I 2, 2, 3, 2 I
// I 4, 4, 3, 4 I
// | 2, 2, 3, 2 I
// I 2, 2, 3, 2 I

Vector<Int> a;
a = m.column(2); //"a" is now a four element vector, all elements ==* 3

The function diagonal(), like row() and columnQ, returns a reference, and so may be used as
an lvalue. Here is an example program to illustrate the use of the diagonal () function.

#include <aips/Matrix.h>
#include <iostream.h>

mainQ
i

Matrix<Int> m(4,4);
for (Int i*-3; i <=3; i++) {

m.diagonal(i) = i;
cout « m. diagonal(i) « endl;

}
cout « endl « m « endl;
return 0;

Here is the result, running from diagonal(-3) to diagonal(3), and the resulting matrix:

[-3]
[-2, -2]
[-1, -1, -1]
CO, 0, 0, 0]
Cl, 1, 1]
C2, 2]
C3]

Matrix origin [0, 0] shape [4, 4]
C 0, 1, 2, 3

-1. 0, 1, 2
-2, -1, 0, 1
-3, -2, -1, 0]

Chapter 3: n-dimensional Arrays 8

2.9 Operations specific to cubes

You may access particular matrices of a cube with the "xyPlane(Int)" function. For example:

Cube<float> c(5,4,3);
c = 2.0;
Matrix<float> m ■ c.xyPlane(O); //"m" is a reference to the front face of "c"

3 n-dimensional Arrays

3.1 Introduction—the class IPosition

In order to use arrays, you must understand the class IPosition. An IPosition is a vector
that is used to index arrays, and always has its origin at zero. For example, if you wish to index a
3-dimensional array, you can use a three-element IPosition:

IPosition index(3);
//Assume "a" is a previously defined array
index ■ 5; //index is the vector <5, 5, 5>.
a(index) =0; // set a(5,5,5) to 0

We are now ready to explore the class Array.

3.2 Declaration of Arrays

The first thing to note is that you must have the line #include <aips/Array .h> in your source
code to use arrays.

The array classes are templated. So when you use an array, you must specify what type of data
it will hold. To declare a floating point array, use Array<f loat>, to declare an array of integers,
use Array<Int>, etc. There are four constructors for class Array. When you declare an array, you
invoke one of these constructors, depending on the parameters you use in the declaration. Here are
examples of each:

Array<float> a;

Chapter 3: n-dimensional Arrays

This example invokes the constructor Array<T>: :Array<T>(), and produces an array with no
elements (where T in this case is float).

IPosition shape(2), origin(2);
shape(0) = 5;
shape(1) = 6;
origin(O) = 10;
origin(l) ■ 15;
Array<float> a(shape, origin);

Here we invoke the constructor Array<T>: :Array<T>(const IPosition*, const IPosition*).
The first IPosition defines the shape of the array, in this case it is two dimensional, with 5 elements
on its first axis and 6 on its second. The second IPosition defines the origin of the array, in this
case (10,15).

IPosition shape(2);
shape(0) = 5;
shape(l) = 6;
Array<float> a(shape);

This example invokes the constructor Array<T>::Array<T>(const IPosition*). This makes
a two dimensional array, with 5 elements on its first axis and 6 on its second. By default, its origin
is (0,0).

IPosition shape(l);
shape(0) = 10;
Array<Int> a(shape); //one dimensional array with 10 elements
Array<Int> b(a); //Array<Int> b - a; is identical...

This invokes the constructor Array<T>: :Array<T>(const Array<T>&). This is called the "copy
constructor", since it creates a new array based on an existing one. The array b, however, is not a
copy of a; it is actually a reference. In other words, b is just another name for a. This can have
dangerous side-effects. One should avoid writing functions that take arrays as value parameters, as
these parameters are actually references to the external argument sent by the caller:

void func(Array<float> a)
■C

a *= 2.0;
>

void main(void)
i

IPosition shape(3); shape = 5;

Chapter 3: n-dimensional Arrays 10

>

Array<float> b(shape); // "b" is a 5x5x5 array
func(b); // multiplies all elements of "b" by 2.0!

This happens because when func (Array a) is invoked, the Array class copy constructor is
invoked to create the temporary array object a. Since this constructor makes a reference, a becomes
a reference to b. A compelling reason NOT to use pass-by-value, as in func, above, is that you
cannot pass a class derived from Array into func-it will not operate on a Matrix for example.
Using pass-by-reference or a pointer will allow you to pass an object of a derived class. To assure
the outer parameter is untouched you should use a const reference:

void func(const Array<float> &a)

i
a *= 2.0; // illegal, since a is const and can't be modified...

}

Or, you can use the unique () function to assure that a is not a reference:

void func(Array<float> a)
i

a.unique();
a *= 2.0;

If you wish to modify a in the function, do not pass by value and rely on the reference semantics
of the copy constructor. Pass it by reference instead:

void func(Array<float> &a)
■C

a *= 2;
}

void main(void)
■C

IPosition shape(3); shape = 5;
Array<float> b(shape); // "b" is a 5x5x5 array
func(b); // multiplies all elements of "b" by 2.0!

}

Chapter 3: n-dimensional Arrays 11

3.3 Initialization

The simplest type of initialization is the assignment of all elements of an array to a certain
value:

IPosition shape(3);
shape(O) - shape(l) = shape(2) = 5; //could be written "shape = 5;"
Array<float> c(shape);
c = 0.0; //Sets all elements to 0.0.

You may also initialize from an existing object:

IPosition shape(1);
shape = 6;
Array<float> v(shape);
v=1.0; //Initializes all elements of "v" to 1.0.
Array<float> w; //"w" is a zero-length Array<float>
w ■ v; //use Array assignment operator.

The array w now is a 6 element Array<f loat> with each element 1.0. Note that the assignment
operator, -, uses copy semantics. So vectors w and v are independent-modifying one does not
change the other.

You may initialize one array from another as is done here with w:

Array<Complex> v(5); //"v" is a 5 element vector of complex numbers
v ■ Complex(5.0, 3.0); //Assign all elements of "v" to 5 + 3i.
Array<Complex> w ■ v; //Uses copy constructor.
//Array<Complex> w(v); would have the same effect.

The vector w is actually a reference to the vector v. In other words, the assignment

w(3) ■ Complex(0,0);

also sets v(3) to 0 + Oi. Conversely, changing v also changes w.

Chapter 3: n-dimensional Arrays 12

3.4 Indexing

Note that from the viewpoint of the applications programmer array indexing in AIPS++ is done
in FORTRAN columnwise order.

Indexing is achieved using operator() and IPosition. For example, given a 4-dimensional
array a, you could index a certain element using a 4-element IPosition:

Array<Int> a(shape); //assume shape is a 4-element IPosition

IPosition index(4);
Index(0) = 1;
Index(1) = 2;
Index(2) - 3;
Index(3) = 4;

Int saved.value = a(index); //saved.value = a(l,2,3,4)
a(index) = 0.0; //set a(l,2,3,4) to 0.

3.5 Output

You may print the contents of an array to your screen using the operator «. If you have an
array a defined, place this line in your code to write a to stdout:

cout « a;

Here is the output that is produced if a is a four-dimensional array with origin (0,0,0,0) and
axis lengths 4, 3, 2, and 3 respectively:

CO, 0, 0, 0][0, 1, 2, 3]
[0, 1, 0, 0][4, 5, 6, 7]
[0, 2, 0, 0][8, 9, 10, 11]
CO, 0, 1, 0][12, 13, 14, 15]
[0, 1, 1, 0]C16, 17, 18, 19]
[0, 2, 1, 0][20, 21, 22, 23]
[0, 0, 0, 1][24, 25, 26, 27]
CO, 1, 0, 1][28, 29, 30, 31]
[0, 2, 0, 1][32, 33, 34, 35]
[0, 0, 1, i][36, 37, 38, 39]
CO, 1, 1, 1]C40, 41, 42, 43]
CO, 2, 1, 1]C44, 45, 46, 47]
CO, 0, 0, 2]C48, 49, 50, 51]

Chapter 3: n-dimensional Arrays 13

CO, 1, 0, 2]C52, 53, 54, 55]
CO, 2, 0, 2]C56, 57, 58, 59]
CO, 0, 1, 2]C60, 61, 62, 63]
CO, 1, 1, 2]C64, 65, 66, 67]
CO, 2, 1, 2]C68, 69, 70, 71]

The output from left to right, top to bottom is in memory order. The first dimension varies the
fastest, followed by the second, and so on down to the last dimension. The elements in the above
example are labeled to reflect this.

The class Vif f is provided for conversion between AIPS++ array classes and Khoros Vif f format.
You may read a Viff file from disk, convert it to an array, convert from an array to Viff, and
write it to disk. Here is some example code:

#include <aips/Viff.h>
#include <aips/Matrix.h>
#include <iostream.h>

void main(void)
{

Viff vimage;
Matrix<float> image;
vimage.read("somefile.viff"); //file input.
if(!vimage.get(image)) { //convert from viff to array, result in "image",

//handle error
}
do_some_processing(image);
if (! vimage. put (image)) { //convert back from array to viff.

//handle error
>
else vimage.write("someotherfile.viff"); //file output.

3.6 Copy and Reference

The function copyQ is used to produce a copy of an array. The reference () function is used
to make one array reference another.

IPosition shape(l);
shape = 10;
Array<Int> a(shape); a ■ 5;

Array<Int> b = a.copyO; //"b" is an independent copy of "a".

Chapter 3: n-dimensional Arrays 14

Array<Int> c;
c.reference(a); //"c" is a reference to "a"

3.7 Slicing

A slice is reference to a portion of an array. Since the slice is itself an Array, it may be used
in the same way as any Array. If, however, it us used on the left hand side of the assignment
operator, it modifies the original array that it was built from. A slice is defined using IPositions.
You define the start index of the slice, the end index of the slice, and an optional increment on
each axis.

IPosition shape(3);
shape = 10;
Array<float> a(shape); //"a" is a 10x10x10 array
Array<float> b;
IPosition Start(3), End(3), Increment(3);
Start(0) ■ 2; Start(1) * 3; Start(2) ■ 1;
End(0) = 4; End(l) = 8; End(2) = 1;
Increment(0) * 1; Increment(1) * 2; Increment(2) ■ 1;
b = a(Start. End, Increment);

The array b is a copy of these elements of a: (2, 3, 1), (3, 3, 1), (4, 3, 1), (2, 5, 1), (3, 5, 1), (4,
5, 1), (2, 7, 1), (3, 7, 1), (4, 7, 1). You may also change a by assigning to a slice:

a(Start, End, Increment) = 0.0;

The array a is modified; the elements listed in the previous example are set to zero.

3.8 Inquiry

Often it is necessary to ask an Array about its properties. For example, a function may wish to
know how many elements there are in the array or what its dimension is. There are several array
functions to provide this information. Examples:

IPosition shape(3);
shape(0) = 1024;
shape(1) = 1024;
shape(2) = 8;
Array<float> a(shape);

Chapter 3: n-dimensional Arrays 15

Int dimension = a.ndimO; //"dimension" gets 3.
ulnt num_els ■ a.nelementsQ; //"num.els" is 8388608 (1024*1024*8)
IPosition o, s, e;
o = a.originO; //"o" is (0,0,0)
s = a.shapeO; //"s" is (1024, 1024, 8);
e = a.endQ; //"e" is (1023, 1023, 7);

Another inquiry function is conformO, which tells whether two arrays are identical in shape:

if(a.conform(b)) {
cout « "a and b are the same shape. " « endl;

} else ■[
cout « "a and b are not the same shape." « endl;

}

Note that conform will return true for two arrays that do not have the same origin, as long as
they have the same shape. Also, any scalar conforms with any Array. The scalar is considered
to represent an Array of the same shape as the Array it is being tested against; all elements are
considered to be the same value as the scalar.

An array with no elements also conforms if used on the left-hand side of an assignment:

Array<float> a;
a - b; //works if 'b* is previously defined...

3.9 Changing Shape

Arrays can be re-sized or have their shape changed dynamically. The resizeQ function is used
to redefine the shape and origin of an Array:

IPosition shape(3), origin(3);
shape(0) = 5; shape(1) = 3; shape(2) = 4;
origin = 1;
an_array.resize(shape, origin);
another.array.resize(shape);

The array an_array is changed to a 5x3x4 array, with origin at (1, 1, 1). The array
another.array also becomes a 5x3x4 array, but its origin defaults to (0, 0, 0). Copy seman¬
tics are used, so there are no other references to an array that has just been resized. You should
consider the contents of the newly resized array to be undefined.

Chapter 3: n-dimensional Arrays 16

If you wish to use reference semantics, the ref orm() function is used. This function changes
the shape and origin of the array, but requires that the new array has the same number of elements
as the original array. Also, the original array must have increments of one on each axis (eg it may
not be a slice with increments). Example:

IPosition shape(2);
shape = 5;
Array<Int> a(shape); a = 1; // "a" is a 5x5 array with all elements set to 1.

IPosition newShape(l), newOrigin(l);
newShape(O) - 25;
newOrigin = 0;
Array<Int> b = a.reform(newShape, newOrigin);
b(5) ■ 5; // also changes a(5,0)—

The array a is still a 5x5 two-dimensional array. Using b, however, you may access a as though
it was a 25 element one-dimensional array.

Another function that creates a reference to an array is the nonDegenerateQ function. This
function removes all degenerate axes- those that have a length of one. This is useful for forcing
conformance after slicing:

IPosition matrix.shape(2), cube_shape(3);
matrix_shape = 5; cube.shape = 5;
Array<float> m(matrix_shape), c(cube_shape);
m = 3.0; c = 0.1415926536;

IPosition start(3), end(3);
start = 0;
end(0) = 4; end(l) = 4; end(2) = 0;

m += c(start, end).nonDegenerateQ;

Adds the "front face" of the cube c to the matrix m.

3.10 Simple Arithmetic

To use most of the arithmetic functions, you must #include <aips/ArrayMath.h>. The first
thing to note is that these operations are simple element-by-element operations; true linear algebra
is not implemented for general arrays. For example, two-dimensional multiplication is defined as
"for all pairs (x,y), take element (x,y) of the first array, multiply it by element (x,y) of the second

Chapter 3: n-dimensional Arrays 17

array, and place the result in (x,y) of the resulting array." This means that the array operands
must be the same size (following conformance rules) for these operations to work. Examples:

IPosition shape(l);
shape = 5;
Array<float> v(shape);
v = 1.0;
Array<float> w(shape);
w * 2.0;

v +- w; //All elements of v are now 3.0.
w -= 3.0; //All elements of w are now -1.0.

Array<float> x;
x = v + w; //All elements of x are now 2.0

w(0) = 35;
v(0) = 36;
if(w < v) //This tests true (uses element-by-element compare),

cout « "w is less than v" « endl;

IPosition shape(2);
shape(O) = 4; shape(l) = 5;
Array<float> m(shape), n(shape);

m = 2.0;
n = 3.0;

Array<float> o;
o ■ m * n; //All elements of "o" are 6.0.
o += 4.0; //All elements of "o" are now 10.0.

All the other arithmetic and boolean operators that you would expect are defined. For more
detail, see the header file Array.h.

3.11 Raw Storage

Occasionally it is necessary to directly access an array's storage. The functions getStorageQ
and putStorageQ are used for this purpose. getStorageQ returns a pointer to an array's storage,
and putStorageQ is used to replace an array's storage. Use of these functions should be avoided,
except where necessary. One example where direct access to the storage is necessary is the use of
a FORTRAN subroutine. For example:

IPosition shape(2);

Chapter 3: n-dimensional Arrays 18

shape = 10;
Array<float> a(shape); // a is a 10x10 array
a = 0.0;
Bool delete.it;
float *a_data ■ a.getStorage(delete.it);
fortran_func(a_data); // call a FORTRAN subroutine...
a.putStorage(a_data, delete.it);

The array a now reflects any changes made to a.data by the FORTRAN subroutine. The
deleteJt flag is set by the call to getStorageQ; sometimes this function makes a copy of the
array's storage and returns a pointer to that, depending on considerations such as whether the
array has increments on any of its axes. Sometimes the returned pointer points directly to the
array's storage. The delete.it flag is set to true if the storage pointed to by a.data is a copy of
a's storage, false if a.data points directly to a's storage. When the call a.putStorage(a.data,
delete.it) is made, nothing is done if delete.it is false. If delete.it is true, then putStorage
first copies the data pointed to by a.data into the array a, then deletes the storage pointed to by
a.data. If you do not wish to modify the array, (eg if it's const), must do the following to prevent
memory leak:

float *a.data = a.getStorage(delete.it);
do.something(a_data);
a.freeStorage(a.data, delete.it);

3.12 Iteration

Special iterator classes are provided to allow iteration of arrays by a certain dimension. This
is most useful when dealing with an object of the base class Array. To use iterators, you must
♦include <aips/ArrayIter.h>. For example, given a one (or more) dimensional array, you can
use a Vectorlterator to iterate it one vector at a time:

IPosition shape(2);
shape(0) = 5; shape(1) = 4;
Array<float> m(shape);
VectorIterator<float> iter(m); // Construct a Vectorlterator for "m".
m = 2.0;
cout « m « endl;
while(!iter.pastEnd()) {

// iter.vector() returns a reference to a 5 element vector, actually a
// column of m.
iter.vector()(4) ■ 0.0;
iter.next();

Chapter 3: n-dimensional Arrays 19

cout « m « endl;

Here is the output from the above example:

Ndim=2 0rigin=[O, 0] Lengths=[5, 4]
CO, 0][2, 2, 2, 2, 2]
CO, 1][2, 2, 2, 2, 2]
[0, 2] [2, 2, 2, 2, 2]
[0, 3][2, 2, 2, 2, 2]

Ndim=2 0rigin=[0, 0] Lengths*[5, 4]
[0, 0]C2, 2, 2, 2, 0]
[0, 1][2, 2, 2, 2, 0]
[0, 2] [2, 2, 2, 2, 0]
CO, 3]C2, 2, 2, 2, 0]

Given a two (or more) dimensional array, you may iterate it a matrix at a time:

IPosition shape(3);
shape(0) = 5; shape(1) = 4; shape(2) = 3;
Array<Int> c(shape);
MatrixIterator<Int> iter(c); // construct a Matrixlterator for "c"

while(!iter.pastEnd()) {
iter.matrixQ.row(l) = 5.0; // set row 1 of each matrix to 5.0.
iter.next(); // advance the iterator.

}
cout « c « endl;

Here is the output:

Ndim=3 Origin*CO, 0, 0] Lengths*C5, 4, 2]
CO, 0, 0]C0, 5, 0, 0, 0]
CO, 1, 0]C0, 5, 0, 0, 0]
CO, 2, 0]C0, 5, 0, 0, 0]
CO, 3, 0]C0, 5, 0, 0, 0]
CO, 0, 1]C0, 5, 0, 0, 0]
CO, 1, 1]C0, 5, 0, 0, 0]
CO, 2, 1]C0, 5, 0, 0, 0]
CO, 3, 1]C0, 5, 0, 0, 0]

Another way to iterate an object is using the class ArrayPositionlterator. Instead of return¬
ing a reference to a vector or matrix within the object that is being iterated, this type of iterator

Chapter 4: A General Purpose Method using Arrays 20

returns the index of an element of the object, in the form of an IPosition. Here is an example to
illustrate:

Matrix<float> m(20, 10);
m * 1.0; //set all elements to 1.0
ArrayPositionlterator element_iter(m. shape() , m.originO, 0);
ArrayPositionlterator vector.iter (m.shapeQ, m.originO, 1);

The last parameter of the previous two declarations tells the iterator what dimension to iterate
by. The pos() function is used to get a reference to the current IPosition of the iteration:

int sum = 0;
while(!element_iter.pastEnd()) {

sum += m(element_iter.pos());
element.iter.next();

}

The above code sums all the elements in the matrix m. Another example:

int sum = 0;
while ('.vector, iter. pastEndO) {

sum +* m(vector.iter.posO); //use vector.iter instead of elem.iter
vector.iter.next();

}

This code sums all of the elements (0, 0), (0, 1), (0, 2),..., (0, 8), (0, 9). Note that the
ArrayPositionlterator is not actually associated with the array it is iterating; It is essentially
a server that returns subsequent indices for any array of the shape and origin provided in its
constructor.

In future, iterators will allow access in arbitrary order, not just "bottom to top."

4 A General Purpose Method using Arrays

To describe the use of Array methods in an actual application we will discuss the development of
the function conv.correctQ from the AIPS++ class GridTool. Aperture synthesis radio telescopes
collect data in the Fourier domain; this data must be convolved on to a regular grid before a FFT to
the real image domain can be done. This convolution causes the resulting image to be attenuated
by a factor which increases with distance from the image centre and which must be corrected for.

Chapter 4: A General Purpose Method using Arrays 21

Each element of the image must be multiplied by a correction factor that varies over the image.
The image to be corrected might be a matrix or a cube.

We start with two definitions of this (overloaded) function: one that operates on matrices, and
another that operates on cubes. Here is the function that operates on matrices:

void
GridTool::conv.correct(Matrix<float>& image)
/
/ This function corrects an image for the attenuation
/ caused by convolution in the fourier plane when the data were gridded.
/
/ calling parameters:
/ image - matrix of data containing the image to be corrected
/

int rows = image.nrow(); // get the number of rows in "image"
int cols * image.ncolumn(); // get the number of columns in "image"

//"grid" is a two element vector that will hold the current values of
//loop counters i and j. This vector is passed as an argument to
//the function "grid.corrO", which returns the correct value associated
//with position (i, j) in "image".

Vector<Int> grid(dimension); //"dimension" is a GridTool private member
// which has value 2 for a Matrix

grid = 0; //zero all elements of the vector "grid"
for (int j=0; j<cols; j++) { //i and j iterate all elements of "image"

grid(l) * j;
for (int i = 0; i < rows; i++) {

grid(0) = i; //grid is now the vector <i, j>
//Now, perform the necessary transformation on location (i, j)
//of the matrix "image":
imaged, j) ■ imaged, j) * grid_corr(grid);

}
}

Here is the same function that operates on cubes:

void
GridTool::conv.correct(Cube<float> ftimage)
//
// calling parameters:
// image - cube of data describing the image to be corrected
//

Chapter 4: A General Purpose Method using Arrays 22

int rows, cols, nz;
//Get the number of rows, columns, and planes from the cube "image"
image.shape(rows, cols, nz);

//"grid" is a three element vector that will hold the current values of
//loop counters i, j, and k. This vector is passed as an argument to
//the function "grid.corrO", which returns the correct value associated
//with position (i, j, k) in "image".

Vector<Int> grid(dimension); //"dimension" is a GridTool private member.
// which has value 3 for a Cube

grid =0; // zero all elements of "grid"
for (int k = 0; k < nz; k++) { // i, j, and k iterate all

// elements of "image"
grid(2) = k;
for (int j - 0; j < cols; j++) {

grid(l) = j;
for (int i = 0; i < rows; i++) {

grid(0) = i;
// "grid" is now the vector <i, j, k>.
// Perform the transformation
// on location (i, j, k) of the cube "image":
imaged, j, k) ■ imaged, j, k) * grid_corr(grid);

>
}

Aside from the use of overloading, this is how this problem would be coded in any imperative
programming language such as C or Fortran. Can we improve on this using object-oriented tech¬
niques and the AIPS++ library? First, these two functions are virtually identical. Also both the
class Matrix and the class Cube inherit from the class Array. Therefore we can merge the two
functions into the following one which uses the generic Array class.

void
GridTool::conv.correct(Array<Float> ftimage) {

However, how we go about doing this can have a significant impact on performance. (Note: the
following development is based on the initial AIPS++ library. As the library develops and is made
more efficient, some of these details likely won't apply.) Here is a first attempt at the function,
which uses class ArrayPositionlterator:

Chapter 4: A General Purpose Method using Arrays 23

void
GridTool::conv.correct(Array<float> &image)
{

//construct an ArrayPostionlterator to iterate "image":
ArrayPositionlterator position(image.shape(), image.origin(), 0);

while (! posit ion. pastEndO) {
//perform correction
image(position.pos()) *= grid.corr(position.pos());
position.nextQ; //advance iterator.

}

An ArrayPositionlterator is now used to iterate each of the elements in the array image.

We have succeeded in replacing the two functions conv_correct with a function that is shorter,
more elegant, and in fact more powerful, since it can operate on arrays of any dimension. There
is one problem though: let's say that our original function for the class Matrix took X seconds to
process a 1024 x 1024 Matrix, which represents a fairly standard size of image we can expect to
handle in AIPS++. Unfortunately our new "generic" function will take roughly twelve times as long!
Clearly, this performance hit is not acceptable.

We must identify the inefficiencies and eliminate as many of them as we can. First, notice that
the while loop must make a call to the function ArrayPositionlterator: :pastEnd() for each
iteration-with a 1024x1024 matrix this is over one million calls. Let us try to eliminate that first:

void
GridTool::conv.correct(Array<float> &image)
{

//construct an ArrayPostionlterator to iterate "image":
ArrayPositionlterator position(image.shape(), image.origin(), 0);

IPosition index;

int size = image.nelements(); // "Size" is the number of elements
//in "image"

for (int i-0; Ksize; i++) {
index = position.pos(); //get the current index values
image(index) *= grid.corr(index); //perform correction
Position.nextQ; //advance iterator

}

This simple change results in a vast improvement; the function now takes about 3X seconds

Chapter 4: A General Purpose Method using Arrays 24

to process a 1024x1024 array. Still, we would like to approach the speed of the original code, if
possible. Notice that the line index - posit ion. pos(); is also executed over one million times
for our test array. Perhaps there is some way around this? There is, but it's a little tricky. First,
the ArrayPositionlterator: :pos() function doesn't actually return an IPosition object, but a
constant reference to an IPosition object. Its prototype is:

const IPosition AArrayPositionlterator::pos() const;

Therefore, the function pos() returns a reference to, or alias for, some IPosition that is (in this
case) a private member of the class ArrayPositionlterator. The first const keyword indicates
that this reference may not be used as an 1-value, ie, this is illegal:

IPosition I;
ArrayPositionlterator iterator(shape, origin, step);

iterator.posO = I; //Error, can't assign to const reference!

Without the const modifier, the above code would be legal and correct (assuming that I is the
correct dimension). The second const keyword simply says that the function pos() does not modify
the ArrayPositonlterator that it is associated with. In other words, if we make the declaration:

const ArrayPositionlterator iterator(shape, origin, step);

then the call

iterator.posO

is legal and does not modify the constant object iterator. A call to a non-const function, such
as next(), is illegal for the const object. Armed with this understanding of the function pos(), we
can make the following improvement to our code:

void
GridTool::conv.correct(Array<float> &image)
{

int i. Size;
ArrayPositionlterator Position(image.shape(), image.origin(), 0);

Size = image.nelements();
const IPositionft index = Position.posQ;
for(i=0; KSize; i++) {

image(index) *= grid.corr(index); //perform correction

Chapter 4: A General Purpose Method using Arrays 25

Position.nextQ; //advance iterator

Now, what is happening is that the the IPosition object referenced by the return value of
the call to Position.posQ is also referenced by the const IPositionft index. So, we can move
the call to the posQ function outside the while loop-the calls to Position.nextQ update the
IPosition referred to by the call to Position.posQ, and hence also the IPosition referred to
by index. So, next time around, image (index) is the next element of image. The above code gets
us down to about 2X seconds to process a 1024x1024 array. Things are getting better but...

The next logical step is to try to reduce or eliminate calls to ArrayPositionlterator: :next().
To do that let's use a Vectorlterator. This is somewhat like an ArrayPostionlterator, but it
is associated with a specific array object. Recall that the method Vectorlterator::vector()
returns a const reference to the current vector of the iteration. Calls to Vectorlterator: :next()
move on to the next vector of the object being iterated. Let's see if this can help us:

void
GridTool::conv.correct(Array<float>& image)

i
VectorIterator<float> image.iter(image);
Int start, end;
image.iter.vector().origin(start); // start and end refer to the

// starting index
image.iter.vectorO.end(end); // and last index of the vector

// "image.iter.vectorO".
IPosition index (image. ndimQ) ;

while (!image.iter.pastEndO) "C
index s image.iter.posQ; //get the current IPosition.
for(Int i=start; i <= end; i++) { //iterate the current vector.

image.iter.vectorO(i) *= grid.corr(index);
index(0)++; //advance the index manually—avoid calls to nextQ.

}
image.iter.next();

>
>

Because the i loop is counting the correct number of elements for a column, we don't need to
worry about index (0)++ giving us an illegal index. This code finally gets us to about X seconds to
process a 1024x1024 array. We have perhaps lost some readability during this process of refinement,
but this code is still better than the code we started with, and now equally efficient. This technique
of reducing an n-dimensional problem to a series of one or two dimensional problems using iterators
has proved useful in several places in the AIPS++ library.

