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Chapter 2: Convolution in the Fourier Domain 

1 Introduction 

The AIPS++ GridTool class is designed to convolve data on to a grid having an arbitrary number 
of dimensions. The actual number of dimensions in which gridding is done is specified at the time an 
object of the class is created. The only limitation to this technique is that the convolution function 
must be dimensionally separable; any n-dimensional convolution function must be a product of 
individual one dimensional functions. At present this class has methods for convolution of complex 
UV domain visibility data on to either a Hermitian grid or a full complex UV grid. There are also 
methods to convolve floating point data on to a regular cartesian grid. 

2 Convolution in the Fourier Domain 

While the GridTool class can do convolution of floating point data on to a regular Cartesian 
grid, this class was developed mainly for the purpose of convolving radio interferometer visibility 
data on to a Fourier domain UV grid. This process is necessary because radio astronomy aperture 
synthesis telescopes obtain information about the sky brightness distribution by indirect imaging. 
That is, they do not directly observe the sky brightness distribution, but rather, sample data in 
the Fourier domain. It is then necessary to Fourier transform the collected data back to the image 
domain to obtain an image of the sky brightness. 

To do the Fourier Transform in a reasonable amount of time we normally use a Fast Fourier 
Transform (FFT), which requires that the data be on a uniformly spaced grid. However radio 
interferometers do not sample data on a uniform grid, but rather, sweep out ellipsoidal tracks in 
the UV domain. In order to use an FFT, it is necessary to convolve data sampled along along a 
UV track on to a regularly spaced grid (see Figure 1). 

UV Track 

UVgrid 

• UV sample data point 
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The AIPS++ GridTool class provides application programmers with a very flexible tool for in¬ 
terpolating Fourier domain visibility data on to a grid of dimension two or higher before doing a 
FFT into the image domain. The GridTool is designed to be able to grid in an arbitrary number of 
dimensions. The number of actual dimensions in which gridding is done is specified when an object 
of the class is constructed. (Of course it is unlikely that you would want to grid radio astronomy 
Fourier domain data of more than 3 dimensions, but you can if you want to!) 

This document describes the public methods for this class and how to use them. 

3 Data Structure 

Since a UV grid created by GridTool will be converted into an image by an object of the 
FFTServer class, the UV grids created by GridTool will have the same layout as that described in 
Chapter 2 of the FFTServer User's Guide (Note xxx). You should read that document if you wish 
to further information on the layout of a UV grid. 

4 Base Class Methods 

As does the FFTServer class, the GridTool class inherits from a base class called FourierTool. 
FourierTool is a class with an array to hold Nyquist data associated with Hermetian UV grids 
and with methods to handle this array. I suggest that any classes which handle Fourier domain 
data inherit from this base class so that they have predefined methods to handle Nyquist data. At 
present the FFTServer and GridTool classes inherit from this base class. 

Here are the methods defined in base class FourierTool. 

• int pack(Array<T> ft uv.grid); 

• int pack(Array<S> ft uv.grid); 

where T can be one of float or double, and S can be one of Complex or DComplex. (We actually 
have two overloaded templated pack functions, but obviously, to the applications programmer they 

look like one function.) 

This operation takes the Nyquist data stored internally inside an FourierTool object and stores 
it in the UV array for transport elsewhere. 
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• int unpack (Array<T> ft uv.grid) ; 

• int unpack (Array<S> ft uv.grid) ; 

where T can be one of float or double, and S can be one of Complex or DComplex. This 
operation extracts the Nyquist data packed into a UV array, and stores it internally inside the 
FourierTool object. It then overwrites that part of the UV grid which was being used to store 
the Nyquist data with data from the complex conjugate part of the Hermetian UV grid. 

• void reset(); 

This method resets the internal Nyquist array to have a value of zero. 

• const Array<T> ft extractNYFQ; 

• const Array<S> ft extractNYCO ; 

where T can be one of float or double, and S can be one of Complex or DComplex. These 
methods copy the internal Nyquist array into an external array that can be viewed or manipulated 
by the programmer. 

• const Array<T> ft insertNYFQ ; 

• const Array<S> ft insertNYCQ ; 

where T can be one of float or double, and S can be one of Complex or DComplex. These 
methods copy an externally defined array of data into the the internal Nyquist array. They can be 
used to insert a Nyquist array back into a GridTool onject after the array has been modified for 
some reason. 

• void expand(Array<T> ft uv.grid); 

• void expand (Arr ay <S> ft uv.grid); 

where T can be one of float or double, and S can be one of Complex or DComplex. 

These methods allow you to attach the contents of the internal Nyquist array on to the end of 
an unpacked UV array so that the entire range of data for frequencies in U from 0 to Nyquist are 
stored in one array. The U dimension of the array will be increased by 2 for the case where T is 
either float or double, and by 1 for the case S is either Complex or DComplex. 
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Note that in order to perform this operation an internal temporary array whose size is that of 
the final output array will be used. 

• void shrink (Array<T> ft uv.grid) ; 

• void shrink (Array <S> ft uv.grid); 

where T can be one of float or double, and S can be one of Complex or DComplex. 

These methods take an array which contains Nyquist data at the end of the U dimension, copy 
the Nyquist data into the internal Nyquist array, and then delete the Nyquist data from the input 
array. The U dimension of the array will be decreased by 2 for the case where T is either float or 
double, and by 1 for the case S is either Complex or DComplex. 

Note that in order to perform this operation an internal temporary array whose size is that of 
the final output array will be used. 

5 General Purpose Methods 

Here are the methods defined in class GridTool. 

5.1 Constructor 

The GridTool constructor is of the form 

• GridTooKT, S> ( MathFunc<T>**mathptr, Matrix<T>& input_parms) 

where T can be one of float or double, and S can be one of Complex or DComplex. Single 
precision data types float and Complex should be used together as should types double and 
DComplex. Other mixtures are not guaranteed to produce sensible results! 

The first parameter required by the constructor is a pointer to an array of MathFunc objects. 
There will be n of these MathFunc objects, where n will be 2 if we are convolving on to a 2 
dimensional UV grid and 3 if we are convolving onto a UVW grid. Each MathFunc object describes a 
convolution function for a particular dimension; we make the assumption that the net n-dimensional 
convolution function we derive will be a product of these individual 1-dimensional functions, e.g. 
f(x,y) = f(x) * f(y) 
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The second input data item is a matrix of size 3 x n, where n is again the number of dimensions 
in the UV grid. For each dimension we must specify 3 parameters. The first parameter is the size 
of the grid in that dimension. The default size is 1024. The second parameter gives a "cellsize" 
in arcsec, for the separation between pixels in the final Fourier transformed image of the sky 
brightness distribution. The GridTool object will use this information to compute the proper 
separation between grid points in the UV domain. Eventually the AIPS++ Measures class will allow 
you to enter cellsize in units other than arcsec. (If you just want to interpolate floating point data 
on to a Cartesian grid with a separation of 1 between grid points, then enter a value of 0 for the 
cellsize.) The third parameter gives the number of sub elements into which we will divide a grid cell 
in that dimension in order to compute the lookup table for the convolution function. The default 
is 100. Here is an example of constructing an object of class GridTool. 

int imsize = 2048; / define image / UV grid size 
/ could be different in different dimensions 
/ define a cellsize in arcsec 
/ number of dimensions (2 in this example) 

Matrix<float> input_parms(3,n); input_parms = float(O); 
/ declare and initialize a matrix to hold 
/ input parameters 
/ specify the size of the image 
/     in each dimension 
/ specify the cell size 
/     in each dimension 
/ input_parms(2,0) ■ input_parms(2,1) ■ 0 
/ so the default of 100 subdivisions per 
/ UV cell will be used to compute the 
/ convolution function lookup table 

MathFunc<float>** Mathptr ■ new MathFunc<float>*[n]; 
/ set up an array of math functions 
/ one math function needed for each dimension 
/ decide which type of math function 

Mathptr[i] = new Sph_Conv<float>(); // to use in each dimension 
// here Spheroidal function used 
// in each dimension 

float cellsize = 20.0; 
int n = 2; 

input_parms(0,0) - imsize; 
input_parms(0,1) = imsize; 
input_parms(1,0) = cellsize; 
input_parms(1,1) = cellsize; 

for (int i ■ 0;i<n;i++) { 

GridTooKf loat,Complex> grid.tool(Mathptr, input.parrns) ; 
// Construct a GridTool 

5.2 Gridding 

Gridding is done through the methods 

•  int gridUV(Array<T> ft uv.loc, Array<T> ft uv.data, Array<T> ftuv.grid, Array<T> ft uv.weight); 
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• int gridUV (Array<T> ft uv.loc, Array<T> ft uv.data, Array<S> ftuv.grid, Array<T> ft uv.weight) ; 

• int cGridUV (Array<T> ft uv_loc, Array<T> ft uv^data. Array<S> &uv_grid, Array<T> ft 
uv_weight); 

• int grid(Array<T> ft loc, Array<T> ft data, Array<T> ftgrid, Array<T> ft uv.weight) ; 

where T can be one of float or double, and S can be one of Complex or DComplex. 

Method gridUV takes arrays of UV data locations (uv_loc) and the visibilities at those locations 
(uv_data), and interpolates the visibility data on to a Hermetian UV grid (uv.grid) in preparation 
for a complex to real FFT. At the same time, the weight of each convolved visibility grid point is 
added to the uv.weight array. 

The gridded uv.grid will be in unpacked form, i.e. any UV data that gets gridded at the U 
Nyquist frequency will get stored in the separate internal Nyquist array. If you intend to FFT the 
uv.grid data with an object of the FFTServer class, you must first pack the data before doing the 
FFT. 

uv.loc can either be a vector, whose elements are U, V, (and optionally W), or a matrix whose 
individual columns represent specific UV(W) locations. 

uv.data can either be a vector, whose elements are the corresponding real and imaginary values, 
followed by a weight, of a specific visibility, or a matrix whose individual columns contain the 
visibility data for the visibility locations defined in matrix uv.loc. 

The GridTool has methods specifically developed for gridding and degridding operations. It 
does not understand anything about tapering of visibility data, uniform weighting of data, etc. If 
you want to taper visibility data, etc, you must do so outside the GridTool and pass the result of 
the operation in as a factor in the weight field of uv.data. 

uv.grid is used to store the gridded visibilities, and can be a Matrix if we are doing two 
dimensional gridding, or a Cube if we are doing three dimensional gridding. It can be declared in 
either real or complex form. If you use the zeal form then you should define its dimensions to be 
that of the final output sky image; if you use the complex form then the first dimension should be 
half that of the final output sky image. 

uv.weight is used to store the weight associated with each gridded visibility point. It can be 
a Matrix if we are doing two dimensional gridding, or a Cube if we are doing three dimensional 
gridding. For the case of a Hermetian UV grid, the size of this real array in the first dimension is 
half the final real image size plus 1. In the remaining dimensions it equals the image size. 
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Here is an example. 

We continue with the GridTool object created in the previous example and assume we have a 
UV data point at U = 20000 wavelengths, V = 30000 wavelengths, with a real visibility value of 
7.5 and and imaginary visibility value of 2.2. The weight of this point will be 1.0 . 

Vector <float> uv(2); 
Vector <float> uv_vall(3); 
Matrix <float> data(imsize,imsize); 

// declare 2048 x 2048 array to hold uv grid 
data = float(0.0); // set the array to zero 
Matrix<float> wts(imsize/2+l,imsize); 

// declare weighting grid;  its size is 
// always imsize/2 + 1    in the first 
// dimension 

wts = float(0.0); // set the weights array to zero 
uv(0) ■ 20000.0; // assign UV values to uv 
uv(l) = 30000.0; 
uv_vall(0) =7.5; // assign visibility values to uv.vall 
uv.valKl) = 2.21 
uv.vall(2) ■ 1.0; 
grid.tool.gridUV(uv,uv.vall, data, wts); 

// grid the visibility 
grid.tool.pack(data); // pack UV data for transport to FFTServer 

It is important to note the last line of the above example. Gridding on a Hermetian UV grid is 
always done on an unpacked UV grid, with any data at the U Nyquist frequency being stored in 
the separate internal Nyquist array. If you intend to FFT this grid to the sky image domain, you 
must perform a pack operation to carry any Nyquist data along to an FFTServer object, which 

will perform the FFT. 

Since the GridTool handles general arrays, we can also feed it matrices of UV locations and UV 

values and it will digest them without a hitch. An example follows: 

Matrix <float> uv(2,20); 
Matrix <float> uv.vall(3,20); 

Matrix <float> data(2048,2048) 

data = float(0.0); 
Matrix<float> wts(imsize/2+1,imsize); 

wts = float(0.0); 
for (int i -  0; i < 20;  i++){ 

/ Matrix uv can hold 20 U, V values 
/ Matrix uv.vall can hold 20 
/ real / imaginary values and 
/ their weight 

/ declare 2048 x 2048 array to hold uv grid 
/ set the array to zero 

/ declare weighting grid 
/ set the weights array to zero 
/ assign some silly values 
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uv(0,i) = i * 5000.0; //      to the uv and uv.vall 
uv(l,i) * i * 3500.0; //      matrices 
uv.vall(0,i) = i * 7.5; 
uv.valKl,i) ■ i * 2.2; 
uv_vall(2,i) = 1.0; 

> 
grid.tool.gridUV(uv,uv.vall, data, wts);    // do the gridding 

The grid tool can equally well digest cubes of data. See the proto_3d_image example in Chapter 
7. 

Method cGridUV takes visibility data and does convolution on to a full complex UV grid. No 
Hermetian symmetry is assumed in this case. The uv.weight array must now have the same 
dimensions and size as that of the UV grid array. See the detailed example of full complex gridding, 
complex proto.map in the last chapter. 

Method grid takes real or double floating point data and does convolution on to a Cartesian 
grid. The weight array must have the same dimensions and size as that of the Cartesian grid. 

5.3 Degridding 

The other main function of the GridTool class is to de-grid visibility data from a UV grid on to 
interferometer UV tracks. Here are declarations of the methods available to do degridding. 

• int degridUV(Array<T> ft uv.loc, Array<T> ft uv.data, Array<T> ftuv.grid, int do.weight 
= 0); 

• int degridUV (Arr ay <T> ft uv.loc, Array<T> ft uv.data, Array<S> ftuv.grid, int do.weight 
= 0); 

• int cDegridUV(Array<T> ft uv.loc, Array<T> ft uv.data, Array<S> ftuv.grid, int do.weight 
= 0); 

• int degrid(Array<T> ft loc, Array<T> ft data, Array<T> ftgrid, int do.weight ■ 0); 

where T can be one of float or double, and S can be one of Complex or DComplex. 

Method degridUV de-grids UV domain visibilities from a Hermetian UV grid. 

To de-grid UV domain visibilities, you provide the GridTool object with the UV location of the 
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visibility you wish to create (in Array uv.loc), the UV grid (in Array uv.grid), and the value of 

a parameter do.weight. 

A Hermetian UV grid must be in unpacked form, i.e. the U Nyquist data must be stored in the 
separate internal Nyquist array. If you have obtained this grid from the output of an FFTServer 
object's FFT from the sky to the UV domain, the first command to the GridTool object must be 
an unpack operation. 

The GridTool object will return the real and imaginary components of the visibility in array 
uv.data, along with a weight of 1 if it could successfully degrid the visibility. A weight of -1 will 
be returned if the visibility could not be properly degridded (location of the UV point is outside 
the UV grid, or some other cause yet to be determined). The format of this array is the same as 

was described for the gridding method. 

The do.weight parameter should be left with its default value of 0 (zero) if you are deconvolving 
off a grid whose data were put on to it by a convolution operation. If the grid was derived by some 
type of modelling procedure (eg. find CLEAN components on the sky, then FFT these components 
into UV space), do.weight should be set to a non-zero value. 

Here is a simple example of degridding at a single UV location. We assume that the 2048 x 2048 
data array that we have been working with is now a UV grid that has been obtained by Fourier 

transfomation from some model of the sky. 

Vector<float> uv(2); 
Vector<float> uv.vall(3); 
uv.vall ■ float(0.0); 
uv(0) = 20000.0;        // UV locations in units of wavelength 

uv(l) = 30000.0; 
grid_tool.unpack(data);      // unpack Nyquist data from UV grid 
grid_tool.degridUV(uv,uv.vall, data,  1);    // degrid to uv tracks 

uv.vall(0) and uv.valKl) now contain the real and imaginary components of the visibility 

at U = 20000.0, V = 30000.0. uv.vall (2) is a weight with value 1.0. 

Just as we could grid a group of visibilities so can we degrid a group. 

Matrix <float> uv(2,20); // Matrix uv can hold 20 U, V values 
Matrix <float> uv.vall(3,20); // Matrix uv.vall can hold 20 

//   read / imaginary values and 
//    their weight 

uv.vall ■ float(0.0); // initialize uv.vall to zero 
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for (int 1=0;  i < 20;    !++){// assign some silly values 
uv(0,i) ■ i * 5000.0; //      to the uv matrix 
uv(l,i) = i * 3500.0; 

> 
grid.tool.degridUV(uv,uv.vall, data,  1);    // do the degridding 

uv.vall(0,i) and uv.vall(l,i) now contain the real and imaginary components of the i th 
visibility, uv.vall(2,i) is a weight with value 1.0. 

Method cDegridUV de-grids UV domain visibilities from a full complex UV grid laid out in the 
form described in the FFTServer Users' Guide. 

To de-grid UV domain visibilities, you provide the GridTool object with the UV location of the 
visibility you wish to create (in Array uv.loc), the UV grid (in Array uv.grid), and the value of 
a parameter do.weight. 

The GridTool object will return the real and imaginary components of the visibility in array 
uv.data, along with a weight. The formats of these arrays are the same as was described for the 

gridding method. 

The do.weight parameter should be left with its default value of 0 (zero) if you are deconvolving 
off a grid whose data were put on to it by a convolution operation. If the grid was derived by some 
type of modelling procedure (eg. find CLEAN components on the sky, then FFT these components 
into UV space), do.weight should be set to a non-zero value. 

Method degrid de-grids single or double precision floating point data from a cartesian grid. 

To de-grid floating point numbers, you provide the GridTool object with the coordinate location 
of the data point you wish to obtain (in Array loc), the Cartesian grid of data values (in Array 
grid), and the value of the parameter do.weight. 

The GridTool object will return the computed value of a data point in array data, along with 
a weight. The formats of this array is the same as was described for the gridding method. 

The do.weight parameter should be left with its default value of 0 (zero) if you are deconvolving 
off a grid whose data were put on to it by a convolution operation. If the grid was derived by some 
type of modelling procedure (eg. find CLEAN components on the sky, then FFT these components 
into UV space), do.weight should be set to a non-zero value. 
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5.4 Auxiliary Methods 

• convCorrect( Array<T> ft image) 

• convCorrect ( Array<S> ft image) 

If we convolve visibility data on to a UV grid, and then FFT the UV grid into the image domain, 
the resulting image is not a proper representation of the sky. Instead the image appears to have 
been multiplied by a function that is the Fourier Transform of the convolution function we used to 
convolve the original visibility data on to the grid. This is a simple result of the relation 

A® B *—► a*b 

where ® is the convolution operator and * is the multiplication operator. <—► indicates a 
Fourier transform. Thus, if A stands for the original visibilities and B for the convolution function, 
a will stand for the final sky map and b for the Fourier transform of the convolution function. 

To obtain the actual sky distribution (a) we must divide out the multiplication function (b). 
This is done by the convCorrect method. 

Also, if you are going to convert a model sky into interferometer visibility tracks, you must apply 
this method, BEFORE FFTing the model sky into the UV domain. This is necessary because the 
deconvolution operations that take place inside the degridUV method are an inverse of the gridding 

procedure. 

The proto.map program in Chapter 5 shows examples of the use of convCorrect. 

• int comitUV( Array<T> ft uv.loc, Array<Int> ftuv.count) 

• int cCountUV( Array<T> ft uv.loc, Array<Int> ftuv.count) 

These methods assist you if you want to do uniform weighting or for any other reason want 
to count the number of ungridded raw visibility points that will fall into a given UV grid cell. 
countUV is used if you are working with Hermetian UV grids and cCountUV if you are working with 

full complex UV grids. 

uv.loc is a vector or matrix of UV locations just like that used for the gridUV or degridUV 
methods, uv.count is an integer array whose dimensions are the same as those of the uv.weight 
array required for methods gridUV or cGridUV; that is, in the case of gridUV, sky image size /2 + 
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1 in the first dimension and the same sizes as the image in the remaining dimensions, and in the 
case of cGridUV the same dimensions as the complex image. 

If the UV location uv.loc of an ungridded visibility falls within a particular UV cell, x,y, then 
the value of uv_coiint(x,y) is incremented by 1. 

Here is an example (again we assume an image size of 2048 x 2048): 

Int imsize = 2048; // set image size 
Matrix <float> uv(2,20); // Matrix uv can hold 20 U, V values 
for (int i * 0; i < 20 

uv(0,i) = i * 5000.0 
uv(l,i) = i * 3500.0 

} 
Matrix<Int> uv.count(imsize/2+1,imsize); 
grid.tool.countUV(uv, uv.count); 

i++){// assign some silly values 
//  assign some silly values 
//  to the UV matrix 

The locations of matrix uv.count now contain the number of telescope based visibilities which 
will fall into each of the UV grid cells. 

• int numValues( Vector<T> ft uv.loc, Array<Int> ftuv.count) 

• int cNumValues( Vector<T> ft uv.loc. Array<Int> ftuv.count) 

If you have previously run all visibilities that you wish to grid through the countUV or cCountUV 
method, the array uv.count now contains the count of the number of visibilities which fail into 
each UV grid cell. Calling method numValues, if you are working with a Hermetian UV grid, or or 
cNumValues, if you are working with a full complex UV grid, with the UV location uv.loc of an 
ungridded visibility will cause the method to return the total number of ungridded visibility points 
that fall within the UV grid cell associated with this visibility. 

If you assign the visibility at uv.loc a weight equal to the inverse of numValues or cNumValues 
before gridding, then you should end up with a uv grid having uniform weighting. 

Here is an example. It is essentially a continuation of the previous one. 

Vector <float> uv(2);       // vector containing uv locations 
Vector <float> uv.vall(3);   // vector containing visibility 

// real / imaginary values and 
// their weight 

uv(0) ■ 20000.0; // assign UV values to uv 
uv(l) = 30000.0; 
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uv.vall(0) =7.5; 
uv.valKl) =2.2; 

// assign visibility values to uv.vall 

// weight the visibility by the inverse of the number of visibilities 
// found in the UV cell 

uv.vall(2) ■ 1.0 / float(grid.tool.numValues(uv, uv.count) ); 

6 Internal Structure of the GridTool Class 

The functional structure of class GridTool is indicated in the following diagram. 

GridTool Class 

The Constructor method takes the input mathptr to the array of MathFunc objects and stores 
it as an internal private data member. It takes the image size in each dimension, the number 
of subdivisions per cell for the convolution function lookup table, and the support width for the 
convolution function in each dimension, and constructs a ConvVector object for each dimension. 

These ConvVector objects contain methods and data for doing one-dimensional convolutions. 
Amongst other things they compute the convolution weight of a data point in the given dimen¬ 
sion, the weighted value of the visibility in the specified dimension and the inverse direct Fourier 

transform (DFT) of the one-dimensional convolution function. 

gridwt, computeXYloc, gridCorr and inGrid are private methods used by the class, gridwt 
combines the convolution weight in each dimension to give the combined weight at a grid point. 
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gridCorr combines the one dimensional DFTs to give a correction value at each grid point which 
is then passed to the public method convCorrect. computeXYloc is called by the public methods 
gridUV and degridUV. It interacts with the ConvVector objects to compute the convolved UV grid 
locations and weights at those locations in each dimension. inGrid checks if a computed UV grid 
coordinate actually lies within the UV grid that will be used for the FFT to the image domain. 

The remaining methods are public ones. Their function has been described previously in Chapter 
4. 

7 Some Working Examples 

Perhaps the best way to present the use of GridTool and FFTServer objects is to give some 
complete working examples. 

7.1 proto_map 

proto.map is a small program which creates artificial images as seen by a synthetic aperture 
radio telescope from an array of point sources at positions entered by a user. The image in the sky 
domain is real, so we can do the gridding and FFTS using methods for Hermetian UV grids. 

// 
// proto.map; a simple program for making maps 

// 
•include <lostream.h> 
♦include <aips/Math.h> 
♦include <aips/Constants.h> 
♦include <aips/String.h> 
♦include <aips/aips.h> 
tinclude <aips/ArrayIter.h> 
♦include <aips/Matrix.h> 
♦include <aips/Vector.h> 
♦include <aips/GridTool.h> 
♦include <aips/FFTServer.h> 

// 
// This program tests the combination of GridTool and FFTServer classes 
// and makes simple maps 
// basic algorithm - 
//    get an array of point sources 
//    FFT the point source model into UV domain 
//    degrid to obtain raw telescope visibilities 
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//    grid the visibilities 
//    FFT UV gridded visibilities to image domain to get artificial sky 
//      image as seen by telescope 
//    reset UV grid to zero 
//    transfer gridding weights to UV grid 
//    FFT UV grid of weights to image domain to get synthetic antenna pattern 
// 
int mainQ 
{ 
// obtain image size 

int imsize; 
cout « "Enter image size (must be power of 2) : "; 
cin » imsize; 

// should actually check that image is power of 2 !! 

// declare a matrix, could be different sizes in x and y in general 
Matrix<float> image(imsize,imsize); image =0.0; //uv grid <-> image 

// now enter some point sources (positions and flux densities) 
// to create a map of point sources 

cout « "Enter point source flux density and x and y locations M«endl; 
cout « "x and y must lie in range 0 to M«imsize - 1 «endl«endl; 
float fluxdensity; 
int finished = 0; 
int x, y; 
cout «" "«endl; 
while (!finished) { 

cout « "Enter point source flux density (-999 to finish) "; 
cin » fluxdensity; 
if (fluxdensity --  -999.0) 

finished = 1; 
if ({finished) { 

cout « "Enter point source x and y location:"; 
cin » x » y; 
if (x >=0 && x < imsize && y >=0 && y < imsize) 

image(x,y) - fluxdensity; 

> 
} 

// set number of dimensions, 2 in this example 
int n = 2; 

// create a cellsize (in arcsec) - use 20 arcsec in this test program 
float cellsize = 20.0; 

// set up array which will carry set up parameters into GridTool 
// constructor 

Matrix<float> input_parms(3,n); input.parms = float(O); 

// tell the grid-tool the dimensions of the image and the cellsize 
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input.parms(0,0) = imsize; 
input_parms(0,l) = imsize; 
input.parms(1,0) ■ cellsize; 
input.parms (1,1) = cellsize; 

// set up an array of math functions - one for each dimension 
//use Spheroidal convolution in this example 

MathFunc<float>** Mathptr = new MathFunc<float>*[n]; 
for (int i ■ 0;i<n;i++) 

{ 
Mathptr[i] = new Sph_Conv<float>(); 
} 

// Construct em object of class GridTool 
GridTooKf loat, Complex> grid.tool (Mathptr, input .parms) ; 

// Apply convolution correction to image 
// This operation must be done before FFTing to UV domain to degrid 

grid.tool.convCorrect(image); 

// Construct an FFTServer 
FFTServer<float,Complex> fft(image); 

// FFT array of point sources to UV grid 
// The UV grid returned by method fft will be in packed format 

fft.fft(image,1); 

// Unpack the UV grid to do uv plane degridding 
grid.tool.unpack(image); 

// create some fake uv "tracks" for an east-west interferometer 
// we will assume that we can have 100 spacings. 
// each spacing will have 20 uv sample points, each sample point 
// having a u and v value (uv.coord cube) and a cosine, sine and 
// weight value (uv.val cube) 

Cube <float> uv.coord(2,20,100); uv.coord = float(O.O); 
Cube <float> uv.val(3,20,100); uv.val = float(0.0); 
int uvmax = imsize / 3 - 1; 
if (uvmax > 99) 

uvmax ■ 99; 
float delta.theta = C::pi / 20.0; 

// set up some objects of class Arraylterator so that we will be 
// able to iterate through these data cubes one layer (matrix) at a time 

ArrayIterator<float> uv.iter(uv.coord,2); 
ArrayIterator<float> uv.iter.dat(uv.val,2); 

// The next conversion allows us to take uv location in grid units and 
// turn it into uv location in 'wavelengths' so that 
// GridTool can reverse the operation!! 

float scale.factor ■ 1.0 / (C::asec2rad*input.parms(0,0)*cellsize); 
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// now compute the uv locations for each spacing 
for (i = 1; i <= uvmax; i ++) { 

Matrix <float> muv_coord(2,20); muv.coord = float(O.O); 
Matrix <float> muv_val(3,20); muv.val -  float(O.O); 
for (int j - 0; j < 20; j ++) { 

float theta = -C::pi.2 + j * delta.theta; 
float v = i * sin(theta); 
float u = i * cos(theta); 
muv_coord(0,j) = u * scale.factor; // muv.coord is in wavelengths 
muv.coord(l,j) = v * scale.factor; 

} 

// now pass the vector of uv locations into grid.tool to degrid 
// and get values for the raw telescope visibilities, muv.val 

grid.tool.degridUV(muv.coord,muv.val, image, 1); 
uv.iter.arrayO = muv.coord; 
uv.iter.dat.array() = muv.val; 
uv.iter.nextO; 
uv.iter.dat.next(); 

> 

// visibilities as seen by the telescope have been created 
// now make the map - first do gridding 

uv.iter.originO; // reset the iterators 
uv.iter.dat. originO; 

image = float(0.0); // reset the image array to zero 
grid.tool.reset(); // reset internal Nyquist array to zero 
Matrix<float> wts(imsize/2+1,imsize); wts = 0.0;  //weighting grid 

// pass though the uv cubes one layer (or baseline) at a time 
for (i = 0; i < uvmax; i ++) { // do gridding for each baseline 

grid.tool.gridUV(uv.iter.arrayO,uv.iter.dat.arrayO, image, wts); 
uv.iter.nextO; 
uv.iter.dat .next (); 

} 

grid.tool.pack(image); // pack uvgrid for transport to FFTServer object, 
fft 

f f t.f ft (image, 0);     // FFT uv plane to image domain 
//  -don't do any scaling 
//  -scaling is done by dividing 
//   by sum of weights 

grid.tool.convCorrect(image);  // correct for convolution effects 
float sum.of.weight = fft.wtsum(wts); 
image /= sum. of .weight;     // normalize output image 

// image has been made; in real universe you would store it to 
// disk at this point 
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// now make an antenna pattern 
image =0.0; // again, reset image array to zero 

// copy the weights array to the UV grid 
// weights get copied into real components 
// imaginary components are all zero 

fft.uvassign(image, wts); 

fft.fft(image, 0); // FFT to image domain 
grid.tool.convCorrect(image); 
image /= sum. of .weight; // normalize; maximum peak better be 1  !! 

// antenna pattern has been made;  in real universe you would store 
// it to disk at this point 

// Whew! finished, I think 
} 

If we ran the previous program, specifying a map size of 128, and put point sources with 
intensities 10, 20 and 30 at X,Y locations (19,19), (99,19), and (64,99) respectively, we would get 
an image like the following: 

7.2 proto_3dJmage 

proto_3d_image is a program which takes UVW visibility tracks, grids them and makes a 3 
dimensional image. 
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♦include <iostream.h> 
♦include <aips/Math.h> 
♦include <aips/Constants.h> 
♦include <aips/aips.h> 
♦include <aips/ArrayIter.h> 
♦include <aips/Matrix.h> 
♦include <aips/Vector.h> 
♦include <aips/GridTool.h> 
♦include <aips/FFTServer.h> 

// 
// This program tests the combination of GridTool and FFTServer objects 
// with 3-d grids and makes a simple 3 dimensional image 
// basic algorithm - 
//    get image parameters: size, cellsize 
//    read in telescope visibilities 
//    grid the visibilities 
//    FFT UV gridded visibilities to image domain 
//      to obtain image of sky as seen by telescope 
//    reset UV grid to zero 
//    transfer gridding weights to UV grid 
//    FFT weights grid to image domain to get synthesized antenna pattern 

// 
mainO 
{ 
// decide on output image size 

int imsize; 
cout « "Enter image size (must be power of 2) : "; 
cin » imsize; 

// should actually check that image is power of 2 !! 

// declare a 3-d image, could be different sizes in x,y and z in general 
Cube<float> image(imsize,imsize,imsize); image = 0.0; //uv grid <-> image 

// set number of dimensions; here n = 3 
int n ■ 3; 

// create a cellsize (in arcsec) - can be anything in this test program 
cout « "Enter cellsize (arcsec) : "; 
float cellsize; 
cin » cellsize; 

// create matrix to hold input parameters for GridTool constructor 
Matrix<float> input.parms(3,n); input.parms - float(O); 

// tell the grid-tool the dimensions of the image and the cellsize 

// 
input.parms(0,0) = imsize; 
input.parms(0,1) - imsize; 
input.parms(0,2) = imsize; 



Chapter 7: Some Working Examples 20 

input.parms(1,0) - cellsize; 
input.parms (1,1) = cellsize; 
input.parms(1,2) -  cellsize; 

// set up an array of math functions - one for each dimension 
MathFunc<float>** Mathptr -  new MathFunc<float>*[n]; 
for (int i = 0;i<n;i++) { 

Mathptr[i] ■ new Sph_Conv<float>(); 
> 

// Construct a GridTool object 
GridTool grid.tooKf loat, Complex> (Mathptr, input .parms) ; 

// find out how many visibilities will be read in 
// 

cout « "Enter number of visibilities to be read in : "; 
int no.vis; 
cin » no.vis; 

// 
// create arrays to hold visibility locations and visibility values 

Matrix <float> uv_coord(3,no.vis); uv.coord ■ float(0.0); 
Matrix <float> uv.val(3,no.vis); uv.val = float(O.O); 

// 
// read in visibility data and store in previously created arrays 
// 

int dummy1, dummy2; 
float dummy3; 
for (int m = 0; m < no.vis; m++) 

cin » uv_coord(0,m); 
cin » uv_coord(l,m); 
cin » uv.coord(2,m); 
cin » uv.val(0,m); 
cin » uv.val(l,m); 
cin » uv.val(2,m); 

} 

/ U 
/ V 
/ W 
/ real component of visibility 
/ imaginary part of visibility 
/ weight of visibility 

// visibilities have been read in 
// now create a cube to hold the uv grid weights 

Cube<float> wts(imsize/2+1,imsize,imsize); wts = 0.0; 

// now do the gridding 
grid.tool.gridUV(uv.coord,uv.val, image, wts); 

// pack uvgrid for transport to FFTServer object 
grid.tool.pack(image); 

// initialize an FFTServer for "image" 
FFTServer<float,Complex> fft(image); 
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f f t.f ft (image, 0); // FFT uv cube to image domain 
//  -don't do any scaling 
//  -scaling is done by dividing 
//   by sum of weights 

// correct for convolution effects 
grid.tool.convCorrect(image); 

float sum.of.weight = fft.wtsum(wts); 
sum_of.weight = 1.0 / sum_of.weight; 
image *= sum. of .weight;  // normalize image 

// you would write out the image to disk here 

// make an antenna pattern 
image = 0.0; 
fft.uvassign(image, wts); 
fft.fft(image, 0); 
grid.tool.convCorrect(image); 
image *= sum.of.weight;     // central peak better be 1 !! 

// you would write out the antenna pattern to disk here 

// Whew! finished, I think 

7.3 complex proto.map 

We now take the proto_map example discussed in section 1 and assume that the sky image is 
complex. So we use gridding and FFT methods appropriate for a complex grid. 

♦include <iostream.h> 
♦include <aips/Math.h> 
♦include <iostream.h> 
♦include <aips/Constants.h> 
♦include <aips/String.h> 
♦include <aips/aips.h> 
♦include <aips/gridIO.h> 
♦include <aips/ArrayIter.h> 
♦include <aips/Matrix.h> 
♦include <aips/Vector.h> 
♦include <aips/GridTool.h> 
♦include <aips/FFTServer.h> 

// 
// This program tests the combination of GridTool and FFTServer 
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// methods for the case of complex images and full complex UV grids 
// 
int main() 
{ 

int imsize; 
cout « "Enter image size (must be power of 2) : "; 
cin » imsize; 

// declare a Complex matrix, could be different sizes in x and y in general 
// this holds the uv grid <-> image 

Matrix<Complex> image(imsize,imsize); 
image = Complex(0.0); 

// now enter some point sources (positions and flux densities) 
// to create a map of point sources 

cout « "Enter point source flux density and x and y locations "«endl; 
cout « "x and y must lie in range 0 to "«imsize - 1 «endl«endl; 
float fluxdensity; 
int finished = 0; 
int x, y; 
cout «" "«endl; 
while (Ifinished) { 

cout « "Enter point source flux density (-999 to finish) "; 
cin » fluxdensity; 
if (fluxdensity ■■ -999.0) 

finished = 1; 
if ('finished) { 

cout « "Enter point source x and y location:"; 
cin » x » y; 
if (x >=0 && x < imsize ftft y >=0 && y < imsize) 

image(x,y) = Complex(fluxdensity); 

> 
> 

// create a cellsize (in arcsec) - can be anything in this test program 
float cellsize = 20.0; 

// set number of dimensions; currently n = 2 
int n = 2; 

// create matrix to hold input parameters for GridTool constructor 
Matrix<float> input.parms(3,n); input.parms = float(O); 

// tell the grid-tool the dimensions of the image 
// and the cellsize 

input.parms(0,0) = imsize; 
input.parms(0,1) = imsize; 
input.parms(1,0) = cellsize; 
input.parms(1,1) = cellsize; 
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// set up an array of math functions - one for each dimension 
MathFunc<float>** Mathptr ■ new MathFunc<float>*[n]; 
for (int i ■ 0;i<n;i++) 

•C 
Mathptr[i] = new Sph.Conv<float>(); 
} 

// initialize a grid tool 
GridTooKf loat, Complex> grid.tool (Mathptr, input .parms) ; 
grid.tool.convCorrect(image);      // correction to image 

// required for degridding 

// initialize an FFTServer for "image" 
FFTServer<float,Complex> fft(image); // constructor 

// do full complex FFT to uv plane 
fft.cxfft(image,1); 

// create some fake uv "tracks" for an east-west interferometer 
// we will assume that we can have 100 spacings. 
// each spacing will have 40 uv sample points, each sample point 
// having a u and v value (uv.coord cube) and a cosine, sine and 
// weight value (uv.val cube) 
// we now need 40 sample points since we do not assume Hermetian 
// symmetry 

Cube <float> uv_coord(2,40,i00); uv.coord = float(O.O); 
Cube <float> uv.val(3,40,100); uv.val = float(O.O); 
int uvmax ■ imsize / 3 - 1; 
if (uvmax > 99) 

uvmax ■ 99; 
float delta_theta = C::pi / 20.0; 

// 
// create the uv cubes by going through them one layer at a time 
// 

ArrayIterator<float> uv.iter(uv.coord,2); 
ArrayIterator<float> uv.iter.dat(uv.val,2); 

// 
// The next conversion allows us to take uv location in grid units and 
// turn it into uv location in 'wavelengths' so that 
// GridTool can reverse the operation!! 
// 

float scale.factor = 1.0 / (C::asec2rad*input.parms(0,0)♦cellsize); 
// 
// now compute the uv locations for each spacing 
// 

for (1=1; i <= uvmax; i ++) { 
Matrix <float> muv.coord(2,40); muv.coord = float(0.0); 
Matrix <float> muv.val(3,40); muv.val = float(0.0); 
for (int j = 0; j < 40; j ++) { 

float theta = -C::pi_2 + j * delta.theta; 
float v = i * sin(theta); 
float u = i * cos(theta); 
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muv.coord(0,j) = u * scale.factor; 
muv.coord(l,j) = v * scale.factor; 

> 
// degrid to get values of visibilities 

grid.tool.cDegridUV(muv.coord,muv_val, image,  1); 
uv.iter.arrayO = muv.coord; 
uv.iter.dat.array() = muv.val; 
uv.iter.nextO; 
uv.iter.dat.next(); 

> 
// 
// visibilities have been created 
// now make the map - first do gridding 
// 

uv.iter.originO; // reset the iterators 
uv.iter.dat .originO; 

image = float(0.0); // reset the image array 
Matrix<float> wts(imsize,imsize); wts = 0.0;  //weighting grid 

// do the gridding for each baseline 
for (i = 0; i < uvmax; i ++) { 

gr id.tool.cGridUV(uv_iter.array(),uv.iter.dat.array(), image, wts); 
uv.iter.nextO; 

> 

fft.cxfft(image,0); // FFT uv plane to image domain 
// gridding completed, now do FFT 

cout «"image has been fftd"<ndl; cout.flushO; 
//  -don't do any scaling 
//  -scaling is done by dividing 
//   by sum of weights 

grid.tool.convCorrect(image);  // correct for convolution effects 
float sum.of.weight = fft.cxWtsum(wts); 
image /= Complex (sum. of .weight);  // normalize fft 

// write out the image to disk here 

// make an antenna pattern 
image = Complex(O.O); 
fft.cxUVassign(image, wts); 
fft. cxf ft (image, 0); // FFT to sky domain 

// max peak of  'image' better be 1  !! 
grid.tool.convCorrect(image); 
image /= Complex(sum.of.weight); 

// write out the antenna pattern to disk here 
} 

If we run this program using the same parameters as for program proto.map the result would 
look like 
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Here every second value is imaginary, and all imaginary values are zero, so the map looks like 
the result for proto.map but with vertical stripes of zero in between each real value. 


