
November 19, 1993 

A Proposal for a Framework for Mathematical Objects and Methods 

R.M. Hjellming 

1    Introduction 

Some of the important classes in any object-oriented data processing system should be those 

based upon mathematical entities and operations. This was recognized early in the AIPS+-1- 

project and led to a prototyping emphasis on array-based classes and tables. However, the next 

layer of classes, and the way algorithms would be organized around mathematical classes, has 

not been defined with any completeness. In addition, there may be some additional attributes 

of vectors, matrices, and arrays that would be useful in a system where they are viewed as 

mathematical "components" of tables. Therefore we will discuss mvector, mmatrix, and 

marray classes that are almost identical to AIPS-I-+ vector, matrix, and array classes, 

but will have one additional public attribute (dimnames) and additional methods to support 

the mathematical system being proposed. In addition, we will discuss a mtable class which 

represents a view of a table as part of a vector, matrix, etc., oriented system of mathematical 

processing, and which will have additonal methods reflecting its role relative to other data 

objects. The classes we propose represent a design in the context of a framework, a "larger 

building block" than classes (Firesmith 1993, Mossenbock 1992). This framework is designed 

for data processing using mathematical objects. This document is planned to be complete, but 

will stop short of specific astronomical applications using these mathematics based classes. 

An important distinction should be made between the data objects and methods discussed 

in this document and the C-|-+ classes, designed for power and efficiency, that they are based 

upon. This distinction deals with the data objects from the point of view of the scientist and 

not necessarily the programmer. We tacitly assume that some of these objects, and some of 

their methods, are intended solely to make programming and algorithm modification easy for 

astronomers who are not experts at the sublety and power of C-I-+. Providing efficient classes is 

basic, but a secondary goal of providing classes expressing a scientist's point of view is probably 

essential to easy use of AIPS++ for programming by astronomers. 

Some of the concepts to be discussed are derived from a study of the object-oriented data 

processing and visualization language S (Becker et al. 1988, Chambers and Hastie 1991), using 

the version released by AT & T in 1991, as implemented for workstations and PCs in the 

commercial implementation product S+ . 

The issues that we should consider are not solely based upon a list of classes with associated 

methods. For this reason we will use a slightly different language to describe needed entities. 



First of all, we will discuss fundamental data objects in a manner which seemingly separates 

these data objects from the methods that use, modify, and create basic data objects. It seems 

useful to distinguish between the user-invocation of a method, methods that represent specific 

algorithms using data objects, and the methods of classes that instantiate data objects. 

Amongst the completely new data objects that we suggest as useful for AIPS-I—|- are: mlist, 

factor, grid, and the abovementioned mtable. Minor augmentation of the attributes of 

AIPS-I—|- Array-based classes, and addition of important methods for Array-based classes will 

be described for marray, mvector, and mmatrix. An mtable is a table when viewed as a 

collection of one or more vectors of numeric and/or string types, each with the same length, 

with character string labeling for rows and columns. 

2    Basic Data Values and Objects 

2.1    Data Values 

From the point of view of the mathematics, there are six basic data types that are potential 

elements of all data objects: 

• numeric (ordinary numbers, stored as integer, real, or double) 

• logical (TRUE or FALSE with associated logical operators) 

• complex (complex number numeric values) 

• strings (sequences of characters) 

• NA (a Not Available indicator for data values that plays a general role in mathematics 

to represent missing data, like the blank pixel concept in astronomy, IEEE NaNs, or the 

results of indeterminate computations like 0/0) 

• NULL (a concrete return type for any data value; useful for positively returning no values 

or for establishing whether values were returned) 

The first four types of data values (numeric, complex, logical, and strings) represent four 

"modes''. Additional modes can be defined for higher level constructs. The use of fuzzy 

numbers that is being investigated for error propagation in AlPS-h-1- will use constucts based 

upon vectors of numeric or complex type, with special rules for their arithmetic, but will not 

be discussed further in this document. 

The use of NA and NULL at the basic level of data values seems to allow added flexibility in 

mathematical algorithms, with some methods using, or allowing, these data values, and some 

methods requiring that NA or NULL not be included in the data objects. 



Now we can define a data object as an atomic or non-atomic collection of abovementioned 

data values. In atomic data objects all data values are of the same mode (numeric, complex, 

logical, and strings), whereas in non-atomic data objects there are mixtures of atomic data 

objects with different modes. 

2.2    Data Objects 

The basic data objects are defined by their attributes, with length, mode, dim (dimension), 

dimname, and class being most fundamental. The following table summarizes the basic math¬ 

ematical data objects, their attributes, and their role. 

Role 

Most basic data object 

Rows/columns of vectors 

N-dimensional array 

Ordered collection 

of data objects 

Generalized table with 

columns of numeric, logical 

or character data values 

Qualitative identification 

and labeling of data 

Length Node Dims Dimnames Coords N-dimensional array 

with even axis intervals 

Table 1 - Data Objects 

Class  Atomic Attributes 

Mvector T Length Mode Dim Dimname 

Mmatrix T Length Mode Dims Dimnames 

Marray  T Length Mode Dims Dimnames 

Mtable 

Factor 

Grid 

Length Mode Names Row. Names 

Length Mode  Names Levels 

The first three data objects in Table 1 are augmentations of the classes already developed 

for AIPS-I—h with the specific addition of Dimname attributes for each dimension. These are 

named mvector, mmatrix, and marray to distinguish them from the AIPS-I-+ classes that 

have already been implemented; dimnames allow a simple assignment expressions between these 

data objects and mtables, and allow all data objects to have vectorized selection/logic based 

upon key words. 

The mtable data object is a specific view, or form, of an AIPS-I-+ table that allows one to 

easily compose and decompose it from/to other data objects using methods related to mvector, 

mmatrix, marray, and other mtable data objects. As with an AIPS-I-+ table, an mtable 

can contain columns of any of the other atomic data objects. 

While many of these data objects will be small enough to fit into memory, with many 

cases of interest that will not be true; however, the use of buffered I/O is a prime example of 



an implementation detail that should be hidden as part of the general data base manager for 

objects of all kinds. 

The mlist data objects are associations of other data object components that are formed by 

a mlist^ol, o2, ..., oN) method, and which have a syntax allowing mathematical operations on 

component and sub-component data objects. The mlist data object allows simple association 

of related data objects resulting from methods or more complicated multi-object algorithms, 

without requiring construction of new kinds of data objects, since they are just different mlists 

of standard data objects. For example, one can map a AIPS FITS image into an image object 

with the method 

m/i's^labels=labelvector,values=valuevector,axes=axesmatrix, pixels=imagearray) 

where labels is a vector of string-like header information, values a vector of the global numeric 

information for the image, axes is a matrix of numbers describing the values (and state) of 

the image coordinates, and pixels is the array of numbers which contain the image values. 

Because of the dimnames attributes of vectors and arrays, the keyword=value syntax of FITS 

images maps directly into vector, matrix, and array data objects. The data object components 

of observations, measurement sets, telescope models, etc., can be formed, referred to, and 

operated on with a combination of the syntax of mlist and mtable methods. The following is 

an example of a listing of contents of an mlist image data object derived from AIPS/FITS: 

labels: 

NAME 

OBJECT •^¥092" 

TF.LF..SC0P "VLA" 

OBSERVER "R.M.HJELLMING" 

UNITS "JY/BEAM" 

values: 

VALUE 

NAXIS 4.00E+00 

EPOCH 1.95E+03 

SCALE 2.00E-04 

OFFSET 0.00E+00 

BLANK 0.00E+00 

axes: 



RA.SIN.DEG DEC.SIN.DEG FREQ.HZ 

DIM 1.750000E+02 1.750000E+02 l.OOOOOE+00 

CRBLC 1.600000E+02 1.600000E+02 l.OOOOOE+00 

CRVAL 3.072800E+02 5.246208E+01 2.24851E+10 

CRINC -6.944444E-07 6.944444E-07 -5.00000E+07 

CRREF -2.830000E+00 O.OOOOOOE+OO O.OOOOOE+OO 

pixels: 

[matrix of numbers] 

Flexible mlist construction may be more of a Ul-related operation because of the difficulties 

of implementation in C+-I-. 

Factor data objects allow useful identification of qualitative descriptions of data that can be 

utilized by logical operations in array-oriented or vectorizable algorithms. Each is essentially a 

vector of integers identifying levels, with an associated vector of names for each level. Constructs 

like this can be used for many things, e.g. data quality identification, weights, source/field 

identification, and so on. Factors are concrete classes that are a bridge between numeric 

arrays and keyword identification used in vectorized operations. An example of a factor object 

is the following, where the data in the object is a vector of integers identifying different "levels" 

in the object, and levels is a vector of strings indicating that each level identifies a source name: 

values: 3,3,3,3,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1 

levels: "2005+403",aNCYG92V3C286M 

where this vector matches, say, a row of source data so one can operate on the source data 

using selection methods attached to the factor data object. 

The grid data object is one of the most interesting, and a major component of many appli¬ 

cations, while retaining entirely mathematical characteristics and methods. In the astronomical 

context it has the mathematical essence of a time series, a spectrum, a gridded u-v array, and 

a regular image. In AIPS-I—|- the work on GridTool and FFTtool has developed some of the 

methods for grid data objects. As a higher level component of the data objects in Table 1, 

grid is a mvector, matrix, or array, with the added attribute of coord = (begin, end, inter¬ 

val, units), and methods for extracting selected coordinate information and scaling coordinate 

values. Methods of the grid data objects will use linear equations involving the elements of the 

coord attribute and the range of indices for each axis. 

It is possible that units for pixels should be additional grid attributes, since they affect the 

scales of stored numeric values, but it is clear that other astronomical content, like representa¬ 

tion, reference frame, measure, etc., belongs to higher level classes. The dimnames attribute of 



grid objects allows keyword identification of each dimension. This may be sufficient for includ¬ 

ing units since one can use dimnames with labels like "u.nanosecond". Later we will discuss a 

more extensive list of methods for grid data objects. 

The evolution of the design and implementation of the framework of classes for images is 

where further isolation of a possible grid class should be examined, ensuring that it has methods 

that are generically mathematical and independent of the image-handling problem. 

Reinforcing the view that a mathematically defined grid data object is a powerful construct 

for algorithms, it is possible to use FFT and related methods in S /S+ to produce, and operate 

on, their matrix and time series objects to represent, and make transformations between, 

gridded u-v data and images. 

The emphasis on optimizing for mathematical operations wherever possible leads to methods 

like «/c/se(logicalexpr, exprl, expr2) where a logical operation on an atomic data object results in 

choice between two expressions, exprl and expr2, for the element-by-element operation involving 

that object, depending upon the result of the logical operation for each element. This type of 

mathematical operation (and the analogous t/, switch, all, and any methods, cf. Table 2) is 

part of the reason for both factor data objects and the association of dimnames with vectors, 

matrices, and arrays, since names as keywords can then be used in logical operations. The 

current work on masked arrays is related to the development of these sorts of vectorize logic 

operations. 

2.3    Formation, Testing, and Coercion of Data Objects 

Formation of more complicated data objects from simpler ones, and vice versa, should be 

possible with simple syntax that hides the vector, matrix, etc., nature of the objects. Vector 

data objects can be formed by a sequence method, a repetiton method, or a com6me(ol, ..., 

oN) method. Vectors should be formable into matrices with methods like rbind(ol, ..., oN) 

(for rows) and cfctW(ol,..., oN) (for columns). All data objects should be formable into mlist 

data objects by the mlist (ol, ..., oN) method, and atomic data objects formed into mtable 

objects with an mtable (ol, ..., oN) method. When implemented in C+ the first argument 

for each methods will be the number of elements in each object list. The reverse extraction of 

simpler data objects from more complicated ones is a question of extraction based upon some 

multi-level "subscript" notation. 

Testing and coercion are useful concepts for mathematical handling of different, but relat- 



able, data objects. Each data object can have a is.objecttype(object) method that tests for 

what is needed in some mathematical expression or algorithm, returning TRUE or FALSE, and 

a as.objecttype(ohject) method then returns a different type of data object that can be formed 

from the input object.. The testing method is useful in algorithms. The coercion method aids 

extraction of one type of data object (e.g. mmatrix) from others (e.g. mtable). 

2.4 The Formula Class 

The need for using arbitrary formulas or equations in the fitting or modeling of data is obvious, 

and a construct that could be useful for supplying formulas to methods, producing strings in 

the form of formulas in labels, and doing some symbolic algebra and symbolic evaluation, is the 

formula class. As a data object it takes as input string of characters identifying arithmetic 

operations, variable names, and parameters to be determined. It has basic symbolic algebra 

methods like substitute, parse, expression, derivative, evaluate, etc., that allow mathematical ex¬ 

pression, decomposition, manipulation, and use in evaluation of symbolic expressions to return 

values for the quantities modeled by the formula(s). 

2.5 Methods for Atomic Data Objects 

AH the ordinary operator-like operations involving vectors and matrices are assumed to be 

present, with * used for element by element multiplication as done with the AIPS++ Array 

class. Using a crossprod method for M x V and M x M with M and V (or M) as arguments, is 

reasonable. However, in a mathematical system there are distinctions based upon whether the 

vector or matrix is a transpose or not that can be checked at run time based upon a transpose 

of non-transpose identification, or left as a potential programmer error. Probably it is best to 

expect the application programmer to write tran(V) or tran(M) when mathematically required. 

Table 2 lists methods for various atomic data objects, with V, M, A, and G indicating 

whether they apply to mvector, mmatrix, marray, and/or grid data objects, and N, C, 

and/or L indicating whether they are applicable to numeric, character, and/or logical data 

values. 

Table 2 

Methods of Atomic, Numeric Data Objects 

combine V        NC    combine mlist of numbers into a vector 



rep 

sequence 

tran 

diag 

rbind 

cbind 

V NC 

V N 

VNAG N 

V N 

V NCL 

V NCL 

sort V   NC 

reverse V   NC 

order V   NC 

rank V   N 

unique NC 

duplicated V   N< 

sum VNAG N 

prod V   N 

max VNAG N 

min VNAG N 

range VNAG N 

any 

if 

VNAG L 

VNAG L 

form vector replicating mlist of numbers 

form vector from vstart to vstop using optional step 

or length parameters 

tranpose 

from diagonal matrix with input vector on 

diagonal 

from matrix from mlist of vector objects with 

each vector becoming a row 

from matrix from list of vector objects with 

each vector becoming a column 

sort vector on elements 

reverse elements of vector (often after sorting) 

return integer vector containing the permutation 

that will sort teh input into ascending order 

returns a vector with ranks of the input vector 

returns a VNAG with the differences between 

adjacent elements of the input data object 

returns an object like the input but with 

repeated values deleted 

returns a vector of logical values for an input object 

indicating whether elements are duplicated or not 

returns the sum of all elements of input object 

returns the product of all elements of input object 

returns largest value in input object 

returns smallest value in input object 

returns vector of smallest and largest values 

returns TRUE if all elements of input logical 

expression(s) are TRUE, returns FALSE otherwise 

evaluates to TRUE if any elements of input 

logical expression are TRUE, returns FALSE otherwise 

evaluate an expression for each element if a 

logical expression for each element is true 

8 



ifelse     VNAG L  depending upon logical expression evaluation for 

each element, performs onee of two operations on 

or with each element 

switch    VNAG N  depending upon the integer returned by an 

expression one of a series of expressions is 

used to used to return a value for each element 

of the input data object 

apply     VNAG N  Apply a function defined by a formula object 

to all elements of the input data object 

outer     VNAG N  Apply a function defined by a formula object 

to two input data objects with the same shape 

mean      VNAG N  returns mean of all elements of data object, 

optional trim parameter specifying range of 

values to be averaged 

median    VNAG N  returns median of all elements of data object, 

optional trim parameter specifying range of 

values to be considered 

returns vector of desired probability levels 

for a data object, as determined by optional input 

vector of desired probabilities 

VN  N  returns variance of data object (for optionally 

specified range of values); if a matrix, columns 

represent variables and rows represent measurements 

return correlation matrix for optional range of values 

return covariance matrix for optional range of values 

return for each element the integer above or 

below value +0.5 

signif    VNAG N  return for each element a value with rounding in 

the specified significant figure 

cumsum    VNAG N  returns an object for which each element 

is the sum of all elements to that point 

cumprod    VNAG N  returns an object for which each element 

quantile   VNAG N 

var 

cor N   N 

GOV N   N 



distrib 

fft 

autocorr 

lag 

VNAG N 

VNAG N 

VNAG N 

is the product of all elements to that point 

returns for each element a value of a named 

probability distribution over an option range of values 

transform a real or complex data object by a 

direct or inverse FFT 

return autocorrelation function of data object 

VNAG N      return same object with data lagged by specified 

intervals in one for one or more dimensions 

(mainly for case of a time-like dimension) 

VNAG N      convolve a function specified by a formula object 

with a specified span producing a smoothed version 

of the original data object 

aggregate     VNAG n      convolve, average, or smooth one or more 

dimensions to a data object with a reduced 

number of data points spanning the same range 

return a subsection of a data object based upon 

a range specification for each dimension 

return coordinate values for specified elements 

convolve 

subset 

coord 

VNAG N 

N 

It is obvious from many of these methods that this puts considerable emphasis on vector¬ 

izable operations so one can express mathematics with operations that are accomplished as 

efficiently as possible by internal mechanisms hidden from the programmer. 

The basic constructor methods (mvector, mmatrix, grid, etc.) have obvious use and syn¬ 

tax, and some of the operations in Table 2 reflect other ways of constructing these objects. 

The is.class for testing and as.class methods for testing classes and coercing classes impor¬ 

tant for specific use and decomposition of mathematical objects. Methods like assigndim and 

assigndimnames are needed as part of of the composition of data objects. 

3    Linear and Non-Linear Algebra Methods and Objects 

3.1    Scope 

Interesting linear algebra methods begin when one considers inversions and decompositions of 

a matrix(A), or when one is solving linear equations like 

10 



Ax = d (1) 

where d is a vector of "measurements", and A is a "model" for how an vector of unknowns (x) 

reproduces the measurements. For non-linear models one is usually solving for a parameter set 

P for equations modeling measurements such as 

0(P) = d (2) 

where 0 is some non-linear operator. Classes and methods used to determine x for linear 

equations, and P for non-linear equations, are what we will call solvers, and to avoid confusion 

we will call the generic method for solving Equation (1) linsolve and the generic method for 

solving Equation (2) nonlinsolve. 

The algorithms for inversion, decomposition, and linsolve with a single constraint equation 

are reasonably well understood and we will discuss the major methods and resulting data ob¬ 

jects in the next section. However, there are two important areas where the algorithms are not 

standardized for either linsolve or nonlinsolve: multiple constraint equations on the same set 

of unknowns; and mixtures of "equality" and inequality constraint equations. A simultaneous 

solution for unknown parameters involving four polarization equations, and inequalities impos¬ 

ing positivity or some other range of parameters, are cases where this would be useful. We will 

not say more about this here, but experimentation with multiple constraint solvers is under 

way. However, we can proceed knowing that all such augmentations of this type are founded 

on the basic data objects and the standard linear and non-linear methods that we discuss in 

this document. 

3.2    Inversion and Decompositon 

Many algorithms are based upon decomposition (also called factorization) of a square or rect¬ 

angular matrices into combinations of diagonal, upper triangular, lower triangular, or other 

matrices. In the We propose that all decompositions produce a mlist data object with compo¬ 

nents representing the vectors or matrices produced by the decomposition, and each of these has 

methods specific to using that decomposition, or generic methods, used for all decompositions. 

Table 3 lists the most important decomposition objects with some comments about their role. 

Table 3 

11 



Natrix Decomposition Data Objects 

Name Role 

LUdecomp   Fastest but least robust when used in solvers, 

CHOLdecomp Choleski decomposition, best for non-zero, square 

matrices, particularly the <*normal,, equation 

matrix (tran(A) A) 

QRdecomp   Best compromise of speed and robustness when used in 

solvers, should be the default decomposition, using 

Householder transformations to perform the decomposition 

SVdecomp   Singular value decomposition; slowest but most 

robust in solvers, particularly when allowing user 

interaction and modification of vector of singular values 

Table 4 lists some of the methods that either use or support matrix decomposition objects. 

Table 4 

Nethods Related to Natrix Decomposition Data Objects 

Name Role 

backsolve    Takes an upper triangular matrix (R) and a 

vector (d) and solves for the vector (y) in R y = d 

forwardsolve Takes an lower triangular matrix (L) and a 

vector (d) and solves for the vector (x) in L x = d 

invert      Takes either a decomposition object for a matrix A, 

or A and the name of an inversion or decomposition 

method(QR, LU, Choleski, SVD), and attempts to 

obtain Ainv such that crossprod(Ainv,tran(A)) = 1, 

using a default or supplied tolerance value; the 

default should be based on QR decomposition 

determinant  Return a determinant of a matrix (or decomposition of 

of matrix) using a default or supplied method 

The methods in Table 4 return a standard mmatrix data object and do not require creation 

of new data objects. 

12 



3.3    Linear Algebra Solvers and Error Analysis 

The main use of matrix inversion and decomposition is in solvers with associated methods for 

analysis of the errors in the solution. Table 5 lists some of the data objects and methods that 

are basic for this form of data processing. We identify one of the matrix decomposition objects 

with the letter D, of any type, particularly those listed in Table 4. The letter F identifies a 

formula object supplied to a data fitting method. 

Table 5 

Nethods Related to Linear Solvers and Error Analysis 

Name Objects 

linsolve      D 

Role 

linsolve     D,V 

Returns the inverse of a matrix using methods 

associated with the decomposition object 

Solves for vector x using methods of 

the decomposition object,  and the supplied 

''measurement*' vector 

Returns the inverse of a matrix using a method 

specified by inversion or decompostion type 

Solves for vector x using a method specified 

by inversion or decomposition type, and the 

supplied *'measurement*' vector 

returns a data object with eigenvalues and 

eigen vectors of matrix or previously computed 

matrix decomposition 

Isfit      V,V[,V],F      Returns  "fit** data object for given 

(linear) formula object used in a least squares 

fit to a "measurement** vector associated with 

a vector of independent variables, and an optional 

vector of weights, utilizing a specified 

decomposition method for the (tran(A) A) matrix 

memfit    V,V[,V],F      Similar to Isfit except NEN is used with a 

constraint supplied with a formula object 

linsolve     N 

linsolve     D,V 

eigen     D[,M> 

13 



In Table 5 we identify a fit data object that contains the solutions to A x = D, and 

probably the residuals and the covariance matrix. The fit data objects will have additional 

methods return a list of traditional components of error analysis such as vectors of variance, 

standard deviation, correlation coefficients, etc. In the first sentence of this paragraph the word 

"probably" is used because it is unclear, when size of data sets becomes large, whether ancillary 

results should be automatically generated, or whether they should be generated from special 

methods using small fit data objects, the matrices (or decomposition objects), and the input 

data vectors. 

There are a large number of useful fitting algorithms that could be Usted in Table 5, and 

we are mentioning only a couple. 

Please note that we are not implying that these linear algebra methods provide everything 

needed for AIPS-I—\- solvers. Standard non-linear solvers, or specially coded equivalents appro¬ 

priate to very large data sets are essential for many of the interesting cases; however many of 

these will use and operate upon basic data objects. 

3.4 Number Generators 

For data analysis one often needs to generate model data assuming values of the mean, stan¬ 

dard deviation, and type of distribution (Uniform, Gaussion, Poisson, etc.). These are then 

used to compare real data with model distributions. Therefore part of the basic mathematics 

subsystem should be methods to fill VMAG data objects with model distributions of data, given 

specification of the desired distribution and its parameters. The basic versions already exist in 

AIPS-I—H, but may need augmentation to work with the framework discussed in this document. 

3.5 Statistical Analysis Methods 

The statistical analysis of solutions, or fits, to data is a highly developed field for linear equations 

and data obeying well-understood statistics. A large number data objects and methods can be 

used for these standard statisical analysis methods. At first look these are the primary com¬ 

ponents of the statistics-oriented 8+ . However, for the purpose of this document we eschew 

discussion of these approaches, assuming they will be developed as higher level applications. 

14 



3.6    Non-Linear Algebra Solvers and Error Analysis 

In Table 6 we list two generic methods for solving non-linear equations. An initial version of 

nonlinsolve has already been protoyped in C++ using the Levenberg-Marquandt compromise 

for the Gauss-Newton method; however, it still needs cosmetic changes before being checked 

into the system. Solvers based on the Levenberg-Marquandt compromise are amongst the more 

robust nonlinear solvers. An early version of an iterative solver, based upon a sequence of 

assumed model equations supplied by formula objects, should also be prototyped early, since 

solvers of this type work well with most data from instruments like the VLA. 

Table 6 

Nethods Related to Non-linear Solvers 

nonlinsolve  V[,M]  Solve equations of the form 0(P) = d where 

d is a supplied data vector, the form of the 

nonlinear function 0 is supplied with a 

formula object, and N is an optional matrix 

that is part of the nonlinear function definition 

itersolve    V[,M]  solves using iteration, and supplied formula 

objects describing the first and subsequent 

formulas, to solve for a parameter set 

4    Ancillary Methods for Basic Data Objects 

While one can view data display as separate from data processing, there is great programming 

power in having a set of simple display, and display-interaction, methods operating on basic 

data objects. These ancillary methods axe very important in allowing flexible prototyping of 

higher level display, editing, etc., methods. 

Mathematical data processing is inseparable from interaction with, and display of, original, 

intermediate, and resulting data objects. Methods for displaying basic data objects like mvec¬ 

tor, mmatrix, marray, and grid, and some capability to identify and locate the names or 

locations of data points in displays allows the programmer to provide powerful means for inter¬ 

vening in the data processing process. In Table 7 we list some of the useful, generic or special, 

15 



methods. There is a wide range of parameters controlling the displays and interactions that we 

will mostly not discuss in detail in this document. Some deal with parameters of each method, 

and some deal with general parameters of displays that control size, windowing, labeling, tic 

marks, axis label values, etc. 

Table 7 

Nethods for Displaying and Interacting With Basic Data Objects 

Input 

Role 

Make x-y plot of vector elements vs its indices 

Nake x-y plot of V2 vs VI 

Nake x-y plot of matrix values in an x-y grid 

determined by matrix indices 

Nake x-y plot of matrix values in an x-y grid 

determined by supplied ''coordinate*' vectors 

Plot a histogram for a vector as a function of 

is index or an a ''coordinate'' vector 

Nake monochrome or color display of matrix 

in an x-y grid determined by matrix indices 

Nake monochrome or color display of matrix 

in an x-y grid determined by supplied 

''coordinate*' vectors 

Add ''legend'' to picture display indicated 

mapping of gray scale or color into pixel values 

Nake contour display of matrix in an x-y grid 

determined by matrix indices 

Nake contour display of matrix in an x-y grid 

determined by supplied ''coordinate*' vectors 

Nake perspective or ruled surface display of 

matrix in an x-y grid determined by matrix indices, 

with or without hidden line removal, with 

specified or default view angle parameters 

perspec N,V2,V2   Nake perspective or ruled surface display of 

Name Object(s) 

plot V 

plot VI, V2 

plot N 

plot N,V1,V2 

hist V[,V] 

picture N 

legend 

contour N 

contour N,V2,V2 

perspec N 

16 



matrix in an x-y grid determined by supplied 

''coordinate'' vectors 

locate For a specified plot or picture in a display 

window, starts a mouse and mouse-button driven 

procedure for clicking cursor (on/near) a data 

point allowing return of "matrix** value and 

x-y coordinates which are highlighted and added 

row by row to a matrix of identified value-x-y 

vectors; using one button for locating, and 

another button for removing a previously 

located data vector; requires display boxes 

in border area that one can click on to change 

size of locator box, exit from the locate method, 

or change other obvious parameters of the process 

Similar to locate, however one gets either or 

both row and column names from the matrix displayed 

next to the select data point 

monochrome or color displays of rows and/or columns 

of vector/matrix data values as a function of row/column 

indices; with locate and identify methods invocable 

once the bands are displayed 

(allows TVFLAG-like display and interaction with 

basic data objects) 

specdisp N[,V],V1 Same as above but supplied coordinate vector is 

used for the independent variable in a band-like 

display with monochrome or color coded data values 

as a function of an independent variable which is 

an index or a " coordinate * * vector 

rotate  A       Initiate an interactive 3-d display of 3-D array values 

as points in a 3-D space with respect to displayed 

and labeled (from array axis names) axes in 

array index form, with pressing a mouse button 

identify 

specdisp N[,V] 

17 



on boxes labeled right, left, circle, up, down, 

causing the displayed data points and axes to 

change their 3-D viewing angle 

rotate V1,V2,V3  same as above but x,y,z vectors are supplied 

rotfind A        adds to a rotate method capabilities to locate and 

identify data values as discussed above for the 

locate and identify methods 

rotfind V1,V2,V3  same as above but x,y,z vectors are supplied 

reshow C        redisplay previously saved display object on disk 

movie  C        display movie sequence of previously saved 

display objects stored on disk 

panel  C        display sequence of objects on disk in paneled 

sub-windows 

The reshow, movie, and panel methods require saving display objects. 

Each display windows should have buttons bringing up menus that 

• Print plot in window to default printer 

• Print plot in window to user specified printer 

• Save plot in re-display able form on disk 

• Change properties of display, including (where appropriate) 

— monochrome vs color 

— select choice of color mapping from data value 

— initiating an interactive and separate window for interactive control of transfer func¬ 

tion 

— zooming in and out 

or one could have command line methods that carry out these functions; however, if one is in a 

window display domain, these functions are best handled with buttons/menus associated with 

these windows. 

The identify and locator methods, or others allowing display and return of data coordinates 

can be used to build graphical editing capabilities for both basic data objects and higher level 

18 



displays of spectal, u-v, etc., data; however, the latter are beyond the level of things useful for 

basic data objects. 

5 What's Next 

Preliminary circulation of drafts of this document indicate that, as a proposal, there is consid¬ 

erable agreement that much of this should done in AIPS++. Most of the remaining questions 

relate to how different things would be implemented, what the priorities would be, and who 

would do what on what time scale. Therefore we leave this document in the current state, 

declared as finished, and distribute it as an AIPS++ note. With wider distribution useful 

suggestions will arise, and plans for implementation and prioritization can be developed. 

6 References 

Becker, R.A., Chambers, J.M., and Wilks, A.R. 1988, The New S Language, 

(Wadsworth & Brooks/Cole, Pacific Grove) 

Chambers, J.M., and Hastie, T.J. 1992, Statistical Models in S, 

(Wadsworth & Brooks/Cole, Pacific Grove) 

Firesmith, D.G. 1993, J.O.O.P., 6, No. 6, 6. 

Mossenbock, M. 1992, Object Oriented Programming in Oberon-2, (Springer-Verlag, New York) 

19 


