
AJPS + + USER SPEC.
MEMO /OS

September 12, 1991

To: Bob Hjellming

From: Rick Fisher

Subject: AIPS++ Requirements

Here's a first cut at putting my thoughts on paper on what I'd like to see in AIPS++. I

don't have much experience with U-V data, so most of my examples, and certainly my point

of view, are from the map/spectrum/time domains, although I suspect that most of what I

say will have broader relevance. Since concepts are extremely difficult to communicate in the

abstract, let me illustrate each 'wish' with a specific example with the understanding that there

may be better ways to implement the general idea. If I illustrate a point with a counterexample,

I don't mean to slight any particular data reduction package.

On a new observing project my data reduction style starts out very interactive and evolves

to a set of complex operations to be performed more or less automatically. If I had a choice

between a set of data reduction tools and a powerful but fairly rigid data reduction pipeline,

I would take the set of tools. My ideal is a tool set and a well maintained library of data

reduction procedures (programmed groups of tool applications) that I can copy and modify to

suit my particular needs. Another ideal would be that differences between interactive and au¬

tomatic data reduction be minimal. It should be easy to assemble a set of successful interactive

operations into an automatic procedure.

There is no better way for a new observer to learn a data reduction system than to ex¬

periment with its components. Even just being able to look inside a procedure is much more

instructive than user manual descriptions of black-box procedures. Necessary to the learning

procedure is good feedback. What does the data look like before and after an operation is

performed? What were the relevant parameters that affected the operation? Where is the new

data? Did the data size change? Windows and graphical techniques can be of great help in the

feedback area.

User command input methods are probably much more controversial than data display

techniques, mainly because there is no universal best way. We tend to like what we are familiar

with which impedes progress on user interfaces and makes agreement nearly impossible. The

best I can do is to give you some impression from recently learning a couple of new (to me)

software packages. A revolutionary new user interface is likely to be a big mistake. Let's taJce

the best features of the astronomical and other packages now in existence and leave lots of room

for evolution. Several general things are quite important to a good user interface: coherence

and consistency, modest hierarchy of functions, lots of on-line help and table-guided setup, and

a large percentage of tools whose uses are nearly self-evident to new users. In many cases, more

than one way to invoke the same operation is entirely appropriate. In the end, as a user I'll go

to considerable length to learn a new user interface if there are plenty of useful data reduction

tools in the package worth getting to.

Consistency or coherence in a user interface doesn't mean slavish adherence to a particular

format. Some things lend themselves naturally to buttons and a mouse like 'print', 'scroll',

'select', etc., and others are far easier as a typed command like "spectl = (spect2 - spect3) /

spect3." Moving icons around to produce the effect of a typed command can be a real drag at

times. Also, putting mouse commands into a macro seems to require a command line version of

the mouse commands. At least I have not seen a satisfactory way to program mouse commands.

The big advantage of GUI input methods is that the choices can be presented to the user at

the same place where the selections are to be made. When done well, the options can be quite

obvious.

Thinking about how observers visualize their data is probably a useful exercise when design¬

ing the tools or the user interface. My mental model is data chunks and operations involving

one or more of these chunks at a time. Since data chunks are static and operations are tran¬

sient, I probably think a lot more about data than about the operations. After an operation is

completed, I generally forget about the operation itself, but I'm still interested in the data that

went into and came out of that operation. In a complex data reduction layout, I'd rather worry

only about the most recent form of the data and ask the package software to keep record of

what I've done in case I want to check my logic or back up to an earlier stage and take another

tack. This record could be the commands in a procedure, a log of interactive commands, and/or

a graphical data-flow diagram.

This emphasis on data rather than operations seems to run counter of the emphasis on

tasks, verbs, procedures, etc. in current reduction packages, so maybe I'm proposing a fairly

big change in the way the system is presented to the user. When we write a manual for a data

reduction system we don't describe the data, because that's not part of the system. But to the

user the system is only a means to an end, not the end itself. None of this is meant to imply

that operations aren't a key element in a data reduction package. To use an analogy, even a

carpenter wouldn't describe her house in terms of the tools used to build it, but she is likely to

describe to materials that went into it.

All that said, here are some preferences based on experience with data that wasn't antici¬

pated by any existing data reduction package.

I'd like to see a fairly extensive base of tools which are as universal as possible. For example,

if I add two two-dimensional arrays, it shouldn't matter whether the arrays are sky maps,

gridded U-V data, or pulsar spectra. This makes the use of tools for unforeseen applications a

lot easier. More specific tools can apply the universal tools and add what is known about the

specific data being operated on. For example, the rotation of an image of an object around a

specified RA/Dec could use the universal array "rotate" operator and add what is known about

the real coordinates of the map to assign coordinates to the resulting array. If I want to use

"rotate" on, say, pulsar data, I shouldn't have to undo the parts of the map rotate operator

that don't make sense to pulsar data to use the basic the array rotator.

Most of the applications that I can think of allow data to be put into discrete arrays of

one or many dimensions. Hence, array manipulation operators are probably a large part of the

tool set. That's probably why a package like IDL is so readily applied to astronomical data.

One place where AIPS+-I- can excel over a more general package is in the convenience it can

offer the astronomer in keeping track of data properties that are unique to our applications.

If you do an image rotate, it should be very easy to determine what RA/Dec a pixel in the

new array corresponds to. To strike a balance between universality of an operator and the

desire for automatic housekeeping in specific applications, I'd like to see a way devised (if it

doesn't already exist) for me to attach properties to a general data array that make the specific

application that I have just devised more convenient. In the case of real-world coordinates, I'd

like to be able to specify a transformation equation between pixel number and some variable like

frequency or pulse phase, and have the various operators keep track of my real-world coordinate

when they are applied. Each dimension of an array should accommodate many transformations

from pixel number to real-world quantities, e.g., sky frequency, intermediate frequency, velocity

(heliocentric, relativistic, optical definition, ...) at the same time. Also, real-world coordinates

that are not parallel to the array dimensions must be accommodated in the user-specified

transformation.

In some cases, one or more of the dimensions of a data array will not correspond to some

continuous coordinate. For example, one dimension might be a phase number of a switching

cycle (signal, reference, cal-on, etc.). Another dimension might be an IF number with arbitrary

center frequencies, etc. Many array operators (add, multiply, transpose, etc.) make sense for

this kind of data, so I'd like to see this sort of data chunk accommodated by AIPS-|-f.

Subarrays of data should be as easy to access and manipulate as full arrays. The IRAF

notation of 'arrayname[l,*,3:56]' to access element 1 of the first dimension, all of the second

dimension, and elements 3 through 56 of the third dimension is pretty good. There may be

others that are as good or better.

At least in the command language part of the user input interface, the very heavily used

unary and binary array operators (add, multiply, etc.) should be assigned to operator symbols

(+, *, etc.) where such assignments are pretty obvious. Maybe just (+, -, /, *) are enough.

I seem to use these a lot. Complex expressions should be permitted with these and other

operators, e.g., map3 = (map2 - mapl) / mapl. Subarrays and matching lists of arrays should

be legal operands with the operator smart enough to figure out whether the operator/operand

combination is legal, e.g., matching list lengths, (sub)array sizes, and numbers of dimensions.

For more complex operators, a shallow hierarchy seems preferable to a proliferation of

operators on one level. My main rationale here is to make quick work of finding an operator

that looks like it will do what I want. Rather than wading through many many keywords like

'mean', 'median', 'addclip', 'average', etc., I'd like a relatively short list (fits in half of a modern

display screen) of pretty obvious categories like 'combine', 'fitld', 'fit2d', 'shift' that narrows

the search in a big hurry. Whether there are a few major operators with lots of options or a

lot of more restricted operators is not as important as being able to find them with some fairly

intuitive search strategy.

Unfortunately (from the complexity standpoint), many operators may have a zillion options

and parameters. Three ways of setting these options make sense in different contexts. They are:

standard defaults, local specification of a few options/parameters when the operator is invoked,

and user-named setup tables for each operator. I like local as opposed to global parameters.

They are a bit more work in the short run, but I prefer the assurance that I'm not going to get

surprises from unexpected sources.

If I had to make an enormously sweeping statement about a user interface it would be

something like "Give me the feeling that I know where to find things, that I can review at a

glance where my data has come from and what it looks like, and that I'm not going to get

blind-sided by too many things that I've forgotten about or that someone else thought I didn't

need to know."

In the data -> operator -> data model, keywords like fetch, get, store, and other implementatioi

specific concepts are considerably reduced. I think that is a good thing, as a rule, but there

may be cases where the system cannot read the observer's mind well enough, or the user might

want to tune the system for better efficiency. One idea that comes to mind is that I want to

tell the system that I expect to use a particular data chunk more than once so don't bother

reading and writing it on disk every time it is used; keep it in memory, if possible. Something

like assigning an image to a register would be one way. *

Access to header values should be easy at high levels in the user interface. My specific

thought is something like wanting to scale a pulsar data array by normalizing it and multiplying

by the system temperature value in the header. I'd suggest a very small but general set of access

functions, one each for real, integer, and string values, that allow access to all present and future

header parameters by, for example, FITS name, e.g., tsys = head^TSYS").

Sending and retrieving data, plots, listings, and so forth to and from I/O devices shouldn't

be complicated. There should be a simple way for each site to configure their system so that

all devices can be presented to the user in a menu or routing diagram in which the user may

establish temporary connections or data may be quickly sent to a device at the push of a button.

The UNIX method of treating devices like files is a step in the right direction, but we don't

want the extreme generality and setup complexity to be evident to the user or even to the

AIPS++ site system administrator.

I don't foresee the day when one data reduction package serves all my needs, nor do I even

wish that it might happen. Hence, make transfer of data to and from other data reduction

packages as easy as possible. It should be possible for the user to have AIPS++ open in one

window and some other package open in another and be able to toss data back and forth without

worrying about what format it needs to be in to make the transfer.

A good relational data base for retrieving any sort of data that can be handled by AIPS-I--I-

would be great. The business of retrieving stuff by scan number or trying to think up clever

names for data cubes to tell what's in them can be pretty trying when there is lots of data

or the processing is complex. Retrieving data by all sorts of parameters is desirable, e.g.,

source name, position, IF number, time, date, array configuration, center frequency, velocity

range Combinations and wildcards are very useful. Ideally, retrieval would be possible for

data of any age (last record, yesterday's data, or last year's data) without the user needing

to know something different for each era. If data isn't on disk when requested, the archival

tape/disk/whatever number and location should be returned to the user.

Additions to the local version of AIPS++ should be easy for the user who knows C, FOR¬

TRAN, or C+-I-. This means well defined access to data arrays and headers, good firewalls

to protect the system, but not necessarily the data, from coding mistakes, and simple but

powerful fiU-in-the-blanks 'make' files for compiling new code and linking help files and other

user-interface features. Writing code for a friendly system that takes care of display, peripheral

I/O, and data housekeeping should and can be fun.

