
AIPS++USER SPEC. 
MEMO     10$ 

AIPS++ User Specifications: BIMA Version 

1 Introduction 

The Berkeley-Hlinois-Maryland Association (BIMA) operates the Berkeley-Dlinois-Maryland 
Array (also BIMA), which will be a 9 (or perhaps 12) antenna synthesis array at Hat Creek, 
California. BIMA is used at millimeter wavelengths, primarily for spectral-line observations. 
Several years ago BIMA began the development of a new software system, the Multichannel 
Interferometer Reduction with Image Analysis and Display system, or MIRIAD; approximately 
10 man-years of work has been devoted to MIRIAD, and the system is now being used by 
BIMA astronomers for the complete processing of BIMA data from the telescope to publication. 
MIRIAD is installed on a wide range of computing hardware, including a Cray 2, a Convex 
C2, a Multiflow, VMS VAXes, and Sun workstations. The core MIRIAD package provides for 
on-line inspection of data at Hat Creek, complete data processing from editing and calibration 
to inversion, deconvolution, and limited analysis, display, and graphics. Two auxiliary packages 
which work with MIRIAD data sets are MXV (MIRIAD X Visualizer) and WIP. MXV provides 
X Window visualization of data cubes, with extremely flexible capabilities for display of data 
cubes and subsets of data cubes in raster and vector form. WIP is an interactive X Window 
graphics package based on PGPLOT which allows flexible generation of publication quality 
plots. 

It is important to understand the reasons why BIMA, with the usual extremely limited 
funding of a University-based group, decided to devote a significant fraction of resources to the 
development of a competitor for the NRAO AIPS system, since those motivations form the ba¬ 
sis for the BIMA aips+-|- user specifications. When BIMA began the development of MIRIAD 
5 years ago, we felt that AIPS was inadequate for 4 major reasons. 1) AIPS was not designed 
originally to handle spectral-line data; BIMA is used primarily in spectral-line mode with a 
very flexible correlator which generates multiple spectral-line data sets simultaneously. Effi¬ 
cient processing and flexible and powerful display and analysis tasks for spectral-line data sets 
are crucially important for BIMA. 2) AIPS did not run efficiently on the highest performance 
computing systems, such as Cray supercomputers, and had fundamental design features (such 
as extensive use of disk scratch files) which made it virtually impossible to port AIPS efficiently 
to supercomputers. This limitation significantly impacted the science that can be done with the 
VLA and would have had an equally detrimental impact on BIMA science. 3) The program¬ 
mer interface for AIPS was awkward, discouraging astronomers who are casual programmers 
from adding special-purpose tasks. As a University based operation, BIMA places very strong 
emphasis on student training, including development of new ideas for data reduction and anal¬ 
ysis that require new programming. 4) A powerful, user friendly, flexible user interface was an 
important feature in the MIRIAD objectives, including support for window-based workstations. 

Since BIMA plans to remain on the forefront of interferometer software development, and 
since the aips-f--(-project offers offortunities beyond those available through our solo support of 
MIRIAD, BIMA will be a participant in the aips-f + project. 

2 BIMA Specific 

It is the intention of BIMA that aips-j—f- eventually replace MIRIAD as the data processing 
system for the array. We therefore feel that it is extremely important that the 4 areas mentioned 
above be stressed in the aips-|—H system. In addition to several (perhaps obvious) BIMA-specific 



requirements for aips+-t- data structures and tasks, we therefore here elaborate on the 4 areas 
mentioned in the Introduction. 

• BIMA data structures and tasks. The design of data structures must make it possible 
for data from the BIMA on-line control computer to go directly into aips++ (perhaps 
with an interface program specific to the task, but without leaving BIMA out-on-a-limb 
with a non-aips-|-+ interface). We need the ability to define data items peculiar to BIMA 
and the ability to add them in the future. Aips-|—|- must have all tasks necessary to 
carry BIMA data through from the telescope, to editing and calibration, map making, 
deconvolution, analysis, comparison with theory, display, and publication. The BIMA- 
specific tasks, particularly calibration, will be written by BIMA itself, but the aips++ 
system must be designed to facilitate such programming and must never allow changes 
which cut off an aips-f- + consortium telescope such as BIMA in a way that requires 
extensive re-programming. 

• Data sets. It presumably goes without saying that the aips++ data structure should be 
3-dimensional, with polarization included explicitly although not as a full 4th dimension. 
However, we argue here for a 4-dimensional data structure. It will often be the case 
that multiple spectral lines will be observed of the same object, and it will be extremely 
convenient to treat different cubes as the 4th dimension of the data set. The BIMA 
correlator can simultaneously produce up to 8 independent (not contiguous in frequency) 
spectral-line data sets with 256 channels each, so the 4th dimension might originally be 8 
units long. During the calibration and other processing of the 8 simultaneous spectra, the 
same procedures can be applied once and uniformly to the entire data set. Users will want 
to be able to add additional cubes to the 4th dimension, including perhaps continuum 
images at multiple wavelengths and spectral-line cubes obtained with different telescopes. 
When supersets in the 4th dimension of image data are assembled, display and analysis 
tasks written to take advantage of this 4-dimensional structure will be very powerful and 
convenient. The MXV ability to handle multiple spectral-line cubes in synchronization 
is an example of the functionality desired. Finally, the aips-f-+ system should be able to 
have the ability to deal with large flexible data sets of any image size in the 4 dimensions. 
Although most computer hardware could not handle such large data sets, the system 
should allow for it through dynamic memory allocation even for small machines. The 
largest machines which will be available during the lifetime of aips+H- will certainly be 
able to handle extremely large data sets; we do not want the software written now to 
limit our future. 

• High Performance Computing. Aips-f + must be designed to run on the highest perfor¬ 
mance computer hardware available. Today, these are the vector processor supercomput¬ 
ers such as Grays and Convexes. However, supercomputers with one job per CPU are ap¬ 
proaching the ends of performance gains. The future of high-performance computing is in 
the massively parallel processor, shared memory machines such as the Thinking Machines 
Corporation Connection Machine and the Intel Sigma. The fact that vector supercom¬ 
puters were unknown when AIPS was designed is one force driving the NRAO to develop 
aips-f+. The fact that massively parallel processor supercomputers were unknown when 
MIRIAD was designed is one force driving BIMA to join in the aips-f-f development. 
The rapid improvement in workstation-class computers relative to much more expensive 
supercomputers means that most of the jobs that aips-f-f will be called on to do will be 
run on workstation-class computers. However, there will always be the requirement for 



the high-end of the performance curve of computer hardware for jobs including wide-field 
imaging, large-scale mosaicing, spectral-line observing, improved deconvolution and other 
algorithms, et cetera. To have aips+-f not designed to take advantage of the obvious 
evolution in high-performance computing would be a mistake of the first order. 

• Programmer interface. Aips-f-f must be designed so that experts can easily use the 
system to explore new algorithms and add new capabilities to the system, so that aips-f-f 
can be easily maintained, and so that casual programmers can easily add special-purpose 
(perhaps throwaway) tasks to the system. The use of OOP and C-f-f and careful attention 
to data structures will go a long way to satisfy the needs of experts. It must be easy and 
straightforward for casual programmers who know C or C-f + to write programs in the 
aips-H-f system. However, many astronomers do not know C (let alone C-f -f) and will be 
unwilling to learn. While experts may lament that attitude as being shortsighted, aips-f-f 
must live in the real world of astronomers dominated by FORTRAN programmers. To be 
successful for the casual programmer, aips-f-f must allow for integration of FORTRAN 
programs. 

• User interface and user friendliness. The user interface to aips-f -f and how friendly the 
system is to both beginner and expert users is equal in importance to the functionality 
of the software system, for the user interface determines how the users will interact with 
aips+-|-, whether accomplishment of user goals will be a pleasure or a pain, or even 
whether the user can do what (s)he wants to do at all. The ability for aips-f-f to easily 
and straightforwardly move from raw telescope data to publishable results will determine 
the success of the project. Clearly, a multifaceted user interface will be necessary. Experts 
will not want to wade through all of the aids that new users will find essential. MIRIAD 
has basically 3 interfaces: a command line interface, a menu interface similar to that of 
AIPS, and a GUI interface which (especially for MXV) is very intuitive. In the area of 
user friendliness, we should incorporate expert system/artificial intelligence into aips-f-f, 
including but going well beyond having full, context-sensitive help available on-line. 

3    Target Machines 

One defect of AIPS which should not be repeated is that its design was not compatible with 
efficient porting to the highest performance computers, such as Cray supercomputers. Today, 
the ability to run on large memory, vector machines is not enough. The high performance 
computers of the future will be massively parallel processor machines; aips-f-f must be designed 
to run efficiently on these architectures. One such machine with which BIMA and NCSA 
programmers have some familiarity is the Connection Machine. NCSA now operates a CM2 
and expects to be operating a CM5 within a year. We should target such a machine for the 
high performance needs of aips-f-f users. 

Unfortunately, C-f-f is presently not portable to the CM, and there is little reason for 
optimism that it ever will be portable. In addition, the CM has its own flavor of C, and "ANSI 
C" is not portable if the parallel processing capability of the CM is to be used. Doing things 
in powers-of-2 is critical to the CM's ability to parallelize a problem. The CM has its own 
flavor of C to take advantage of its parallel processor architecture. Our experience with C* 
("C-star") - the CM version of C - is that anyone with experience on vector machines, as well 
as experience using C, will have a very short learning curve ... the language looks like standard 
ANSI C with features that aim to take advantage of the CM's parallel processing. If aips-f-f 



were written in C*, it would be a simple matter to convert to ANSI C (one simply disregards 
the attention paid to structuring the code towards parallel processing) ... to go from ANSI C to 
C* is an oppressive task in that the code must be redesigned to take advantage of the parallel 
processing. However, it should be a non-compromisable objective of the aips-f-f design that 
aips-f-f (at least the computationally intensive parts) run on a massively parallel machine like 
the CM5. 

Because of the above coding complications, it may well not be appropriate to set as our 
target having all of aips-f-f run on a massively parallel processor machine. Such machines, like 
the CM, are ideal for such tasks as FFTs, and other array manipulation operations. Having 
hooks so that the most computationally intensive tasks can be transparently off loaded to a 
massively parallel machine which is closely coupled via a high speed data transfer link to a 
more convention computer, such as a high-end Sun or a Convex, is probably the best plan. 

4    System Friendliness 

Although all software systems probably make some attempt to be user friendly, users generally 
give software systems low scores in this area. Aips-f 4- should be designed with user friendliness 
in mind, in spite of the fact that many of the functions described here may not be implemented 
initially. 

4.1 User Interface 

The appearance of aips-f-f should change as little as possible across machines (eg, a user familiar 
with aips-f + on a Sun system can go to a Convex and see the same software). On the other 
hand, we don't want to go only through a meta-language which essentially attempts to hide 
the operating system from the user in order to operate aips-f-f. We need to be able to have 
system level access to files and tasks. 

Both an interactive and command-line interface should be available, the latter usable when 
batching tasks. Building up a command-line input and executing that is probably the easiest 
way to allow for different user-interface programs, like menu-systems, direct inputs or MIRIAD- 
like interfaces. On the other hand, the keyword prompting feature of GIPSY makes it very easy 
to use and may be one of the main factors contributing to its popularity. Keyword prompting 
and constructing a command line are not directly compatible, unless special attention is paid 
to the keyword-input routines from the beginning. The much improved user friendliness that 
keyword prompting provides makes this effort worth considering. 

4.2 Expert Systems 

One area which should be emphasized in order to achieve user friendliness is expert sys¬ 
tems/artificial intelligence. Some examples of areas where expert systems code would be useful 
include the following: 

• Input checking: Inputs should be checked by the expert system before an operation begins. 
The user could be warned if the inputs do not make sense to the expert system. If the 
task the user wants to start will take an extraordinary amout of CPU and/or disk space, 
the user could be warned. User frustrations, such as having an output file created when 
the task will bomb because the input file does not exist, could be avoided. 



• Keyword defaults: Keyword defaults can be context sensitive, with expert systems code to 
examine the actual data stream being processed and to attempt to set the best keywords 
and parameters for each data stream. If the user could call up completely meaningful 
definitions, the values of the defaults, plus an indication of why the defaults were chosen, 
that degree of expert systems in aips-f + would be extremely user friendly. 

• Error Messages: 1) Error messages should be accompanied by useful hints. (When some¬ 
one tells you what message they got from what program, you should have a good guess 
at what they did wrong. Those types of guesses should be displayed along with the error 
messages.) 2) When the program determines that you shouldn't be allowed to do what 
you are doing (e.g., adding two maps with different center coordinates), it should give a 
You Shouldn't Do That message, with perhaps an override option. 

• Expert-defined tasks: Although all tasks and operations should be modular and broken 
down into their basic functions, there should be available expert-defined tasks (made 
up of the primitive tools) which may be used for the major paths through the data 
processing system without users having to assemble them for themselves. Moreover, these 
expert-defined tasks should incorporate as large a degree as possible of expert systems 
knowledge. At the extreme, it should be possible to have a "SHOW MAP" button which 
for a particular instrument takes raw telescope data through to maps that the astronomer 
can look at without (or with minimal) astronomer intervention. Such a system will be 
beneficial for at least 3 reasons. For real-time or near real-time observing (of time variable 
phenomena or mosaicing or mapping of unknown objects), immediate feedback can save 
valuable telescope time and maximize scientific productivity. For beginners, an expert 
system may produce better and more reliable results than the beginner choosing among 
options (s)he really does not initially understand. For experts, the quick and easy results 
can provide valuable information to guide fine-tuned data processing. 

4.3    Simplicity 

Simplicity for both users, programmers, and system managers is essential if aips-f-f is to be a 
friendly system. For users, much of this involves hiding complexity. Included among simplicity 
issues are the following: 

• Aips-f-f should have the ability for users to use aips-f-f on their own local computer 
accounts, rather than forcing usage to be through a single, "special" logon for everyone 
to use. A minimum of effort should be needed to plug a user into aips-f+. 

• It is important to be able to easily get data into and out of aips-f-f format, so aips+-f can 
be used even when other packages are still needed to complete data reduction, analysis, 
and publication. 

• The idea of 'pipes' could be employed to make a large selection of basic tasks. A 'task' 
could be something like 'fit a single profile'. Or 'return a particular pointer (to a z- 
profile etc) to selected data from a particular dataset'. These 'tasks' could then be strung 
together to treat a full dataset. A standardized 'macro' to loop over pixels or profiles 
or planes could be provided. And 'macros' for standard processes would be there too. 
However, users could very easily do something new with their data by just writing a 
small 'task' to treat e.g. a profile or series of profiles, without worrying about the whole 
infrastructure of header-updating and reading/writing. Seeing 'tasks' as part of a 'pipe' 



may provide a comparatively easy way to implement tiling of contour plots, or gray scale 
and contour overlays etc. It certainly would promote re-usability. 

• The internal catalog system of AIPS should be abandoned. We would like to have the 
ability to control where the data structures exist, not to have them in a general data 
location or with opaque names and extensions. A hierarchical data set (similar to the 
MIRIAD data set) which is directory based would provide users with a neatly organized 
structure than can be identified in commands, saved with any backup technique, com¬ 
pressed to save disk space, and provide users with the freedom to decide where their 
directory structure should reside. The AIPS internal catalog system introduces needless 
complexity. For example, the current AIPS has drawbacks in deleting files which use of 
the basic operating system would avoid: the term ZAP (instead of for example DELETE 
introduces confusion and ambiguity. Typing ZAP 20 does not delete file 20, but deletes 
the file of the last "getn", a surprise to new users. A file in the "catalog" cannot be 
deleted if it has been deleted outside of AIPS (the entry remains in the catalog although 
there is no file). 

• Users should have no need of knowing how their data is stored, i.e. as ra-dec-vel or vel- 
dec-ra cubes or any other way. The input-specification should suffice to tell the code how 
to read and write the data. So, making a ra-vel contour plot should be possible from a 
ra-dec-vel cube just as easily as making a ra-dec contour plot. 

• Useful Headers: The header information should be detailed and self-explanatory. Use of 
cryptic words in headers should be avoided. 

• Source code should be readily available to users, not only for users intending to program 
but also for users who want to ascertain exactly what a given task is doing. 

• It should be possible to stop tasks without quitting, in order to change parameters or 
keywords in mid-stream. An example might be changing the number of CLEAN iterations. 

• There should be simple system-wide subroutines to read/write/select image data. These 
routines should return a profile/plane/cube to the calling task (or pointers to them). 
They should be part of the definition of the 'image' class, so that the same code is 
used everywhere. Possibly, one could have a pointer to "profile number n in z of the 
dataset", so that the calling task does not have to take care of the read/write. By doing 
this, each task will have easy, optimized access to the data it needs. And loops over 
profiles (for continuum subtraction or profile fitting) or planes would become trivial. All 
possible orientations of profiles or planes should be accessible (i.e. x-profiles, z-y planes 
etc). Memory management should be delegated to the subroutines, not to the application 
programmer. 

• The standard interface (unrelated to the software per se) should be standard; the XI1 
standard should be supported. 

• The ability to debug programs via a symbolic debugger is essential, so that for example 
a new support person without experience in aips-|-+ can track down problems and can 
follow program flow. A good prototyping environment is necessary, not just desirable. 

• A single file format should be used by all machines. Data can be ftp'd from a Sun to a 
Convex (and among any other machines on which aips-f-f is supported) and used directly. 



• Version upgrades should not be a major undertaking, but should be simple, direct, and 
straightforward. "Root" privileges should not be required to install aips-f-f. There should 
be a minimum of structure. We don't want a rats-nest where the search for anything 
becomes a quest in its own right. Small changes in structure should not force re-loading 
the entire system (ie, the effect of local structures should be local). Stability in the package 
is very important. 

• It should be possible to load a customized system. In MIRIAD, for example, you don't 
need to load the whole system; if all you want to do is make models and plot them, then 
only two tasks (imgen and implot) are all you need. In aips-|—f single dish processing 
does not need all the interferometer and vlbi software, and single- dish users should not 
have to fill up their disks with unwanted code. 

5 User Programmability 

Both experienced programmers and astronomers with limited programming background must 
be able to program in the system. At the expert level this means those with C-f + and aips-f-f 
knowledge; obviously, aips-f-f must be designed for experts to add, modify, and maintain code 
without having to have intimate knowledge of all of aips-f+. Thus, modularity is very impor¬ 
tant. At the amateur level, an interface that is reasonably straightforward so that astronomers 
can write their own tasks for their own purposes without gaining an in-depth knowledge of 
aips-f-f or C-|-+ is essential. This might take the form of a statement interpreter for the 
simplest things. However, as FORTRAN is still a "standard" for technical computer users, it 
should not be discarded in favor of C for this purpose. Astronomers will wish to add modules in 
FORTRAN. (Moreover, FORTRAN may be necessary for implementation on high performance 
computers.) Aips-f-f must interface with FORTRAN programs at some level. 

How to support external programming capabilities (i.e., the possibility to string together 
tasks and use while, repeat or for loops and ifs) is a major problem. To use the C-shell has the 
disadvantage that it only works under unix systems, and may not even work the same under 
different flavors. One solution is to make very easily available a function that executes a task, 
so that one can make a C-PROGRAM to string together tasks. That way ALL capabilities 
of C are available. Inclusion of a visual programming language, such as the cantata program 
in the Khoros system, would be extremely useful. (Cantata is a graphically expressed, data 
flow-oriented language. The user builds a cantata application program by connecting processing 
nodes to form a data flow graph; nodes represent modules of several hundred lines of code. A 
dynamic execution scheduler allows the user to interactively execute the entire flow graph across 
a heterogeneous computer network. There are other, similar systems; Khoros and cantata are 
are mentioned here because they available free via anonymous FTP from the University of New 
Mexico.) 

6 Documentation and Processing History 

Aips-f-f should have strong astronomer assisted user documentation from the very early stages. 
Astronomer assisted means that an astronomer not associated with writing the code should have 
the ultimate responsibility for the documentation. There should also be a documentation czar 
to insure that the documentation be uniform throughout the project. A beginners "cookbook" 
should be available that starts out much more simply than the current AIPS cookbook. The 



endless possibilities should be discussed in a different manual. A possible solution is 3 levels for 
the users, each self-contained: beginner, user, and advanced user/programmer. Documentation 
should include a listing of all parameters or keywords with complete, meaningful definitions 
that are neither so short that the user must guess the meaning or so long as to discourage 
reading them. 

It is essential to have both a good on-line help facility and manual documentation, sufficient 
both for experts and for new users to effectively use aips+4- without hand-holding. 

In addition to documentation of the software, there must be documentation of what the user 
has done to the data during processing. There should be a history /log file for each project, with 
user flexibility concerning how it is to be used and configured. Every non-trivial action taken 
by the user or by the software should be listed in this history/log. Further, the user should be 
able to write comments into the log at any time. The history/log should be available as an ascii 
file for printing or use in the text processor of user choice. There should be a filter of commands 
so that the processing may be re-run automatically and completely from the history/log file, 
so that the user may essentially un-do processing and start over. 

7    Tasks 

The heart of aips-f + will be the tasks that actually do the work. We attempt to list here an 
incomplete list of tasks which are needed. 

1. Data access. Simple applications to get at ANY part of the data structure. For example, 
it should be possible to grab any x vs. y in the data stream easily and transparently, and 
to write intensities as functions of x or y in an ascii file. We need easy and transparent 
high level programs to have low level access. 

2. Single-antenna tasks. We do not attempt a complete list here, since this is largely outside 
the BIMA arena. However, we will use single-antennas for obtaining zero and short spac¬ 
ing data to include with the array data. A task specifically to add arbitrary single dish 
data to data from an arbitrary array is needed. Given a set of single dish observations 
(a single-dish mapping), it should be possible to construct a map and then a correspond¬ 
ing visibility dataset. The process of adding the single dish visibility data to the array 
visibility data should allow checking to see if the calibration is compatible (i.e., compare 
amplitudes). Options on how to combine the data sets should include using single-dish 
visibilities inside a given uv-distance and array visibilities beyond it, as well as allowing a 
"transition region" where visibilities are averaged. Primary beam effects must be appro¬ 
priately treated. A task for single-dish beam-switching deconvolution is needed. Single 
antenna and interferometer raw data should have compatible formats so that the two can 
easily be combined. However, although the data files should have a general format for 
both kinds of data, it should not be necessary to carry around a lot of unnecessary headers 
and blank files for one sort of data or the other. 

3. Calibration. Although calibration of telescope data is peculiar to each telescope, a major¬ 
ity of the functionality will be common. Attention should be given to making as much of 
the calibration code as possible common, so that there is as little as possible site-specific 
code. A useful task would cross-check calibration of different data sets of the same object 
(different in time of observation, but with overlap of uv-coverage, otherwise the same 
observing parameters). This could also check for variability. The task would look for 
discrepancies in amplitude (and possibly phase) at the same uv-distance. 

8 



4. Imaging. Continuum data are to be seen as 2-dimensional data sets otherwise structured 
the same as line data sets (although continuum data often needs an additional dimension 
too, e.g. when needing frequency for Faraday rotation data). Possibly everything should 
be viewed as mosaiced data. For single-fields some values would then be either missing 
or set to 1. This allows the exact same task to be used in all cases and thus decreases 
duplication and increases re-usability. In a sense it means adding an extra dimension 
to datacubes. But programs like 'primary beam correction' may be the same for the 
mosaiced and non-mosaiced case. 

• direct FFT - weighted, gridded, tapered imaging and AP computation 

• subtracting continuum in the uv plane (includes subtracting point-sources in the uv 
plane) 

• deconvolution:  3-D deconvolutions.   CLEAN with options selecting variants.   Ex¬ 
tended source CLEANS (such as SDI clean, multi-resolution CLEAN). MEM. 

• mosaicing (3-D). Should be simply and easily accomplished for an arbitrary instru¬ 
ment. 

• primary beam correction (removal) / generation / fitting. 

5. Map-manipulation. Rectangular box or curvilinear region selection should be built in 
automatically. One can e.g. carry a blanking array along in the C-class, which can be set 
by the selection mechanism. 

• interactive image data editing 

• image calculus (includes determination of continuum image/moments etc) 

• continuum subtraction (in several, flexible ways) 

• statistics (between data sets, in a subcube, as function of a coordinate, histogram¬ 
ming) 

• profile fitting (and everything that that includes, like gaussians, rotation measure, 
electron temperature, ...) 

• source fitting (e.g. 2-D gaussians) and source-list production 

• smoothing (1-D, 2-D, 3-D, gaussian, boxcar, banning) 

• reprojecting (from equatorial to galactic etc, from gnomonic to orthonormal etc) 

6. Plotting. Large amount of control on details is essential. 

• simple direct printing of data 

• scatter plots 

• x-y plots (e.g. correlate to datacubes) x/y can be pixels from 2 cubes, profiles from 
1 or 2 cubes etc. 

• profiles and tiling of profiles (includes single-profile plotting) 

• ruled-surface plots 

• wedge plots (intensity=area of wedge, velocity=angle, dispersion=width) 

• image slicing perpendicular to curved (or straight) tracks, with scaling, stretching, 
and/or squeezing non-linearly in order to combine and compare various ones 

• images 



• contour plots (include tiled plots) 

• gray scale plots 

• overlays of contours on gray scales (colored contours), where the various plots can 
be from different files (e.g. MPLOT at DRAO). 

• superposition of coordinate grids 

• profiles superimposed on with lines pointing to position in images 

7. Publication plots. It is important to have high quality hardcopy. The parameters should 
be flexible, but have straightforward defaults for the usual plots. 

• A MONGO or WIP type facility would be useful, to flexibly plot ascii data. 

• Useful header information should appear by default on plots, including the data 
printed. 

• The plots should be available as .dvi files that can be incorporated into, for example, 
TeX files of articles submitted electronically to a journal. 

8. Image display. 

• Simple display of an image, with interactive palette control (annotated palette), 
many different standard palettes should be available 

• cursor measurement of position and intensity 

• Tiling 

• Movie 

• Intensity-hue display of multiple images 

• Rendered surface display 

• Interactive rotation of either real datacube (slow) or parametrized datacube (like 
from a cube with results of gaussian fitting, using one plane to define intensities, 
second (velocities) to define z-position (very fast). 

9. Comparison with artificial data. The ability to generate test data with known "results" 
when that data is processed through aips+-f is essential (this is also a strong support- 
oriented criterion). Also, comparison of observed molecular intensities (in data cubes) 
with theoretical ones determined from detailed simulations or simple modeling with ra¬ 
diative transfer calculations is important for interpretation of observations and should 
be possible in aips-f-f. This should include the possibility to create a model from some 
data set(s) as well as option to use an existing model as input. The model should be 
re-gridded or whatever is needed if it is not compatible with the array size or orienta¬ 
tion of the dataset. The ability to "observe" the model with the instrumental signature 
imposed is important for the comparison. The full range of aips-f + tasks would then 
be available for comparison of theory and observations. Use of the 4th dimension of the 
image data sets for model and data might be useful. The ability of users to add rather 
complex programs themselves to aips-f-f, such as radiative transfer programs, would be 
very useful. Consideration should be given to system support of standard comparison 
tasks, such as LVG radiative transfer programs. 

10 



10. Archiving. An archiving subsystem, suitable for the storage and retrieval of data over 
the Internet, would be an important addition to aips-f-f. Whether this should directly 
be a part of aips-f+, with code to access archives, or a completely separate system with 
the ability to input easily to aips-f+, is unclear. However, the advantage of the archive 
browse and retrieval software being a part of aips-|—f- is that all the visualization and 
other tools necessary for an archive tool would be available without duplication and with 
the standard, familiar interface. 

8    Maintenance 

Once aips-f-f replaces AIPS, MIRIAD, and other systems, there remains the problem of main- 
tenaning and further enhancing the system. The aips-f-f consortium is only committed to the 
point of developing aips++, not maintaining it. Long-term maintenance of aips-f-f appears to 
be an issue which has not yet been faced; this issue must be addressed now and a satisfactory 
agreement for the long-term support of aips-f-f put in place before organizations like BIMA 
can fully commit to having aips-f-f replace their own software systems. The aips-f-f consor¬ 
tium must commit itself for the lifetime of the code to upgrade and maintain the full system 
as released to the general user community (including all of the inclusions for local instruments 
of the members of the aips-f-f consortium), with appropriate safe guards against critical orga¬ 
nizations dropping out of the consortium. As the largest and lead partner in the consortium, 
NRAO should recognize and accept a special responsibility in the area of maintaining aips-f-f. 

NRAO should be site of updates and should keep a current version of the entire system 
available for anonymous ftp. In addition, up to date patch files that can be retrieved as needed 
should be maintained in a similar location. A standard mechanism for reporting bugs (and 
receiving responses) should be established, probably via email. 

11 


