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1. Introduction 

1.1. WHAT THIS DOCUMENT IS 

I was asked to produce (quickly) some words which might serve as a jumping- 
off point for further discussion of the treatment of singledish (SD) data han¬ 
dling under the AIPS++ umbrella. Those words exist somewhere between 
the larger memo by Hjellming et al. and the recent committee report of Mad- 
dalena et al. discussing online data handling at the GBT. That is, I have 
had in mind the various needs of the GBT (which nonetheless is usuallynot 
mentioned explicitly or afforded exclusive rights) but have happily adopted 
the tenets of AIPS-h+. I write in the belief that AIPS++ will afford any 
ability for which SD might use AIPS even noto, and that the requirements 
cited by Hjellming et al. will be part of the AIPS++ design. This being 
the case, I need mostly only provide elaboration and detail work here. The 
reader is assumed to have some familiarity with the memo by Hjellming et 
al.. 

1.2. WHY INCORPORATE SINGLEDISH DATA-HANDLING WITHIN AlPS-h+l 

There are many reasons for this. NRAO needs AIPS++ as a vehicle for 
coordinating and unifying software development; SD astronomers need bet¬ 
ter and more widely-distributed software; smooth integration of SD data- 
handling will improve AIPS++ generally and substantially; there will be 
increasingly tight integration and sophisticated use of SD data with synthe¬ 
sis projects to capture short-spacing data. 

1.3. ABOUT THE REST OF THIS MEMO 

My words are arranged as follows. Section 2 deals with the various kinds of 
information that flow during observing and are joined to make a database; 
this is relevant to the online use of AIPS++. Section 3 speaks to the ways 
that the data should be viewed, filtered, and recreated on disk in order to 
move from the raw state to being calibrated and reduced. Section 4 details 
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some capabilities of the shell and command line interpreter, and samples 
some of the 1-dimensional operations which reduce data and extract infor¬ 
mation from it. Section 5 touches briefly on some display capabilities. 

2. Making Data 

2.1. INFORMATION FLOW 

Several streams of information flow back to the astronomer during observing, 
tagged with the time (or some other means of achieving synchrony) 

• slowly-varying configuration information-site latitude and telescope 
or baseline positions, operator's initials and program id. 

• ambient conditions- things which are independent of the act of ob¬ 
serving, and sensed but not influenced, such as ground temperature 
and humidity. 

• explicitly commanded conditions-everything from the desired fil¬ 
ter bank setup or receiver center frequency to telescope position 
and desired length of integration-as these are understood by the 
telescope's operating system (TOS). 

• implicitly commanded conditions-the hardware is configured in re¬ 
sponse to the explicit commands, for example, to set center fre¬ 
quency with allowance for Doppler shifts, to track and point, to 
move surface panels, to start observing at a certain UT, to tune the 
receiver and so on. 

• resultant astronomical data. 
The possible set of implicitly commanded conditions will typically be 

much larger than those commanded explicitly, as even a simple order to the 
TOS to integrate for five more minutes requires the use of many cooperating 
pieces of hardware. Note that the explicitly commanded conditions must be 
regarded as apochryphal until they are checked against the actual observing 
record. Any telescope will have some safeguards-it shouldn't integrate if 
incorrectly pointed or configured-but none will be entirely failsafe. 

In current TOS, these datastreams are handled in curious ways. Some 
pieces of information may be stored only on pen-recorders, while others 
appear but momentarily on CRT's. Those judged most important are written 
on log sheets or to disk. In most singledish TOS, the permanent disk record is 
a conflation of all the datastreams in a binary form determined by whatever 
is the native analysis system. This is written to tape, taken home by the 
observer, and erased from disk soon thereafter. The detailed, permanent 
records of what happened on-site are dispersed world-wide in observers' 
datatapes or simply lost. 
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2.2. WHEN DOES INFORMATION BECOME DATA? 

The non-astronomical datastreams may be as needy and deserving of anal¬ 
ysis as the astronomical data itself; they are the first line of defense against 
corrupted or invalid data. Moreover, this flow of not-purely-astronomical in¬ 
formation is the chief concern of those who build or maintain a telescope 
and its OS. 

There has been a substantial discussion of the degree to which the GBT's 
monitor and control group must cooperate with the data analysis effort. 
While it might be argued that any clean interface between M&C and anal¬ 
ysis will suffice, and that the analysis side could probably recover even if 
M&C were simply to dump an undifferentiated bitstream on disk, the mode 
of operation of a SD telescope has historically been the single biggest deter¬ 
minant of subsequent analysis procedures and software. Our analysis proce¬ 
dures and data structures have been more nearly attuned to the operation 
of the telescope than to underlying astronomical practices. 

The online software system must be equally adept at addressing all the 
information which flows in. Archival storage will have to be extended to 
address the non-astronomical datastreams as well. 

2.3. ONLINE VS. OFFLINE 

It will be the job of AIPS++ to make sense of the above-mentioned datas¬ 
treams during testing and configuration of the telescope and TOS, and 
during and after observing. Historically, SD work has employed the same 
software at and away from the telescope, though (importantly) nearly ev¬ 
ery telescope is independently supported in software and few programs are 
widely distributed. Astronomically and analytically there is little diflference 
in the abilities required of online and offline software even now. Any remain¬ 
ing distinctions will indeed fade under such influences as doing observing 
opportunistically and piecemeal to accomodate the weather, absentee and 
remote observing, and using more sophisticated hardware and TOS. 

Of course dependence on software online carries an implicit committment 
that observing time will not be lost. When problems are present during 
observing they must be fixed expeditiously. 

It will be a challenge to produce a system which satisfies the imme¬ 
diate needs of local testing and diagnosis as well as astronomical explo¬ 
ration, while maintaining portability, robustness, and immunity from low- 
level distortions- i.e. hacking in situ. 
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3. Creating and Maintaining a Useful SD Database 

3.1. WHAT IS THE ATOM OF SD DATA? 

The basic unit of SD data has been a 'scan', which, though universally 
recognized, is surprisingly ill-defined. Loosely speaking, a scan corresponds 
to what the telescope was doing within a brief interval while observing, 
ranging perhaps from 15 seconds to 5 minutes; a recognizable amount of 
data is tagged with a parameter group describing the conditions of observing 
and affording unique access (most often via a simple serially-ordered scan 
number). These descriptive data-associated parameters are grouped within 
the scan's so-called header. 

In many cases, scans are a simple joining of a header block followed 
by a single array of data representing the output of one spectrometer or 
a single continuum drift scan. But scans may also be very complex. For 
instance, they might be subdivided in a dozen or more independent but 
similarly sampled subscans whose simple sum is the desired final product. 
The data may also be stored in long arrays which represent independent IF's 
(observations placed end-to-end). There is no generally-agreed limit of the 
amount of complexity which might be encompassed within a single scan, and 
it has been proposed that scans could hold maps or (with internal tables) 
irregular, sparsely-sampled or even redundant data. 

Alternatively, in some current modes of observing necessary parts of the 
data are artificially dispersed. In doing total-power work, where on-and off- 
source observations are differenced, one might have a single 'off followed by 
many 'on's'. Present-day NRAO software sometimes stores information in 
the header which identifies on vs. off-scans and records the on-source data 
without performing the necessary differencing. It uses separate commands 
to access switched and total power data and requires additional commands 
to achieve scaling to antenna temperature for the latter. 

In discussions recently, the trend has been to break out independent ar¬ 
rays rather than conceal them within individual scans; data taken with dif¬ 
ferent receivers and now stored as the A,B,C, and D quadrants of a single-. 
scan (one scan number) would become four scans or be explicitly recogniz¬ 
able through dotting (scan.quadrant or scan.quadrant.record). 

3.2. SOMETIMES A CIGAR IS JUST A CIGAR 

One substantial difference between SD and SA (synthesis array) observing 
is that the former observes directly in the map plane; the telescope was 
probably pointed separately to get each line profile. SD astronomers get 
fewer profiles and pay more attention to each of them. They have not been 
able or required to deconvolve their observations; the number of FLOPS 
needed to reduce each pixel has been small. This will change, but it is crucial 
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that AIPS++ afford the same intensity of focus on individual spectra which 
is the real hallmark of present SD analysis codes. 

In my own code and most SD programs, a scan is kept simple and larger- 
scale structures, if they are ever explicitly referenced, are created only on- 
the-fly by the analysis program. This approach works well when data are 
sparse and the data-taking is haphazard, but it is hardly self-documenting. 
During observing, some regularity of the positional or other spacing of the 
instrumentation might lend itself to aggregating the data into larger struc¬ 
tures like a cube; this kind of multiple-pointing single beam work happens 
now as the telescope is moved point by point over a sky grid. Increasingly 
however, multiple beams will be present, and these may take data at some¬ 
what eccentric positions which are only later interpolated onto a regular sky 
grid. 

Many interfaces remain to be defined for the GBT, including that one 
between the internal formats of Monitor & Control and the external world 
of scrutiny and analysis by astronomers. From the standpoint of analysis, 
what is needed is a scalable, self-documenting architecture which achieves 
flexibility without dependence (as now) on nuance and apochrypha, and 
without forcing the data into complex explicit structures when these are not 
needed. FITS offers a variety of possible implementations for SD databases, 
based either on scans as presently understood with superstructure imposed 
later, or on multidimensional data storage which explicitly groups related 
data into images, cubes, and so forth. 

3.3. MANAGING A DATABASE OF SCANS &/OR OTHER SD DATA 

Online we create some means of joining selected parts of the various dataflows 
into permanent structures which can be accessed and referenced as con¬ 
stituents of our users' database-scans, cubes, whatever. Analytically, and 
later, we need a means of associating and reordering the telescope's datas¬ 
treams so that the time-ordered and record-based procedures of data-taking 
are replaced as required by (larger) groupings which make sense astronomK 
cally. 

The views needed are sometimes more like a collapsible outline than 
placement on a regular lattice. For instance, one could ask for a list of all 
the source names, or positions, or frequencies observed. Once shown, the 
list could be traversed from top to bottom and in depth. That is, an entry 
at the highest level would indicate the presence of n subitems; it would 
then be possible to select out those subitems to receive the focus of the 
program, whence one group at a time could be processed until all are done. 
The same organization could be symbolized graphically by segregation into 
folders which are very conventional icons. Opening a folder could present 
the user with a summary of whatever pertinent information the system was 
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aware of; lists of scans, maps, tables of information, whatever. 
In reading some of the other specification documents, I sense a conflict 

between the desire for such high-level organization and allowance for access 
to the full range of file-handling abilities of the computer operating system. 

3.4.  MOTION FROM  RAW TO CALIBRATED AND REDUCED DATA 

During this process, a variety of operations must be easily applied to en¬ 
tire datasets or to subsets of data selected flexibly and perhaps even some¬ 
what fuzzily or using wildcards. This brings up the question of how a (SD) 
database is to be modified. When the data are very raw, it is simple to 
imagine that every member would be processed and a new file or version 
of the data would be created in toto. Later on in the processing, when it is 
apparent that only a (small) portion of the data needs further treatment, 
this is less obviously desirable. Rick Fisher has described handling data in 
chunks and it is quite often the case that a rather monolithic database is 
treated as, and reassembled from, portions which are described well by the 
idea of a chunk of data. 

From a pedagogical point of view, it is better to recreate the entire 
database for each change than to overwrite portions of the data without 
recording sufficient information to be able to backtrack. From the point of 
view of system resources, the most efficient way to update a database might 
be to create a change log which is applied to the input data only after the 
fact. 

This is a design decision; the intention here is to alert the designers to 
the possibility that many small modifications are typically made in SD work 
and would have been made more commonly in AIPS as well if more precise 
tools had been available. 

4. Shell and Aspects of 1-D Processing 

4.1. THE SHELL, IN GRAPHICAL AND COMMAND LINE MANIFESTATIONS 

1 assume that AIPS++ will be programmable, accepting and executing user- 
defined scripts, macros (recorded as text or graphically), and procedures, and 
that it will be easy to link in object modules compiled from HLL. It must 
be easy to develop and test procedures interactively which are proved on 
(perhaps) small portions of the data and/or easily applied automatically to 
flexibly-selected chunks of data. The facilities of AIPS++ should be available 
graphically and in command-line form, with both useable interactively and 
the latter present when AIPS++ is used as an engine for less-interactive or 
unattended operation. 

At the broadest level, the shell needs to have and permit easy access to 
data and data associated parameters, indexed where necessary: in access- 
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ing data, it may be necessary to use constructions like scan.quadrant .record 
as suggested above, whose elements would be scan.quadrant.record.channel. 
The shell should have a full complement of physical and other constants (pi, 
c, e, h, etc.). It must be able to calculate with 'header' variables or channel 
values and to use the results of such calculations for whatever purpose (ex¬ 
amples: scaling all the values in a vector to its peak value; comparing the rms 
noise in a vector to the theoretical value corresponding to the radiometer 
equation). Wild cards-scan.4.*.12 = (scan.4.*.ll-l-scan.4.*.chl3)/2- would 
also be recognized. 

We also need the facility to create vectors in various ways, see just below, 
and the shell should deal with multi-dimensional arrays intelligently and 
intuitively. It should afford access to them in part or whole, without explicit 
recognition of indices where that can be suppressed (r=s*t where s and t 
are scalar or vector, depending on the type of r, perhaps). Otherwise, it 
will be too tedious to use the shell for sophisticated purposes and explicit 
procedures would be preferred. 

4.2. WHAT DO I REALLY MEAN BY 1-D? 

AIPS was particularly strong on coordinates; that should be extended. Some¬ 
times an array is taken on a regular grid but is viewed transformed into an 
abcissa which is not evenly spaced. Viewed by velocity, examples are data 
taken with channels equally spaced in frequency at velocities not small com¬ 
pared to c, or data taken with equally spaced bins in wavelength. Alter¬ 
natively, data are sometimes taken by AOS or other devices which employ 
non-constant spacing. AIPS++ needs to be able to deal with such data by 
interpolating onto a regular grid if commanded, or (within limits) on the 
data's own, admittedly eccentric, terms if need be. This is implicit in the 
need to treat configuration and other not-purely-astronomical information, 
as discussed earlier. 

4.3. AN EXAMPLE ONE-DIMENSIONAL DATA-HANDLING TOOLKIT 

There will be (of course) be retrieval and archival and selection operators, 
(related to project and database management, of course, which is too big an 
area to be recapitulated here in its entirety) 

• define portions of an array or chunks of data explicitly (alphameri- 
cally by setting ranges with words or expressions, or graphically by 
outlining portions of a TVWindow rectangle or polygonal outline) 

• define portions of an array or chunks of data implicitly by setting up 
criteria for windowing and other machine-based pattern-recognition 
activities. 

• focus the program on an atom or chunk of data 
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• store, restore, or replace an atom or chunk of data in the workspace 
or on 'disk' 

There must be creation and destruction operators: 
• create a new vector or workspace (which can be filled in arbitrarily) 
• deallocate a vector or workspace 

Some operations just take place channel by channel with only a little bit 
of (user or header) input, without reference to other vectors, and without 
explicit extraction of information: 

• scale up or down by a multiplicative or additive constant 
• invert left-right 
• fold to undo effects of frequency switching in passband 
• interpolate at same spacing as if LO/'center velocity had been dif¬ 
ferent (a fractional-channel barrel roll or left-right shift) 

• regrid as if channel spacing had been (slightly) different originally 
• replace by numerical derivative (used in Zeeman work) 
• clip between limits along ordinate or abcissa 
• pad out to greater length 
• interpolate bad or missing data by channel or block of channels 
• detect and filter spikes 
• fft, filter the fft, and retransformation 
• smooth by banning; boxcar; Gaussian-convolution; user-defined fil¬ 
ter 

• replace channel values with any given alphamerically expressed 
function of the values &/or channel index, with explicit reference 
permitted to header or data values. This can be anything from a 
simple scaling up or down to conversion to/from opacity in emis¬ 
sion/absorption or scaling to the highest channel or system temper¬ 
ature. 

Some operations use an array to create another array by transformation 
or abstraction (fitting components) and do extract information in various 
forms: 

• fitting for baselines: sine-wave, polynomial, etc. 
• fitting for analysis: gaussians, sine-waves, parabolic shapes 

Some operations only extract information: 
• calculate various statistical properties such as mean, rms, and mo¬ 
ments (or any user-defined quantity or function) over predefined 
regions 

• window, based on threshold criteria, followed by the above. 
Some operations merge/combine arrays: 

• channel-by-channel arithmetic operations with two spectra (exam¬ 
ples: apply a vector of corrections element by element multiplica- 
tively or additively or subtract a baseline or gaussian fit) over all or 
part of a vector. 
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• join spectra end-end or insert one within another 
• add two or more spectra according to very flexible criteria, with 

specified weighting 
Some will communicate with the outside world: 

• export a vector in spreadsheet, FITS, ASCII format. 
Some operations will undo previous processing: 

• undo the previous action (perhaps multiple) 
• restore the original state at last disk/memory access 

5. Display And Annotation Facilities 

SD will profit from tighter coupling with AIPS++' ability to manipulate 
images in multiple dimensions. However, AIPS was weak in handling and 
display of 1-d vectors. 

AIPS++ needs to be able to show vectors: 
• individually, with error bars, as lines, histograms, bars, etc. 
• superposed 
• stacked vertically 
• tiled across the page 

In many cases, the displays used in SD work are sufficiently simple- 
spectra, overlays of two or more spectra or spectra and component fits-that 
it would be criminal not to create the display elegantly. This applies to 
diagrams like contours and when multiple plots are tiled on a single page 
as well (such things are easily encapsulated!). For much of the use to which 
SD and SA data-handling software is now put, the final product is easily 
displayed in such a way that further retouching by a draftsman should be 
unnecessary. 

In a departure from current practice, the screen should not be the exclu¬ 
sive province of the program; rather, the user should be able to scribble on 
it in various ways, and have those scribblings appear on-screen or in hard 
copy when desired. An example is making a mark in one frame of a series 
of moment or channel maps so as to compare results in different frames. 
Another example would be simple annotation of a spectrum to point out 
this or that behaviour with text, boxes, Unes, and arrows. 
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