Module; ALMA Test Correlator sampler
Responsible engineer; Ray Escoffier
Number required for test correlator; 4 (two per antenna)
Form factor; two-wide VLBA module with a rear 80-pin card edge connectorfor power, 100 MHz clock and the digital outputs and an SMA connectoraccessible from the module rear for the RF input.
RF input; 1.6 GHz to 2.4 GHz, 50 ohm, -14 dBm
Clock input; 100 MHz sinewave, about 2 VPP, terminated in 50 ohm to ground.
Control signal inputs; none
Digital output; sixteen 2-bit ECL output lines (outputs are single endedand require 50 ohm terminations to -2 VDC at the load).
Schematic; GBT/Tucson drawing 35208LO20 (LO20D01.SCH)
DC Power; + 5.0 VDC @ 0.03 Amp

- 5.2 VDC @ 1.9 Amp
+12.0 VDC @ 0.06 Amp
-12.0 VDC @ 0.01 Amp
+15.0 VDC @ 0.1 Amp
Cooling; ? CFM at ? C
Comment; The samplers can be housed two ways. At present, there is a VLBAbin with all 4 samplers mounted in the correlator rack. There are also twoextra VLBA bins, at present un-wired, to be used when the samplers aremoved to the antennas.
System; ALMA Test Correlator
Responsible engineer; Ray Escoffier
Form factor; one 24 inch EMI shielded rack
Clock input; 100 MHz sinewave, 50 ohm, 0 dBm (SMA connector)
Data input; sixteen single ended 2-bit ECL signals from each of 4 samplers(inputs have 50 ohm termination resistors to -2 VDC).
Sync input; 1 PPS (TTL logic leve1, 50 ohm input)
Computer communication; Ether net
AC Power; 30 Amp 240 VAC 3-phase circuit for digital logic117 VAC circuit for VME crateCooling; requires refrigerated air from computer floor (system dissipationis about 1 kW)
Comment; In the present configuration with the samplers in the correlatorrack, there are four 8-signal cables between each sampler and the samplerdistribution card. When the samplers are moved to the antennas, interface

ALMA Test Correlator

ALMA Test Correlator										
MODE	BANDWIDTH	PRODUCTS			LAGS		DELAY RESOLUTION	DELA	Y RANGE	
1	800 MHz	$\begin{array}{lll} O R & X & 1 R \\ O L & X & 1 L \\ O R & X & 1 L \\ O L & X & 1 R \end{array}$	512	LEADS	$\begin{aligned} & \text { AND } 512 \\ & \\| \\ & \# \end{aligned}$	LAGS	$8-S A M P L E S$	10	uSEC	
2	800 MHz	$\begin{aligned} & 0 R \times 1 R \\ & 0 L \times 1 L \end{aligned}$	1024	LEADS	$\text { AND } 1024$	LAGS	8-SAMPLES		uSEC	
3	800 MHz	OR X OR OL X OL 1 RX 1 R 1L X 1L			$4 \text { LAGS }$				-	
4	100 MHz	$\begin{array}{lll} O R & 1 R \\ O L & X & 1 L \\ O R & X & 1 L \\ O L & X & 1 R \end{array}$	4096	LEADS	$\text { AND } 4096$	LAGS	4-SAMPLES	80	uSEC	
5	100 MHz	$\begin{aligned} & 0 R \times 1 R \\ & 0 L \times 1 L \end{aligned}$	8192	LEADS	$\text { AND } 8192$	LAGS	4-SAMPLES		uSEC	
6	100 MHz	$\begin{aligned} & O R \times O R \\ & O L X O L \end{aligned}$		8192	, LAGS				-	
7	100 MHz	$\begin{aligned} & 1 R \times 1 R \\ & 1 L \times 1 L \end{aligned}$		8192	$2 \text { LAGS }$		-		-	

