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Mosaicing with the mm array

Tim Cornwell NRAO/VLA

Since the mm array is currently conceived as a collection of
differing size arrays and dishs, it is important that we consider how the
data from the various telescopes will be combined to form an image of the
sky. This memo will outline some preliminary arguments that such
mosaicing is indeed feasible.

For the purpose of this memo we shall define the mm array as :

(1) A single structure of maximum size 25m supporting about 25 dishs
of size Dmin = 4m which combine to form an interferometer array. This

telescope is designed to image large regions of the sky at low
resolution. This array will be super-critically sampled i.e. when
gridding for the full field of view, each cell has at least one sample
(Hjellming, private communication).

(2) A reconfigurable array of about 20 elements, each of size Dint =

10m, with maximum baselines of Dmax = 90m, 300m, and lkm in successive
configurations. This array is super-critically sampled in the first two
configurations.

The final goal is an image covering a field of view 8 given Ly

Fov’
A/D . , at a resovlution B , given by A/D . Worst still, we may wish
min res max

to mosaic a large field by pointing the 4m dishes at different points on
the sky. The heterogeneity of the mm array is the root cause of the
mosaicing problem : we wish to observe large fields with high resolution
given by the long baselines, using arrays consisting of different size
elements.

I believe that the simplest approach to imaging would be to use the
observed data sets as direct constraints upon the deconvolution. To
illustrate this possibility, consider a variant of MEM : in normal MEM
one maximises the entropy of an image of the sky while trying to

simultaneously minimise the fit to the observed data i.e. xz. The chi-
squared term for interferometers is evaluated by Fourier transforming
the trial image and subtracting the resulting visibility from that
observed, then summing the resulting residuals. The gradient of chi-
squared is obtained by inverse transforming the residuals. One can
accomodate the primary beam by tapering the trial image by the primary
beam before Fourier transformation. The gradient of chi-squared is again
given by inverse transforming the residuals but then they must be tapered
then by the primary beam. Multiple data sets can be accomodated simply by
summing the relevant contributions to chi-squared and its gradient. The
net cost in Fourier transformations is thus the cost per field times the
number of fields required. Further details are given in appendix 1.
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For those of you who prefer good ole CLEAN, it too can be modified
to accept multiple pointing centers. In MX, one would treat the map plane
subtraction loop for each pointing center independently but couple the
fields together in the u,v plane subtraction (see appendix 2). I am
dubious as tec the effectiveness of such an approach since CLEAN usually
works best on a dirty image which is reasonably close to the true sky
(remember why uniform weighting is important !). In the multiple pointing
centers CLEAN, the equivalent of the dirty map would be quite distorted.

The true virtue of MEM lies in the way all pixels are changed
simultaneously rather than in any mystical property of entropy. As a
consequence MEM is faster than CLEAN for large, well filled fields.
Furthermore, the MEM approach of guessing an answer and then comparing it
to whatever data one has may be much more feasible for the heterogeneous
observations that the mm array would provide.

Thus, mosaicing the mm array seems to be feasible and not too far in
advance of state-of-the-art image processing. Two algorithms for
mosaicing have been sketched out. Neither of these involve
disproportionate amounts of computer time; the effect involved being
approximately that involved in imaging the same number of fields with a
homogeneous inteferometer such as the VLA. The dominant spectral line
case will, of course, be correspondingly more demanding but one may be
able to save time by starting the optimisation from the continuum image
or from the previously processed channel image.

Finally, to illustrate that the required sampling is attainable,
consider the following example : suppose that we wish to image the 4m
field of view with the 90m resolution. Bob Hjellming (private
communication) has calculated the u,v coverage of a typical 90m
configuration tracking a source for twelve .iours. When gridded onto the
u,v grid appropriate to the 4m field of wview (53%53), 83% of all cells

have samples. One would require about (lOm/’«im)2 = 10 different pointing
centers to cover the 4m field of view. Therefore, since the longest
baseline crosses a cell in about 24/(5.1415%53) hours = 9 minutes, one
must cycle fields at the rate of one per minute. This does not seem
excessively fast and should be acheivable with 10m dishs. We should note
that the ratio Dint/Dmirl determines the cycling time required to cover

all peinting centers and thus cannot be two large.

The continuum data processing requirement is trivial compared to
typical VLA examples, for which the image size can be up to 4096%4096.
Hence even if we wished to mosaic together &4m fields at the 90m
resolution, only modest total memory requirements would be involved.
Imaging a 4m field at 300m resolution would still be easy, but the
surface brightness sensitivity may be inadequate. Spectral line
observations will, however, dominate the computing requirement. The
mapping speed will be limited by sensitivity and thus very long tracks
will be necessary. For example, one may require 512 separate channel
images in 12 to 24 hours. Rough estimates indicate that the MEM algorithm
described here running on a small number of VAXes (1-2) could keep up
with real time when mosaicing a 4m field at 90m resolution. Certainly, if
we allow for the expected evolution in computer power over the next 5-10
years, the load could be handled quite inexpensively (parallel
processing is very well suited to spectral line observations). However,
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this conclusion is very sensitive to the actual mixture of science on the
telescope : spectral line snapshots mosaiced together would drastically
increase the computing load. Hence, a careful look at the possible
observations and their associated computing requirements would seem
necessary.

Development of the MEM based algorithm described here will be
pursued independently of the mm array design since it will have
applications to exisiting interferometers. Numerous practical details
have yet to be settled such as : how far out in the primary beam of the
smallest element does one have to image ?, can large pointing errors be
corrected by including them in the optimisation ?, is the modified CLEAN
faster 7, etc. »

Appendix 1 Modification of MEM for many pointing centers

For simplicity we use a discrete representation of the images :
b= (bi|i=1,N)

where the images have N pixels. We should emphasize that no commitment to
one dimension is implied in this notation. Restricting our attention to
an interferometer, our observed data are samples of the v151b111ty
function, one for each pointing center. The k'th sample for the l'th
peinting center is : .

Vk,l = Xi qi 1.ti.exp(Zvr'.j. Ek 1 5.) + nk 1

where n represents noise, t is the true image, uk 1 is the position

vector of the k'th sample in the u,v plane for the 1' th pointing ceater,
.9 is the position vector in the image plane of the i'th pixel, and q )1

represents the effects of the primary beam on the i'th pixel. The
corresponding data predicted from b are :

\'A 'k, 1 21 q1 1 b exp(27r j. uk 1 )

Forming the x2 forn :

2 _ .
=k i Vi1 T Vi |

where wk 1 is the relevant weighting factor for the k'th visibility
sample for the 1'th pointing center.

Maximising the relative entropy subject to the comstraint that x2 be
equal to the expected value we find that the solution is:

b, =m_.exp(-a. (axz/abi))

where e is a Lagrange undetermined multiplier and in this particular
case: .
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2 _ " . ' _ . )
33X fabi = El qi,l.h.Re(Ek wk,l.(v k1 Vk,l)'exP( j. 2. Ek,l' éi))
In the image plane :

2 = -
ax/3b, =1, q, bo-d, )

Z.p. . ,.(q. .
iPiin (qj,l i i,
where 91 is the Fourier transform of 31 and Py is the point spread

function, given by the Fourier transform of the weights.

pi,j,l = A.Re(EK wk,l.exp(-J.27T.gk’l.( X" Ej)))

The gradient would be used to find the MEM image just as described by
Cornwell and Evans (1985). Computationally, all this is simple if
longwinded. I have programmed a toy FORTRAN version to run under VMS,
taking certain shortcuts to ease the coding. Figures 1 and 2 show two
images made from fake data sets simulating a SNR. Figure 1 shows a
deconvolution using MEM for fairly complete coverage of the u,v plane but
only one pointing center and a very large primary beam, while Figure 2
shows a reconstruction from 16 separate pointings with a correspondingly
smaller primary beam but with the seme number of visibility points.
Differences between the two reconstructions are noticeable at the few
percent level.

Programming this algorithm in AIPS would be painful unless some
suitable higher level routines are first written. Also, including
selfcalibration is conceptual y easy but slightly messy to implement
unless one programs specifically for the small field case assuming a
large amount of physical or virtual Mmemory.

Just to emphasize the obvious, different size primary beams can be

accomodatced simply by changinyg the appropriate P, i1 While mosaicing
H 3

to the 4m field of view, one can also remove the 4m primary beam.

Finally, I should acknowledge that MEM does not work particularly
well for low SNR images since the answer is biased. I have experimented
with variants of MEM which do not require positive images (and are thus
not biased) but which use the same optimisation scheme. The prelimary
results are very promising and indicate that the low SNR case can be thus
treated.

Appendix 2 Modification of MX for many pointing centers
One plausible scheme for adapting MX would be :

(1) In the minor, image plane subtraction loop, treat each
pointing center separately : form the residual/dirty map as usual, clean
with the appropriate dirty beam. At the end of each minor cvcle, correct
the clean components by dividing out the primary beam. (Fred Lo has
pointed out that a Wiener type linear sum of all possible clean
components would be more stable.)

(2) In the major, uv plane subtraction loop, remove all clean
components from the data from all pointing centers. Before subtraction
from the data from a particular pointing center, taper the clean
components by the primary beam centered on the appropriate place.
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(3) Glue the various subfields back together carefully.

As with MEM, selfcalibration can be thrown in on top if either the
gridding problem can be overcome or the sorting cost accepted.
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