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INTRODUCTION

The question of the optimum size of the central element for the millimeter array
is quite complex, and depends upon many different fg.ctors such as pointing stability,
degree of knowledge of the primary beams of the antennas, cross-talk between the
antennas, and so on. In this note, I will attempt to analyze the relevance of the first
factor, pointing. This will be based upon my recent memo on the Ekers-Rots scheme of
short-spacing estimation (Ekers and Rots, 1979), which is closely related to the imaging
scheme which the array will use, namely mosaicing (Cornwell, 1984). The attraction of
the Ekers-Rots scheme is that it is more easily investigated than the mosaicing method;
a simple one-dimensional analysis is presented in millimeter memo number 42. In this
memo I will apply that analysis to single-antenna observations.

ANTENNA SIZE

Let us suppose that a measurement of a given spacing, £ meters, is required. We
can use a single antenna of diameter d > £ to find this spacing: we point the antenna
at a number of different locations and transform with respect to the pointing offset (see
memo 42 for more details). The variance in the derived visibility induced by pointing

errors is: \ \ \
W
a(é) Az?crit d ( )

~ where oz, is the r.m.s. pointing error, a({) is the transform of the primary beam, § is
a measure of the source flux, X is the observing wavelength, d is the antenna diameter,
Az, ... is the critical sampling rate in the image plane, and N, is the number of .
pointings required to span the object.
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T
Jf(u,f) ~ Fp

This is a simple approximation to a much more complicated expression but it
is adequate for our purposes. It assumes that useful information on a point source is
obtained even when it is sitting the far sidelobes of the primary beam. Therefore, this
equation is only relevant for fairly small numbers of pointings.

The most important features of this equation are:

1. The error declines as the inverse square root of the number of pointings. This
arises because each pointing error is assumed to be independent. Correlated
errors will reduce the effective value of N,, but will be more easily estimated
via self-calibration techniques.
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2. The error increases drastically since £ — d as the illumination drops off and the
leverage of any pointing error increases.

We are interested in the variation of this error as the ratio % changes. The
question is: for a given ¢ at which we wish to find the visibility, how big must we make
d? If we make d too big, then pointing errors will grow, whereas if we make d too small
then there will be few measurements at spacing ¢ i.e. a(¢) < a(0). To simplify further,
assume uniform illumination:

a(£) = a(0) (1 - %) (2)

and that the pointing errors scale as the a power of the antenna diameter:

a, ~ d* (3)
Furthermore, we have that:
Azpopy = EAE (4)
and: 6
N = AZp, i ®

where O is the angular extent of the object.
If we measure d in units of |§|, D = T.Ei_l’ then the error induced by pointing errors

is proportional to a function f(D):

Doti
D) = 6
f(D) = 3— (6)
which has a minimum at: )
a+ 3
Dopt = 2 (7)
1

This function is plotted in figure 1 for various values of a.
Some interesting conclusions are immediately apparent:

e If the pointing errors are independent of antenna diameter, i.e. a = 0, then
D,y is infinite. Since there is no penalty in increased pointing errors, one can
increase the antenna diameter without limit. This is also the case for any a < %

o For the case of pointing errors proportional to antenna diameter, a = 1, the
optimum antenna diameter is 3 times the desired spacing.

o For sharper dependencies of the pointing errors on antenna diameter, i.e. a > 0,
the optimum antenna diameter moves closer to the desired spacing. For example,
for a =2, Dope = %, and for a = 3, Dopr = %

o For weak dependencies upon the antenna diameter, the curve is quite flat in the

neighbourhood of the minimum. For example, for a =1, f(D) is no more than
40% higher than the optimum value for any diameter in the range 1.5 < D < 11.
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Di1sScUSSION

We can use these results to investigate the problem of filling in the shortest
spacings. If we were to use a large single-dish to fill in the gaps between interferometer
elements, then we would want to get good measurements at { equal to the diameter
of the interferometer elements. We can therefore interpret D,,. (equation 7) as the
optimum value of the ratio of Central Element diameter to interferometer element
diameter. For example, if a = % then the Central Element should be a 15 meter
diameter dish (assuming that the interferometer elements have the canonical diameter
of 7.5 meter).

In the case of a homogeneous array (i.e. all array elements having the same
size), we need to mosaic to get spacings up to % from the total power measurements,
and down to d — g from the interferometer measurements. Therefore D = 2, which
is optimum for a = %, and only 8% worse than optimum for @ = 1. This is further
illustrated in figure 2, where I show the ratio of f(Dop:) to f(2) as a function of a. This
ratio can be interpreted as the SNR loss of the homogeneous array relative to the use
of an optimum special-purpose central element. For « in the range 0.5 — 4 this loss
is no more than a factor of two, and therefore, as far as pointing errors are concerned,
the homogeneous array is acceptable for any case where a < 4.

We should remember that this analysis is one-dimensional, and is approximate.
Fuller answers must come from simulation.
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