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1 Introduption

The working group on the Central Element was formed to look into the question
of the type of Central Element needed to provide short-spacing information. In
this memo, we will report on our current understanding of this question, and
upon what further work needs to be done.

One very important attribute of the Millimeter Array is that it measure
“all” Fourier components relevant to a region of the sky, up to some cutoff in
maximum spacing of a few kilometers. Particular weight has been attached to
the measurement of the short-spacing information crucial for the imaging of
large objects. By short, we mean spacings less than or in the neighbourhood of
the antenna diameter 7.5 meters, say 0-10 meters. In conventional interferom-
eters, these and shorter spacings are often missing completely. However, since
the MMA will regularly image objects much larger than an individual primary
beam, these spacings are vital. There are three possible schemes for obtaining
these measurements:

Large Single-Dish: This is the most conventional of the schemes. A large
single-dish is used to image the sky in total power mode. The required
spacings could be obtained by inverse Fourier transformation of the image,
followed by correction of the sensitivity function of the dish (i.e. the inverse
Fourier transform of the primary beam). According to the conventional
wisdom, the size of the single-dish should be 2-3 times larger than the size
of the required spacings.
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Multi-Telescope Array: An array of smaller telescopes is used as an interfer-
ometric array, and a subset of the required spacings are obtained directly.
The size of the elements should be 2-3 times smaller than the size of the
large array elements. To avoid shadowing between the densely packed
elements, the elements should be mounted on a backing structure which
can point at and track the object. Structures on, the largest scale-size are
derived from total-power measurements using the larger interferometer
dishes.

Homogeneous Array: This is the most radical of the schemes. There would
not be a Central Element: each antenna in the interferometer array would
be equipped to obsetve in a total-power mode, preferably simultaneously
with interferometer measurements. As the array is scanned for mosaicing,
the total-power observations can be used to form an image, which could
be inverse-transformed to obtain spacings up to some fraction of the dish-
diameter. Ekers and Rots [8] showed that this can be generalized for the
interferometer elements, and that it provides information on scales rang-
ing down from the shortest spacing by some fraction of the dish diameter.
Therefore, if the shortest spacing is about a dish diameter, and if the ex-
trapolated measurements are good at offsets of up to half a dish diameter,
then there is no gap to be filled.

The processing of the collected data would probably be performed via a Max-
imum Entropy “mosaicing” algorithm [4,5] rather than the Ekers-Rots scheme
discussed above. The advantages of the mosaicing algorithm are:

e The constraints on data collection are less severe since a regﬁlar grid of
pointings is not required. Data from single-dishes, and from interferomet-
ric arrays with elements of different sizes, may be combined easily.

o The deconvolution is performed at the same time as the estimation of the
short-spacings, leading to superior imaging.

e Correct weighting by SNR is simple.

From the earliest days of work on the design of the MMA, it was recognised
that the Large Single-Dish option requires the use of an array of feeds to provide
a balance between the sensitivity of the interferometer part of the array and the
Central Element. For this reason, the technologically most-conservative path
was thought to be based around use of the Multi-Telescope Array. More recently,
it was realized that a Homogeneous Array also could, in principle, measure all
the required spacings.

Although all three option are theoretically feasible, there may be practical
difficulties with each. The task of the working group is to investigate these
obstacles and reassess the viability of each options. The main questions can be
summarized:



1. Given perfect observations, will mosaicing allow recovery of all spacings:

(a) down to about half the dish diameter from the interferometric mea-
surements?

(b) up to about half the dish diameter from the total-power measure-
ments? .

2. Will the various instrumental errors corrupt the mosaicing? For example,
will pointing errors be a limiting factor? Or reversing the question, what
are the necessary specifications on pointing, illumination stability, cross-
talk, etc?

3. How do observational details affect the design? For example, can we de-
sign a homogeneous array which allows sufficient non-shadowed integration
time? Beam-switching will be required for total-power measurements—how
far a throw is necessary? Can the optics accomodate it?

4. Are the total power measurements significantly more difficult than the
interferometric measurements? Is a single feed array with N elements
easier to maintain than the feeds on N separate telescopes?

In this memo we will discuss both some partial answers to these questions, and
how further answers may be obtained. Most of the information we now have
comes either from experiments using the VLA, or from simple anal#tical inves-
tigations. In the future, we expect to augment this with further experiments,
using the VLA and other telescopes, with more theoretical work, and with an
extensive computer simulation program.

In section 2, we discuss mosaicing experiments with the VLA, and we indi-
cate future tests which should be performed. In section 3, we discuss results of
our theoretical investigations. Then in section 4, we present a plan for computer
simulation which should provide more-definitive answers.

2 Experiments with the VLA

Mosaicing is now used widely at the VLA for imaging objects spanning more
than one primary beam. Many large experiments have been performed to date.
The main conclusions are:

e Mosaicing using the VTESS algorithm [4,5] is feasible and can produce
low dynamic range images of extended objects. The spacings recovered
faithfully reach down to about half a dish diameter.

e For high dynamic range imaging, our poor knowledge of the VLA primary
beam is the limiting factor in the deconvolution. A modified scheme is
then preferred in which only the low spatial frequency data for all fields
are processed simultaneously in VTESS, while the high frequency data are



processed independently and combined linearly into an image [1]. To
produce a final image, the high- and low-resolution images are combined
together linearly into one image.

o The disadvantages of MEM, namely bias and super-resolution, can be
overcome by convolving the final image with a GLEAN-beam and adding
the residuals. (A mosaicing algorithm similar to VTESS but without the
restriction to positive-definite brightness is being tested in AIPS as task
UTESS.)

Three detailed investigations of the use of mosaicing with the VLA have
been made. These focus upon the estimation of short-spacings, the effect of
pointing errors, and the limitations on dynamic range.

2.1 Estimation of Short-Spacings

In this experiment, discussed in detail elsewhere [3], a comparison was made
between a mosaiced VLA image and a conventional Penticton image of a very
extended object, Simeis 57. Comparison with another interferometric array
rather than a single-dish is preferred because of the lower level of systematic
errors present in interferometric images. Twenty-two pointings of the VLA
were made to cover the same area as one pointing of the Penticton array. At
the observing wavelength of A20cm, this corresponded to a total field of view of
about 2°. The conclusions from this experiment are: '

o For the VLA at A20cm, it is possible to estimate spacings about 10m
shorter than the smallest measured. Given the poor model of the VLA
primary beam used, truncated at the 7% level, this is gratifyingly good.

o The mosaicing algorithm, VTESS, produces results superior to those from
linear combination of separately deconvolved images. The extra compu-
tational cost in the joint deconvolution is about a factor of two for 22
pointings.

2.2 The Effect of Pointing Errors

The r.m.s. pointing errors of the VLA are about 10-15 arcseconds in normal
conditions. At A2cm, this is about Jth — Lth of the full-width-half-maximum
of the primary beam. For the 7.5m diameter dishes proposed for the MMA,
observing at 345GHz, this corresponds to a pointing error in the range 1.2-1.8
arcseconds, or about twice as good as the current specification. A similar test
at A1.3cm would translate into a MMA pointing error in the range 1.9-2.8 arc-
seconds. Therefore a VLA mosaicing experiment at either of these wavelengths
should tell us whether the current pointing specification is adequate, at least



for estimation of the longer spacings. Using data kindly provided by Mike Bi-
etenholz, we have performed such an experiment at A2cm on the Crab Nebula.
These tests are discussed in full elsewhere [7]. The main results are:

e After defining the support of the object, a mosaiced image was obtained
which compared favourably with the A6cm image.
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o The final dynamic range of the image is only about 60 or so, but it is
difficult to estimate since the mosaiced region is filled with emission. The
misfit for each pointing was suprisingly large, with little obvious connec-
tion to the peak brightness. The dynamic range per field (defined as the
ratio of the peak brightness to the misfit) varied from 7 up to 25. Some
possible causes for this would be pointing errors, and very large errors in
the primary beam pattern. The variations in dynamic range would seem
to make the latter less plausible.

2.3 Limitations on Dynamic Range

This experiment [1] dealt with some of the limitations on the final dynamic
range of a compact 3 pointing VLA mosaic of the Cygnus Loop at A6cm. These
limitations were due to a combination of inconsistencies amongst the pointings
arising from a poor model of the primary beam, and interpolation errors in
reducing the dirty images to a common geometry. The conclusions were:

o Direct, joint deconvolution of the three pointings using VIESS yielded a
final image with dynamic range of only 50.

¢ Interpolation errors of well-sampled dirty images impose a dynamic range
limit of about 200.

o Subtraction of compact, bright background sources from the visibility data
of each pointing eliminates both problems: inconsistencies and interpola-
tion errors.

e A effective general solution is a hybrid scheme, in which the large-scale
structure is found from a joint deconvolution of the short spacings, and
the fine-scale structure is found from separate deconvolution of the longer
spacings from each pointing.

This test stresses the importance of good knowledge of the primary beam,
and of accurate interpolation schemes for geometrical transformations.

2.4 Future tests

There remain a large number of tests which will provide useful information. We
suggest the following:



1. A repeat of the Crab observations after holography of the high-frequency
beam pattern. Re-focusing of the feeds might be worthwhile. Also, a
pointing run should be performed during the observations. [Cornwell,
Uson]

2. A comparison of a mosaiced VLA image of the Rosette Nebula with data -
from NRAO 140’ observations. Of interest hére is the level of agree-
ment between the visibilities derived from the two different observations.
[Braun, Lizst)

3. A VLA mosaicing observation of the quiet Sun. This will be supplemented
by Arecibo observations, to which it can be compared on the overlapping
spacings. [Cornwell, Bastian]

4. Hatcreek interferometer mosaicing observations of the Crab Nebula, and
of the Sunyaev-Zeldovich decrement towards two clusters. The goals are
to test mosaicing at millimeter wavelengths, and also on very weak ob-
jects. In addition it may be possible to measure the total power from the
interferometer measurements. The short-spacing information on the Crab
will be compated to observations made by one of us (DE) with the Pico
de Veleta 30m telescope. [Uson, Cornwell, Emerson]

5. VLA spectral-line mosaicing observations of a sufficiently large object,
perhaps M33. In spectral-line mode, the total-power in a channel can be
derived from the measured autocorrelation function. [Braun, Cornwell,
Uson]

The relevance of these tests is as follows: tests 1, 4 and 5 relate to the
Homogeneous Array option, tests 2, 3 and 4 to the Large-Single Dish, and no
tests are directly relevant to the Multi-Telescope Array.

2.5 Other Developments

In addition to these explicit tests, we are interested in various technological
developments now being pursued by various groups.

Arrays of feeds: Success in building high-quality systems will be very impor-
tant for the Large-Single Dish option.

Simultaneous total power and interferometry: One of the attractive fea-
tures of the Homogeneous Array is the possibility of coupling the total
power and the interferometric measurements. It would then be easier to
maintain internal consistency of the measurements by, for example, some
form of self-calibration.

Shaping of illumination patterns: Stable, high-efficiency illumination pat-
terns are important for all mosaicing observations.



3 Theoretical Investigations

Mosaicing is a particularly thorny procedure to analyse theoretically since in
part it relies upon a non-linear algorithm, MEM, for a crucial step. Conse-
quently, we do not believe that a full theoretical analysis of mosaicing is possible.
We have, however, investigated the related Ekers-Rots scheme of short-spacing
estimation [8]. The E-R scheme obtains short-spacing information from the
Fourier transform of the visibility function sampled by a single, scanned in-
terferometer; the transform being with respect to the scan-position. Since it
is a purely linear procedure, analysis is fairly simple [2]. A summary of the
conclusions of this analysis follow:

1. Scanning of the image-plane is not strictly necessary. Instead, a grid of
discrete samples will suffice, provided that the separation is not greater
than %,-, where A is the observing wavelength, and D is the antenna
diameter.

2. All errors are boosted by a gain factor ﬁg} where £ is the desired offset

in spatial frequency from the nominal baseline, and a(§) is the Fourier
transform of the primary beam of the interferometer.

3. For small numbers of pointings, the error in the derived visibility dimin-
ishes as the inverse-square-root of the number of pointings.

Another memo used this analysis to investigate the importance of pointing er-
rors. The most-crucial aspect of the pointing errors is the scaling with antenna
diameter. It was shown that provided these errors do not increase faster than
the fourth power of the diameter, then the homogeneous array option introduces
amplification of pointing errors by at most a factor or two. For more reasonable
dependencies, the excess error is negligible [6].

4 Computer Simulations

Since theoretical investigations do not seem to be promising, and since experi-
mental tests are sometimes ambiguous, we suggest that many of the issues con-
cerning the central element are best addressed by computer simulations. We also
believe that simulations are necessary to settle more-general questions about the
millimeter array design. Since the MMA will be the first radio-interferometric
array designed for mosaicing, we believe that a demonstration of the array via
computer simulation is vital. We suggest that a simulation package be devel-
oped to test mosaicing of complex objects in realistic conditions. The package
should produce pseudo-data with the following attributes:

1. Sampling of the u, v-plane appropriate to the various arrays.

2. Realistic primary beams.



3. Appropriate levels of receiver noise.

4. Realistic levels of antenna-based calibration errors, both in amplitude and
phase.

5. Pointing errors with appropriate amplitude and temporal correlation.

L ]
6. Aperture illumination errors.

Not all of these need be tested simultaneously, but all of these must be explored.
The AIPS mosaicing tasks can be used for the actual imaging.

In addition to a comparison of the three main design choices for the Central
Elements, a number of other, more-general design choices should be addressed
with this package. For example, it has been suggested that since the sidelobes of
the primary beams are likely to be a limiting factor, offset-paraboloid antennas
are to be preferred to the current on-axis paraboloid with its associated large
blockage by the Cassegrain system.

The work in such a package is substantial: we estimate that coding of the
package will require about 2 man-years. Subsequent testing will probably con-
sume 0.5—-1 man-year per year until the design stage is complete. This manpower
is not currently available.

5 Summary

So far, our investigations have centered mainly around measuring spacings in-
terferometrically with the Homogeneous Array option, which, on the evidence
of the tests performed so far, is likely to work satisfactorily. However, as yet, we
have not demonstrated that acceptable total power measurements can be ob-
tained with any of the three options. We have presented plans for future work
which will explore all three options, in both interferometric and total power
modes. We have described a number of experimental tests which are important,
and we have described how computer simulation can be used to provide some
answers.

References

[1] R. Braun. Mosaicing with High Dynamic Range. mm array memo 46,
NRAO, 1988. '

[2] T.J. Cornwell. Analysis of the Ekers and Rots method of short-spacing esti-
mation. mm array memo 42, NRAO, 1987.

[3] T.J. Cornwell. A comparison of a mosaiced VLA image and a conventional
Penticton tmage. mm array memo 43, NRAO, 1987.



[4] T.J. Cornwell. Mosaicing with the mm errey. mm array memo 24, NRAO,
1984.

[5] T.J. Cornwell. Radio-interferometric i un&gng of very large objects. Astros.
& Astrophys. (submitted), 1988. :

[6] T.J. Cornwell. The size of the central eleirnveut:vpo,uting couidemtiom. mm
arrsy memo 44, NRAO, 1988.

[7) T.J. Cornwell. Tests of mosaicing on the Creb Nebuls. mm array memo 45,
NRAO, 1988.

[8] R.D. EhulaadAll Rots. Shmtspmgmthauﬁomapnmarybeam
scanned interferometer. In C. van Schooneveld, editor, Prec. IAU Col. 49,
“Image Formation from Coherence F‘uct»u in Admmy pages 61-66,

D. Reidel, 1979.



