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Abstract

Existing schemes for the calibration of radio-astronomical observations are insuf-
ficient for the application in forthcoming space missions with heterodyne systems
like HIFI. Many of the approximations used are not valid for systems with large
IF frequencies and they are too rough for the desired calibration accuracy of a few
percent. Moreover, they do not exploit the full capabilities of instruments with two
thermal load for the bandpass calibration. We propose a new calibration scheme
for the planning and reduction of HIFI observations, taking advantage of the lack
of an atmosphere and correcting for the effects of standing waves in the combined
observation of lines and continuum with HIFI.

The new calibration scheme uses a separate OFF measurement to determine the
properties of standing waves between the subreflector and the receiver. Two differ-
ent effects are corrected. Standing wave ripples are removed from the continuum
level providing the spectral baseline of the observations and the modulation of the
line strengths by standing waves is corrected in the absolute line calibration. How-
ever, at high frequencies the standing wave correction imposes severe constraints
on the integration time for the OFF measurement. A reasonable use of the standing-
wave calibration is thus only possible if the standing wave pattern is stable over
long time scales.

We have also provided an accurate estimate of the error budget of the calibration
allowing to put clear limits on the accuracy of the different instrumental parameters
required to achieve a given intensity calibration accuracy.
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1 Introduction

The standard schemes for the calibration of spectroscopic measurements in radio-as-
tronomy as summarised e.g. by Kutner & Ulich (1981), Downes (1988), Hiyama (1998),
or Mangum (2002) are not the most appropriate concept for the intensity calibration of
space mission data as expected from HIFI. They were mainly set up to deal with the
instability of the atmosphere, implicitly assume a low intermediate frequency, and do
not contain any terms for the description of standing waves in the optical path. Thus
a new calibration scheme is necessary for HIFI. Instead of incorporating the usually
used quantities into a new, more complex calibration scheme we develop a new scheme
from the first principles which is optimised to describe the conditions for HIFI without
sticking to the previously used nomenclature.

2 System response theory

2.1 The system response in an astronomical observation

The new scheme has to take into account that in the double-sideband design for HIFI
it is not guaranteed that any quantity is the same in both sidebands. Thus the split into
both sideband contributions should be done already on the level of the bandpass. In
this section a linear system response is assumed so that the different contributions can
be added up. Modifications due to nonlinearity are discussed in Sect. 5.

For the observation of an astronomical source the count rate at the backends c is de-
termined by:

c = γssb {ηl,ssb [ηsf,ssb JS,ssb + (1− ηsf,ssb)JR,ssb] + (1− ηl,ssb)JT,ssb}
+γisb {ηl,isb [ηsf,isb JS,isb + (1− ηsf,ssb)JR,isb] + (1− ηl,isb)JT,isb}
+γrec Jrec + z (1)

Eq. (1) holds independently for each backend channel. Consequently, all calibration
factors may as well depend on the considered channel. Hence, a complete characterisa-
tion of the instrument would need (3× 2 + 3)× n quantities when n backend channels
are considered.

The quantities γssb and γisb are the bandpasses in the signal and the image sideband
providing the translation factor from radiation intensities to spectrometer counts. In
this notation they include all contributions from the input conversion factor g as used
by Kutner & Ulich (1981) and from the gain ratios Gssb and Gisb as used by Ossenkopf
(2002). In the following, all quantities are allowed to differ between the signal sideband
(ssb) and the image sideband (isb).

The coupling of the different radiation fields to the total field in the beam are de-
scribed by efficiencies η. We treat them pairwise where one η gives to coupling to a
particular input contribution and (1− η) is the remaining coupling to all other contri-
butions. The quantity ηl is the effective forward efficiency, i.e. the part of the total beam
that actually reaches the sky in the considered sideband. It contains the main beam, error
beam contributions, scattering, and spill-over that terminate on the sky. Consequently
(1− ηl) is the part of the beam that terminates somewhere on the warm telescope struc-
ture. This includes the ohmic losses at the telescope surface which are visible as warm
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radiation. Contributions from the cold structure in the focal plane unit are treated as
part of the receiver temperature as discussed below.

ηsf is the source efficiency with respect to the forward beam, i.e. the contribution of
the sky beam that is filled by source emission. For a known source structure it can be
computed by

ηsf = ηsf(Ω) =
∫∫

sky
Bn(Ψ)Pn(Ψ−Ω)dΨ

/ ∫∫
sky

Pn(Ω)dΩ (2)

where, Pn(Ω) is the antenna power pattern, and Bn(Ω) is the brightness distribution of
the astronomical source on the sky normalised to a maximum value of 1. The quantity
ηsf corresponds to ηcηfss in the notation of Kutner & Ulich (1981). For a Gaussian source
brightness distribution and a perfect Gaussian beam it is given by ηsf = θ2

source/(θ2
source +

θ2
beam). The determination of ηsf is discussed in a separate paper (Kramer in prep.).
The quantities JS, JR, and JT denote the radiation temperatures from the source, the

blank sky, and the sum of the telescope contributions within the beam. In case of black
body contributions with a single temperature the radiation fields can be computed using
the Planck radiation formula:

JB = Bν(T) =
2hν3

c2

[
exp

(
hν

kT

)
− 1

]−1

(3)

It is essential to take the full frequency dependence into account here because coher-
ent double-sideband receivers are able to distinguish between the energies of photons
coming from the different sidebands. Instead of using an intensity scale, the radiation
field can be expressed in terms of a radiation temperature by the translation into an
equivalent Rayleigh-Jeans temperature. If we perform this transformation for the LO
frequency

J =
c2

2kν2
LO

JB (4)

we obtain a measure for the radiation field temperature, which has the correct depen-
dence of the photon energy on the IF frequency but uses the familiar temperature scale
to characterise the absolute value of the radiation field. In the following we will thus
use the so defined radiation field J when providing numbers for the different contribu-
tions. In general, however, the radiation fields will be a superposition of contributions
from several temperatures. In contrast to ground-based observations where the tele-
scope structure is in thermal equilibrium with the ambient temperature we cannot even
expect an accurate knowledge of JT for HIFI, so that the absolute value of JT introduces
a considerable uncertainty. As discussed by Ossenkopf (2002) the contribution of the
radiation field from the blank sky can be neglected in most cases, i.e. JR = 0.

Eq. (3) shows that even a single temperature radiator results in different radiation
levels in both sidebands of the receiver. Although the intermediate frequency of HIFI is
so large that the sideband imbalance of any radiation has to be taken into account, it is
possible to use a linear description for the frequency dependence of the radiation field
from the continuum sources. A linear expansion of the radiation field around the LO
frequency shows an accuracy better than 10−3 within the whole IF range. We can write

JνUSB − JνLO = JνLO − JνLSB = bνIF × JνLO (5)
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In the Rayleigh limit the factor b = 2/νLO is independent of the actual temperature, so
that changes in the temperature are not reflected in the frequency dependence of the ra-
diation. An exact derivation taking the curvature of the Planck curve into account results
in bh ≈ 2.02/νLO − 0.00028/GHz at the 100 K hot load, bT ≈ 2.03/νLO − 0.00036/GHz
for a telescope temperature of 80 K, and bc ≈ 2.50/νLO − 0.00029/GHz at the 15 K cold
load.

The radiation field Jrec characterises the receiver temperature. It also includes contri-
butions from surfaces at the temperature of the focal plane unit (FPU) in the optical
path. This approach is justified when the contributions do not differ between the source
and the reference or load measurements and the FPU temperature remains stable. Oth-
erwise the corresponding radiation field should be added in Eq. (1) as an additive term
for both sidebands. The receiver temperature Jrec cannot be split into contributions from
both sidebands. In all measurements only the combined quantity γrec Jrec is obtained. A
priory there is no simple relation between γrec and the bandpasses for the sky and tele-
scope contributions γssb and γisb. But as γrec cannot be determined independently of Jrec

we are free to chose any physically reasonable definition for γrec, e.g. γrec = γssb + γisb,
thus only redefining the receiver temperature Jrec. The quantity z represents the zero
counts of the backend, which can be easily measured when terminating the backend
input.

Eq. (1) holds independently for each backend channel. Consequently, all calibration
factors may as well depend on the considered channel. Hence, a complete characterisa-
tion of the instrument would need (3× 2 + 3)× n quantities when n backend channels
are considered.

2.2 The sky reference

Most observations will be calibrated using the observation of a point free of emission as
a reference. If the optical path is the same for the source observation and the reference
observation we can expect the same system response in both measurements. Then the
count rate at the blank sky position is given by:

cOFF = γssb {ηl,ssb JR,ssb + (1− ηl,ssb)JT,ssb}
+γisb {ηl,isb JR,isb + (1− ηl,isb)JT,isb}
+γrec Jrec + z (6)

As a slew to a reference position is relatively slow, a focal plane chopper allows to
quickly point towards a nearby reference position by slightly changing the optical path.
However, this has the side effect that the bandpass and the coupling efficiencies may
deviate between the two positions. For a chopped observation, Eq. (6) has thus to be
rewritten by changing all coefficients to corresponding quantities for the second chop
position, i.e. γssb → γR

ssb, ηl,ssb → ηR
l,ssb and so on.

2.3 Load measurements

A basic calibration of the instrument is performed by a pair of measurements on two
well defined thermal sources in the focal plane unit (FPU). This calibration by two ther-
mal loads is typically known as “two-load chopper wheel calibration” (Hiyama 1998,
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Mangum 2002). The cold load source will be provided by the normal interior of the
FPU at about 15 K. Multiple scatterings within the FPU should all terminate at the same
temperature to guarantee a good overall coupling of the radiation field to the “thermal
bath” of the FPU temperature. However, the presence of the hot thermal load attached
to the FPU makes it likely that small parts of the beam will be affected by radiation from
the hot load when looking onto the cold load. Thus cross coupling coefficients have to
be taken into account and we obtain:

ccold = γc
ssb {ηc,ssb Jc,ssb + (1− ηc,ssb)Jh,ssb}

+γc
isb {ηc,isb Jc,isb + (1− ηc,isb)Jh,isb}+ γc

rec Jc
rec + z (7)

One has to note that the system response expressed by the bandpass coefficients γ is not
necessarily the same as for the astronomical observation.

The hot thermal load is a device at about 100 K attached to the FPU. When tilting the
focal plane mirror it fills most of the beam, but a small part of the beam will still see the
cold FPU, so that contributions from both temperatures have to be taken into account.
We obtain:

chot = γh
ssb {ηh,ssb Jh,ssb + (1− ηh,ssb)Jc,ssb}

+γh
isb {ηh,isb Jh,isb + (1− ηh,isb)Jc,isb}+ γh

rec Jh
rec + z (8)

3 Determination of calibration parameters

3.1 Basic considerations

It is obvious that it is impossible to determine all calibration quantities from these mea-
surements when we cannot assume that the quantities stay constant when switching
between the thermal loads, the sky or the reference position. The standard calibration
(e.g. Kutner & Ulich 1981, Mangum 2002) assumes that all calibration quantities change
only in time but not when changing the position of the focal plane mirrors.

However, all surfaces in the instrument may form low-quality Fabry-Perot interfer-
ometers leading to standing waves which modulate the transmission and the intrinsic
noise of the mixer as a function of frequency. The standing waves will differ in gen-
eral between the two sidebands and they change with each modification of the optical
path in the instrument. Thus, the assumption of constant response functions prevents a
correct treatment of standing waves.

A better treatment has to rely on a physical model of the receiver to obtain the rela-
tions between the calibration quantities in the different configurations. For SIS receivers
a semi-empirical theory was provided by Tucker & Feldman (1985). This formalism was
applied by Whyborn (2002) to estimate the influence of the standing waves on the in-
trinsic instrument noise for HIFI, with particular emphasis on standing waves towards
the secondary mirror. Schieder (2002) has shown that the standing wave between the
mixer and the local oscillator can have dramatic effects on the bandpass and the mixer
pumping, but this path should not differ for the different measurements. No quantita-
tive investigations have been made to study how the standing waves change the cou-
pling to the temperature of the telescope surfaces where multiple reflections increase
the contribution of ohmic losses at the reflecting surfaces.
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3.2 Load calibration

3.2.1 Calibration equations

Beside these basic uncertainties we face the practical problem that additional assump-
tions have to be made to allow a derivation of all calibration parameters from a few
measurements. Looking at the load measurements it is obvious that we can obtain only
two quantities per backend channel from the two measurements.

Thus we have to assume that the standing wave pattern does not change between the
two thermal loads, using the same load bandpasses γl

ssb and γl
isb and the same receiver

temperature Jl
rec for both loads. As the design of the FPU was chosen to minimise stand-

ing waves towards the thermal loads it seems reasonable to assume that their difference
is negligible. Because the calibration schemes proposed here use the difference in the
standing wave pattern between the loads and the sky any difference in the pattern be-
tween the two loads would show up only as a second order effect. Nevertheless, this
assumption may represent a limitation to any calibration scheme but there is no direct
way to measure the standing waves independent of the spectral characteristics of the
receiver.

As the absolute value of Jl
rec is not fixed by definition in Eqs. 7 and Eq. 8 we can define

the receiver bandpass as the sum of the two load bandpasses γl
rec = γl

ssb +γl
isb. The zero

counts z are to be measured independently by a zero termination of the backends. The
coupling coefficients for the hot load ηh,ssb and ηh,isb and the cold load ηc,ssb and ηc,isb

have to be measured on ground (see Roelfsema et al. 2002). Here, constants across the
band can be used.

Moreover, only information on the combination of the two bandpasses can be ob-
tained as the thermal loads provide always almost equally strong contributions in both
sidebands. Thus we need additional knowledge on the sideband ratio. Here, we use a
normalised sideband ratio Gssb defined as Gssb = γl

ssb/γl
rec. It does not define the ratio

between both sidebands but the ratio between the response in the signal sideband and
the combined response in both sidebands. Consequently, the corresponding ratio for
the image sideband is γl

isb/γl
rec = 1− Gssb. Unfortunately, the sideband ratio can not be

easily measured and it may vary when changing the LO frequency and for a given LO
setting across the bandpass due to standing waves between local oscillator and mixer.
Gas cell measurements as performed by Schieder (2002) promise an accuracy of 5 %
basically neglecting the standing wave effects.

Although it is not necessary for a complete description of the problem, we further
assume for the sake of simplicity that the coupling coefficients ηc and ηh agree in both
sidebands. It is unlikely that they vary strongly between the two sidebands and it would
be very difficult to measure such a variation. Then we obtain a considerable simplifica-
tion of the calibration equations for the bandpass and the receiver temperature:

γl
rec =

chot − ccold

(ηh + ηc − 1)(Jh,eff − Jc,eff)
(9)

Jl
rec =

ηh(ccold − z)− (1− ηc)(chot − z)
chot − ccold

(Jh,eff − Jc,eff)− Jc,eff

=
(ηh + Yηc −Y)Jh,eff − (ηh + Yηc − 1)Jc,eff

Y− 1
(10)
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Here, the Y-factor is defined as usual by

Y =
chot − z
ccold − z

(11)

and the effective thermal radiation fields detectable by the receiver are given by

Jeff = Gssb Jssb + (1− Gssb)Jisb (12)

The receiver temperature Jl
rec and the average receiver bandpass γl

rec determined in
this way may depend arbitrarily on the spectrometer channel. In contrast to the tradi-
tional calibration equations, the imperfect coupling to the two thermal loads is explicitly
taken into account here so that it provides no limitation to the calibration scheme as long
as it is quantitatively known.

3.2.2 Calibration errors

To estimate the accuracy for the determination of Jl
rec and γl

rec one has to consider the
systematic errors introduced by the assumptions discussed above and uncertainties in
the parameters characterising the instrument and the statistical error from the radio-
metric noise during the load measurement.

3.2.2.1 Systematic calibration uncertainties

Systematic errors result from uncertainties in the knowledge of the instrumental be-
haviour. They are typically characterised by asymmetric error bars and result in a sys-
tematic under- or overestimate of the calibrated data. They must not be treated as ran-
dom variations as proposed by Mangum (2002) because they can sum up linearly but
may cancel each other as well as will be shown below. Only when distinguishing be-
tween systematic and random errors a computation of the error propagation between
different quantities is possible. The computation of the systematic errors should allow to
set up a budget for the accuracy in the determination of all used calibration parameters.

Systematic errors in the load calibration which can be estimated relatively straight-
forward come from the uncertainty of the sideband ratio Gssb, the hot and the cold load
temperature, and the cold and hot load coupling coefficients ηc and ηh. For the error
terms we neglect the deviation of the coupling efficiencies ηc and ηh from one, consid-
ering them only as separate errors in Eqs. (9,10), because the error estimate itself does
not require an accuracy better than 10 %.

The sideband ratio enters only via the effective radiation fields. Here, it is weighted
by the sideband difference of the radiation field ∆J = Jssb − Jisb relative to the constant
contribution Jeff. From Eq. (5) we can estimate ∆J/Jeff ≈ ±4νIF/νLO at the hot load
temperature and ∆J/Jeff ≈ ±5νIF/νLO at the cold load temperature. The positive upper
sign applies when the signal sideband is the upper sideband, the negative sign for the
opposite case. Because the calibration equations contain only the difference between the
radiation fields and the radiation field from the cold load is small compared to the field
from the hot load, it is only the sideband imbalance from the hot load radiation field that
dominates the error. The systematic error from the uncertainty of the sideband ratio has
its maximum at the edge of the bandpass, i.e. at νIF = 8 GHz, and for the lowest LO
frequencies.

6



Uncertainties in the load temperatures enter nonlinearly into the radiation field ac-
cording to the Planck curve (Eq. 3). Especially the contribution from the cold load at
high frequencies falls into the exponential tail resulting in sensitive reactions of the ra-
diation field to temperature changes. Exploring the Planck curve for the HIFI frequen-
cies gives values for ∂Jeff/∂T of 2.0 and 1.1 at 500 GHz and of 6.2 and 1.5 at 1.9 THz
for the temperatures of 15 K and 100 K, respectively. Together with the ratios between
the effective radiation fields Jc,eff/Jh,eff of 6.9 10−2 at 500 GHz and 3.4 10−3 at 1.9 THz we
obtain reasonable upper limits for the error introduced by temperature uncertainties.
Neglecting Jc,eff in the difference terms, the total systematic error in the bandpass then
reads:

δγl
rec

γl
rec

≈ −δηh − δηc ∓
4δGssbνIF

νLO
− 1.5δTh − 2.8δTc

Th
(13)

The systematic error in the receiver temperature additionally depends on the Y factor
of the load measurement. However, we expect only Y-factors between 2 at 500 GHz and
close to 1 at 1.9 THz so that the contribution YJc,eff can be neglected as well relative to
Jh,eff in the error estimate. The uncertainty of the receiver temperature follows from

δ Jl
rec

Jl
rec

≈ δηh + Yδηc ±
4δGssbνIF

νLO
+

1.5δTh − 2.8δTc

Th
(14)

To guarantee an error contribution below 1 %, the sideband ratio has to be known with
an accuracy better than 15 %. The accuracy in the knowledge of the load coupling co-
efficients ηc and ηh enters directly as a calibration error so that an uncertainty of 0.01
would translate directly into a 1 % error contribution.

3.2.2.2 Radiometric error

The statistical error due to the noise in the load measurements is determined by the
integration times on the thermal sources. The error in the count rates is always given by
the radiometer equation:

δc
c− z

=
1√

∆νtint
(15)

Here, ∆ν is the desired resolution bandwidth of the measurement and tint is the integra-
tion time.

In contrast to the systematic errors discussed above, statistical errors are combined
quadratically. For the error estimate we can neglect that ηc and ηh differ slightly from
one and we obtain for the bandpass

δγl
rec

γl
rec

=

√(
δchot

chot − ccold

)2

+
(

δccold

chot − ccold

)2

=
1√

∆νtload

√
(chot − z)2 + (ccold − z)2

(chot − ccold)2

≈ 1√
∆νtload

√
(Jh,eff + Jl

rec)2 + (Jc,eff + Jl
rec)2

(Jh,eff − Jc,eff)2 (16)

where the same integration time tint = tload is used on the hot and the cold load.
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For the receiver temperature we obtain in the same way:

δ Jl
rec

Jl
rec

=
1

Jl
rec(chot − ccold)2

√
[(Jh,eff + Jc,eff)(chot − z)− 2Jh,eff(ccold − z)]2

δc2
cold

+ [(Jh,eff + Jc,eff)(ccold − z)− 2Jc,eff(chot − z)]2
δc2

hot

=
1

Jl
rec(chot − ccold)

√
(Jh,eff − Jl

rec)2δc2
cold + (Jc,eff − Jl

rec)2δc2
hot

=
1√

∆νtload

√
(Jh,eff − Jl

rec)2(ccold − z)2 + (Jc,eff − Jl
rec)2(chot − z)2

Jl 2
rec (chot − ccold)2

≈ 1√
∆νtload

√
(Jl

rec − Jh,eff)2(Jl
rec + Jc,eff)2 + (Jl

rec − Jc,eff)2(Jl
rec + Jh,eff)2

Jl 2
rec (Jh,eff − Jc,eff)2 (17)

The approximate substitution of the count rates chot and ccold by corresponding radiation
field ratios in the last step makes use of Eqs. (7) and (8) when neglecting the imperfect
coupling to the loads.

We can estimate the temperature factors from the instrument specification. We obtain
the radiation temperatures Jl

rec ≈ 84 K, Jh,eff ≈ 88 K, and Jc,eff ≈ 6 K at 500 GHz and
Jl
rec ≈ 770 K, Jh,eff ≈ 61 K, and Jc,eff ≈ 0.2 K at 1.9 THz. From these values the limiting

error constants are

δγl
rec

γl
rec

≈ 1√
∆νtload

{
2.36 at 500 GHz
18.6 at 1.9 THz

δ Jl
rec

Jl
rec

≈ 1√
∆νtload

{
1.94 at 500 GHz
17.9 at 1.9 THz

(18)

Using these values we can compute the integration times which are necessary to guar-
antee that the error in both quantities falls below 1 %. For a resolution bandwidth of
1 MHz, corresponding to the resolution of the wide band spectrometer (WBS), this re-
sults in integration times on each load of 0.1 s at 500 GHz and of 3.5 s at 1.9 THz. At
a resolution bandwidth of 0.14 MHz, corresponding to the best resolution of the high-
resolution spectrometer (HRS), we obtain integration times of 0.4 s at 500 GHz and of
25 s at 1.9 THz.

Whereas the calibration times are negligible at low frequencies, long integration times
on the thermal loads have to be taken into account for an accurate bandpass calibration
at high frequencies with a high spectral resolution. To increase the efficiency of these
calibration measurements it might be possible to adjust the hot load temperature. In-
creasing the hot load temperature from 100 K to 120 K would reduce the load time by
almost a factor 2 at 1.9 THz. In contrast a reduction of the hot load temperature from
100 K to 80 K would increase the load times by a factor 2.

3.3 OFF calibration

3.3.1 Basic considerations

The application of the two-load calibration to determine the bandpass of the receiver
has the advantage that one case use the observation of the blank sky to reveal addi-
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tional information on the system. In contrast to ground-based observations where the
observation of a reference position free of emission would provide mainly information
about the atmosphere, we can use such a measurement for a better characterisation
of the instrument. The measurements on the blank sky can help to derive information
about the difference in the standing wave pattern between the load measurements and
the astronomical observation. Standing waves present in the FPU cannot be addressed
in this way but as long as they are constant during all measurements they are already
covered by the receiver parameters γl

rec and Jl
rec measured in the load calibration.

Unfortunately we cannot expect to obtain the difference between γssb and γl
ssb, γisb

and γl
isb, γrec and γl

rec, and the forward efficiencies ηl,ssb and ηl,isb from a single measure-
ment. Thus an additional model is needed to set up relations between these different
quantities so that the information from the OFF observation can actually be used.

Until now, we have no complete model for the impact of standing waves on the differ-
ent coupling coefficients. In principle they can modify the additive contribution, charac-
terised by γrec or Jrec, the receiver gain, characterised by γssb and γisb, and the telescope
coupling, characterised by ηl,ssb and ηl,isb (Whyborn 2002). To keep the calibration fea-
sible we restrict ourselves to simplified scenarios where one of the three mechanisms
dominates. This results in three different standing wave calibration models.

In all approaches we will assume that the standing waves result in additive contribu-
tions wssb and wisb to the corresponding coefficients. Because the OFF observation can
only measure the superposition of the contributions from both sidebands an internal
deconvolution is still necessary to separate both contributions. In first order the stand-
ing waves can be described by a superposition of sine waves with different periods and
phases (Whyborn 2002). Thus a sideband deconvolution is possible if the number of con-
tributing terms and their periods are not too high. However, this deconvolution is not
the topic of the intensity framework outlined here so that it is to be treated elsewhere.
The main difference in the standing waves between the astronomical observation and
the load measurement is the path between the mixer and the subreflector. Using a length
of about 7 m for the round trip path results in a minimum standing wave period in the
IF frequency domain of about 21 MHz. For a Nyquist sampled measurement it is thus
sufficient to measure the standing wave effect with a frequency resolution of 10 MHz.

3.3.2 Standing waves as additive term

If the standing waves act as additive contribution to the receiver noise across the band-
pass (Whyborn 2002) we can write

Jrec = Jl
rec + wssb + wisb

γrec = γl
rec

γssb = γl
ssb (19)

γisb = γl
isb

ηl,ssb = ηl,isb = ηl = const.

In this notation we assign the standing wave term to the receiver temperature keep-
ing the bandpasses constant. The forward efficiency is assumed to be constant across
the band. All channel-to-channel variations in ηl are virtually assigned to the standing
waves in Jrec.
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Then the sky reference equation (6) transforms into

cOFF = γl
rec

[
ηl JR,eff + (1− ηl)JT,eff + Jl

rec + wssb + wisb
]
+ z (20)

The radiation field JR,eff is the average radiation field within the whole sky beam when
looking at the reference position. In principle any value can be used as long as it is well
known. However, this value is hard to determine as it needs accurate knowledge about
the shape of the beam including all error beams and the intensity distribution on the
sky. In practice the reference position should be chosen to have emission which is very
small compared to the telescope radiation across the whole IF band. Then we can use
the JR,eff contribution as error term in the measured quantities. We define the measured
OFF radiation field corrected for the background intensity as

Jsw =
cOFF − z

γl
rec

− Jl
rec − η

guess
l JR,eff (21)

Here, Jsw contains the result from the OFF and the loads measurement and the correction
term for a possible blank sky emission. As long as this brightness is small, any educated
guess for η

guess
l can be used here, e.g. 1. From Eq. (20) one can see that Jsw is attributed

to the unknown standing waves and the telescope contribution:

(1− ηl)JT,eff + wssb + wisb = Jsw (22)

It is not possible to assign the measured Jsw clearly to any of the left hand terms in Eq.
(22) as they are measured in combination. It seems, however, reasonable, to identify the
average across the band as the (1− ηl)JT,eff term and to assign the variation across the
band to wssb + wisb. The small frequency dependence of JT,eff can be computed from Eq.
(5) and is negligible as long as the sideband gain ratio of the receiver Gssb is close to 1/2.

3.3.3 Standing waves changing the coupling to the telescope

Another scenario is given if the standing waves do not simply increase the receiver
noise but if they change mainly the coupling coefficient to the telescope radiation. This
is possible when the multiple reflections in standing waves change the ohmic coupling
to the temperature of the telescope surfaces. Then the list of assumptions reads as

Jrec = Jl
rec

γrec = γl
rec

γssb = γl
ssb

γisb = γl
isb (23)

ηl,ssb = ηl − wssb

ηl,isb = ηl − wisb

Here, the forward efficiency consists of a term ηl which is assumed to be a constant
across the band and the two standing waves wssb and wisb. The negative sign is used to
indicate that they increase the coupling to the telescope – not to the sky.

10



Then Eq. (6) reads as:

cOFF = γl
rec

[(
ηl −

wssb + wisb

2

)
JR,eff +

(
1− ηl +

wssb + wisb

2

)
JT,eff

+
wssb − wisb

2
(JT,diff − JR,diff) + Jl

rec

]
+ z (24)

where we have introduced the abbreviation

Jdiff = Gssb Jssb − (1− Gssb)Jisb (25)

for the effective sideband difference of the radiation fields. Treating the radiation field
from the blank sky as an error term, as discussed above for the additive standing waves,
we obtain: (

1− ηl +
wssb + wisb

2

)
JT,eff +

wssb − wisb

2
JT,diff = Jsw (26)

In contrast to Eq. (22) the left hand side now contains also an expression for the sideband
imbalance of the telescope radiation. Using the linear expansion of the radiation field
around the LO frequency from Eq. (5) results in

JT,eff = JT,LO [1± bTνIF (2Gssb − 1)]
JT,diff = JT,LO [2Gssb − 1± bTνIF] (27)

Here, the upper sign is always used if the signal sideband is the upper sideband of
the receiver, ssb=usb; the lower sign applies if the lower sideband is used for the signal,
ssb=lsb. Using these expressions for the standing wave terms in Eq. (26) and introducing
the modified standing wave definitions Wssb = wssbGssb and Wisb = wisb(1− Gssb) then
leads to

(1− ηl) JT,eff + (1± bTνIF) (Wssb + Wisb) JT,LO = Jsw (28)

Like in the case of the additive standing waves, the OFF measurement is determined
by two terms: the coupling to the effective telescope radiation and the standing wave
contribution. Here, we find a factor which is linear in frequency in front of the standing
waves modulating their amplitude across the IF band. Equivalent to the approach for
the additive standing waves we can assign the measured contribution with a frequency
dependence following the black-body radiation to the ordinary telescope contribution
(1− ηl)JT,eff leaving the rest of the frequency variations for the standing waves.

3.3.4 Standing waves changing the overall gain

When the standing waves modify mainly the receiver gain in both sidebands, i.e. they
act mainly as a low-quality Fabry-Perot filter, we can write

Jrec = Jl
rec

γrec = γl
rec

γssb = γl
ssb + wssb (29)

γisb = γl
isb + wisb

ηl,ssb = ηl,isb = ηl = const.

11



Introducing these assumptions into Eq. (6) and using the same transformations as
above for the standing waves changing the coupling to the telescope results again ex-
actly in Eq. (28) if we interpret Wssb and Wisb as

Wssb = wssb
(1− ηl)

γl
rec

Wisb = wisb
(1− ηl)

γl
rec

(30)

Thus the effect of a standing wave changing the coupling to the telescope and a stand-
ing wave changing the bandpass gain is indistinguishable with regard to the OFF cal-
ibration measurement. Only the resulting interpretation of Wssb and Wisb differs and
they have to be applied in a different way to calibrate the astronomical observations.
Because the standing wave ripple is measured in both cases from the coupling to the
warm telescope radiation, gain variations and coupling variations have the same effect
on the measurement. A clear assignment of the standing waves to one of the two effects
requires the observation of an additional astronomical continuum source, e.g. a planet.
If the standing waves Wssb and Wisb are strongly magnified on the continuum source
relative to the blank sky they can be clearly assigned to the gain variation term; if they
stay constant they are caused by a telescope coupling variation.

The distinction between these two processes and the standing waves as an additive
contribution to the receiver noise could be done based on their different functional be-
haviour. If the amplitude of the standing waves is constant across the IF band, the result-
ing standing wave ripple in the OFF measurement shows as well a constant amplitude
for the additive contribution but an IF frequency dependence following Eq. (28) for the
gain variation. This tests relies, however, on almost ideal conditions and extremely good
signal-to-noise ratios because the linear amplitude change amounts only to a few per-
cent. Thus, the dominant standing wave process should be rather determined on ground
in advance. The discrimination between the standing wave in the gain and the other two
mechanisms is possible when measuring the dependence of the standing wave char-
acteristics as a function of the temperature of a thermal source used as the signal in
demonstration model level tests. The discrimination between a modification of the ad-
ditive standing wave and a modification of the telescope coupling is only possible with
a realistic telescope simulator which is able to reproduce the main standing wave on a
surface which can be set to a temperature different from the surrounding environment.

3.3.5 Calibration errors

3.3.5.1 Systematic calibration uncertainties

The main systematic uncertainty results from the validity of the assumptions in Eqs.
(20, 24, 30) but there is no direct way to quantify them. Other systematic errors are
introduced by the uncertainty of the sideband ratio, the load calibration parameters,
and the telescope temperature, and the “emptiness” of the blank sky.

As the calibration equations for the different standing wave mechanisms, Eqs. (22)
and (28), have the same structure their accuracy can be estimated within the same frame.
As a first step we have to estimate the error in the effective OFF radiation field Jsw.
For a shorter computation of the error estimate it is useful to substitute the calibration
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parameters in Eq. (21) by their definitions from Eqs. (9,10)

Jsw =
ηh(cOFF − ccold)− (1− ηc)(cOFF − chot)

chot − ccold
(Jh,eff − Jc,eff) + Jc,eff − η

guess
l JR,eff (31)

The error in Jsw is affected by the blank sky radiation and the calibration parameters
from the load measurement. The error contribution resulting from non-negligible emis-
sion measured on the blank sky appears as an absolute error in Jsw. If the continuum
contribution of JR,eff is underestimated the coupling to the telescope will be overesti-
mated. A line pick up from the blank sky will show up as a distortion of the derived
standing wave pattern. The systematic uncertainties of the receiver temperature and
the bandpass as derived in Eqs. (13) and (14) are partially amplified and partially can-
celled out here because they act in Eq. (21) as a difference between two large numbers.
The total error can be approximated as

δ Jsw ≈
JT,pick − Jc,eff

Jh,eff − Jc,eff
δ Jh,eff +

Jh,eff − JT,pick

Jh,eff − Jc,eff
δ Jc,eff

+(JT,pick − Jc,eff)δηh − (Jh,eff − JT,pick)δηc − δ JR,eff (32)

where we used the abbreviation JT,pick = (1− ηl)JT,eff for the effective radiation pickup
from the telescope structure and substituted the count rate ratios by ratios of the corre-
sponding radiation fields as discussed in Sect. 3.2.2.

The radiation factors can be estimated for the different HIFI frequencies using the
effective radiation temperatures discussed in Sect. 3.2.2. At the frequencies of 500 GHz
and 1.9 THz the telescope temperature of 80 K translates into radiation temperatures
of 69 K and 43 K, respectively. Assuming a forward efficiency of 98 %, we obtain an
effective telescope pickup between 1.4 and 0.8 K, respectively. Then we obtain for the
two limiting HIFI frequencies

δ Jsw

Jsw
≈


−δ JR,eff

Jsw
± 9

δGssbνIF

νLO
+ 9

δTc

Tc
− 4

δTh

Th
− 3.5

δηh

ηh
− 60

δηc

ηc
at 500 GHz

−δ JR,eff

Jsw
± 4

δGssbνIF

νLO
+ 1.5

δTc

Tc
+ 1.1

δTh

Th
+ 0.7

δηh

ηh
− 70

δηc

ηc
at 1.9 THz

(33)
The upper signs apply again when the signal sideband is the upper sideband, the lower
signs in the opposite case.

The equation shows that the standing wave term reacts extremely sensitive to changes
in the cold load radiation field. The coupling efficiency to the cold load is by far the dom-
inating error term because the small (1− ηc) contribution from the hot load measured
on the cold thermal source can easily dominate the whole radiation field from the cold
load. At 1.9 THz a 1 % change of the cold load coupling coefficient has about the same
effect as changing the cold load temperature by 50 %. On the other hand, an uncertainty
of the cold load temperature by 1 K has the same effect as an uncertainty of the hot load
temperature by 9 K. Fortunately, this full systematic error does not show up in the line
calibration equations in Sect. 4.3 where it is partially cancelled out again. But it is fully
propagated in the determination of the forward efficiency as discussed below.

In a second step Jsw has to be split into the unknown telescope radiation con-
tribution JT,pick = (1 − ηl)JT,eff, and the standing wave contributions wssb + wisb or
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(1± bTνIF)(Wssb + Wisb), respectively.

Jsw = JT,pick + wssb + wisb (34)

or
Jsw = JT,pick + (1± bTνIF) (Wssb + Wisb) JT,LO (35)

The error of the sideband imbalance due to temperature uncertainties can be completely
neglected here, because the dependence of bT on the temperature of the telescope is
extremely weak.

When assigning the frequency dependent part to the standing waves and the average
to the telescope contribution, the main error comes from a possible non-zero average of
the standing wave pattern. Assuming that the standing wave pattern is characterised by
a superposition of sine waves, the phase of the waves may lead to a non-zero average of
the standing wave across the IF band. We can estimate the maximum error from the ratio
between the lowest standing wave frequency νw and the considered total bandwidth of
the observation ∆νtot by woffset ≤ ŵνw/(π∆νtot). Here, ŵ is the amplitude of the low
frequency standing wave. With a standing wave frequency of 21 MHz and the minimum
bandwidth of the HRS of 280 MHz this may lead to an error in JT,pick of a few percent of
the standing wave amplitude. Thus the telescope coupling should rather be measured
with the wide band spectrometer. Moreover, the accuracy could be further improved
with a model for the fit of the standing wave terms in Jsw.

In a third separation step the forward scattering efficiency ηl has to be extracted from
the telescope contribution. The determination of ηl relies on the knowledge of the tele-
scope temperature. The Planck curve in the HIFI frequency range results in a derivative
∂JT,eff/∂TT of 1.2 at 500 GHz and of 1.7 at 1.9 THz. At 80 K the uncertainty in the tele-
scope temperature translates into an uncertainty of (1− ηl) by

δ(1− ηl)
(1− ηl)

≈ δ Jsw

Jsw
− 1.2 . . . 1.7

δTT

TT
∓ 4

δGssbνIF

νLO
(36)

with the smaller factors at higher LO frequencies. The error from the sideband ratio is
probably negligible relative to the error from the uncertainty of the telescope tempera-
ture. In principle Eq. (21) could also be used to derive the effective telescope temperature
but it is expected that the telescope temperature can be measured much more accurately
than the backward efficiency, so that the OFF calibration measurement is used to deter-
mine the latter.

3.3.5.2 Radiometric error

The random error in Jsw due to the noise in the load and the OFF measurements
is determined by the integration times, so that we can derive timing constraints for
a certain calibration uncertainty. For this error estimate we can neglect the blank sky
radiation and the deviation of ηc and ηh from 1. Combining the different counting noise
contributions in Eq. (31) provides

δ Jsw

Jsw
=

Jh,eff − Jc,eff

chot − ccold

√
(chot − ccold)2δc2

OFF + (cOFF − ccold)2δc2
hot(cOFF − chot)2δc2

cold

(chot − cOFF)2 Jc,eff + (cOFF − ccold)2 Jh,eff
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≈

√
(Jh,eff − Jc,eff)2δc2

OFF + (JT,pick − Jc,eff)2δc2
hot(JT,pick − Jh,eff)2δc2

cold

(Jh,eff − Jc,eff)JT,pick

≈
√

1
∆νtOFF

(Jl
rec + JT,pick)2

J2
T,pick

+
1

∆νtload

(Jl
rec + Jc,eff)2(JT,pick − Jh,eff)2

(Jh,eff + Jc,eff)2 J2
T,pick

(37)

The radiation factors can be estimated for the different HIFI frequencies using the
effective radiation temperatures discussed above. Then we obtain for the limiting fre-
quencies

δ Jsw

Jsw
≈



√
612

∆νtOFF
+

682

∆νtload
at 500 GHz√

9602

∆νtOFF
+

9502

∆νtload
at 1.9 THz

(38)

If we use the values of ∆νtload derived for a sufficiently accurate determination of the
bandpass and the receiver temperature in Sect. 3.2.2 their contribution results already
in a relative error of Jsw of 29 % at 500 GHz and 51 % at 1.9 THz. This error is further
increased by the corresponding term from the OFF measurement having the same or-
der of magnitude when the same integration times are used there. Thus the accurate
determination of the telescope contribution and the standing waves poses much harder
constraints on the integration time than the bandpass determination.

However, the determination of the telescope coupling and the standing waves does
not require the same frequency resolution as the astronomical observation. Using a fre-
quency resolution ∆ν = 10 MHz to resolve the standing waves results in an integration
time on the thermal loads and the blank sky of 10 s at 500 GHz and of 1900 s at 1.9 THz
for a 1 % accuracy of Jsw. From these numbers it is obvious that a 1 % accuracy cannot be
achieved at high frequencies. In contrast a 10 % accuracy of Jsw can be obtained within
an integration time of 0.1 s at 500 GHz and 19 s at 1.9 THz. Thus, the reliable determina-
tion of the standing wave pattern requires approximately the same integration time on
the thermal loads and on the blank sky as the time computed for the best HRS resolution
in Sect. 3.2.2. In case of standing waves changing the instrumental gain, the random er-
ror in Jsw is propagated identically into a calibration noise of the line calibration (see Eq.
67). Thus, the timing constraints derived here may clearly result in a practical limitation
of the calibration accuracy at high frequencies.

4 Differencing observations

4.1 Overview

To correct for instrumental drift effects, all astronomical observations use a differencing
scheme where the astronomical source and a reference are observed in an alternating
sequence. Traditionally, the difference between the counts of both measurements, cS −
cR, is translated directly into the difference in the emission between the source and the
reference position JS,ssb − JR,ssb. However, the coupling efficiencies, the gain, and the
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receiver temperature may vary systematically between the reference and the source due
to changes in the optical path and the emission may also contain contributions from the
image sideband. In general the full detection equation (1) of both observations has to be
resolved for JS,ssb. We arrive at more complex equations containing not only differences
between cS and cR.

HIFI is not limited to one particular reference scheme but may use four basic ap-
proaches: total power, sky chop, load chop, and frequency switch. In total power obser-
vations the whole satellite moves between the source and the reference position. Thus
the optical path does not change between both signals, so that Eqs. (1) and (6) may be
used with the same coupling efficiencies to compute the astronomical signal.

In sky chop observations, which we will also simply call chop observations in the
following, a focal plane chopper changes the direction of the telescope beam towards
a reference position up to 3′ away from the source position. With the change of the op-
tical path the standing wave pattern will change between both positions. This can be
corrected by double beam switch observations, where the astronomical source is ob-
served alternately in both positions of the focal plane chopper using reference positions
on both sides of the astronomical source. However, it also can be corrected by explicitly
measuring the standing wave pattern in both configurations using an OFF calibration as
discussed in Sect. 3.3. Then the source emission JS,ssb can be computed from Eqs. (1) and
(6) by taking into account that the system response coefficients are not identical for the
source and the reference. This approach can be applied as well for all sources where a
double beam switch observation is not possible due to the source geometry. It requires,
however, the integration time overhead of the OFF measurement.

Instead of a reference on the sky the cold load may also be used as a reference. It
is obvious that the optical path then deviates completely between the source and the
reference, so that two different system response functions have to be considered. The
source emission will be computed from Eqs. (1) and (7) where the result from the OFF
calibration enters only the equation for the source signal.

In the frequency switch reference scheme the LO frequency is shifted by a small
amount so that the same position on the sky can be used for the signal and the reference
but both are measured at slightly different frequencies. It is obvious that the standing
wave pattern can change by the frequency switch but the general experience shows that
also the parameters from the load calibration, i.e. the receiver temperature Jl

rec and the
receiver bandpass γl

rec, may differ between the two frequency settings. Thus, a complete
load calibration should be performed for both frequency settings so that the astronom-
ical observation can be calibrated from Eq. (1) using different load and OFF calibration
parameters for both frequency settings.

In addition to the four different reference schemes we have to take into account the
different impacts of standing waves on the calibration parameters. Corresponding to the
possible dominance of one of the three mechanisms discussed in Sect. 3.3 we arrive at
12 different calibration schemes. Their properties in terms of the calibration parameters
used are summarised in Table 1.
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Table 1: Calibration parameters to be used in Eqs. (1,6,7) to compute the source emis-
sion for the different reference schemes and standing wave impacts. S denotes the
source measurement, R the reference measurement.

Additive standing wave
Total power Chop Load chop Frequency switch

S

γssb γl
recGssb γl

recGssb γl
recGssb γl,S

recGssb

γisb γl
rec(1− Gssb) γl

rec(1− Gssb) γl
rec(1− Gssb) γl,S

rec(1− Gssb)
ηl,ssb ηl ηl ηl ηl
ηl,isb ηl ηl ηl ηl
ηsf,ssb ηsf ηsf ηsf ηsf
ηsf,isb ηsf ηsf ηsf ηsf

γrec γl
rec γl

rec γl
rec γl,S

rec

Jrec Jl
rec + wssb + wisb Jl

rec + wS
ssb + wS

isb Jl
rec + wssb + wisb Jl,S

rec + wS
ssb + wS

isb

R

γssb γl
recGssb γl

recGssb γl
recGssb γl,R

recGssb

γisb γl
rec(1− Gssb) γl

rec(1− Gssb) γl
rec(1− Gssb) γl,R

rec(1− Gssb)
ηl,ssb ηl ηl 1 ηl
ηl,isb ηl ηl 1 ηl
ηsf,ssb ηsf ηsf 1 ηsf
ηsf,isb ηsf ηsf 1 ηsf

γrec γl
rec γl

rec γl
rec γl,R

rec

Jrec Jl
rec + wssb + wisb Jl

rec + wR
ssb + wR

isb Jl
rec Jl,R

rec + wR
ssb + wR

isb

Standing wave in the telescope coupling
Total power Chop Load chop Frequency switch

S

γssb γl
recGssb γl

recGssb γl
recGssb γl,S

recGssb

γisb γl
rec(1− Gssb) γl

rec(1− Gssb) γl
rec(1− Gssb) γl,S

rec(1− Gssb)
ηl,ssb ηl − wssb ηl − wS

ssb ηl − wssb ηl − wS
ssb

ηl,isb ηl − wisb ηl − wS
isb ηl − wisb ηl − wS

isb
ηsf,ssb ηsf ηsf ηsf ηsf
ηsf,isb ηsf ηsf ηsf ηsf

γrec γl
rec γl

rec γl
rec γl,S

rec

Jrec Jl
rec Jl

rec Jl
rec Jl,S

rec

R

γssb γl
recGssb γl

recGssb γl
recGssb γl,R

recGssb

γisb γl
rec(1− Gssb) γl

rec(1− Gssb) γl
rec(1− Gssb) γl,R

rec(1− Gssb)
ηl,ssb ηl − wssb ηl − wR

ssb 1 ηl − wR
ssb

ηl,isb ηl − wisb ηl − wR
isb 1 ηl − wR

isb
ηsf,ssb ηsf ηsf 1 ηsf
ηsf,isb ηsf ηsf 1 ηsf

γrec γl
rec γl

rec γl
rec γl,R

rec

Jrec Jl
rec Jl

rec Jl
rec Jl,R

rec
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Table 1 - continued

Standing wave changing the gain
Total power Chop Load chop Frequency switch

S

γssb γl
recGssb + wssb γl

recGssb + wS
ssb γl

recGssb + wssb γl,S
recGssb + wS

ssb

γisb
γl

rec(1− Gssb)
+ wisb

γl
rec(1− Gssb)

+ wS
isb

γl
rec(1− Gssb)

+ wisb

γl,S
rec(1− Gssb)

+ wS
isb

ηl,ssb ηl ηl ηl ηl
ηl,isb ηl ηl ηl ηl
ηsf,ssb ηsf ηsf ηsf ηsf
ηsf,isb ηsf ηsf ηsf ηsf

γrec γl
rec γl

rec γl
rec γl,S

rec

Jrec Jl
rec Jl

rec Jl
rec Jl,S

rec

R

γssb γl
recGssb + wssb γl

recGssb + wR
ssb γl

recGssb γl,R
recGssb + wR

ssb

γisb
γl

rec(1− Gssb)
+ wisb

γl
rec(1− Gssb)

+ wR
isb

γl
rec(1− Gssb)

γl,R
rec(1− Gssb)

+ wR
isb

ηl,ssb ηl ηl 1 ηl
ηl,isb ηl ηl 1 ηl
ηsf,ssb ηsf ηsf 1 ηsf
ηsf,isb ηsf ηsf 1 ηsf

γrec γl
rec γl

rec γl
rec γl,R

rec

Jrec Jl
rec Jl

rec Jl
rec Jl,R

rec

In all cases where the table distinguishes explicitly between γS
rec, JS

rec, wS
ssb and γR

rec, JR
rec, wR

ssb the
standing waves differ between the two settings due to a change in the optical path.

From the set of calibration parameters the sideband ratio Gssb and the coupling coef-
ficients for the thermal load measurements ηc and ηh have to be known from ground
based tests of the instrument. The receiver bandpass and radiation temperature γl

rec and
Jl
rec are to be determined from a load calibration at each frequency setting via Eqs. (9,10).

They are independent for each backend channel. The quantities ηl, wssb, and wisb have
to be determined by an OFF calibration measurement using Eqs. (22) or (28). Here, an
additional standing wave model is needed to separate the contributions of wssb and
wisb. As the separation between the standing wave contributions and the forward effi-
ciency is based on the frequency dependence, no frequency variation can be taken into
account for ηl. From the viewpoint of accuracy and efficiency the determination of wssb

and wisb is only reasonable at a frequency resolution of about 10 MHz and not with the
full backend resolution.

The source coupling efficiency ηsf finally has to be determined in test observations of
known astronomical objects (see Roelfsema et al. 2002).

4.2 Difference calibration equations

It makes no sense to resolve the detection equations in all the 12 cases listed above
for JS,ssb − JR,ssb, as this is in general straight forward resulting only in a quite lengthy
equation. Thus we give only a few simple examples here to demonstrate the general
approach and to indicate possible obstacles and drawbacks during the calibration.
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4.2.1 Total power observations with additive standing waves

The first example is the most simple situation where total power observations are used
and the standing waves result mainly in an increase of the mixer noise. Then the same
calibration parameters can be used for the signal and the reference measurement and
subtracting them results in a complete elimination of the standing wave terms. From
Eq. (1) we obtain

cS − cR = ηsfηlγ
l
rec [Gssb(JS,ssb − JR,ssb) + (1− Gssb)(JS,isb − JR,isb)] (39)

Because both sidebands are superimposed, it is still impossible to determine JS,ssb

from this equation, even for this most simple situation. Hence, further assumptions are
necessary. The traditional approach assumes that the source radiation is restricted to the
signal sideband, so that JS,isb = JR,isb. Any radiation in the image sideband is virtually
assigned to the source sideband, taking into account that its calibration is incorrect then.
As long as this happens for well separated lines which can be clearly assigned to one of
the sidebands the use of this approach is completely justified as one can calibrate inde-
pendently for the both sidebands using effectively different calibrations for lines which
may be neighbouring in the backend spectrum but originating from different receiver
sidebands. Then, we obtain a closed analytic formula for the astronomical calibration

JS,ssb − JR,ssb =
cS − cR

ηsfηlγl
recGssb

(40)

=
ηh + ηc − 1
ηsfηlGssb

cS − cR

chot − ccold
(Jh,eff − Jc,eff) (41)

which is known as the hot-cold calibration equation.
In case of continuum radiation the radiation from both sidebands can not be sep-

arated. Here, an astronomical calibration is still possible if the spectral indices of the
source and the reference radiation, bS and bR, are known. By splitting the known contin-
uum contribution from the lines by

JS,ssb = JS,lines + JS,LO(1± bSνIF)
JS,isb = JS,LO(1∓ bSνIF)
JR,ssb = JR,lines + JR,LO(1± bRνIF)
JR,isb = JR,LO(1∓ bRνIF) (42)

we can resolve Eq. (39) for JS,lines − JR,lines.

JS,lines − JR,lines =
1

Gssb

[
cS − cR

ηsfηlγl
rec

−(JS,LO − JR,LO)∓ (2Gssb − 1) (JS,LObS − JR,LObR)νIF

]
(43)

=
1

Gssb

[
ηh + ηc − 1

ηsfηl

cS − cR

chot − ccold
(Jh,eff − Jc,eff)

−(JS,LO − JR,LO)∓ (2Gssb − 1) (JS,LObS − JR,LObR)νIF

]
(44)
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The first line of Eq. (44) contains the measured total intensities. The second line repre-
sents the continuum correction characterised by the two absolute intensities JR,LO and
JS,LO and the spectral slopes bR and bS. In most cases the parameters of the continuum
radiation from the reference position, JR,LO and bR, are determined by large scale dust
emission in the Milky Way. They can be computed from the dust density and temper-
ature maps by Schlegel et al. (1998). If the source continuum radiation at the LO fre-
quency is not known, Eq. (44) can be iterated to determine JS,LO from the continuum
value appearing in JS,lines. This requires, however, a clear idea about the expected line
spectrum. Different approaches have to be used for spectra dominated by emission lines
and spectra dominated by absorption lines. The iteration will fail in case of very rich
spectra where the continuum level cannot be determined between numerous lines.

4.2.2 Total power observations with standing waves in the gain or the telescope cou-
pling

In case of total power observations where the standing waves modify either the tele-
scope coupling or the receiver gain, the standing wave terms wssb and wisb are not can-
celled out in the difference between the source and the reference observation, but they
enter as modifiers to the different coupling factors. As an auxiliary step we can use a
more general form of Eq. (43) by applying the split between lines and continuum al-
ready in Eq. (1)

JS,lines − JR,lines =
cS − cR

ηsfηl,ssbγl
recGssb

−
(

1 +
ηl,isbγisb

ηl,ssbγssb

)
(JS,LO − JR,LO)

∓
(

1− ηl,isbγisb

ηl,ssbγssb

)
(JS,LObS − JR,LObR)νIF (45)

Now, Table 1 can be used to substitute the calibration quantities. Eq. (43) is reproduced
for ηl,ssb = ηl,isb = ηl and γisb/γssb = (1− Gssb)/Gssb. For standing waves changing the
gain we have to replace the term γssb by γl

recGssb + wssb and γisb by γl
rec(1− Gssb) + wssb

resulting in

JS,lines − JR,lines =
ηh + ηc − 1

ηsfηl(Gssb + wssb/γl
rec)

cS − cR

chot − ccold
(Jh,eff − Jc,eff)

−1 + (wssb + wisb)/γl
rec

Gssb + wssb/γl
rec

(JS,LO − JR,LO)

∓2Gssb − 1 + (wssb − wisb)/γl
rec

Gssb + wssb/γl
rec

(JS,LObS − JR,LObR)νIF (46)

Here, we did not replace the bandpass γl
rec by its definition from Eq. (9) in those terms

where it occurs as a denominator to the standing wave functions wssb and wisb because
they are measured in the OFF calibration as wssb/γl

rec and wisb/γl
rec in Jsw.

In case of standing waves changing the telescope coupling the forward efficiencies
ηl,ssb and ηl,isb are given by ηl − wssb and ηl − wisb, respectively. The explicit calibration
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equation is then

JS,lines − JR,lines =
ηh + ηc − 1

ηsf(ηl − wssb)Gssb

cS − cR

chot − ccold
(Jh,eff − Jc,eff)

−ηl − wisb − Gssb(wssb − wisb)
(ηl − wssb)Gssb

(JS,LO − JR,LO)

∓Gssb(2ηl − wssb − wisb)− ηl + wisb

(ηl − wssb)Gssb
(JS,LObS − JR,LObR)νIF (47)

If continuum radiation from source and reference can be neglected the second and
third term in both equations will vanish.

4.2.3 Load chop observations with additive standing waves

Load chop observations use the difference between the source signal and the signal on
the cold load to correct for any temporal drift. Thus we get only information on the
combined quantity Jsky = ηsf JS + (1− ηsf)JR from this difference scheme.

In case of the additive standing waves the combination of Eqs. (1) and (7) results in

cS − ccold = γl
rec [(1− ηl)JT,eff + wssb + wisb

+Gssb
{
ηl Jsky,ssb − ηc Jc,ssb − (1− ηc)Jh,ssb

}
+(1− Gssb)

{
ηl Jsky,isb − ηc Jc,isb − (1− ηc)Jh,isb

}]
(48)

The first term including the telescope contribution and the standing waves is just the
quantity Jsw determined in the OFF calibration. The continuum radiation from the cold
load does not contain any line emission but the continuum contribution from the image
sideband always has to be taken into account here. Thus the most simple calibration
equation corresponds to Eq. (43):

Jsky,lines =
1

Gssbηl

[
cS − ccold

γl
rec

− Jsw

−
{
ηl Jsky,LO − ηc Jc,LO − (1− ηc)Jh,LO

}
∓(2Gssb − 1)νIF

{
ηl Jsky,LObsky − ηc Jc,LObc − (1− ηc)Jh,LObh

} ]
(49)

where the known spectral coefficients for the cold load bc and the hot load bh from Sect.
2.1 can be used. The additive case is again the only situation where we can substitute all
calibration parameters directly from the calibration measurements (Eqs. 9, 10, and 31)
providing a simple closed equation for the count rates

Jsky,lines =
1

Gssb

[
ηh + ηc − 1

ηl

(cS − ccold)− (cOFF − ccold)
chot − ccold

(Jh,eff − Jc,eff)

+JR,eff − Jsky,LO ± (2Gssb − 1)νIF
(

JR,LObR − Jsky,LObsky
) ]

(50)

The first difference cS − ccold represents the load chop measurement on the source and
the second difference cOFF − ccold is the load chop difference in the OFF calibration mea-
surement providing the telescope contributions. In the absence of drift processes, when
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both ccold count rates agree, one can easily see that the counts on the cold load are can-
celled out and we arrive formally again at equation (44) for the total power measure-
ments with additive standing wave contributions. The continuum correction is the same
in both cases because the impact of the standing waves on the baseline is completely
cancelled out for additive standing waves.

4.2.4 Load chop observations with standing waves in the gain or the telescope cou-
pling

To describe the scenario where the standing waves enter as changes in the coupling
factors we have to replace Eq. (48) by the more general terminology valid for all standing
wave mechanisms

cS − ccold = γssbηl,ssb Jsky,lines + [γssbηl,ssb + γisbηl,isb ± (γssbηl,ssb −γisbηl,isb)bRνIF] Jsky,LO

+γl
rec[Jsw − ηc Jc,LO − (1− ηc)Jh,LO

∓(2Gssb − 1) {ηc Jc,LObc + (1− ηc)Jh,LObh}νIF] (51)

Due to the lack of cancellations the standing waves enter now not only as part of Jsw but
also via the coupling coefficients γssb and γisb or ηl,ssb and ηl,isb. Hence, the split between
the effective telescope radiation and the standing wave contributions in Eq. (28) has to
be explicitly performed.

Using the replacements for γssb, γisb, ηl,ssb, and ηl,isb from Table 1 we obtain the differ-
ence calibration equation for standing waves in the gain or the telescope coupling. When
the standing waves enter as a modification of the gain resolving Eq. (51) for Jsky,lines re-
sults in

Jsky,lines =
γl

rec

(γl
recGssb + wssb)ηl

[
cS − ccold

γl
rec

− Jsw (52)

−ηl Jsky,LO

{
1 +

wssb + wisb

γl
rec

± bsky

(
2Gssb − 1 +

wssb − wisb

γl
rec

)
νIF

}
+ηc Jc,LO + (1− ηc)Jh,LO ± (2Gssb − 1) {ηc Jc,LObc + (1− ηc)Jh,LObh}νIF

]
This can be simplified by substituting Jsw and γl

rec outside of the standing wave terms

Jsky,lines =
1

(Gssb + wssb/γl
rec)

[
ηh + ηc − 1

ηl

(cS − ccold)−(cOFF − ccold)
chot − ccold

(Jh,eff − Jc,eff)

−Jsky,LO

(
1 +

wssb + wisb

γl
rec

)
+ JR,eff

∓
(

2Gssb − 1 +
wssb − wisb

γl
rec

)
νIF Jsky,LObsky ± (2Gssb − 1)νIF JR,LObR

]
(53)

The basic structure of the calibration equation is the same as for the additive stand-
ing waves (Eq. 50) but we find now a standing wave term in the denominator repre-
senting the modulation of the absolute line calibration due to standing waves and two
additional standing wave terms in the continuum contribution (second and third line)
representing the baseline distortion by standing waves.
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The equivalent equation in case of standing waves entering as a modification of the
telescope coupling is

Jsky,lines =
1

Gssb(ηl − wssb)

[
(ηh + ηc − 1)

(cS − ccold)−(cOFF − ccold)
chot − ccold

(Jh,eff − Jc,eff)

−Jsky,LO {ηl − wisb − Gssb(wssb − wisb)}+ ηl JR,eff

∓{Gssb(2ηl − wssb − wisb)− ηl + wisb}νIF Jsky,LObsky

±(2Gssb − 1)νIFηl JR,LObR

]
(54)

The exact impact of the standing wave terms has another functional behaviour but we
find no new effects. There is always a multiplicative modulation of the line intensities
and an additive distortion of the continuum baseline.

4.2.5 Chop and frequency switch observations

For observations using the focal plane chopper to switch between two positions on the
sky the standing wave pattern may vary between the two positions leading to different
functions wS

ssb, wS
isb and wR

ssb, wR
isb. For additive standing waves the difference measure-

ment then provides

cS − cR = ηsfηlγ
l
rec [Gssb(JS,ssb − JR,ssb) + (1− Gssb)(JS,isb − JR,isb)]

+γl
rec

[
wS

ssb + wS
isb − wR

ssb − wR
isb

]
(55)

When the standing waves are determined from an OFF calibration measurement the
standing wave functions can be expressed by JS

sw and JR
sw. Separating line and contin-

uum terms in Eq. (55) provides an explicit calibration equation for the additive standing
waves

JS,lines − JR,lines =
1

Gssb

[
1

ηsfηl

{
cS − cR

γl
rec

− JS
sw + JR

sw

}
−(JS,LO − JR,LO)∓ (2Gssb − 1) (JS,LObS − JR,LObR)νIF

]
(56)

=
1

Gssb

[
ηh + ηc − 1

ηsfηl

(cS − cR)− (cS
OFF − cR

OFF)
chot − ccold

(Jh,eff − Jc,eff)

−(JS,LO − JR,LO)∓ (2Gssb − 1) (JS,LObS − JR,LObR)νIF

]
(57)

We arrive again at a very simple explicit calibration equation, where the count rate dif-
ference is to be corrected only by the count rate difference measured in the OFF calibra-
tion.

In case of standing waves changing the coupling factors the same substitutions as dis-
cussed for the load chop observations in the previous section have to be performed. The
resulting equations then show two different standing wave distortions to the continuum
term in the second line of Eq. (57) which are subtracted from each other. The functional
behaviour of these standing wave terms is identical to Eqs. (53) or (54), depending on
the dominant mechanism of the standing waves. The resulting equations are somewhat
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more lengthy than for the load chop observations but as they contain no essential new
effects we do not give the full expressions here.

The equations become even longer but do not add any new physical complexity in
case of frequency switch observations. Then, we cannot longer assume that the load
calibration parameters γl

rec and Jl
rec in the detection equation remain the same for both

frequency switch phases. Consequently, different values have to be used in the differ-
ence of the count rates cs − cR so that no mutual cancellations of the various quantities
occur like in Eq. (55). Resolving it for JR,ssb − JR,lines leads to a straight forward but ex-
tremely lengthy calibration formula. Because all essential effects are covered already by
the examples above, we do not give the frequency switch equations here.

4.2.6 Summary

It is useful to compare the different explicit calibration equations discussed so far, i.e.
Eqs. (44, 46, 47, 50, 53, 54, and 57). The first line in all of the above equations repre-
sents the measured overall radiation field and the subsequent lines are the continuum
contributions which are subtracted to obtain a clean baseline for the lines.

It is important to notice that the continuum term contains in all cases only the radia-
tion from the source and the blank sky in the surroundings of the source. The continuum
radiation seen from the warm telescope structure cancels out in all equations by means
of the OFF calibration. The continuum term always consists of a constant given by the
difference between the source and the blank sky radiation field at the LO frequency and
a term which is linear in IF frequency caused by a possible sideband imbalance of the
radiation field or the instrumental response function.

In double-sideband receivers standing waves have always two quantitatively differ-
ent effects: Except for the case of additive standing waves the line intensities are always
modulated by the standing wave in their native sideband. The continuum baseline is
always influenced by standing waves in both sidebands. In case of non-negligible con-
tinuum terms their modulation by standing waves leads always to a distortion of the
baseline of the line spectra when the calibration does not explicitly correct for standing
wave effects.

The overall radiation field term contains a kind of “standard” difference calibration
formula, using the bandpass calibration from the hot-load measurement, but including
possible OFF counts for a double-reference measurement. Here, it is interesting to note
that there is no difference between load-chop observations and observations chopping
on the sky from the viewpoint of calibration. The drawback of load-chop observations
is the stronger sensitivity to instrumental drifts because the two difference terms in Eqs.
(50, 53, and 54) are larger than in the sky-chop equation (57) so that smaller relative
changes of the instrument may lead to larger errors in the deduced line intensities.

Instead of a single difference of count rates like in Eq. (44) the OFF calibration always
provides a double difference. The double difference corrects for the standing waves in
the baseline but it shows that from the viewpoint of observational noise ON and OFF
measurements are equivalent. Thus, the use of an OFF calibration may be less efficient
than total power measurements. Only if the system is sufficiently stable so that one OFF
calibration measurement can be used for a series of source measurements this approach
to the standing wave treatment is more efficient. Apart from the efficiency considera-
tions, the OFF calibration is the only way to get a measure for the telescope pick-up and
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the general standing wave pattern of the instrument.

4.3 Calibration errors

Here, we will not provide a complete analysis of the error propagation for all differ-
ence schemes but discuss the general behaviour neglecting some second order effects.
For the common behaviour and the differences between the calibration schemes we will
consider the explicit difference calibration equations, Eqs. (44, 46, 47,50, 53, 54, and 57),
and distinguish between the possible error terms in the line contribution and the con-
tinuum contributions.

4.3.1 Systematic calibration uncertainties

Causes for systematic errors are uncertainties in the source coupling efficiency ηsf, in the
telescope coupling efficiency ηl, in the sideband ratio Gssb, and in the receiver bandpass
γl

rec. An additional systematic error in the continuum contribution may arise from a
wrong reference continuum value JR,LO as well as from inaccurate spectral indices bS

and bR. Depending on the standing wave mechanism either the bandpasses γssb and
γisb or the telescope coupling ηl,ssb and ηl,isb may be influenced by standing waves. We
assume here that they are only small corrections so that they provide separate error
terms but can be neglected in the error terms due to uncertainties of other quantities.
When we split the OFF radiation field Jsw into a constant contribution for the telescope
radiation and a standing wave contribution which varies with frequency but has a zero
average, all systematic errors in Jsw are assigned to ηl here, whereas the statistical errors
from fluctuations in single channels appear mainly in the standing wave terms. Thus
we can apply the systematic error of Jsw estimated in Sect. 3.3.5 as the error of ηl.

The systematic uncertainty of the overall radiation field term, i.e. the first lines in the
difference calibration equations, is

δ(JS − JR)
JS − JR

≈ −δηsf

ηsf
− δGssb

Gssb
− δηl

ηl
− δγl

rec

γl
rec

(58)

Using the systematic errors of γl
rec and ηl computed in Sects. 3.2.2 and Sect. 3.3.5,

respectively, we obtain

δ(JS − JR)
JS − JR

≈ −δηsf

ηsf
− δGssb

Gssb
+

(
2− ηl −

Jc,eff

JT,eff

) (
δηh +

δ Jh,eff

Jh,eff − Jc,eff

)
(59)

+
(

2− ηl −
Jh,eff

JT,eff

) (
δηc −

δ Jc,eff

Jh,eff − Jc,eff

)
− δ JR,eff + (1− ηl)δ JT,eff

JT,eff

Due to mutual cancellations not all errors from the standing wave calibration term Jsw

appear with the same magnitude as total calibration errors. The cold load uncertainties
are no more amplified by a large factor here.

In actual numbers at the limiting frequencies this reads as

δ(JS − JR)
JS − JR

≈ −δηsf

ηsf
− δGssb

Gssb
± 4

∆GssbνIF

νLO
− δ JR,eff + 0.02δ JT,eff

JT,eff
+ δηh

25



+


−0.2δηc +

δTh

Th
+ 0.04

δTc

Tc
at 500 GHz

−0.5δηc + 1.5
δTh

Th
+ 0.25

δTc

Tc
at 1.9 THz

(60)

We see that most errors in the instrumental characteristics are transformed identi-
cally into calibration errors of the measured overall radiation field. Both the cold load
coupling coefficient and the cold load temperature contribute somewhat less to the total
error. The contributions from errors in the telescope temperature and in the temperature
of the blank sky radiation field during the OFF calibration are strongly suppressed. In
one of the first flight tests it should be checked that the standing waves wssb and wisb are
indeed only small corrections to the receiver temperature, bandpass or telescope cou-
pling term so that their uncertainty has no impact on the total systematic uncertainty of
the astronomical calibration.

The systematic error of the continuum contribution is determined only by the un-
certainty of the sideband ratio because all uncertainties related to the source and sky
coupling are covered already in the systematic error of the overall radiation field.

δ(JS,cont − JR,cont)
JS,cont − JR,cont

≈ −δGssb

Gssb

(
1∓ 2

JS,LObS − JR,LObR

JS,LO − JR,LO
νIF

)
(61)

In most cases the main uncertainty of the continuum contribution will stem, however,
from the unknown continuum emission from the astronomical source and the sky, ex-
pressed in JR,LO, bS, and bR. A discussion of their reliability goes beyond the scope of this
paper as this is rather an astrophysical than a calibration question. Because the spectral
behaviour of the continuum terms is approximately linear within the whole IF band, an
error in the continuum calibration will not be confused with the line spectra. It will only
prevent the accurate determination of JS,LO.

4.3.2 Radiometric error

The statistical errors of the derived astronomical signal are determined by the integra-
tion times during the astronomical observation, during the load, and the OFF calibration
measurements.

For the overall radiation field noise we obtain equations with growing complexity
when going from total power observations with additive standing waves to chopped
modes or standing waves in the coupling factors. We will show only how this increased
complexity is reflected by additional noise terms. For the statistical error of the overall
radiation field in total power observations with additive standing waves we obtain

δ(JS − JR)
JS − JR

≈

√
δc2

S + δc2
R

(cS − cR)2 +
δc2

hot + δc2
cold

(chot − ccold)2 (62)

The noise in the different count rates is determined by the considered bandwidth ∆ν

and the integration time tint corresponding to Eq. (15). Except for observations of bright
planets at low frequencies, it is justified to use equal integration times on the source
and the reference position in this mode. Then we can assume cS − z and cR − z to be

26



quantities of the same order of magnitude. With these simplifications we obtain

δ(JS − JR)
JS − JR

≈ 1√
∆ν

√
2

tint

Jl 2
rec

(JS,eff − JR,eff)2 +
1

tload

(Jh,eff + Jl
rec)2 + (Jc,eff + Jl

rec)2

(Jh,eff − Jc,eff)2 (63)

The first term is typically assumed to correspond to the signal-to-noise ratio of the ob-
servations (S/N)int = (cS − cR)/

√
δc2

S + δc2
R determined by the integration time. The

equation shows, however, that the total noise of the observations is determined by both
terms. It is nevertheless useful to compare the other noise contributions to this famil-
iar ratio. Using Eq. (16) to substitute the second term by the statistical bandpass error
results in

δ(JS − JR)
JS − JR

≈

√
1

(S/N)2
int

+
δγl

rec
2

γl
rec

2 (64)

The noise in the bandpass should be considerably smaller than 1/(S/N)2
int so that its

contribution is small compared to the radiometric noise of the observation itself. Most
HIFI observations will aim for signal-to-noise ratios between 5 and 50. The statistical
bandpass accuracy δγl

rec/γl
rec of 1 % discussed in Sect. 3.2.2 is thus sufficient for all these

observations.
In case of observations using an OFF calibration to determine the standing waves the

additional difference in the measured counts (see e.g. Eqs. 50 and 57) leads to a new
error term equivalent to the noise from the counts on the source.

δ(JS − JR)
JS − JR

≈

√
1

(S/N)2
int

+
δγl

rec
2

γl
rec

2 +
2

∆νswtOFF

Jl 2
rec

(JS,eff − JR,eff)2 (65)

When the OFF calibration is performed with the same resolution bandwidth and the
same integration time as the astronomical observation the total noise is thus increased
by a factor

√
2 in spite of a total integration time (at both positions) which is longer by

a factor 2. The correction of the standing wave problem by the OFF calibration would
cost a factor 4 in integration time here. Fortunately, this is only a worst case estimate.
In many cases one OFF calibration measurement can be used for a series of astronom-
ical observations so that they will share the total OFF integration time. This applies to
most observations mapping astronomical sources but does not help in long integrations
on a single position. Independent from the share of an OFF calibration by several ob-
servations, the relative amount of the OFF calibration time can be reduced when the
effective frequency resolution required to determine the standing wave pattern ∆νsw

is lower than the resolution in the astronomical observation ∆ν. When the resolution
bandwidth required to resolve the standing waves is ∆νsw ≈ 10 MHz all observations
with a better frequency resolution lose only a small amount of integration time for the
OFF calibration. It can be speculated that with the development of models for the stand-
ing waves a further increase of the required resolution bandwidth may become possible.
Models characterised by few parameters might be completely determined already by a
measurement with an effective frequency resolution much larger than 10 MHz. Then
they can be defined in a very short integration time on the thermal loads and the OFF
position so that the overhead for the OFF calibration is further reduced.
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Nevertheless, it has to be evaluated for each observation again whether its astrophys-
ical scope allows to ignore possible calibration uncertainties and distortions of the base-
line by standing wave ripples. In these cases the efficiency of the observation can be
considerably increased by avoiding the overhead for the OFF calibration measurement.

Whenever the standing wave changes one of the multiplied coefficients, either in the
bandpass or in the telescope coupling, the statistical error of the standing waves also
enter the noise of the measured overall radiation field. For standing waves changing
the gain of the instrument we obtain in total power measurements

δ(JS − JR)
JS − JR

≈

√
1

(S/N)2
int

+
δγl

rec
2

γl
rec

2 +
δw2

ssb

G2
ssbγ

l
rec

2
(66)

The noise in the standing wave can be expressed in terms of the statistical error in the
effective OFF radiation field Jsw computed in Sect. 3.3.5. Assuming that the retrieval of
the standing wave wssb from Jsw does not produce any additional noise, so that the noise
in the telescope pickup Jsw is identical to the noise in the signal sideband standing wave
we obtain

δ(JS − JR)
JS − JR

≈
√

1
(S/N)2

int
+

δγl
rec

2

γl
rec

2 +
1

G2
ssb

δ J2
sw

J2
sw

(67)

The corresponding equation in case of standing waves changing the telescope coupling
efficiency reads

δ(JS − JR)
JS − JR

≈
√

1
(S/N)2

int
+

δγl
rec

2

γl
rec

2 +
(1− ηl)2

η2
l G2

ssb

δ J2
sw

J2
sw

(68)

In case of chopped/frequency switch observations using the OFF calibration to correct
for standing waves in the baseline, the OFF noise corresponding to Eq. (65) has to be
added in the square root.

It is important to notice the essential difference in the standing wave noise term be-
tween Eqs. (67) and (68). In case of standing waves changing the telescope coupling the
OFF calibration noise is suppressed by the factor (1− ηl)/ηl, i.e.≈ 0.02. In case of stand-
ing waves changing the gain of the instrument the full OFF calibration noise enters the
radiation field calibration.

Thus the calibration of the overall radiation field for the standing waves in the gain
sets much harder constraints on the OFF integration times than the calibration in any
of the other scenarios. Here, we can compare the integration time requirements for the
standing wave measurement from Eq. (38) with the requirements for the baseline cali-
bration resulting from Eq. (65). In case of strong line signals this may result in the need
for an integration time on the OFF position exceeding the estimate discussed above for
the chopped observations. As shown in Sect. 3.3.5 a 1 % accuracy can only be achieved
at low frequencies within reasonable integration times. At high frequencies noise con-
tributions up to 10 % are unavoidable. In some cases it might thus be better to ignore the
impact of the standing wave term in the absolute calibration factor for the overall radi-
ation field using it only in the additive terms. This means that in Eqs. (46) and (53) the
factor (Gssb + wssb/γl

rec) is replaced by Gssb. From the current knowledge on the standing
waves it is not clear whether one introduces a bigger error into the line calibration by
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ignoring the standing wave term in the instrumental gain or by using the standing wave
correction in this term with an error of up to 10 %. One has to keep in mind, however,
that even when omitting the standing wave term in the gain the OFF calibration should
not be completely dropped. It is still essential for an effective removal of the standing
wave ripples from the baseline providing the continuum level.

The statistical error of the continuum contribution is always dominated by the noise
in the standing wave measurement. We obtain

δ(JS,cont − JR,cont)
JS,cont − JR,cont

≈ δ Jsw

Jsw
(69)

for standing waves in the gain and in the telescope coupling. Because the continuum
can be averaged over the the whole IF band the noise in Jsw can be computed for a very
large effective noise bandwidth so that this error is always small.

Altogether, the noise considerations have shown that there is a price to be paid for
the accurate determination of the standing wave pattern. Because the standing wave is
measured from the weak telescope radiation pickup, long integration times are required
for the OFF calibration. The OFF integration time can always be shorter than the source
integration time by the ratio between the frequency resolution of the actual observa-
tions and the resolution required to measure the standing wave period. In case of stable
standing waves one OFF measurement can also be used for the calibration of several
astronomical observations. From the requirements on the integration times it turns out,
however, that in case of standing waves modifying the instrumental gain, a correction
of their impact on the line strengths is not always possible with a high accuracy. In all
observing modes the OFF calibration is still essential for an accurate determination of
the spectral baselines.

5 Nonlinear response

In principle it is not guaranteed that the instrumental response to any of the input ra-
diation fields is linear as assumed in Eq. (1). Only the receiver temperature is an addi-
tive constant by definition. The combination of the receiver, the IF amplifiers and the
backends may show some nonlinear response. Deviations from a linear behaviour are
expected mainly in the IF branch including the spectrometers (e.g. Siebertz 2002). How-
ever, because the detection mechanism does distinguish between photons of different
origin the response functions to contributions from JS, JR, and JT have to agree. Thus we
may describe any nonlinearity as a modification of the linear count rates

cS,measured = f (cS) (70)

where the count rate on the right hand side represents any of the count rates discussed
in the previous sections.

Practically, we don’t expect strong deviations of f from a linear behaviour so that
the determination of a few expansion parameter should be sufficient. The functional
behaviour should be determined in tests with well defined sources on ground. To ob-
tain the function f one has to scan the possible range of cS values measuring cS,measured.
Within a limited range, the nonlinearity in the IF branch can be determined when the
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receiver is used as noise source at a bias point outside of the superconducting gap. To
include measurements on the nonlinearity of the receiver response one can adjust the
hot load temperature to scan a range of count rates. However, it is difficult to achieve
a high accuracy in this way as the temperature determination itself is subject to several
uncertainties (Roelfsema et al. 2002).

If the nonlinearity function is known each intensity calibration has to start with a
transformation of the measured counts cS,measured by f−1 onto the linear scale of cS. Then
the differencing schemes from Sect. 4 can be applied or the calibration parameters can
be determined using the equations from sections 3.2 and 3.3.

6 Summary

We propose a new calibration scheme for the planning and reduction of HIFI obser-
vations taking explicitly into account i) that the large intermediate frequency of HIFI
requires a separate treatment of both sidebands, ii) that the problem of standing waves
between the subreflector and the receiver can be solved by means of a separate OFF cal-
ibration measurement, iii) that the telescope temperature is less accurately known than
on ground-based telescopes, and iv) that atmospheric issues can be dropped for HIFI.

In the new calibration scheme each observation is characterised by 7 intensity calibra-
tion parameters: the bandpass in the source sideband γssb and in the image sideband
γisb, the forward efficiencies in both sidebands ηl,ssb and ηl,isb, the source coupling ef-
ficiencies ηsf,ssb and ηsf,isb, and the receiver noise given by γrec Jrec. Depending on the
dominant process causing standing waves they are related by different equations to 9
basic measurable calibration quantities. These are the total receiver bandpass γl

rec and
the receiver temperature Jl

rec, determined in the load calibration measurement, the side-
band ratio Gssb and the coupling coefficients to the cold and the hot load ηc and ηh,
determined on ground, the source coupling efficiency ηsf, determined from beam mea-
surements, and the effective forward efficiency ηl and the standing waves wssb and wisb,
determined in the OFF calibration measurement. All quantities except the forward ef-
ficiency ηl might be different for each backend channel but practical reasons show that
no frequency dependence can be determined for the hot load coupling efficiency ηh,
the sideband ratio Gssb, and the source efficiency ηsf, so that these are treated channel
independent.

The correction for standing wave effects is based on the availability of two thermal
loads in HIFI. They allow to use the measurement on the blank sky (OFF calibration)
to derive the properties of the standing wave difference between a load measurement
and a sky measurement. The OFF calibration provides only information on the super-
position of the standing waves in both sidebands, wssb and wisb, so that a parametrised
model is required to deconvolve them. Such a model is available from the analysis of
the optical design of the instrument (Whyborn 2002).

In the double-side band design of HIFI the standing waves have always two effects:
they modulate the continuum level providing distortions to the spectral baseline of the
signal and they modulate the absolute calibration of the lines. Both effects have a dif-
ferent functional behaviour and their correction imposes different constraints on the
time spent for the OFF calibration. The standing wave ripple in the continuum baseline
can be suppressed when the observation of the source and the reference uses the same
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optical path, i.e. in total power observations. The modulation of the line signal is only
negligible when the standing waves do not change the different coupling factors in the
instrument, especially the gain, but modulate only the receiver noise. Unfortunately, the
dominant effect of the standing waves is not yet known.

At high frequencies, where the receiver noise is very large compared to the telescope
pickup and the dominant period of the standing waves corresponds to a velocity dif-
ference of only 4 km/s, the standing wave correction imposes severe constraints on
the integration times required for the load calibration and the OFF measurement. The
OFF calibration may require a relatively large part of the total observing time. The total
efficiency of an observation including the standing wave correction grows almost pro-
portional to the stability of the standing waves in the instrument. It is also enhanced
when the frequency of the standing wave signature allows to smooth the OFF data over
a broader bandwidth than the astronomical observations.

If the OFF calibration is used it allows to correct for all standing wave effects in the
path between the focal plane unit and the primary mirror. It measures the standing
wave difference between two phases of chopped observations providing a clean way
to remove all standing wave ripples from the spectral baseline of the observations and
to include the effect of the modulation of the line strengths in their calibration. Thus
it enables the use of sky-chop, load-chop or frequency switch observations even for
sources with broad lines or a considerable continuum contribution. A reasonable use of
the standing-wave calibration is, however, only possible if the design of the satellite is
optimised to provide a stability of the standing wave pattern over time scales which are
considerably longer than the stability time of the instrument itself. Moreover, it relies on
the knowledge of the dominant coupling mechanism between the standing waves and
the instrument. That makes it absolutely necessary that corresponding tests as proposed
in Sect. 3.3.4 are performed before launch.

We have also provided an accurate estimate of the error budget of the calibration
showing that a high accuracy of the calibration is only possible when the sideband ratio
Gssb and the coupling coefficients to the hot and the cold load, ηh and ηc, respectively,
are very well known. From the computation of the systematic errors it is possible to put
clear limits on the accuracy of the parameters entering the intensity calibration required
to achieve a particular calibration accuracy.
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A Summary of calibration quantities

Symbol Explanation1,2 Sect. Guess
γssb signal bandpass in the signal sideband 2.1
γisb signal bandpass in the image sideband 2.1
Gssb signal sideband gain 2.1
1− Gssb image sideband gain 2.1
ηl,ssb forward efficiency in the signal sideband 2.1 ≈ 0.98
ηl,isb forward efficiency in the image sideband 2.1 ≈ 0.98
(1− ηl,ssb) backward efficiency (part of the beam terminating on

the warm telescope structure) in the signal sideband
2.1 ≈ 0.02

(1− ηl,isb) backward efficiency in the image sideband 2.1 ≈ 0.02
ηsf,ssb source efficiency in the signal sideband 2.1
ηsf,isb source efficiency in the image sideband 2.1 = ηsf,ssb

ηc,ssb cold load coupling coefficient in the signal sideband 2.3 ≈ 0.996
ηc,isb cold load coupling coefficient in the image sideband 2.3 = ηc,ssb

ηh,ssb hot load coupling coefficient in the signal sideband 2.3 ≈ 0.99
ηh,isb hot load coupling coefficient in the image sideband 2.3 = ηh,ssb

γrec receiver bandpass 2.1 γssb + γisb

Jrec receiver temperature 2.1 see Spec.
z zero counts of the backend 2.1
JS radiation intensities from the source 2.1
JR radiation intensities from the sky outside of the source 2.1
JT radiation intensities from the sum of the telescope

contributions within the beam
2.1 Bν(80 K)

Jh radiation intensities from the hot thermal load 2.3 Bν(100 K)
Jc radiation intensities from the cold thermal load 2.3 Bν(15 K)
cON spectrometer count rate on the astronomical source

position
2.1

cOFF spectrometer count rate on the blank sky 2.2
ccold spectrometer count rate on the thermal cold load 2.3
chot spectrometer count rate on the thermal hot load 2.3
b linear coefficient of series expansion of the continuum

radiation field J around the LO frequency
2.1

Y Y-factor from a hot and cold thermal load measure-
ment

3.2.1

Jeff effective radiation intensity from both sidebands at a
given sideband ratio Gssb

3.2.1

Jdiff difference in the radiation intensity between both
sidebands at a given sideband ratio Gssb

3.3.3

Jsw telescope and standing wave intensity 3.3.5
JT,pick effective radiation intensity in both sidebands picked

up within the telescope beam
3.3.5

wssb standing wave contribution in the signal sideband 3.3.2
wisb standing wave contribution in the image sideband 3.3.2

1 The quantities γssb, γisb, Gssb, ηl,ssb, ηl,isb, γrec, Jrec depend on the exact optical path of the measure-
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ment so that they are not unique numbers but may differ between the different settings of the focal plane
chopper mirror, i.e. different chop positions on the sky and the hot and load thermal loads.

2 The role of the standing wave terms wssb and wisb depends on the process providing the dominant
influence on the observation as discussed in Sect. 3.3.1.

References
Downes D. 1988, in: Appenzeller I., Habing H.J., Lena P., Evolution of Galaxies – Astronomical

Observations, Lecture Notes in Physics 333, Springer, p. 351
Hiyama S. 1998, “Seitenbandkalibration radioastronomischer Linienbeobachtungen”, Diploma

thesis, Universität zu Köln
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