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Abstract

This memo presents some calculations related to requirements on subreflector and feed positioning for the
ALMA antennas. In order to keep gain loss at less than 1%, the axial (vertical) positioning error in the
subreflector should be less than about 0.09 λ, and in the feed should be less than about 0.9 λ. The lateral
positioning error for the subreflector should be less than about 0.45 λ, and for the feed should be less than
about 10 λ. The rotational (tilt) error of the subreflector should be less than about 5.5 λmm arcminutes if
the rotation is about the vertex of the subreflector. If the rotation is about the prime focus, then this error
can be much larger: about

√
λmm degrees.

1 Introduction

Incorrect positioning of the subreflector and feeds of the ALMA antennas will result in a loss in gain. There
are other more subtle effects (like changing the primary beam shape and the phase across the primary beam,
which are issues for mosaicing), but these are not treated in this memo - only the loss in gain from errors in
subreflector and feed positioning.

2 Theory

This study is based nearly completely on an unpublished note written by John Ruze in 1969 titled “Small
Displacements in Parabolic Reflectors.” A similar treatment of this problem, but for displacements of the
feeds for the MMA antennas, is in Shillue (1997). An unpublished note by James Lamb (“Verification of
Ruze Formulas By Comparison with Ray-Tracing”, dated 2001-May-09) gives a correction of the formulas
in Ruze’s note, making sure that the sign conventions are always consistent, and not normalizing the path
error to the on-axis error (this allows for the effects of multiple offsets to be added in the aperture plane
all at once). This note is included here as Appendix A. Using polar coordinates in the aperture plane r
and φ, the phase errors resulting from incorrect feed or subreflector positioning are denoted δ(r, φ). Given
the subreflector offsets, the form of δ(r, φ) can be explicitly written, and for a Cassegrain reflector (as for
ALMA) are shown in Table 1 (taken from Lamb 2001).

The geometrical quantities in Table 1 are:

θp = angle between optical axis and a ray from the feed to the subreflector;

θf = angle between optical axis and a ray from the subreflector to the main reflector;

M = antenna magnification;

c − a = distance from primary focus to subreflector surface along the optical axis.
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Table 1: Form of Phase Errors for Given Subreflector Offsets.

type δ(r, φ)

feed axial displacement (∆zf ) −2π∆zf

λ
cos θf

feed lateral displacement (∆rf ) −2π∆rf

λ
sin θp cos φ

subreflector axial displacement (∆zs)
2π∆zs

λ

�
cos θp + cos θf

�

subreflector lateral displacement (∆rs) −2π∆rs

λ

�
sin θp − sin θf

�
cos φ

subreflector rotation (∆α) −2π∆α |c − a|
λ

�
sin θp + M sin θf

�
cos φ

For the ALMA antennas, M is 20, and to first order, we can assume that c − a = f/M for focal length f ,
which is 4.8 m for the ALMA antennas (Lamb 1999).

Given the phase error across the aperture, the loss in gain is calculated via (equation 3 of Ruze 1969):

G

Go
= 1 − δ2 + δ

2
, (1)

where

δ2 =

∫ 2π

0

∫ 1

0

f(r, φ) δ2(r, φ) r dr dφ

∫ 2π

0

∫ 1

0

f(r, φ) r dr dφ

, (2)

and

δ =

∫ 2π

0

∫ 1

0

f(r, φ) δ(r, φ) r dr dφ

∫ 2π

0

∫ 1

0

f(r, φ) r dr dφ

. (3)

The function f(r, φ) is the feed illumination function, which to first order can be assumed to be: f(r) =
1− ar2. For a 12dB Gaussian taper on the feed illumination, a = 0.75, which is the value used in this study.

Before calculating the above integrals, a best-fit linear phase plane across the aperture must be subtracted
(this is the equivalent of what offset pointing does for you). This is done by calculating the phase across
the aperture and doing a least squares fit for the parameters of the plane, and then subtracting that best-fit
plane from the raw calculated phases before calculating the integrals.

Note that the situation for the ALMA antennas is more complicated than this, because the feeds are not
all exactly on-axis. To account for the displacement from the optical axis, the subreflector will be shifted
laterally to refocus the beam onto the slightly off-axis feeds (Lamb et al. 2001). The analysis here is still
correct to first order, though, and allows for limits to be placed on the deviation of the subreflector or feed
from its nominal position, whether that is on-axis focus, or slightly offset to focus off-axis.

3 Results

The resultant curves for loss of gain are shown in Figures 1 through 5, as functions of the positioning errors.
In order to have the loss in gain be less than 1% from the axial positioning errors, the error in the subreflector
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should be less than about 0.09 λ, and in the feed should be less than about 0.9 λ. The lateral positioning
error for the subreflector should be less than about 0.45 λ, and for the feed should be less than about 10 λ.
The rotational (tilt) error of the subreflector should be less than about 5.5 λmm arcminutes.

3.1 A Comparison

An unpublished note by James Lamb (“Secondary Mirror Positional Tolerances”, dated 1999-Jan-29), con-
tains formulae for the effective rms introduced by subreflector misalignments. This note is included here as
Appendix B. One slight difference in that work and this one is that the assumed illumination was different.
James assumed uniform illumination, while this work uses an illumination function which approximates a
Gaussian taper with an edge taper value of -12 dB. So slightly different results should be expected, but they
should be the same to first order. In any case, in order to compare the results here with those, it is necessary
to first derive the relationship between effective rms due to optics misalignment and gain loss.

Define the aperture efficiency as:
ηa = ηoe

−(4πσ′/λ)2 , (4)

for wavelength λ and total rms σ′. Assume that the total rms is made up of two terms: a main dish
component (σ) and an optics misalignment component (ε) and that they add in quadrature for the total:

σ′2 = σ2 + ε2 . (5)

Then the ratio of the aperture efficiency with no optics misalignment to that with the optics misalinment is:

R = e−(4πε/λ)2 . (6)

Since ε is small, expand the exponential and drop all higher order terms:

R = 1 −
(

4 π ε

λ

)2

. (7)

Now, assuming that R = 0.99, as in the treatment above, leaves:

ε ∼ 0.008 λ . (8)

3.1.1 Subreflector Lateral Displacement

James’ unpublished note gives:
ε = a1 ∆x , (9)

where a1 = 19.1 µm mm−1. For comparison with the results of this memo, substitute ∆x = 0.45λ, and
ε = 0.008λ:

0.008λ = a′
1 0.45 λ , (10)

yielding a′
1 = 17.8 µm mm−1. This is good agreement.

3.1.2 Subreflector Axial Displacement

James’ unpublished note gives:
ε = a2 ∆z , (11)

where a2 = 80.7 µm mm−1. For comparison with the results of this memo, substitute ∆x = 0.09λ, and
ε = 0.008λ:

0.008λ = a′
2 0.09 λ , (12)

yielding a′
2 = 88.9 µm mm−1. Again, pretty good agreement.
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3.1.3 Subreflector Rotation

James’ unpublished note gives:
ε = a3 ∆θ2 , (13)

where a3 = 8.16 µm deg−2. For comparison with the results of this memo, substitute ∆θ = 91.7λ (which is
5.5λmm arcmin, converted to degrees), and ε = 0.008λ:

0.008λ = a′
3 (91.7 λ)2 , (14)

yielding a′
3 = 0.951/λ µm deg−2. Here, there are two immediately apparent problems - the proportionality

is different (the dependence on wavelength), and the magnitude is significantly different (order of magnitude
at λ = 1 mm: James’ result would allow for a rotational error as large as ∼ 1 deg at 1 mm, while the result
here is that it can only be ∼ 6 arcmin at that wavelength). Reducing James’ formula to the allowable error
as a function of wavelength gives: ∆θ ∼ √

λmm degrees. This difference can be attributed entirely to the
assumption of where the rotational center is. Ruze’s formula assumes that the rotation is about the vertex
of the subreflector, while James assumes that the rotation is about the prime focus. These are two end-
members in a sense - best and worst case scenarios. Until the design for the subreflector motion mechanism
is finalized, it is difficult to say what the final requirement will be on rotation of the subreflector. At the time
the design is finalized and the point about which effective rotations occur is known, a new study should be
completed and this issue can be settled. It should be noted, however, that rotations about any other point
than the prime focus can be decomposed into a lateral translation and a rotation about the prime focus.
For this reason, if the subreflector measurement and adjustment scheme first fixes the lateral translation
and then the subreflector rotation, the effective rotation error will be about the prime focus. Furthermore,
rotations about non-prime focus locations cause wavefront aberrations which do not add in quadrature with
the other aberrations. These two reasons are why James took the approach that he did, and because of this
his numbers will likely turn out to be closer to the truth.
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Figure 1: Loss of gain as a function of feed axial
offset, in wavelengths.

Figure 2: Loss of gain as a function of feed lateral
offset, in wavelengths.

Figure 3: Loss of gain as a function of subreflec-
tor axial offset, in wavelengths.

Figure 4: Loss of gain as a function of subreflec-
tor lateral offset, in wavelengths.

Figure 5: Loss of gain as a function of subreflec-
tor rotation error, in arcminutes, for an observing
frequency of 650 GHz (λ ∼ 460 µm).
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Verification of Ruze Formulas By Comparison with Ray-Tracing 

James W Lamb 
OVRO, Caltech 

2001-05-29 

1. Introduction 
In many instances it is expedient to evaluate the effective path error due to displacements of the feed or 

secondary mirror in closed form. Ruze [1] has derived some simple formulas for this purpose. When these 
are to be used with other calculations, such as finite-element-analysis (FEA) it is important that the 
coordinate systems and sign conventions are clear and consistent. To verify the form and sign of these 
formulas we compare them with results from ray tracing in Mathcad. Corrections are made to the signs of 
the original formulas, and it is pointed out that the normalization to the path error at the center of the 
aperture can lead to confusion and incorrect results if care is not taken. 

2. Geometry 
The geometry is defined in Figure 1. Two coordinate systems will be used, a cylindrical one with the z-

axis along the boresight direction, and a rectangular system which follows the ALMA convention for the 
antennas [2]. The cylindrical system results in simpler equations, but the rectangular system may be easier 
to implement in an FEA analysis. Formulas in both systems are provided. 

The antenna has a diameter D, a focal length f, and a magnification M.

r

x

y

z

r

0

Figure 1.  Geometry and coordinate system. Third angle projection is used, so the upper view is from above the 
antenna pointed at zenith, and the lower view is from the rear of the antenna. The antenna rotates about the negative x–
axis down towards the horizon position. 
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Verification of Ruze Formulas 2001-May-30 Page 2 

3. Cylindrical Coordinates 

The simplest forms of the equations are given in terms of the cylindrical coordinates (r, , z). Table I 
presents the error in this coordinate system. The following points should be noted: 

The path error is the actual path length minus the ideal path length. That is, if the formula gives a 
positive number, the path length from the antenna focus to the antenna aperture plane is increased.
(The original Ruze paper was inconsistent in its sign convention.) 
Axial displacements are in the positive z direction. 
Radial displacements are along a vector r at an angle 0 to the x–axis. 
Tilts of the secondary mirror are about a vector parallel to z r and passing through the secondary 
mirror vertex. Rotations about other points are a combination of this plus a lateral shift. 
The formulas are often renormalized by setting the path error to zero at the center of the aperture. 
Table I shows both the normalized and un-normalized equations, where these differ. The un-
normalized ones can be directly compared with the ray-tracing results. 

Table I. Path length error in terms of cylindrical coordinates. 

Position Error Actual path error Normalized to zero on axis 

Feed axial displacement by zf )cos( ffz )cos(1 ffz

Feed lateral displacement by 
rf at angle 0

)cos()sin( 0ffr

Secondary mirror axial 
displacement by zs

)cos()cos( fpsz 1)cos(1)cos( fpsz

Secondary mirror lateral 
displacement by rs at angle 0

)cos()sin()sin( 0fpsr

Secondary mirror tilt around 
vertex 

)cos()sin()sin( 0fp Mac

Where the angles p and f are defined by 

2

2
1

)sin(

f

r

f

r

p 2

2
1

)sin(

Mf

r

Mf

r

f

The above equations were compared directly with a Mathcad ray-tracing analysis which ensures that the 
sign convention is consistent and the magnitudes of the results are correct. The actual expressions 
implemented in the Mathcad document are (with F = Mf):

p 2 atan
r

2 f
f 2 atan

r

2 F

p1 zf cos f p2 rf sin f

p3 zs cos p cos f p4 rs sin p sin f

p5 y c a( ) sin p M sin f p p1 p2 p3 p4 p5

The following graphs show the comparison with the ray-tracing results. 
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Figure 2. Axial movement of feed. 
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Figure 3. Lateral feed shift. 
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Figure 4. Axial movement of secondary mirror.
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Figure 5. Lateral movement of secondary mirror. 
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Figure 6. Tilt of secondary mirror. 

As seen in Figure 2–Figure 6 the equations do agree well with the numerical results, and in particular the 
signs are consistent. The calculations also verify that the path errors may be simply added to give the same 
results as ray tracing. 

4. Cartesian Coordinates 
In Cartesian coordinates the formulas take the forms shown in Table II. To compare with the previous 

section, the lateral displacements and tilts are decomposed into two components parallel to the x– and y–
axes:

)cos(

)sin(

)sin(

)cos(

)sin(

)cos(

0

0

0

0

0

0

sy

sx

ss

ss

ff

ff

rx

rx

ry

rx

Note that the rotations x and y are taken as positive rotations around the x– and y–axes respectively. 
The axis of rotation passes through the vertex of the secondary mirror. 
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Table II. Path length error in terms of cylindrical coordinates. 

Position Error Actual path error Normalized to zero on axis 

Feed axial displacement by 
zf

)cos( ffz )cos(1 ffz

Feed lateral displacements 
by xf, yf

)sin()sin()cos( fff yx

Secondary mirror axial 
displacement by zs

)cos()cos( fpsz 1)cos(1)cos( fpsz

Secondary mirror lateral 
displacements by xs, ys

)sin()sin()sin()cos( fpss yx

Secondary mirror tilts by 
x, y

)sin()sin()cos()sin( fpyx Mac

Where 

2

2
1

)sin(

f
r

f
r

p 2

2
1

)sin(

Mf

r

Mf

r

f

22 yxr    )/(tan 1 xy

5. Discussion 
The formulas presented by Ruze [1] have been shown to be accurate for small displacements of the 

secondary focus or secondary mirror in the ALMA antennas once the correct signs are used. It is critical 
that when the results are combined with FEA the signs must be consistent since the effects may be additive. 
An example is where the primary mirror opens out under gravity and pulls the secondary mirror in closer to 
the primary. The focus of the primary moves out from the antenna, but the secondary moves in opposite 
direction exacerbating the effect. 

Another pitfall is that the formulas are usually re-normalized to refer them to the path length at the 
center of the antenna aperture (This affects only the expressions for displacements along the antenna axis). 
This can be confusing since the sign of the actual path change given by )cos( ffz  has the opposite sign 

from the normalized version )cos(1 ffz , though the shape of the function is the same. If the equations 

are to be applied to part of the primary mirror (to find the effect of panel displacements, for example) then 
the un-normalized formulas must be used. Another case where the distinction is important is in the 
estimation of the phase errors induced. We would recommend, therefore, that the un-normalized forms 
should always be used. This will not affect the calculation of the contribution to the wavefront or effective 
surface error. 
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[1] J. Ruze, “Small displacements in parabolic reflectors,” Unpublished, Feb. 1969. 
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12



Appendix B

13



29 JANUARY, 1999 1

Secondary Mirror Positional Tolerances
James W Lamb

Abstract— Tolerances for the positioning of the secondary
mirror are derived from the associated aberrations. The
optimum location of the secondary will be determined by
radiometric measurements at regular intervals. It is the
precision of these measurements that should limit the accuracy,
rather than the mechanics of the translation stage. The
translation stage for the secondary should have a resolution of
~5–10 µm, and a linearity of 0.2 % on each axis.

I. INTRODUCTION

The secondary mirror will have a focus-translation stage
allowing focus optimization during operation. Requirements
on the positioning accuracy are set by the contributions
allocated to the surface accuracy, pointing and phase error
budgets. To understand how to specify these it is necessary to
know exactly how they enter into these budgets.

Since the secondary mirror has circular symmetry there are
five parameter which need to be specified, three translational
and two rotational. The translation errors are ∆x and ∆y
orthogonal to the optical axis, and ∆z parallel to it. Tilt errors
are denoted by ∆θx and ∆θy around the x-axis and y-axis
respectively.

To determine the effect of these errors ray tracing was
used to calculate the wavefront error. This is slightly more
accurate than some of the analytical formulas which are valid
only for large focal ratios. Results quoted here assume
uniform aperture illumination, but including a 12-dB taper
does not change the results significantly. The antenna
parameters used in the calculations are given in Table I

The results will be given in terms of an effective surface
error (half wavefront error) which would be added in
quadrature to other components of the surface accuracy
budget.

TABLE I: ANTENNA PARAMETERS USED IN THE TEXT

Parameter Symbol Value
Primary diameter D 12.00 m

Primary focal length f 4.8 m
Secondary diameter d 750 mm

Magnification M 20

II. SETTING PROCEDURE

The antenna primary mirror will be set up initially using a
theodolite and tape. This should achieve a surface accuracy of
~100 µm, and reference the optical axis to the gravitational
vertical. The surface will then be measured using a
holography receiver mounted at the prime focus and adjusted
according to the surface errors derived from this. This
effectively defines the location of the prime focus relative to
the holography feed phase center.

Once the secondary mirror has been installed it will be
aligned so that it is perpendicular to the optical axis. Since
there is no provision for any tilting mechanism, this will be
done with shims, manual adjustment screws, or by
machining. The axial and lateral (radial) focus positions will
then be determined from astronomical observations. It will be
assumed for this analysis that these measurements are made
at a wavelength λ = 1 mm. At shorter wavelengths the
radiometric sensitivity will be lower, but the required
precision as a fraction of the wavelength will be less. The
wavelength is therefore not critical.

Pointing and focus will be checked every 30 min and, if
required, the focus optimized to the accuracy of these
measurements. The translation stage needs to be accurate
enough to track focus changes between these measurements.
Periodic calibrations of phase will be made at intervals of 3
min on sources offset on the sky by up to 2°. If the focus
needs to be changed between these calibrations, the z-
translation accuracy needs to be within the pathlength error
budget.

III. GRAVITATIONAL CHANGES

As the antenna moves in elevation the position of the
secondary will need to be adjusted to compensate for
gravitational changes in the primary and support legs. The
total movements, ∆xtot and ∆ztot will be on the order of a
millimeter. Both of these will be sinusoidal functions of
elevation so that the maximum rate of change will be
0.017 ∆xtot and 0.017 ∆ztot per degree of elevation change.

Over a 3-min interval between phase calibrations the
elevation will change by at most 0.75° and the focus will
change by 13 µm for ∆xtot or ∆ztot of 1 mm. The average
change is half that. For changes between the source and the
phase calibrator needing a 2° elevation change, the focus
change will be ~35 µm. Over the 30 min between pointing

January 29, 1999
Owens Valley Radio Observatory, California Institute of Technology, Big

Pine, CA 93513, USA
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LAMB: SECONDARY MIRROR POSITIONAL TOLERANCES2

and focus determinations the changes will be about ten times
larger.

IV. LATERAL ERRORS

Errors in the lateral positioning of the secondary, ∆x or ∆y
produce coma and pointing offsets. The path error (and
therefore the contribution to effective surface error) increases
linearly with the offset. The contribution to the surface error
is

1
1

1

mm�1.19 −=

∆=

a

xaeffε
(1)

and the associated pointing change is

f

x
sky

∆≈∆ 75.0θ (2)

or about 20 µm for a thirtieth of a beam at λ 1-mm. Similar
expressions apply to ∆y. To adjust the lateral focus a gain
curve can be made.  This requires measuring the signal from
a point source for different lateral positions of the secondary
with the pointing offset corrected using (2). An alternative
way is to measure the asymmetry of the first sidelobes which
results from the coma. An imbalance of 1.3 dB results from
an offset of ∆x = 0.1 mm at λ = 1 mm, and this is associated
with εeff = 1.9 µm.

V. AXIAL ERRORS

Axial errors, ∆z, produce spherical aberration. The
pathlength and surface error contributions are again in linear
proportion to the displacement. For the nominal antenna
parameters the contribution to the surface error is

1
2

2

mm�7.80 −=

∆=

a

zaeffε
(3)

To determine the optimum focal setting, the secondary would
be scanned in z and the signal from an astronomical point
source measured. The half-power points are at about a half-
wavelength on either side of the focus. We can estimate that
if we measure the focus curve at ∆z ±λ/2, a relative accuracy
of 2 % between the two points gives a measurement error for
the focus position of ~0.02 λ. At 1-mm wavelength the error
is therefore about 20 µm and (3) then gives εeff = 1.6 µm.
Using the whole gain curve would give a better determination
of the focus.

VI. ORTHOGONALITY OF AXES

If the x- or y-axis is not perpendicular to the optical axis, or
the z-axis is not parallel to it, the lateral and axial errors will
be intermixed. The worst case is an x- or y-translation having
a component along the optical axis. Since the z-focus is five

times more sensitive than the x or y it would take an angular
offset of ~1° in the x- or y-axis to have an effect at the 10 %
level. The main effect would be a change in the shape of the
gain curve (or measured beam shape). Around the nominal
focus the symmetry of the measurement is not affected so the
alignment precision is not reduced. Even for relatively large
misalignments, only a few iterations of the x, y, and z-stages
would be required to converge.

VII. TILT ERRORS

The minimum aberrations occur for tilts around an axis
through the prime focus. Rotations around any other axis can
be decomposed into a rotation around the prime focus and a
translation. The translation part is covered in section IV. A
tilt of ∆θ produces astigmatism with a contribution to the
effective surface accuracy of

2-
3

2
3

deg�16.8=

∆=

a

aeff θε
(4)

The reference axis defining zero tilt is the optical axis from
the feed to the prime focus. This does not have to be
coincident with the axis of the primary mirror paraboloid. It
can be determined using a theodolite and level to look
directly up at the prime focus (defined, say, by the
holography feed) from the nominal receiver location. Finding
the prime focus to within 10 mm defines the optical axis to
better than 0.1° relative to gravity. Leveling the secondary
mirror to this precision then gives a maximum error of 0.2° so
that the contribution to surface error is less than 0.3 µm.

Note that a holographic measurement from the secondary
focus would measure astigmatism due to the secondary tilt. It
could then be removed by panel adjustment derived from the
corresponding holography map.

VIII. ADJUSTMENT RANGE

To get a good focus determination a range of ± λ is
required on all axes. At 30 GHz this means a total travel of
20 mm. Any allowances needed for manufacturing and
assembly tolerances should be added to this.

IX. DISCUSSION

All the errors due to focus setting as calculated above are
added in quadrature giving an RSS (root sum of squares) of
εeff = 3.6 µm. To achieve this the contributions of the
translation stage encoders and drives must be negligible. The
resolution and repeatability of the encoders should be a few
times better than the required accuracy shown in Table II, or
5–10 µm.

15



29 JANUARY, 1999 3

TABLE II: REQUIRED SETTING ACCURACY OF SECONDARY MIRROR AND THE

ASSOCIATED CONTRIBUTION TO THE SURFACE ERROR BUDGET

Parameter Accuracy Surface Error
∆x 50 µm 1.9 µm
∆y 50 µm 1.9 µm
∆z 20 µm 1.6 µm
∆θx 0.2° 0.3 µm
∆θy 0.2° 0.3 µm

Total (RSS) 3.2 µm

Focus measurements will be made over a range of about
± λ. At 3-mm wavelength this will impose a linearity
requirement of about 0.2 % within this range.

If the z-focus is tracked during an observation it will also
affect the phase. In order to know the pathlength to better
than  5 µm the encoder would have to have an accuracy of
2.5 µm or better over the tracking range. Section III showed
that the focus change over 3 min on the source is small
enough to be ignored. The focus change going to the phase
calibrator may be larger, but since the calibration is at a
longer wavelength this focus adjustment can be omitted.

The intervals between focus and pointing calibrations
occur on the longer interval of 30 min. For the maximum
elevation change of 7.5° during this time, the focus could
change by up to 130 µm. The secondary would need to be
adjusted during this period at each phase calibration with a
precision of ~10 µm. This also ensures that the contribution
to the pointing error is less than 0.3 arcsec peak (<0.15 arcsec
RMS)

The aberrations are functions of the focal length of the
primary. Lateral aberrations vary as f-2, axial ones as ~f-2, and
tilts are proportional to f. Although the tolerances become
smaller for shorter focal lengths, the focus curves are sharper
and the relative estimation of the optimum focus remains
about the same, independent of f

None of the measurements above can account for changes
in the secondary position due to thermal changes or wind
forces which occur between focus checks. A quadrant
detector could be used to mitigate these variations. Existing
systems meet the requirement of measuring to 10 µm or
better.

The basic requirements for the secondary mirror mount are
summarized in Table III. Note that these are maximum errors
so the RMS errors will be about a factor of two less.

TABLE III: RECOMMENDED PARAMETERS FOR SECONDARY MIRROR FOCUS-
TRANSLATION STAGE

Parameter Value
Resolution in x, y 10 µm

Resolution in z 5 µm
Linearity in x, y 0.2 %

Linearity in z 0.2 %
Range in x, y 20 mm

Range in z 20 mm
Tilt of mirror relative to optical axis 0.2°

Orthogonallity of axes 1°
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