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Abstract

We discuss the accuracy to which ALMA antenna relative positions can be determined via
astronomical observations of phase and delay toward multiple strong calibrators. We show
that delay induced phase gradients across the bandpass can be used to resolve turn ambiguities
so that accurate delays can estimated from the phase. At low frequencies this demands only
modest stability of the bandpass phase. For this and other reasons we argue that 90GHz is
the best frequency for position calibration observations. The proposed specification for short
time instrumental phase stability is adequate for antenna position determination. We discuss
in detail the effect of the wet troposphere and derive how position errors scale with baseline
length in the case of single-baseline calibration. We then generalise to a full calibration of the
whole array. It is found that the resulting position errors between two antennas is the same as if
these two antennas participated in there own single baseline calibration. We find that because
of the geometry and the need to solve for instrumental phase that even on short baselines the
rms error on the vertical or z-component is twice as large as for the x and y components. In
addition for > 1km baselines while the x and y rms errors rapidly saturate the z components
rms errors continue to increase. Some uncertainly in estimating errors on long baselines comes
from our lack of knowledge of the outer scale of turbulence at the site. The effects of systematic
gradients in the zenith wet or dry delay and methods of calibration are briefly considered.

We propose that when in the intermediate ’zoom’ array configurations an initial calibration

of the moved antennas is made in late afternoon lasting 30minutes. Later in the early hours of

the morning, when phase stability is best, we propose a 30 - 60 minute calibration of the whole

array. Because of the need to apply phase corrections for antenna positions retro-actively even

continuum data should always be stored in spectral line mode with channel widths < 1GHz.

Final pipelining for the highest dynamic range imaging may have to wait for up to 12 hours

until good antenna positions are obtained. With good ’a priori’ positioning of antennas on

pads and/or the acceptance of delayed pipelining as the norm after reconfiguration the first

late-afternoon calibration might be avoided. For the smallest configurations we expect that the

troposphere will not be a limitation on achieving the proposed goal of 100µm relative positioning

on all baselines. For larger configurations we estimate that while most baselines will achieve

the target accuracy those baselines to recently moved antennas will have much larger errors.

Further work is required to understand the effects of this on imaging and astrometry.
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1 Introduction

An obvious requirement in an interferometer is excellent knowledge of the antenna
positions. Since we need to determine antenna positions to a small fraction of a wave-
length the antenna position determination is particularly acute for high frequency
(sub)millimeter arrays. Wright 2002 (Memo 427) has discussed procedures for an-
tenna position calibration as practiced at existing mm interferometers (mainly BIMA).
ALMA will be a more challenging instrument on which to determine antenna positions.
Although the atmosphere is superior to other mm-interferometer sites the baselines and
observing frequencies are both much larger. In addition it is planned that ALMA will
be operated in a unique way, as a continuously evolving ’zoom’ array in which 4 an-
tennas are moved every 2.5 to 3 days on average. The antenna location problem has
to be investigated in detail to determine exactly how the array will be operated.

The present specification (Holdaway et al 2001) is that errors in antenna positions
should result in uncertainties of < 100µm per baseline, corresponding to 71µm per
antenna if these errors are uncorrelated. This memo investigates methods to achieve
this accuracy; the conclusions of this memo will be incorporated in the draft ALMA
Calibration plan (Butler et al 2004). To calibrate antenna position ’geodetic VLBI’
style observations will be made, rapidly cycling around a group of compact calibrators
spread over the sky to measure phase and delay. It can be shown that this is the right
strategy to maximise signal to noise on the position determination; roughly speaking
the signal in the measured phase/delay due to an inaccurate antenna position increases
linearly with angular separation on the sky (until very large separation angles) but the
effect of atmospheric phase errors scale less than linearly, hence calibrator observations
wide apart in angle are optimum. When the calibration observations are made both
the moved antennas and some number of ’unmoved’ antennas from the main array
will be used. The unmoved antennas must be used so that the positions of the moved
antennas can be determined relative to the rest of the array.

The questions we would like to answer are 1) Can the specified antenna position
accuracy be achieved? 2) How long will the calibration process take? 3) How many
’unmoved’ antennas must be included? 4) From which part of the array should the
reference or unmoved antennas be taken? 5) At what time of day should the calibration
observation be made? 6) What frequency should be used? 7) As noted by Wright
(2002) the incremental calibration of antennas positions will cause errors to propagate.
Occasionally therefore it will be useful to do a joint calibration using all antennas in
the array. How often should such ’full calibration’ be done?

The questions posed are quite complex and given the range of configurations sizes
(with maximum baselines from 150m to 19km) it will not be too surprising if the
answers to the above questions depend on the configuration. In this memo we discuss
observational methods and analyse the impact of tropospheric phase errors on position
determination and give estimates of the positional accuracies that can be achieved. It
is aimed that a future memo will model in more detail the exact propagation of errors
as reconfiguration of a zoom array proceeds.

It is clear that the following ’styles’ of baseline calibration exist

(1) A ’full’ calibration of the whole array using all available antennas.

(2) When moving out, antennas are taken from the array centre and placed on unoccu-
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pied pads on the edge of the occupied pad distribution. In this case we could calibrate
the moved antennas against one or more antennas at the array centre. One advantage
of using unmoved antennas at the array centre is that it is a very long time since they
were moved, and hence they will have accurate positions having been involved in many
calibrations of type 1. The other advantage is that in principle only one unmoved
antenna need be used. The main disadvantage of this methods is that the baselines
used for calibration are long.

(3) When moving out, calibrate each of the moved antennas against the nearest ’un-
moved’ antenna. The advantage is short baselines. The main disadvantage is one
unmoved antenna is needed for every moved antenna (although possibly two of the
moved antenna can share one calibration antenna). Another disadvantage is that a
nearby antenna may not yet have been calibrated by method-1, only method-3, and so
errors will rapidly accumulate. If we restrict ourselves to unmoved antennas that have
been calibrated by method-1, then as the reconfiguration proceeds the baselines used
for calibration get longer, until a method-1 is inserted and again very short baselines
can be used.

(4) When moving in, antennas are taken from the edge of the occupied pads and
moved in to fill unoccupied pads at the centre. In this case we could calibrate the
moved antennas against one or more unmoved antennas at the array outer edge. This
is an analogue of method 2 adapted for inward reconfiguration, the advantages and
disadvantages are similar to method-2.

(5) When moving in, calibrate each of the moved antennas against the nearest ’un-
moved’ antenna close to the array centre. This is an analogue of method 3 adapted for
inward reconfiguration, the advantages and disadvantages are similar to method-3.

A good estimate of the efficiency of methods 2,3,4,5 can be made by considering
single baseline calibration. In the case of methods 3 and 5 to every moved antenna
there will be one baseline to an unmoved calibrator antenna which is much shorter
than the rest and will dominate the solutions. In the case of methods 2 and 4, if more
than one unmoved antenna is used the baselines between the moved and unmoved an-
tennas will be much longer than the distances between the unmoved antennas. Since
atmospheric phase errors will dominate over thermal noise it isected that the result-
ing position determination will be similar to a single baseline calibration to a single
unmoved antenna.

In Sect 2 we discuss general issues of phase and delay accuracy, resolving turn
ambiguities and the optimum observing frequency for calibration observations. In Sect
3 we give the theory of single baseline calibration using one moved and one unmoved
antenna. In Sect 4 we extend this analysis to ’full array’ calibration. In Sect 5 we
discuss the required geometrical parameters that must be solved for and any constraints
from the antenna location problem on instrument stability or calibration. In Sect 6 we
summarise what is known about the the atmospheric parameters at the Chajnantor
site. Sect 7 presents estimates of the expected antenna location accuracy for single
baseline and full-array calibration. Finally in Section 8 we draw conclusions.
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2 Using delay and phase observations

The objective of geodetic calibration observations is to measure the residual RF delay
on a baseline (∆τ , which is the total delay minus correlator model) to a number of
different calibrators. These measured delays include effects of geometry and instru-
mental delays in different combinations toward the different calibrator. From this data
set we can then solve jointly for both the antenna based geometry parameters and the
instrumental effects. We can try to estimate the delay by measuring either the phase
gradient across the bandpass or by measuring the observed phase (see Fig 1). The
former has low signal to noise, the latter is more accurate but contains turn ambigu-
ities and can only be measured modulo 2π (see Fig 1). These turn ambiguities arise
when delay path contributions from unknown antenna positions or the atmosphere are
greater than λ/2. This means that if mechanical limits on setting an antenna were
< 1mm and if we are in the smaller configurations so that atmospheric paths were
small then at 90GHz we could ignore the problem of turn ambiguities. In the general
case however this is not true. Fortunately turn ambiguities can be removed by com-
bining observations of bandpass phase gradients and phase. The former are used to
resolve turn ambiguities, while the latter provide the final accurate estimate. In this
scheme the bandpass delay estimate need only be accurate enough that the correct
integer number of turns can be estimated.

We can express the observed phase at frequency ν on baseline 2-1 as φobs =
φobs−unwrap(ν), modulo 2π where φobs−unwrap(ν) = φdelay(ν) + φbp2(ν) − φbp1(ν) + N .
In this expression the phase associated with RF delay on baseline 2-1 (which we call
the phase-delay) is φdelay = 2πν∆τ21. The φbp2(ν) and φbp1(ν) terms include all the
frequency dependent contributions which cannot be factorised as proportional to ν.
These ’bandpass’ phase contributions include all phases introduced by the electronics
of the bandpass and also the effect of any delay like terms introduced at IF frequencies.
The N term is from thermal noise. In order to reliably use the observed phase gradient
across the band to resolve turn ambiguities the effect of the bandpass induced phase
must first be removed (see Figure 1).

Bacmann and Guilloteau 2004 (memo in prep) have investigated how well bandpass
phase can be calibrated and estimate 1◦ accuracies, which as we see below is sufficient
to resolve turn ambiguities. They assumed however that any antenna position induced
phase gradient was first removed, hence it appears that we have a problem since good
antenna positions are required to get a good bandpass calibration and vice-versa. As we
see below however if the non-delay like component of bandpass phase changes relatively
slowly with time and is regularly monitored there should in practice be no problem.

Consider starting from completely uncalibrated bandpass phases and antenna posi-
tions. Bandpass delays (phase gradients cross bandpass) cannot be used to resolve turn
ambiguities but we can instead use the phase versus time over a long observation at a
single frequency in the band to resolve ambiguities. There are various ways to do this.
Phases can be connected to ’unwrap’ turn discontinuities and then antenna position
Cartesian offsets and other quantities directly fitted. Alternatively we can first take
the derivative of phase w.r.t. time to form rates, which do not have turn ambiguities
and then fit these. Forming rates also eliminates the effects of time constant instru-
mental phase offsets. Drifts in instrumental phase do effect the rates but these in turn
can can be eliminated by differencing rates between different calibrators. Using long
observations of up to 6hrs or so it should be possible to derive the antenna positions
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Figure 1: Illustration of observed delay and phase and how phase gradients over the bandpass can be used
to remove turn ambiguities. The solid line shows the affect on phase versus frequency due to an RF delay.
The dotted parallel vertical lines indicate the lower and upper range of the bandpass. The observed phase
is modulo 2π and the black dots show possible values of delay phase at the band centre, all of which give
the same observed phase, which is indicated by the dot in the range −π to +π. The dashed curves indicate
the effects of adding bandpass phases and IF delay effects. If this bandpass contribution can be removed
the extrapolation of observed phase to zero frequency, (shown by the diagonal dotted line) can be used to
resolve turn ambiguities, and so recover the unwrapped delay phase and hence the RF delay.

and other geometrical parameters. On comparing the model phase for these offsets
with the observed phase the time constant antenna based instrumental phase offset
at this frequency can be found. This procedure can be repeated at each frequency
to derive the phase of the antenna bandpass functions. In this way it is possible to
simultaneously solve for antenna positions and bandpass phase. Provided the band-
pass phase varies slowly then future calibrations can use the assumed bandpass phase
versus frequency to resolve turn ambiguities, first removing the bandpass phase before
fitting a phase gradient. This will mean that only short observations need be used
for position calibration. Also provided the original bandpasses were good enough to
resolve ambiguities then the same observations can be used to incrementally update
the estimates of the antenna phase bandpass functions.

What are the requirements on the sensitivity and bandpass stability to use bandpass
phase gradients to resolve turn ambiguities? Turn resolution requires that the error
on the bandpass group delay must be < λ/2c, corresponding to a path of < λ/2 Using
bright sources it seems that sensitivity should not be a problem in meeting this goal. For
a 1 minute integration on a single baseline at 90GHz the noise is σ = 2.8mJy, assuming
a source of brightness S=1Jy and a bandwidth ∆ν = 8GHz, the thermal noise induced
uncertainly on the group delay, expressed as a path length, is στgrad

=
√

12σc/(2π∆νS),
which for the above parameters is στ = 56µm, which is much less than λ/2,

The more critical requirement to allow the resolution of turn ambiguities is on the
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Frequency Maximum error on bandpass Baseline Phase signal
(GHz) phase across 8GHz due to a 100µm

to allow turn ambiguity relative antenna
resolution position offset

90 8◦ 10.8◦

140 5◦ 16.8◦

230 3.1◦ 27.7◦

345 2.1◦ 41◦

Table 1: Bandpass stability requirements for antenna position determination. First column gives frequency.
Second column the maximum uncertainty in the phase difference across each antenna bandpass to allow phase
turn retrieval. For comparison the last column gives the change in phase at each channel in the bandpass
caused by a 100µm position offset.

knowledge and stability of the bandpass phase. The bandpass determination/stability
requirement can be expressed in terms of the uncertainty on the bandpass induced
phase change across the ∆ν = 8GHz band. If this difference on the baseline is less
than 180◦(∆ν/ν) then turn ambiguities can be resolved. For the antenna specification
we specify half of this value as the maximum allowed value. This antenna gradient
limit is listed for various bands in Table 1, column 2. Determining the bandpass phase
at these levels or better should not be a problem, since Bacmann and Guilloteau (2004)
estimate accuracies of order 1◦. The limitation is therefore set by the bandpass phase
stability over the period between calibration observations (3 days). Note from Table
1 that the bandpass phase gradient requirements for resolving turn ambiguities get
more stringent with frequency. On the other hand the mean phase change across the
whole band due to a 100µm position offset increases with frequency. Despite this,
after considering the effects of resolving turn ambiguities and fact that we want to do
the calibration under a wide range of weather conditions then 90GHz seems like an
optimum frequency. Although the phase signal due to a position offset is minimised
at this low frequency it is still significant when we consider the high SNR of the
observations (i.e. thermal noise gives a phase uncertainty of 0.4◦ using 1Jy sources
observed for 1 minute).

Assuming the above requirements are met then the following procedure can be
followed to create an observed delay estimate for further analysis. For each observation
on the baseline between antennas 1 and 2 toward a calibrator we first remove the
effects of our best estimate of the bandpass phase function for each antenna φ′

bp1
(ν)

and φ′
bp1

(ν). The number of phase turns is then estimated from the gradient of phase
versus frequency; rounding to the nearest integer the quantity (ν/2π)(dφ/dν), to give
Nturn. The estimated unwrapped delay phase at each frequency within the bandpass
can then be estimated from φ′

delay(ν) = φobs(ν) − φ′
bp1

(ν) + φ′
bp2

(ν) + 2πNturn. The
best estimate of the phase delay at the band centre (φ′(νo)) is then found by averaging
over frequency. Finally we obtain the ’observed delay’ for the baseline 2-1 observation,
namely ∆τ21 = φ′

delay(νo)/(2πνo). This ∆τ21 is the raw observable used in the following
sections when considering how antenna positions are determined.

The observed delay depends on the antenna geometrical parameters, azimuth and
elevation of the calibrator source and instrumental offsets. The instrumental offsets
include the effects of tue RF delays and uncertainties in bandpass phase. Note that any
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differences between the true (i.e. φbp1) and assumed bandpass phase (i.e. φ′
bp1

) in their
first and higher derivatives w.r.t frequency have no effect on the observed delay. Differ-
ences in the mean bandpass phase will effect the estimated delay; however this bias will
be the same for all calibrators and so will give a constant offset which will be absorbed
into the instrumental delay. As described in sections 5 and 7 such instrumental delay
effects will be solved for and their effects eliminated as part of the antenna position
estimation process. It follows that although there are constraints on the stability of
the phase difference across the bandpasses (for resolving turn ambiguities) there are
no such long term constraints on the stability of the mean phase averaged across the
bandpass.

A final question is what are the limits on the antenna position accuracies required
before the geodetic calibration can begin? A typical calibrator observation lasts say
30-60 seconds with the observations being done in spectral line mode. The bandpass
group delay is estimated by Fourier transforming the phase versus frequency channel
data (after removing the bandpass contribution). One limit on initial position is set by
loss of coherence over the observation time. To produce a 1 radian phase change over 1
minute positions would need to be in error by over 100 wavelengths, which corresponds
to 30cm is the observing frequency is 90GHz. If the a priori position uncertainty were
very large then would also have to search over a large range in delay; thus requiring
a high SNR to ensure that a false noise point were not identified as the real fringe.
This however is not a strong constraint given the high SNR of our observations and
the size of the spanned bandwidth. Assuming a total spanned bandwidth of 8GHz the
width of the delay response function corresponds to a position range of 3.6cm. For a
priori positions of say 1cm, we can therefore assume that the first peak in the delay
response function corresponds to the fringe and there is no effect of having to search a
wide range of delays.

3 Single baseline calibration

The most important effect limiting the accuracy of antenna positions will be the
stochastic fluctuations in refractivity the troposphere due to poorly mixed water vapour.
This pre-supposes that the correlator uses a highly accurate model which can take ac-
count of effects like Earth tides, Earth orientation parameters etc etc. In addition
to the stochastic water vapour variations we can consider that the atmosphere has a
time constant zenith delay, which we can divide into a hydrostatic part and a wet part.
Even though time constant these contributions, if different above each antenna and not
accurately modeled in the correlator, will affect the geometry solutions because of the
different airmass to each calibrator. These systematic delay components will have neg-
ligible impact in small arrays because the unmodelled delays will be almost the same
above each antenna; however when the array is in its largest configurations these sys-
tematic errors may be significant. The systematic hydrostatic delay can vary between
antennas either because of pressure gradients across the site or because of difference in
altitude between antennas of up to several hundred metres. Accurate barometers can
be used to estimate the hydrostatic delay contribution to the systematic atmosphere
errors and remove this effect in the correlator model. On long baselines differences in
the total zenith wet total array between antennas (see Sect 5.4) might also contribute
position errors.
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In the discussion below we closely follow the work of Treuhaft and Lanyi (1987)
in their classic paper where they discussed the impact of the troposphere on antenna
positions in geodetic VLBI. We assume as they do that the phase fluctuations exist in
a ’frozen screen’ which moves over the array at some speed and direction. The screen
is modeled as a ’slab’ with some thickness and height. It is convenient to divide the
refractivity variations within this slab into a constant value plus variations. If the
constant refractivity term or slab thickness is different at two antennas and is unmod-
elled at the correlator a systematic delay error is introduced which depends on the
airmass to the calibrator (see previous paragraph). Turning to the space variable wet
refractivity variations within the slab, which are our main concern in this section, we
assume uniform variance of fluctuations and isotropicty through the slab. The struc-
ture function of the variable refractivity in this screen is assumed to obey Kolmorgorov
statistics, with the structure function on the mean square delay difference scaling as
the 2/3 power of separation. This power law behavior cannot increase indefinitely and
at some point there is an ’outer scale’ beyond which the cross variance of refractvity no
longer increases. The possible length and impact of this outer scale is discussed more
fully in Sections 6 and 7.

In this section we consider the case that we have single baseline data. On one end
of the baseline is an antenna which has recently been relocated and whose position we
wish to determine. On the other end of the baseline is an antenna from the main array
with well known position. To determine the relative position of the moved antenna
interferometric observations are made in ’geodetic’ style, rapidly cycling over a number
of bright sources well separated in azimuth and elevation. We wish to estimate the size
of the errors introduced by the wet troposphere into estimates of the relative position
(and other geometrical parameters) of the moved antenna.

We consider that each individual source observation on the baseline measures one
residual delay and phase (relative to the correlator model). As described in Section 2
an accurate residual delay to each source on a baseline can be obtained by first finding
a low SNR estimate of the delay from the phase gradient across the band and using
this to resolve the number of turn ambiguities Nturn in the phase.

We consider that in the calibration observations we execute Ncycle cycles (j=1,Ncycle),
each cycle consisting of observations of Ncal calibrator sources (i=1,Ncal). The data
set therefore consists of NcycleNcal measured delays. Each of the measured baseline
delays between antenna 1 (the antenna with well determined position) and antenna 2
(the moved antenna) is given by

∆τ21ij = ∆τG
21i + ∆τA

21ij + n21ij (1)

Where the first term on the right ∆τG
21i is the contribution due to geometry effects on

the baseline between antenna 2 and antenna 1 toward calibrator i. This ’geometry’
term includes the antenna based time constant instrumental delays (see section 2). We
assume that the calibration session is relatively short (say 1 hour), so we ignore that
the elevation and azimuth of the target source change slightly during the observation,
hence the geometrical terms depend only on the calibrator source index i not on the
cycle index j. Since our goal is to estimate the accuracy of the calibration method
we believe this is a minor approximation. The second term (∆τA

21ij) is due to the
atmosphere. The third term (n21ij)is due to the random noise in the observations.

The geometrical baseline delay can be separated into two antenna based geometrical
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errors.

∆τG
21i = τG

2,i − τG
1,i (2)

The τG
2,i and τG

1,i can be thought of elements of a vectors τG2 and τG1. These geometrical
delays are related to the cartesian coordinates of antenna 2 and 1 (and other potential
properties of these antennas like fixed instrumental delay and non-intersecting axis
offset) by matrix equations.

τG2 = Bx2 τG1 = Bx1 (3)

Here each τG has Ncal rows and one column, the vectors x contain the geometrical
parameters for the antennas and B is a matrix linking the two vectors. If the only
source of geometrical error are the cartesian coordinates of antenna 2 then x is a
3x1 vector and B a Ncal by 3 matrix. The content of B depends on the azimuths
and elevations of the set of calibrator sources. The atmospheric contribution to the
measured delays can likewise be divided into two antenna based parts.

∆τA
21i,j = τA

2,i,j − τA
1,i,j (4)

In contrast to the geometrical errors, the antennas based atmospheric errors τA
k,i,j are

highly time dependent and therefore depend on the cycle index, j.
Let us first consider collecting one full cycle of calibrator observations (so j = 1),

from which we then try to estimate the geometrical parameters of the moved antenna
x2. A least squares estimate of x2 called x′

2 can be made from the vector ∆τ whose
elements are ∆τ211j (see Equ 1) via

x′
2 = F∆τ (5)

where

F = (B′B)−1B′ (6)

More generally account can be taken of the different atmospheric random errors con-
tributing to the τ elements by taking a weighted least squares solution where

F = (B′W′WB)−1(B′W′W) (7)

where weight W is a matrix whose diagonal elements are proportional to one over the
variance of the measurements, and whose off-diagonal elements depend on the expected
cross-correlation of the atmospheric errors.

Least-squares methods simply find the best set of antenna parameters which give
predicted measurement which are as close as possible to the actual measurements
in a least-squares sense. Strictly speaking instead what we wish to minimise is the
least squares difference between the estimated and true antenna parameters. This can
be done using Wiener filtering methods if we know the statistical properties of the
expected antenna parameters and the atmospheric phase errors. An optimum matrix
F based on such Wiener filtering can then be devised. This is especially useful if
there are parameters like antenna axis offsets which we might wish to solve for but
at the same time wish to take account of their small expected variance. In geodetic
VLBI more sophisticated Kalman filtering methods are used, where the variance on the
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solutions are used recursively to optimise covariance matrices which then in turn alter
the inversion matrix F. For the relatively short runs of data we are expecting for ALMA
position calibration it is unclear whether such methods will be significantly better than
others. In this memo we assume the simple unweighted least squares estimate for F

given in Equ 6.
Whatever the form of F we can write that

x′
2 = F∆τ = x2 − x1 + ǫ (8)

So the estimate of cartesian coordinates for antenna 2 are equal to the actual cartesian
coordinates for antenna 2 plus any position errors antenna 1 had, plus the ǫ term which
depends on the atmosphere and thermal noise

ǫ = F(τA
2 − τA

1 ) + Fn (9)

Where the elements of the vector τA
2 are formed from the atmospheric delays to each

of the calibrators from antenna 2 within the cycle, likewise for τA
1 from antenna 1. We

assume from now on that our observations are high SNR so that the noise term can be
neglected.

We can generalise to analysing Ncycle cycles of calibrator observations, by noting
that we can apply the above analysis for each cycle to obtain an x′

2 estimate and then
average the results. The resulting error vector is

ǫ =
1

Ncycle

∑

j

F(τA
2j − τA

1j) (10)

where τA
2j and τA

1j are vectors of baseline atmospheric errors to different calibrators for
cycle j and antennas 2 and 1. Converting from vector notation we find that the l’th
component on the error vector for the position of the moved antenna 2 is

ǫl =
1

Ncycle

∑

j

∑

i

Fli(τ
A
2,i,j − τA

1,i,j) (11)

We can now consider the statistical properties of the components of the estimate error,
including variance and covariance. Using the above equation the ensemble average of
the product ǫlǫl′ is

〈ǫlǫl′〉 =
1

N2

cycle

∑

i

∑

i′

Fl,iFl′,i′
∑

j

∑

j′

〈

τA
2,i,jτ

A
2,i′,j′

〉

−
〈

τA
2,i,jτ

A
1,i′,j′

〉

−
〈

τA
1,i,jτ

A
2,i′,j′

〉

+
〈

τA
1,i,jτ

A
1,i′,j′

〉

(12)
In the general case (especially of short baselines) it is important to take into account

the vertical structure of the atmosphere. We can divide the atmosphere into layers so
that

τA
k,i,j =

∑

m

τA
k,i,j,m =

∑ ∆z

sin(θi)
χk,i,j,m (13)

where ∆z is the layer thickness, θi the zenith angle of observations to source i, and
χk,i,j,m the refractive index at layer m, along the ray to a source i in cycle j, from
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antenna k. Substituting Equ 13 in Equ 12 and using the following expression for the
structure function (Treuhaft and Lanyi 1987)

Dχ(∆r) = 2
〈

χ2
〉

− 2〈χ(r1)χ(r2)〉 (14)

we obtain

〈ǫlǫl′〉 =
∆z2

2N2

cycle

∑

i

∑

i′

1

sin(θi)

1

sin(θi′)
Fl,iFl′,i′Mi,i′ (15)

where

Mi,i′ =
∑

j

∑

j′

∑

m

∑

m′

Dχ,2,i,j,m,1,i′,j′,m′ + Dχ,1,i,j,m,2,i′,j′,m′ − Dχ,1,i,j,m,1,i′,j′,m′ − Dχ,2,i,j,m,2,i′,j′,m′

(16)
Where we have assumed that

〈

χ2
〉

is the same above each antenna. In this ex-
pression Dχ,k,i,j,m,k′,i′,j′,m′ is the structure function (mean cross correlation about the
mean) of refractivity between two points in the moving phase screen denoted by in-
dices k, i, j, m, and k′, i′, j′, m′ (corresponding to two sets of indices for antenna, cali-
brator source, cycle number and layer number). The isotropic, uniform, frozen screen
model assumes that Dχ is a function only of R = |∆rk,i,j,m,k′,i′,j′,m′ | the length of
the vector between the two points within the moving screen. Note that in Equ 16
Dχ,2,i,j,m,2,i′,j′,m′ = Dχ,1,i,j,m,1,i′,j′,m′ but that for the general case when the wind di-
rection is not perpendicular to the baseline Dχ,1,i,j,m,2,i′,j′,m′ 6= Dχ,2,i,j,m,1,i′,j′,m′ .

In the normal assumption of Kolmorgorov turbulence we have that

Dχ,k,i,j,m,k′,i′,j′,m′ ∝ R2/3 (17)

At some outer scale L we reach the scale at which energy is introduced into the system
(which then cascades to smaller scales according to the Kolmogorov theory)- beyond
these scales the variations in refractive index will saturate. To take into account of this
effect Treuhaft and Lanyi (1987) proposed a modified law which is

Dχ,k,i,j,m,k′,i′,j′,m′ ∝ R2/3/(1 + (R/L)2/3) = f(R) (18)

More discussion about the outer scale and its meaning in the context of ALMA is given
in Section 3.

We are mainly interested in the variances on the antenna geometrical parameters,
i.e. when l = l′. A convenient way to visualise how the variance is calculated from
equations 15 and 16 is to think of all the control points where a ray from an antenna
cuts a layer in the phase screen. Each point is characterised by indices k,i,j,m, for
antenna k, calibrator j, cycle k and layer m. For estimating the variance on parameter
l, we each point having an associate a weight given by

wl,k,i,j,m =
(−1)kFl,i

sin θi
(19)

then consider all the possible pairs of control points and their separations in space
R. Each pair contributes to the variance estimate on parameter l, i.e. 〈ǫlǫl′〉 a term
proportional to wl,k,i,j,mwl,k′,i′,j′,m′f(R).
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In their paper Treuhaft and Lanyi (1987) used similar expressions to derive the
structure function of the observed delay on a baseline as a function of baseline length
b while observing a source at some elevation θ, namely Dτ,θ(b). They found that
Dτ,θ(b) ∝ b5/3 for b < t where t is the layer thickness while Dτ,θ(b) ∝ b2/3 for b > t.
It is important to understand that this change in observed power law is not due to
reaching the outer scale of Dχ but is simply due to the thickness of the layer. For still
longer baselines it is possible to get an even shallower power law approaching 0 when
b exceeds L (see VLA results reported by Carilli and Holdaway 1999 (Memo 262)).

4 Multi-antenna position calibration

In the previous section we considered the errors introduced by the stochastic atmo-
sphere into antenna positions when ’single baseline’ calibration is carried out. Here we
generalise to the case of multiple antennas involved in the calibration and the resulting
atmospheric errors that are introduced into antenna relative positions. A special case
of multiple antenna calibration is when all available antennas are used in the calibration
(the case of ’full array calibration’ as defined in Section 1).

In Sect 4.1 we discuss the statistics of the position errors for a single ’full’ calibration
calibration run. The results describe the final antenna errors that would result if all
antennas had undetermined positions and we are attempting to solve for these positions.
The solution presented applies directly to the problem of solving for antenna positions
when we are ’stopped’ in the smallest or largest array of ALMA (see Section 8).

For intermediate baselines because of continuous reconfiguration all antennas will
not have equal a priori position errors. Instead four recently moved antennas will have
large position errors while the remaining antennas, which have had the opportunity to
be involved in many calibration runs, will have much better positions. A full calibration
of all antennas provides a new estimate of their relative positions. In section 4.2 we
consider how to combine this solution with existing information to provide the best
estimate of the array geometry. Finally in Sect 4.3 we discuss the possibility of directly
imaging the atmospheric phase screen using data from antennas with good positions
and using this information in the antenna position solutions.

4.1 Relative antenna position accuracy obtained from a
single full-calibration

Here we consider the achievable accuracy when a ’full calibration’ of the whole array
of N antennas (usually between 60 and 64) is carried out. If the calibrator is a point
source then it is well known that the antenna based delay for a given antenna can be
derived within a constant by adding up all the delays for the baselines involving this
antenna and dividing by N. [Note if the calibrator is not a point source, as is possible for
larger arrays, the calibrator can be imaged purely using closure quantities and then the
effect of the structure phase/delay removed from all data, making it effectively a point
source, as is done in VLBI imaging]. There no loss in generality in using the above
method of converting baseline delays to antenna based delay quantities. The method
finds a set of antenna based delays consistent with all the data. Stated mathematically
the method gives an estimated antenna based error of
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τ ′
aij =

1

N

N
∑

b=1,b 6=a

∆τbaij = τaij −
1

N

N
∑

b=1

τbij (20)

where ∆τbaij is the observed delay between antennas ’b’ and ’a’, toward calibrator i in
cycle j, and is such that ∆τbaij = τbij − τaij , where τaij and τbij are the true antenna
based delays above ’a’ and ’b’. Note that the last term of the above equation forms a
constant which is the same for all antennas toward calibrator i in cycle j.

Following the argument in Section 3, for a single cycle (j=1) we can form a vector
τ ′
a whose elements are obtained from the different calibrators i from Equ 20. The best

estimate vector x′
a of the geometrical parameters for antenna ’a’, xa is then obtained

from

x′
a = Fτ ′

a = xa − x̄ + ǫa (21)

where x̄ is a vector whose elements are the average of all the antennas geometrical
parameters and where ǫa is the error introduced by the atmosphere into the geometrical
parameters for antenna ’a’.

If we estimate geometrical parameters for each cycle and then average over Ncycle

cycles then we obtain that for the l’th geometrical component for the a’th antenna

ǫal =
1

Ncycle

∑

j

∑

i

Fli

[

τA
a,i,j −

1

Nant

N
∑

b=1

τA
b,i,j

]

(22)

the last term being independent of ’a’ and hence the same for all antennas. For inter-
ferometry all that is relevant is the difference in position errors between antennas. The
relative difference in geometrical component l between antennas ’a’ and ’b’ is given by

∆ǫabl = ǫal − ǫbl =
1

Ncycle

∑

j

∑

i

Fli(τ
A
a,i,j − τA

b,i,j) (23)

This has exactly the form of Equ 11 obtained for the single baseline case. Hence for
’full array’ calibration we can estimate the variance of geometrical component l for
∆ǫabl for antennas a,b f by substituting l = l′ in Equ 15,16 and using the structure
functions above antenna a and b instead of 1 and 2.

The similarity in the expected errors for single baseline and ’full array’ calibration is
perhaps an unexpected result, it might have been thought intuitively that with many
more antennas involved a smaller rms error would have been expected. The result
shows that if we do single baseline calibration say between an antenna at the centre of
the array (antenna 1) and one at the edge (antenna 2) then we obtain a certain rms
error on the Cartesian coordinates of the separation, given by Equ 15 in Sect 3. If we
instead perform a full-array calibration using all antennas, for the same observing time,
and using the same calibrator pattern, then the rms error on the Cartesian coordinates
of the separation between antennas 1 and 2 is the same (note this assumes thermal
noise and other baseline based noise sources are negligible compared to antenna based
atmospheric errors).

Given the above it might be wondered whether there is any advantage in doing
full array calibration over single baseline calibration. In fact there is an advantage.
Consider the example in the previous paragraph from the point of view of an antenna
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3 which is located close to antenna 2. After doing full array calibration the rms in the
position difference between antenna 2 and 3 depends on the distance between antenna
2 and 3 and so is relatively small. In contrast after doing single baseline calibration of
antenna 2 using antenna 1 then antenna 2 has a large rms error because of the large
antenna 1 to 2 distance. This error translates directly into a large antenna 2 to 3 error.
The point is that the full array calibration gives large errors across the array, but these
errors are correlated on small scales, leading to small errors on short baselines. In
contrast in single baseline calibration of an antenna 2 at the edge of the array using
antenna 1 at the centre there are no such correlated and compensating shifts for the
position of antenna 3.

4.2 Optimum antenna position estimation for continuous
reconfiguration

The analysis presented in Sect 4.1 shows the errors on antenna relative position error
from analysing a single calibration run. If this were our only information, as would be
the case if all antennas started with completely uncalibrated positions, the resulting
statistics would represent our best estimate of antenna positions. Instead the normal
situation with ALMA in its intermediate configurations is that a subset of 4 recently
moved antennas will have much worse positions while the rest of the antennas. In this
case the new information from a single noisy calibration run giving the relative antenna
separation must be combined optimally with existing a priori information.

One way to approach to the problem, which is followed in geodetic VLBI, is to do
a global solution of all pad positions simultaneously fitting data from all calibration
runs. It is difficult to theoretically calculate the resulting statistics for an continuously
reconfiguring array. Estimates can however be made by a Monte-Carlo simulation
where realistic measurement baseline delays to the calibrators are generated for each
of Nconf configurations. These can be factorised by antenna according to Equ 20,
producing a very large vector which is of length NconfNcycleNcalNant. The state vector
to be estimated, x, contains all the pad positions and other antenna based errors
plus terms to account, in each configuration, for a common offset of all pads in x,y,z.
The two vectors are linked by a very large matrix B. To get a optimum solution a
weighted least squares (see Section 3) solution incorporating the expected variance and
covariances on the measurements should be used.

Another way to look at the problem is in terms of Bayesian statistics, where new
information (from a new cal run) is added to old data (the a priori positions of the
pads). A parallel (and possibly equivalent approach?) is to view the problem in terms
of Wiener and Kalman filters (see Section 3). The Wiener filter can incorporate a
priori estimates to create a new estimate if the covariance matrices of both the data
errors and of priori position errors are inputted. The data covariance matrix can be
estimated from our atmospheric model, and that of the a priori positions initially
guessed. The Kalman filter is a generalisation which generates an updated a priori
position covariance matrix based on the quality of the fit for each configuration, which
then can be used in the fitting for subsequent configurations.

More work is needed to simulate the position errors in a continuously reconfiguring
array and these can hopefully be presented as part of a future memo.
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4.3 Turbulent screen imaging

Another approach to the antenna position optimisation problem would be to use delay
measurements from antennas with well calibrated positions towards multiple calibrators
to directly image the structure of the turbulent phase screen. For smaller configurations
with typical antenna separations comparable to the thickness of the turbulent layer
such imaging should be 3D and tomographic. For larger configurations only a 2D
screen need be estimated. Assuming the ’frozen-screen’ assumption, and determining
the screen velocity the screen model could then be used to remove atmospheric phase
errors above antennas whose positions we wish to determine, before being solved for
in the normal way (see Section 3).

The accuracy of such a screen imaging method may depend on whether the array
is expanding or contracting in size. If the array is contracting the newly occupied
pads will be at the centre and surrounded by well positioned antennas and the method
should work well. In the case of array expansion however the newly occupied pads will
be at the perimeter. In this later case the efficiency of the method will also depend on
the orientation of the screen velocity vector compared to the vector from the pad to
the centre of the array. If these two vectors are nearly parallel then the same portion of
the phase screen which affects a pad will just before or just after pass over the bulk of
the array. In this case relatively good delay correction should be achieved. In contrast
if the two vectors are close to orthogonal the correction will be significantly worse.

5 Required geometrical and instrumental pa-

rameters

Whether we do single baseline calibration (see Section 3) or multiple antenna calibra-
tion (see Section 4) the final accuracy will obviously depend on the number and size
of the antenna geometrical parameters that must be solved for. Here we discuss which
of these potential antenna based quantities are likely to be significant.

Explicitly Equ 3 shows that the geometrical contribution to the delay at an antenna
toward a particular calibrator is represented by a matrix B multiplying a vector x which
contains the geometrical parameters of an antenna (essentially the same equation holds
in multiple antenna calibration, See Sect 4.1). In the simplest possible case only three
components, the antenna Cartesian coordinates are needed. In this case the elements of
B linking the calibrator delays to these Cartesian coordinates depend on the sines and
cosines of the calibrators elevations and azimuths. More generally other instrumental
and geometrical terms can effect the delay, these include instrumental delays, non-
intersecting axes effects and zenith delays due to the dry or wet atmosphere. We need
to consider the potential contribution of each effect on the data (taking into account
possible ancillary calibration) and then whether this parameter should be estimated
from the astronomical observations.

5.1 Time constant Instrumental Delays

Delays introduced by the electronics and propagation through the antenna optics will be
a minimum necessary extra quantity to estimate. This makes the fourth column of B in
Equ 1 all ones. One can visualize dealing with time constant delays by differencing the
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observed delays between all calibrators and a reference calibrator, and then fitting these
difference delays. Alternatively one can think of fitting explicitly for the instrumental
delay at each antenna using a solution matrix F incorporating the inverse of matrix
B. The solution in both cases will be the same.

As explained in Section 7 whether or not one needs to solve for a time constant delay
or not has a surprisingly significant affect on the accuracy of the z -coordinate estimate.
For this reason in geodetic VLBI the instrumental delay is continuously measured. A
’comb’ of tones is injected at the front end and their phase detected further down the
data path, either at correlation or at the antenna prior to digitisation. From the phase
gradient across these detected tones the instrumental delay is measured. There are no
plans for such a device for ALMA.

5.2 Time variable instrumental delays

It is important to consider whether it is necessary to also solve for the first or higher
derivatives of instrumental phase versus time. The current draft of the ALMA system
technical requirements (Sramek 2004) specifies that over 300sec the maximum change
in delay due to the electronics is 22 fsec, corresponding to 6.6µm of path change.
The specification was derived to be smaller than the stochastic changes due to the
atmosphere over the same interval in the best (i.e. 95% percentile) conditions. There
is also the specification that variation in the antenna structure causes less than 13 fsec
changes, or 4µm. This latter specification only applies to changes in antenna position
on the sky of less than 2 degrees; there is no specification for the change over very large
angles as required for antenna position calibration, hopefully however these should still
be much smaller than the required antenna position error.

A potential concern with the instrumental phase drift specification for antenna
position calibration is that it allows systematic drifts in phase, which can accumulate
to give large phase differences over the 30-60 minutes or so it takes to do a full antenna
position calibration. A simple way to minimise the effect of linear instrumental phase
drifts on antenna position determination is to have a cycle pattern consisting of two
half-cycles where the calibrators are observed in the opposite order. Such a cycle
also has the practical advantage that cable wraps are avoided. Following Section 3, the
analysis of multiple half cycles, can be considered as solving for the antenna geometrical
parameter from each half-cycle of data and averaging the results (see Equ 10). Since
the matrix operation is a linear operation, any time linear instrumental delay added
to the antenna based τ in Equ 10 will give equal and opposite errors in each half cycle
and hence will cancel out. The only approximation involved in this is that because of
source movement across the sky the F matrix in Equ 10 are not exactly the same from
half cycle to the next, but the difference introduced over the 5-10 minutes between one
half-cycle and the next will be negligible.

With two back-to-back half cycles quadratic variations of phase versus time will

contribute to the derived antenna positions. However given the present specification
of less than 6.6µm variation over 300sec it is expected that these will produce errors
of less than 6.6µm in antenna positions.
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5.3 Axis offsets

Another potential geometric parameter to measure is the change in the ’axis offset’
between the elevation to azimuth non-intersecting axes from its nominal value assumed
in the correlator model. If this offset must be estimated it introduces entries into the
5th column of B in the i’th row of cos(θi), where θi is the elevation of the i’th calibrator.
The antenna specifications imply that in normal operation of moving antennas the non-
intersecting axis will vary by less than 30µm (ALMA antenna specification 2004), this
is less than the target accuracy for the cartesian coordinates. This means in normal
operation it will not be necessary to estimate it. This is good, since as described in
Section 7 making such an estimate further increases the rms on the z coordinates.
The antenna specification does however note that in the case of large shocks to the
antenna, the 30µm stability does not apply, it may therefore be occasionally necessary
to estimate non-intersecting offsets.

5.4 Systematic atmosphere effects

The derivations given in Section 3 and 4 for the effects of the atmosphere concerned
the stochastic effects of water vapour. We can consider these stochastic fluctuations
to be superimposed on a slowly time varying zenith delay above each antenna. The
part of this integrated zenith delay path which is different between two antennas and
is unmodelled at the correlator (∆z) will introduce delays proportional to approxi-
mately ∆z/c sin(θ) which will then affect the antenna Cartesian coordinate estimates,
particularly the z component.

The systematic zenith delay above each antenna can divided into a hydrostatic part
which is proportional to ground pressure and a wet part which depends on the total
water vapour column. The zenith delay above antennas will be different because of
both horizontal gradients in zenith delay and due to difference in altitude between
antenna sites. Below we discuss only the effect of horizontal gradients, altitude affects
will be considered elsewhere.

Chen and Herring (1997) have discussed the effect of systematic horizontal gradients
in zenith delay on VLBI geodetic measurements. In the VLBI context the effect of such
gradients is to cause an azimuthal dependence in delay across the sky at uncorrelated
sites. This is different from the ALMA connected element case where the atmosphere
is still highly correlated and we wish to know the direct effect of horizontal delay
gradients. Despite this the work done on the VLBI case can be used to estimate the
amplitude of these gradients. From both observations and numerical weather models
applied to (mostly) sea level VLBI sites such as Westford, MA, Chen and Herring (1987)
found gradients at the zenith of rms order 0.2mm/radian. The gradients were typically
correlated over periods of a few days. The rms due to pressure gradients was about a
factor of two larger than the gradients due to the wet atmosphere. At the much drier
ALMA site we can expect that the pressure contribution will be even more dominant.
Converting to horizontal pressure gradients by assuming a dry atmosphere scale height
of 5km, the VLBI results imply sea level horizontal pressure gradients giving 40mm of
zenith path change over 1000km. This is consistent with typical variations in sea-level
pressure of order 20mb over 1000km as seen in typical isobar weather maps (where
we note that 1000mb = 2.6m of path). If as expected the horizontal gradients scale
with pressure then at the ALMA site we can expect rms delays of 12mb or 30mm per
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1000km). In its largest Y+ configuration ALMA has longest baselines of 19km and
typical baselines of 10km, over which typically pressure gradients introduce 300µm
delays, which is much larger than our target antenna position accuracy.

Chen and Herring (1997) investigated the effect of using global numerical weather
models to estimate and remove the effects of dry and wet horizontal delay gradients in
VLBI data. This modeling appeared to reduce the rms gradient effects by a factor of
2 or 3. It is unclear how successful such an approach would be at the ALMA site; if
the dominant residual error in the VLBI case was due to wet delay gradients then it
may actually be more successful for ALMA because presumably the wet term will be
much less significant at ALMA.

An alternative approach is to use weather monitoring devices to estimate gradi-
ents. The dry zenith delay gradient can be estimated using measurements from a
distributed barometer network and corrections introduced into the correlator model or
post-correlation calibration. At the time of writing the proposed ALMA barometer ac-
curacy (defined primarily from antenna pointing) is 0.5mb (see Hills et al 2004). Such
a specification does not seem to be sufficient to estimate pressure gradients across the
largest configurations. More accurate bolometers are available at higher cost and we
can consider using a network of bolometers with 0.1mb accuracy distributed over the
site. Given that we have a limited limited number of such bolometers and do not wish
to estimate second derivatives then assuming typical second order spatial derivatives
for pressure are of order 20E-6 mb/km and assuming a bolometer accuracy of 0.1mb
then bolometer separations of order 50km are optimum for estimating pressure gradi-
ents. Let us consider distributing say 6-7 bolometers (and other atmosphere sounding
equipment) at permanent sites (i.e. associated with pads and not antennas) around
the perimeter of the ALMA site and near the centre (over a diameter of 20km). The
location of these weather stations should be carefully considered in order to be able
to estimate both horizontal pressure gradients and the atmosphere lapse rate (needed
in order to estimate pressure differences with pad altitude above sea level). Such a
network would probably able to reduce zenith delay differences over 10km to less than
100µm.

Finally we can also try to estimate systematic gradients in the zenith wet delay with
measuring devices. Geodetic VLBI uses Water Vapor Radiometers to try to estimate
the total zenith term, with mixed success. Unlike the WVRs used for ALMA the
geodetic WVRs are optimised for long term stability. The ALMA WVRs are also
mounted on the antennas, which in all but the largest configurations is not optimum
for determining gradients. It might therefore be useful to also site WVRs, perhaps
specially optimised for long term stability, at the fixed pad locations.

It is worth noting that either input from measuring devices or numerical models
is needed not just when determining antenna positions but also during fast switching
observations. For fast switching with a elevation difference between calibrator and
target of 3 degrees observed at elevation of 45 degrees then on 10km baselines at
900GHz the typical uncorrected zenith delay gradients of 12mb/1000km, introduces
rms 24◦ phase errors. With bolometer corrections the resulting rms phase contribution
can be reduced to one third of this value. For snapshot observations the effect of
zenith delay gradient phase errors is simply to shift the target source position, they do
not limit imaging dynamic range. For snapshot astrometry projects several calibrators
could be used to estimate and correct for the induced shift. In contrast for long tracks
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even a none time varying gradient does effect image dynamic range, because each
component snapshot image has its own RA,dec shift.

If there are significant variations is zenith delay between antennas which are not
modeled in the F matrix the results for the antenna positions are biased (see Section
7). If we include estimating an independent zenith delay at each antenna the B matrix
must have another column with 1/ sin(θi) entries, and the effect of this can be incorpo-
rated in the corresponding F inversion matrix. As described in Section 7, if we must
solve for a zenith delay at every antenna this greatly increases the z rms. There is an
interesting difference here between single baseline calibration and ’full array calibra-
tion’. In the former case in the presence of a delay gradient we must effectively solve
for an extra parameter for the moved antenna (which is the difference in zenith delay
to the stationary antenna) and the number of parameters solved for significantly in-
creases and so does the rms errors. In contrast for a full array calibration the overhead
introduced by estimating a delay gradient is not large since only two extra unknowns
must be solved for compared to the 4N unknowns for Cartesian coordinates and instru-
mental delays. In this second case it is not expected that including a delay gradient
estimate will significantly increase the z rms. This suggests that if external devices
are not sufficient to remove delay gradients for large configurations it is desirable for
antenna position calibration to use a significant number of antennas in the calibration
and perhaps the whole array.

6 Assumed Atmospheric Stochastic Parameters

at Chajnantor

The main source of information about the phase structure of non-systematic, stochastic
part of the atmosphere at the ALMA site comes from the two site test interferometers
(built by NRAO and ESO respectively). There are extensive data sets from these in-
struments which allow the seasonal and daily variations in phase stability to be tracked.
Both interferometers have baselines of 300m which allows the structure function of the
atmosphere on scales less than 300m to be determined, but they provide almost no
information about longer correlation scales.

Holdaway et al (1995, memo 129) analysed early results from the NRAO test in-
terferometer. The instruments data gives a rms difference in phase for the baseline
phase over different time intervals. This quantity can be related to the rms phase
difference instantaneously as a function of baseline separation (i.e.

√

Dτ (b) for scales
b < 300m). They found exponents for the power law dependence of rms phase versus b
which ranged from -0.33 to -0.83. These agree well with the theory proposed by True-
haft and Lanyi (1987) which predicts exponents of 1/3 and 5/6 when b > t and b < t
respectively. These results imply a varying thickness of the turbulent layer. The fact
that the exponent was at a minimum when the total phase errors were small suggested
a two phase medium with a thin ever present layer of t < 300m and a thicker layer of
very variable strength (mainly present during the day). The thin layer was assumed
to be associated with the inversion layer that forms above the site. An important
parameter of the turbulent layers is their height, h (note Treuhaft and Lanyi did not
distinguish between layer thickness and height, the assumed the turbulence extended
right down to the ground and characterised it by one parameter its thickness/total
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height which they called h). By comparing data on the two interferometers Robson et
al 2001 (memo 345) was able to estimate the height of the turbulent layer, finding that
it was usually in the range 300m to 500m. Further analysis by Delgado (2001, memo
361) found that turbulent layer heights were systematically smaller at night.

An important parameter which is so far not well constrained from observations is
the outer scale of the turbulence. Observationally at the site all we know is that because
the smallest phase power law exponent observed with the 300m baselines is −0.33. the
outer scale is L > 300m (Holdaway et al 1995). For their analysis of geodetic VLBI
Treuhaft and Lanyi used an effective outer scale of 3000km(!), which was simply chosen
to make the model predict mean rms fluctuations of 2.5cm in zenith path over a day
at a sea-level VLBI site. In contrast observations at the VLA measured in one case an
outer scale of 6km (Carrilli and Holdaway 1999, memo 262).

Theoretically the outer scale should correspond to the scale of the eddies which
inject power into the system. For energy injection from convection scale sizes compa-
rable to the layer thickness are expected, which then predicts outer scales of ≈ 1km
(Ishimuru 1997). The reason for the very discrepant estimates of outer scale given
above is probably that energy is injected into the turbulence at several different scales
by different physical process. Each process then has its own Kolmogorov cascade down
to small scales. Convection and ground layer viscosity sources have outer scales of
kilometers while weather systems have scales of 100’s km. A full plot of rms phase
versus baseline length would probably show a flattening in the range 1km - 100km and
then an increase on longer baselines till the rms fluctuations in zenith delay over several
days corresponding to 3000km approaches the observed saturation value of 2.4cm at
sea-level. For the case of ALMA antenna position calibration the relevant outer scale
is the first one (independent of weather systems) which we guess is in the range 1km
(theory) to 6km (VLA observations). Unfortunately as we see below, in the larger
configurations the achievable accuracy of the antenna position calibration is a strong
function of this poorly known outer scale size; any observation which could constrain
it would therefore be very welcome.

In contrast to the outer scale the diurnal and seasonal variations in atmospheric
phase stability at the site are well know, as shown in Figure 2. Plotted in this figure is
the rms delay fluctuations on the 300m baselines measured in microns. To maximise
the usefulness of our analysis we give in the following sections the rms errors on the
antenna coordinates in units of this 300m rms path fluctuation. One caution is this plot
is averaged over several days and hours in each axis, and there are short term variations
in the rms. Another caution is the the results are derived from a 11GHz interferometer
and some of the nighttime structure is probably due to the ionosphere (Hales et al
2003, memo 459) - which will not effect significantly millimeter observations.
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Figure 2: Top. RMS zenith atmospheric path length error on 300m baselines as a function of time of day
and time of year. Bottom Seasonal averaged, diurnal variations in 300m rms atmospheric path lengths.

7 Calibration Simulation Results

The variance on the x,y,z coordinated of the moved antenna were estimated by evalu-
ating equations 15 and 16 in a MATLAB code. In addition a Monte-Carlo MATLAB

21



program was created to create model phase screens, and then calibrate antenna posi-
tions, to check that the statistical model gave correct results. In order to investigate
dependencies on baseline length and other variable the Monte-Carlo simulations were
too much too slow and so in the discussion below only the results of the statistical model
are presented. The Monte-carlo method did however provide a useful verification of
the statistical method.

In solving for position and other parameters in the statistical code the inversion
matrix F was calculated assuming simple least squares fitting (Equ 6). No attempt
was used to use weighted fitting (see Equ 7), it is not thought this would significantly
change the results. As mentioned in Section 3 other inversion methods based on Wiener
or Kalman filtering can be used, these have not yet been implemented.

An input parameter to our simulations was the sky distribution of calibrators.
Initially we took as our calibrator set 5 different calibrators, one at the zenith and one
above the east, west, north and south horizons respectively. We later varied the exact
number and orientation of the calibrators to check for any strong dependencies. In our
standard run we assumed that the baseline was East-West and the wind direction was at
45◦ to this. We again varied the relative wind and baseline orientations to again check
for strong dependences. We finally checked the effect of adding small perturbations
from the geometrically perfect distribution of order 10◦ and found only small effects on
the recovered position errors. Using the geometrically perfect distribution is therefore
justified and we concentrate on this pattern since the connections between the measured
delays and the derived coordinates are clearer.

An important parameter in the 5 calibrator pattern was the elevation of the four
’horizon’ sources. To determine this we varied the elevation of these sources and looked
at the rms errors of x,y,z. We found that the optimum elevation used depended some-
what on which parameters were being solved for. For the standard problem of solving
for cartesian coordinates and a constant instrumental delay offset we found an opti-
mum for estimating the z coordinate (which as we see is the dominant error) when the
elevation was about 30◦. This was a compromise between having a large difference in
elevation between zenith and horizon sources to maximise the delay difference signal
due to the antenna z coordinate and not having too low an elevation which then has a
large atmospheric contribution.

A full calibration cycle consisted of two half cycles, passing through the calibrator
in the opposite order, this pattern minimises the impact of time variable instrumental
errors (see Sect 5.2). Such errors were not included in our simulations, there were
assumed to be effectively removed by having two opposite half cycles. Dwell times
on calibrators were 30sec and the assumed antenna slew speeds 6deg/sec in azimuth
and 3 deg/s in elevation. With these assumptions a full cycle took 7 minutes, of
which approximately 2 minutes was spend slewing and 5 minutes integrating on source.
Possibly somewhat shorter dwell times could be used. Generally 4 full cycles were
assumed giving a total time for calibration of 28 minutes.

Fig 3 shows the result of using the above 5 calibrator observations and solving for
cartesian coordinates and instrumental delay. An atmospheric outer scale of 1000m was
assumed. The top row shows the results for baselines out to 500m while the bottom
row shows results out to 10km. The left column of Fig 3 shows the x,y positions of
where the LOS to the calibrators cuts the phase screen layers. For Fig 3 top left 10
layers were used there are 10 points per calibrator for each antenna, for Fig 3 bottom
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left there are only two layers used. The most striking result of Fig 3 is that on all
baseline lengths the rms on the z coordinate is at least a factor of 2 worse than the rms
of x and y coordinates. The main effect that breaks the symmetry between z and x,y is
that we only sample lines of sight over a hemisphere not a full sphere. Since there is a
instrumental delay contribution we can only use delay differences to determine antenna
positions. If we take the mean of the 4 horizon sources (to eliminate effects of x and
y offsets) and subtract this from the zenith delay we get a quantity that depends on
∆z(1 − sin(el)). In contrast the y position is encoded in the difference delay between
North and South sources and scales as ∆2 cos(el). I follows that for elevations of the
horizon calibrators of 30◦ there is a much better ’lever arm’ for determining x and y
positions than for determining z positions.

Fig 3 top right shows show that for small baselines the rms on all cartesian co-
ordinates increases at the 5/6 power of baseline length. This is the same power law
dependence as is obtained for the rms phase versus baseline length when the atmo-
sphere layer thickness is larger than the baseline (Treuhaft and Lanyi 1987). The
reason is similar, in Fig 3 top left the control points to antenna 1 and those to antenna
2 have the same geometry as rays passing through a thick atmosphere, the mean sep-
aration between blue and red points is b, which is much less than vT where T is the
total length of the calibration observations. In this case the square root of the mean
weighted sum of control point separations R to the 2/3 power (see Section 3) gives a
5/6 power law.

As the baselines get longer the x and y rms has a sharp saturation while the z
error saturates more slowly. The saturation of x and y rms can easily be understood.
The x term comes from comparing delays to the E and W calibrators. In Equ 15,
the F elements have opposite sign for these observations, for long baselines the major
contribution then comes from phase errors on a scale corresponding to the separation
between the cuts of the E and W calibrators through the phase screen at the altitude ot
500m, which is of order 1000m. Hence the phase errors for x and y saturate at the values
corresponding to separations in the screen of ≈ 1000m. In contrast for estimating the
z components the F matrix elements are all positive for the cuts belonging to antenna
2 and negative for antenna 1, hence the phase contribution is always determined by
separations in the screen equal to the baseline length. The importance of this different
behavior for z and x,y depends on the atmospheric saturation length assumed. If this
is 1000m as assumed in Fig 3 the differences are not dramatic, because even though for
baselines > 1000m the z rms depends on the atmospheric delay difference within the
screen for separations > 1000m, this itself saturates quickly due the small outer scale.
In contrast for a larger saturation length the long baseline differences between x, y and
z are more pronounced. Fig 4 illustrates what happens when the outer scale is 5000m,
for b > 1000m the x,y rms rapidly saturate, whereas the z rms scales as approximately
b1/3 when 1000m < b < 5000m. Note that ’shoulders’ seen in Fig 3 and 4 for the z
-rms at 1000m are not artifacts but occur when the baseline length is comparable to
the separation in x and y of the points which cut the turbulent layer. When this occurs
for z there is a partial cancellation of points with opposite weights as defined in Equ
19 (in a plot like Fig 3 bottom left showing where rays intercept layers then at this
particular baseline length some of the blue and red points almost exactly overlap)

An important question is how the rms errors on the coordinates scale with the total
length of the calibration observation. On a baseline of length b it can be shown that the
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spectrum of temporal phase errors correspond only to timescales from 0 to b/v, with the
timescales on b/v having largest amplitude. Phase fluctuations with timescales > b/v
are effectively eliminated by the phase differencing occurring across the interferometer
baseline. The consequence is that for averaging times less than b/v the rms of the mean
phase increases with averaging time, whereas for averaging timescales significantly
greater than b/v the mean phase rms decreases statistically ∝ t−0.5. As expected we
find that the antenna position simulations show similar behavior for the position rms
vales. For x and y, as described above the maximum effective baseline is always 1000m,
set by the separation of phase screen cuts to N and S calibrators, so for x and y for any
calibration cycle time lasting longer than 100sec the rms decreases statistically. Since
a single cycle takes about 7 minutes this effectively means that x,y position rms always
scale statistically. This will nearly always be the case for z rms also, however in the
case of a large outer scale of say 5000m, the characteristic time is of order 500sec, so
that for a small number of cycles we find that the z rms on 5000m baselines decreases
slightly slower than expected statistically.

We have seen that when solving for Cartesian coordinates and instrumental delay
the z rms is much worse than the x and y rms. The main reasons for this is that
we only observe over a hemisphere and are solving for the instrumental delay giving
a smaller signal in the difference delays due to the z position offset compared to x
and y. Another reason, which only affects long baselines, is the saturation in effective
baseline length at the turbulent layer that occurs for x and y but not for z. When
other geometrical parameters are solved for we find that these give further increases
in the z rms. The reason is that other geometrical errors such as a non-intersecting
axis offset (∝ cos(el)) or a umodelled and different zenith dry delay at two antennas
∝ 1/ sin(el) are functions of elevation and are hard to distinguish from the signature
of a z position offset which is also depends on elevation. The results of simulations of
solving for extra geometrical parameters is given in Fig 5.

When solving for extra parameters more calibrators are needed and we have done
tests with a 9 calibrator set (see Fig 5, top). It is found that a wide range of different
elevations is essential, two sets of 4 horizon calibrators each with its own elevation does
not allow a solution. There is obviously some possibility to optimise the calibrator
distribution used, but the results in Fig 5 shows that as more parameters are solved
for the z-rms gets very much worse while the x and y rms stays almost constant.
The conclusion is that as much should be done as possible to remove the need for
astronomical calibration of geometrical parameters (see Section 5).
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Figure 3: RMS errors on each component of the antenna position as a function of baseline length assuming
an outer scale of 1000m. It was assumed that antenna cartesian position errors and an instrumental delay
were solved for. A total of 5 calibrators were used, one at the zenith and 4 at N,S,E,W each 30◦ above the
horizon. A full cycle consisted of a pass through these calibrators and then a pass in the opposite order,
with dwell time on each calibrator of 30sec. Four full cycles were executed taking 28 minutes in all. Top

Left, shows for baseline length of 500m, the places where the rays to each calibrator target cut the phase
screen layers. Each calibrator observation has 10 points in a line corresponding to the 10 layers used. The
red crosses are for antenna 1, while the blue are for antenna 2. Top Right. RMS errors on the Cartesian
coordinates of antenna 2 versus baseline length out to 500m in units of the zenith rms delay on 300m baseline.
Bottom Left. As for the figure at top left, except the baseline is 10000m. Bottom right. As for top right
but for baselines out to 10000m.
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Figure 4: Effect of different outer scales. Parameters same as for Fig 3 except the solid line shows the rms
errors on the Cartesian coordinates assuming a 5000m outer scale, while dashed line gives the result for an
outer scale of 1000m for comparison
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Figure 5: RMS errors as a function of the geometrical terms solved for. The observations used 4 cycles
over 9 sources (25 minutes) and assumes an atmosphere outer scale of 1000m. Top. The sky coverage of the
calibrators. Bottom. The rms errors on antenna coordinates. Solid lines- solving for Cartesian coordinates,
instrumental delay, non-intersecting axis and dry delay. Dashed lines- solving for Cartesian coordinates,
instrumental delay and non-intersecting axes. Dashed-dotted lines - solving for Cartesian coordinates and
instrumental delay only.
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8 Discussion and future work

This memo has outlined the procedures required to estimate antenna positions from
astronomical observations and in particular has investigated the impact of the turbulent
wet troposphere on the achievable accuracy. We have discussed the theory of single
baseline calibration (Sect 3) and multiple antenna calibration (Sect 4.1) and evaluated
the results numerically (Sect 7). There is still work to do, especially on evaluating in
detail the realistic case of continuous reconfiguration where many antennas have good a
priori positions and a few large position errors (see Sect 4.2). Despite these limitations
we can now take a first look at whether achieving the proposed goal of 100µm rms
relative position errors (Holdaway et al 2001) is realistic.

8.1 Compact array

Section 7 shows, unsurprisingly, that the limitations from the atmosphere on position
location are very baseline length dependent. Consider first the most compact array,
which has the highest demands on position accuracy because it will presumably be
doing a large fraction of the THz astronomy. Assume starting from initially totally
unknown antenna positions and using full array calibrations so that the analysis of Sect
4.1 can be applied. Sect 4.1 shows that the rms error on relative separation depends
on the baseline length and is the same as if these two antennas conducted their own
independent single baseline calibration. For a maximum antenna separation of 150m,
assuming (from Fig 2) median nighttime conditions of rms delay 150µm on a 300m
baseline, then Fig 3 suggests in 30minutes a z -rms of 97µm. In this small baseline
regime the simulations (see Section 7) show that rms error reduces statistically with
solution time so in 2 hours a z-rms of 48µm could be achieved. It seems likely therefore
that the stochastic atmosphere will not be a limitation on achieving the proposed goal
for the most compact array or even those out to 500m maximum baseline.

8.2 Intermediate Configurations

When we consider the intermediate sized configurations of ALMA estimating the
achievable accuracy is more difficult. A significant problem is our lack of knowledge
of the outer scale of the turbulence (see Sect 6 and Fig 4). In addition the continuous
reconfiguration makes analysis more difficult (see Sect 4.2). Intermediate arrays will
be formed by moving 4 antennas at a time on average every 2.5 days. We propose
doing the calibration of these intermediate arrays in two phases. First immediately
after being moved, and completing initial pointing calibration by late afternoon there
will be a first position calibration. Later on in the middle of the night a more accurate
calibration will be done. The initial calibration will in outward reconfiguration use
method 3 (see Sect 1) and in inward reconfiguration method 5. This calibration will
last for 30 minutes and involve using 4 additional antennas from the array. These 4
antennas will be the ones moved in the previous reconfiguration. The second calibra-
tion in the middle of the night will use all antennas (cal method 1) for 60 minutes or
so.

Using a ’full array’ calibration for the main calibration seems the right strategy for
a number of reasons (1) To avoid the rapid accumulation of errors if the other method
are used repeatedly. (2) It allows antennas to be involved in many cal runs between the
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times when they are moved, allowing a statistical reduction in their position errors.
At any given configuration different antennas will have been involved in between 1
and 16 such cal runs depending on their position in the array. (3) For large arrays it
allows the solution of systematic horizontal delay gradients with little extra overhead
and little increased rms error (see Section 5.4).(4) It allows monitoring in possible
drifts in positions due to soil changes etc. (5) It can be combined with other necessary
calibrations such as for bandpass. A 1 hour session every 2.5 days or 60hrs amounts to
almost 2% of the total ALMA observing time for position calibration, however it will
be a higher fraction (≈ 5%?) of periods of good phase stability.

Unfortunately a proper method of analysing the antenna position errors in the case
of continuous reconfiguration has not yet been developed (see Section 4.2). A upper
limit to the delay errors on all baselines can be provided by assuming we did full
array calibration for 1 hour with initially no knowledge of the positions (see Sect 4.1).
However as noted above the average antenna will actually have been involved in 8 hours
of such calibrations and will have considerably better positions. It is clear that there
will be a considerable range in antenna rms error depending on where in the array it
is and how long it has been since it was moved.

In Table 2 we attempt to give some estimate of rms errors in different interme-
diate sized configurations. We give estimates of ’typical’ errors for a given array by
calculating from the simulation in Section 7 the expected z component error for the
median length baseline in each configuration (see Fig 6), assuming a total integration
time of 8 hours. The last number takes account of the fact that the average antenna
will have been involved in 8 times 1 hours of calibration. We assume the atmospheric
outer scale is 1km. Again median nighttime phase stability is assumed. Also listed
are maximum errors in the case of outward reconfiguration. These maximum errors
will apply to baselines involving the newly placed antennas. These antennas will have
only been involved in 1 hour of calibration observations. We assume that the position
solution between the moved antenna and the others with well known relative position
will be dominated by the shortest baselines to this moved antenna (which for outward
reconfiguration is given in Fig 6). Finally we also give an estimate of the errors to
these just moved antennas after the initial daytime calibration.

The results in Table 2 shows that the initial position calibration of the moved
antennas done in mid afternoon can be large. In the worst conditions the errors may be
as large as 2mm. Under such conditions it might not even worth doing an astronomical
calibration. In order to ensure that any antenna positions corrections can be applied
retroactively this means that all data (even those observed in continuum mode) must
be stored with a minimum number of spectral channels. A 3.6cm position offset will
produce a one turn phase change over the 8GHz bandwidth. A 2mm position error
therefore produces a 20◦ change over the same frequency range. A phase change of
∆φ radians over a spectral channel causes a coherence loss in amplitude of ∆φ2/12. If
the data were averaged over the full 8GHz there would be a loss of 1% in amplitude.
Storing the data as 8 frequency channels would reduce the loss by a factor of 64. For
such 8 channel storage (i.e 1GHz spectral channels) the position error would have to
be 5mm to produce a 0.1% amplitude and sensitivity loss.
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8.3 Self-calibration

Table 2 shows that after the nightime calibrations the the mean errors can be kept
below the target even out to the largest Y+ configuration. In contrast the largest
errors can be several times the proposed target. Is this a serious concern? As noted
in the introduction the present target is somewhat arbitrary, the effect of increasing
antenna position induced phase errors is to gradually limit the dynamic range (and
astrometric accuracy, see below) of images made from fast switching. One rational
approach to setting targets for external calibrations is to set them so that noise limited
images of sources of all brightness can be made. The limits should be set so that weak
sources, requiring limited dynamic range, can be imaged purely by fast switching.
Brighter sources when imaged by fast switching will be limited in dynamic range but
for these sources there is enough SNR per solution interval that self-calibration can
be employed. If the target for a priori calibration is set too low there will be a range
of intermediate brightness sources in which noise limited images cannot be made by
either pure fast switching or (fast switching plus) self-cal. It can argued that the a
priori calibration requirements should rationally be set so there are no ranges of source
brightness for which we cannot obtain noise limited images. In fact it can be argued
that for imaging the a priori calibration accuracy need not be much better than this
limit.

Antenna position errors are particularly suited for solution by self-cal because they
introduce only between 1 and 4 unknowns per antenna over the whole source obser-
vation period. The first limit applies in the case of short tracks (or all expts when z
errors dominate) the second in the case of long tracks where we must solve for all three
Cartesian coordinates plus instrumental phase. Only relatively few parameters must be
solved for and the solution time is long; the whole source observation period. Roughly
speaking provided the initial image using pure fast switching has a limited dynamic
range due to antenna position errors better than 20:1 then it seems there should be
enough SNR per baseline to use self-cal to remove antenna position induced effects,
and allow noise limited imaging of all sources. It can be objected that if the source
is heavily resolved the SNR on the longest baseline will not be sufficient for self-cal,
but then it will not be needed because the SNR is low and the antenna position errors
from these baselines contributes very little to the errors in the image.

Self-cal of course does not help in astrometry projects and astrometric require-
ments could be used to set the goals for antenna position calibration. The difficulty is
that serious astrometry projects would probably employ (as is done in VLBI) multiple
calibrators surrounding the target source (or a weak ’secondary’ calibrator very close
to the target) to eliminate residual errors due to antenna positions and other errors.
Analysing all these strategies would be time consuming.

8.4 Specifications and future procedure optimisation

In a sense setting a hard specification for the accuracy of antenna position may not
be the most useful approach. We have a limited time to give to antenna position
calibration and ultimately the achievable accuracy is limited by the atmosphere over
which we have no control. The most important immediate goal of this memo is to
ensure that the specifications on the hardware and software, which we do control, are
sufficient to allow accurate antenna position calibration. We come to the following
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conclusions

8.4.1 Hardware Specifications

(1) In order be used to recover turn ambiguities in the phase, changes in bandpass
phase and IF delay induced phase differences over a 8GHz bandwidth of less than 8◦

over 3 days are required. This corresponds to a limit of changes of IF delay over this
period of less than 2800fsec.

(2) The present specification on short time delay stability of 22fsec in 300 sec seems to
be sufficient for the purposes of antenna position calibration.

(3) Adding a method of continuously monitoring the instrumental delay could halve
the rms position errors.

(4) A network of sensitive barometers (0.1mb accuracy) distributed at the perimeter
and centre of the site would be useful for reducing the delay and phase effects of hori-
zontal pressure gradients. Such ancillary data can be used for correcting target source
data from fast switching observations, and also during antenna position calibration ob-
servations. For the latter observations linear delay gradients can also be solved for as
part of the antenna position determination process if a significant number of antennas
are used for calibration.

8.4.2 Software Specifications

(5) To ensure no loss of amplitude and sensitivity due to phase coherence losses induced
by uncertain antenna positions, all data, even continuum, should always be stored with
multiple channels, each with width < 1GHz.

(6) On an antenna move day final pipeline processing of data may have to be postponed
by up to 12hours; to allow the effect or updated antenna positions to be included in the
imaging process. Subsequent re-running of the pipeline should be possible even later
in rare cases where high dynamic range imaging requires the use of the latest estimates
of antenna positions.

8.4.3 Procedure/Operations Specifications

(7) For optimising the recovery of phase turn ambiguities and to be relatively insensitive
to weather a low frequency should be used for the antenna position calibration, 90GHz
seems optimum.

(8) An antenna calibration will consist of several cycles through between 5 and 9 bright
calibrator sources well distributed over the sky. A full cycle will consist of two half-
cycles in opposite order through the calibrators (to reduce the effects of temporal drifts
in instrumental phase). A full cycle will take between 7 and 11 minutes, a minimum
of three full cycles should be executed to eliminate bad data.

(9) The main antenna position calibration will be done at night after an antenna move,
will use all antennas and last 30 - 60 minutes. A preliminary calibration for 30 minutes
will be done in late afternoon after the antenna moves have been made.This calibration
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Config 9 Config 18 Config 27 Largest Y+
Median baseline length (m) ≈150 ≈400 ≈1400 ≈10000

Median baseline error 26 37 52 75
Max baseline error(night) 120 195 210 225

Max baseline error(daytime) 480 780 840 900

Table 2: Estimates of rms baseline errors on different sized configurations (in microns). The first row
gives errors on median length baselines. The second row the estimated errors on the just moved antennas
to all other antennas after nightime calibration (assuming outward reconfiguration, the errors to just moved
antennas will be significantly less for inward reconfiguration). The bottom row shows the errors to the same
antennas after the initial daytime calibration. Median nightime and daytime phase stability is assumed. Also
assumed is an atmospheric outer scale of 1000m and that only Cartesian coordinates and instrumental delays
are solved for. The errors for the largest Y+ array may increase by a factor of 1.5 if the wet troposphere
outer scale is 5km.

will involve the 4 moved antennas and the 4 antennas who were moved in the previous
reconfiguration (since these give short baselines).

Beyond checking the specifications on the hardware and software we can in future
attempt to further optimise the calibration procedure. Defining this procedure is of
course important for planning the array operations. Knowing what can be achieved
may also affect what science is planned in each array. We might in future pose the
question of antenna position calibration by asking what is the optimum procedure in
any given array given some fraction of the baseline-hours (< 5%) can be allocated
to position calibration? What then is the achieved accuracy in each configuration?
Finally, at what frequencies will this be sufficient to allow noise limited images of
sources of all brightness to be made, using either pure fast-switching or fast switching
plus self-cal?

Software

The matlab software used in generating figure 3,4,5 and for making the estimates of
achievable position accuracies will be placed at

http://www.oso.chalmers.se/~jconway/ALMA/SOFTWARE/index.html
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