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Introduction

Electromagnetic simulators can give very accurate solutions for microwave circuits with ideal conductors.  When the
conductors are non-ideal, accurate results may still be obtained in many cases by specifying material parameters or
surface impedances.  However, for structures in which the penetration depth of the field into the conductors is of the
same order as the conductor thickness, considerable error can occur.  This is not only a result of the conductor
thickness being insufficient to contain the field completely, but is due in part to a separate effect which arises with
some EM simulators when thick conductors are represented by thin sheets with surface impedance.  For
superconducting niobium microstrip circuits of typical dimensions, such errors can easily be as great as 20% in εeff
and 10% in Z0.  In many cases, a simple correction to the surface impedance substantially improves the accuracy.

The concept of surface impedance

For an ideal conductor in an electromagnetic field, the tangential component Et of the electric field at the surface is
zero.  A current flows in a thin sheet on the surface, as required to support the magnetic field Ht tangential to the
surface.  This short-circuit boundary condition excludes all fields from the interior of the ideal conductor.  In a real
conductor, fields extend into the conductor, but decrease rapidly with distance from the surface.  To avoid the
complication of solving Maxwell's equations inside conductors, it is usual to make use of the concept of surface
impedance.  The surface impedance ZS = Et/Ht provides the boundary condition for fields outside the conductor, and
accounts for the dissipation and energy stored inside the conductor.

For a thick plane conductor, the internal fields fall exponentially with distance from the surface, with 1/e depth ∆. 
For normal conductors, ∆ is the classical skin depth δ = (2/ωσµ)½, and ZS = (1+j)(ωµ/2σ)½.  In Au or Cu at 100 GHz
and room temperature, δ K 0.25 µm, and ZS K 0.1(1+j) ohms/square.  For a superconductor at a frequency well below
its energy gap frequency, ∆ is the London penetration depth, λL, which is independent of frequency.  For niobium at
~4bK, at frequencies below ~700 GHz, λL K 0.1 µm.  The surface impedance ZS = jωµ0λL ohms/square,
corresponding to a surface inductance LS = µ0λL H/square, which is independent of frequency.  In niobium, LS K 0.13
pH/square, giving ZS K j0.08 ohms/square at 100 GHz.

Two types of electromagnetic simulator

Two types of electromagnetic simulator are considered here:  (i) finite-element solvers, such as HP/Ansof hfss, which
divide the space between conductors into a three dimensional mesh and solve by matrix inversion for the fields at
every mesh point, using the boundary conditions given by the surface impedance; and (ii) method-of-moments
solvers, such as Sonnet em, which divide all conducting surfaces into (two dimensional) cells, and solve by matrix
inversion for the currents in the cells, using the surface impedances as boundary conditions.

There is a subtle but fundamental difference between the solutions produced by the two types of simulator for
circuits with thick conductors.  In both cases fields inside the real conductors are taken into account by the surface
impedance which provides the boundary conditions for the solution.  This means that, in the simulation, the space
corresponding to the interior of a conductor should be filled with a perfect magnetic conductor to constrain interior
fields to zero.  In the case of finite element solvers this is accomplished simply by terminating the spatial mesh at the
conducting surfaces; i.e., the mesh does not extend into the conductors.  In the case of method-of-moments solvers
there is no simple way to achieve the same result, and currents in the surface impedance do produce fields in the
space "inside" the conductors if the surface impedance is not zero.  It is therefore necessary to use a modified value
of surface impedance when using method-of moments simulators for circuits with thick conductors.  In many cases
the correction is negligible, but in some cases (e.g., superconducting microstrip transmission lines), it can be
substantial. 

Representation of conductors by surface impedances

To understand the way electromagnetic simulators treat a conductor of finite thickness, we examine the difference
between an actual thick conductor and the model of the thick conductor which the simulator analyzes.  The model of
the conductor can be either a single thin sheet with the appropriate surface impedance, or a parallel pair of thin
sheets separated by the thickness of the actual conductor.  
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Matick [1] has shown that the surface impedance seen by a plane wave normally incident on a conductor is the same
as that seen by a wave traveling parallel to the conductor, as in a transmission line.  For simplicity in the present
discussion, we consider experiments in which a plane wave is normally incident on the surface of the conductor or
model under test.

(a) A thick conductor represented as a single conducting sheet

Consider a plane wave normally incident on a plane (thick) conductor of surface impedance ZS, as in Fig. 1(a).  This
is analogous to the circuit shown in Fig. 1(b), a long transmission line of characteristic impedance Zη = (µ0/ε0)½ =
377 ohms, at whose end an impedance ZS ohms is connected.  

Figure 1

Next, consider a plane wave normally incident on a thin sheet of surface impedance ZS, as in Fig. 2(a).  The
corresponding transmission line equivalent circuit is shown in Fig. 2(b) SS a long transmission line of characteristic
impedance Zη = (µ0/ε0)½ = 377 ohms, at whose midpoint A an impedance ZS ohms is connected in parallel.  With the
plane wave incident from the left, the field on the line to the right of A is zero only if ZS = 0.  At A, the incident wave
sees an impedance ZS in parallel with 377 ohms (the right half of the long transmission line), as in Fig. 2(c).  

Clearly, the thin sheet with surface impedance ZS (Fig. 1) is not physically equivalent to a (thick) conductor of
surface impedance ZS (Fig. 2) unless ZS = 0.  The apparent surface impedance, seen by the incident plane-wave, in
Fig. 2 is ZS in parallel with 377 ohms, and some power is coupled through the thin sheet into the space on the other
side.  For cases in which |ZS| « 377 ohms/square (i.e., most practical cases), the error is inconsequential.  

Figure 2
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(b) A conductor of thickness t represented as a pair of conducting sheets

Consider the reflection of a plane wave from a conductor of thickness t, as shown in Fig. 3(a).  The incident wave
sees an impedance ZS at the surface of the conductor - the value of ZS is not the same as in the previous example. 
The impedance seen by the incident wave is as depicted in the circuit of Fig. 3(b).  The appropriate value of ZS for
finite values of t is given in a later section. 

Figure 3

Now consider a plane wave normally incident on a pair of thin sheets, of surface impedance ZS, separated by distance
t, as in Fig. 4(a).  This is analogous to the circuit shown in Fig. 4(b), a long transmission line of characteristic
impedance Zη = (µ0/ε0)½ = 377 ohms, at whose midpoint A an impedance Zs is connected, with a second impedance
Zs a distance t to the right.  If the distance t is much less than the wavelength, the impedance seen by a plane wave
incident from the left is as depicted in Fig. 4(c).  The inductance L = µ0t accounts for the energy stored in the
magnetic field between the conducting sheets.  For a conductor 0.3 µm thick, at 100 GHz, the reactance ωL = ωµ0t =
0.24 ohms/square.

Figure 4

It is clear that if a conductor is thick enough, ωµ0t » ZS, and the two-sheet representation is sufficiently accurate.  For
normal metal conductors, this requires that t » δ/2, and for superconductors t » λL.  
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Surface impedance of conductors of finite thickness

(a) Excitation from one side

When the thickness t of a conductor is not very much greater than the penetration depth ∆, a field on one side of the
conductor penetrates partially through to the other side.  For normal conductors the surface impedance seen by the
incident field is (see Appendix):

Here k = (1 + j)/δ, and Zη = (µ/ε)½ is the characteristic impedance of space (377 ohms in vacuum).

In most cases Zη » k/σ, and .  When t is large, this reduces to the usual surface impedanceZS �
k
σ

e kt
� e �kt

e kt
� e �kt

formula ZS = (1+j)(ωµ/2σ)½.

In the case of a superconductor, when the thickness t is not much greater than the London penetration depth λL, the
surface impedance is (see Appendix):

where again Zη  = (µ/ε)½ is the characteristic impedance of space (377 ohms in vacuum).  In most cases Zη » ωµλL, so
ZS = jωµλL coth t/λL.  When t » λL this becomes the usual formula for superconductors: ZS = jωµ0λL.

(b) Symmetric and anti-symmetric excitation from both sides

In the above, it has been assumed that the field is incident on the conductor from one side only.  This is the case for
ground planes, waveguide walls, wide parallel-plate transmission lines, and wide microstrip lines.  In cases such as a
stripline center conductor, equal fields are present on both sides of the conductor.  In a few cases, such as a septum
across a waveguide (parallel to the broad walls), equal but opposite fields are present on the two sides.  For not-very-
thick conductors in such symmetrical or anti-symmetrical fields, the effective surface impedance seen from one side
is modified by the presence of the field on the other.  

For a normal metal conductor of thickness t with symmetrical or anti-symmetrical excitation, the surface impedance
is (see Appendix):

where k = (1 + j)/δ.  The + sign is for symmetrical fields on the two sides, and the - sign for anti-symmetrical fields.  
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ZS � jωµλL coth t
λL

± csech t
λL

.

For a superconductor of thickness t with symmetrical or anti-symmetrical excitation, the surface impedance is (see
Appendix):

Again, the + sign is for symmetrical fields on the two sides, and the - sign for anti-symmetrical fields.  The following
table gives the values of the coth and sinh terms, and their sum, for typical Nb conductor thicknesses assuming
λL = 1000 Å.

t Å t/λ coth(t/λ) csech(t/λ) coth(t/λ) + csech(t/λ)
5000 5.0 1.000 0.013 1.014
4000 4.0 1.001 0.037 1.037
3000 3.0 1.005 0.100 1.105
2500 2.5 1.014 0.165 1.179
2000 2.0 1.037 0.276 1.313
1500 1.5 1.105 0.470 1.574
1200 1.2 1.200 0.662 1.862
1000 1.0 1.313 0.851 2.164
800 0.8 1.506 1.126 2.632

Modified surface impedance for thin conducting sheets representing a thick conductor.

A modified value of surface impedance can be used to correct the discrepancy between the real conductor and the
two-sheet model.  Let ZS be the desired surface impedance as given by the appropriate formula above, and let ZX be
the value of surface impedance of the conducting sheets which will result in an effective surface impedance of ZS as
seen by an incident wave, as depicted in Fig. 5.  

Figure 5

In most practical cases Zη is large compared with the other circuit elements, and can be ignored.  Then, analysis of
the circuit gives a quadratic equation in ZX whose solution is 
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In the case of a superconductor excited from one side, ZS = jωµ0λL coth(t/λL).  It follows that Zx = βZS, where

Fig. 6 shows β as a function of t/λL.
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Figure 6

Examples

To demonstrate the significance of the β and coth corrections to the surface impedance, consider a superconducting
Nb microstrip transmission line of width 6 µm, with a 0.2 µm-thick dielectric layer with εr = 3.8, over a Nb ground
plane.  The London penetration depth λL = 0.1 um.  In the first example, the Nb conductors are 0.1 µm thick, and in
the second example they are 0.3 µm thick.  The table below gives the effective dielectric constant and characteristic
impedance of the microstrip when the upper conductor is represented by a pair of conducting sheets.  Sonnet em was
used, with the thick-conductor value of the surface impedance ZS and the following corrections: (i) both β and
coth(t/λL) corrections, (ii) only the coth(t/λL) correction, and (iii) no corrections.  Corresponding results are also
shown for the same microstrips (iv) with the upper conductor characterized as a single conducting sheet whose
surface impedance includes the coth correction (but not the β correction, which applies only when two sheets are
used), and, (v) with perfect conductors (ZS = 0).  The second table gives the same results expressed as percentage
deviations from the most accurete solution, (i).



8

Nb thickness = 0.1 µm Nb thickness = 0.3 µm
εeff  Z0  εeff  Z0  

(i) Coth & β corrections 8.32 8.75 6.95 8.13 
(ii) Coth correction only 7.25 8.30 6.55 7.92 
(iii) No coth or β corrections 6.41 7.84 6.53 7.91 
(iv) Single-sheet 8.28 9.04 7.19 8.42 
(v) Perfect conductors 3.55 5.90 3.53 5.87 

Nb thickness = 0.1 µm Nb thickness = 0.3 µm
   % errors wrt top line    % errors wrt top line

εeff Z0 εeff Z0 

(i) Coth & β corrections 0% 0% 0% 0%
(ii) Coth correction only -13% -5% -6% -3%
(iii) No coth or β corrections -23% -10% -6% -3%
(iv) Single-sheet -1% 3% 3% 4%
(v) Perfect conductors -57% -33% -49% -28%

It is also of interest to compare the results obtained by Sonnet em with the most accurate analytical results available. 
We use the analytical results from a recent report by Yassin & Withington [2] for Nb microstrip lines of width 2, 4,
and 6 µm, with a 0.3 µm dielectric layer of εr = 3.8, with a Nb groundplane.  The center conductor and groundplane
are 0.3 µm thick, and λL = 0.1 µm, so t/λL = 3.  For this value of t/λL, the β correction is significant, but the coth
correction is very small.  The results for the effective dielectric constant and characteristic impedance are compared
below.  Agreement is very close, except for the narrowest line, in which case there is a 4% disagreement in Z0.

     Microstrip width 2 µm              Microstrip width 4 µm              Microstrip width 6 µm
εeff Z0    εeff  Z0    εeff  Z0    

Ref. [2] 5.13 26.1   5.50 15.1   5.68 10.7   
Sonnet em 5.19 27.2   5.52 15.4   5.70 10.8   
% difference 1% 4%  0% 2%  0% 1%  
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APPENDIX: Derivation of formulas

§A1 Inductance of a thin layer containing a uniform magnetic field

If a plane wave, normally incident on a perfect plane conductor, produces a current J A/m in the conductor, then by
Ampere's law, the magnetic field near the conductor B = Jµ.  In a layer of thickness dx parallel to the conductor, the
stored magnetic energy dW = B2dx/2µ = J2µdx/2 per unit area.  Let the inductance contributed by the magnetic field
in this layer be dL H/square.  This inductance is in series with the current J A/m.  Then the energy stored in this
inductance is J2dL/2 per unit area.  It follows that dL = µdx H/square.

§A2 Surface impedance ZS and skin depth δ of a normal conductor

Consider a plane wave incident on a thick conductor.  The incident wave excites voltages and currents in the
conductor which vary with depth from the surface.  An incremental thickness dx of a unit area of the conductor is
characterized by the equivalent circuit of Fig. A1.  From §A1 above, the magnetic field in the volume of thickness dx
accounts for a series inductance µdx H/square.  The conductivity σ has a parallel conductance σdx S/square.  Hence
dZ = jωµdx and dG = σdx.  For this circuit, the input impedance is the surface impedance ZS.  

Fig. A1
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Zin � ZS � dZ �
1
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Since the conductor is thick, the impedance looking to the right at any depth in the conductor is equal to the surface
impedance ZS.  Hence

Solving for ZS gives ZS
2 = jωµ/σ, whence the standard result:

 

ZS � (1 � j) ωµ
2σ

.

From the figure,   .di � i2 � i1 � v1 dG � i1 ZS dG � i1 ZSσ dx

Therefore ‹

i

i0

di
i

� ZS σ dx or i � i0 e ZSσ (x � x0) .

The sign of the exponent is positive because of the choice of x-direction in Fig. A1.  With the above expression for
ZS,

from which the skin depth is δ �
2
ωσµ

.

§A3 Surface impedance ZS and penetration depth λL of a superconductor

The analysis for a superconductor is similar to that for a normal conductor, with the exception that the conductance
element dG is replaced by a susceptance.  As the superconductor is lossless, the current is limited only by the inertia
of the Cooper pairs of electrons, which manifests itself as a kinetic inductance.  

Consider a layer of superconductor of thickness dx.  In terms of the average velocity of the carriers S, the current di
= (n*e*S)dx A/m, where n* is the effective density of carriers with effective charge e*.  If an AC voltage v = Vejωt V/m
is applied parallel to the surface, the force on a carrier is  e*Vejωt = m*dv/dt, where m* is the effective mass of a
carrier.  The carrier velocity 
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The current in the layer of thickness dx is therefore 

Writing di = dIejωt gives     ,  V � jω m �

n �e �
2

1
dx

dI

from which it is evident that the kinetic inductance of the layer is given by

Now consider a plane wave incident on a thick superconductor.  The incident wave excites voltages and currents
which vary with depth from the surface.  An incremental thickness dx of a unit area of the superconductor is
characterized by the equivalent circuit of Fig. A2.  

Fig. A2

From §A1 above, the magnetic field in the volume of thickness dx accounts for a series inductance µdx H/square. 
Hence dZ = jωµdx.  The kinetic inductance of the Cooper pairs in the same volume contributes a parallel admittance
 

Since the conductor is thick, the impedance looking to the right at any depth in the conductor is equal to the surface
impedance ZS.  Hence, in Fig. A2,  

Solving for ZS gives ZS � jω µ m�

n �e �
2

.
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di � i2 � i1 � v1 dY � i1ZS dY .

di �
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m �

i dx .
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or i � i0 e
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To deduce the penetration depth in a superconductor, consider again the circuit of Fig. A2:

With the above expressions for dY and ZS,

(The sign of the exponent is positive because of the choice of x-direction in Fig. A2).  

The quantity  is the London penetration depth, and is independent of frequency.λL �
m �

µ n �e �
2

The expression for the surface impedance can be written in terms of λL as  ohms/square, whichZS � jω µ λL

corresponds to a surface inductance  H/square.LS � µ λL

§A4 Surface impedance ZS of a normal conductor of finite thickness

To deduce the surface impedance of a normal conductor of thickness t, consider first an incremental thickness dx of
the conductor.  This is represented by the equivalent circuit of Fig. A3.

Fig. A3

In the figure,  di � v dG � σ v dx

and  ,dv � i dZ � jω µ i dx
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therefore  d 2i
dx 2

� jω σ µ i .
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and δ is the classical skin depth as derived above.

Now consider the equivalent circuit of the conductor, terminated on the right by the impedance of space Zη,  as shown
in Fig. A4.

Fig. A4
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and hence, ZS �
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§A5 Surface impedance ZS of a superconductor of finite thickness

The analysis in this case follows that for the normal conductor but with dG replaced with .  ItdY �
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where  is the London penetration depth derived above.  Usually, Zη » jωµλL, in which case weλL �
m �

µ n �e �
2

obtain the usual formula:

ZS jω µ λL coth t
λL

.
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§A6 Effective surface impedance ZS of a normal conductor of finite thickness excited from both sides

When a conductor of finite thickness has fields incident on both sides, the apparent surface impedance on either side
is affected by the field on the other.  From above, and with reference to Fig. A4:  When the excitation is on one side
only,

i � i
�
e kx

� i
�
e �kx

and ,v �
k
σ

(i
�
e kx

� i
�
e �kx)

where  .k � jω σ µ � (1 � j) ω σ µ
2

�
1 � j
δ

For one-sided excitation, and assuming  Zη >> k/σ :  At x = 0,  i = 0,  so  i- = -i+.

Therefore, .v(0) �
k
σ

i
�
.(e kx

� e �kx) � 2 k
σ

i
�

At x = t  i(t) � i
�
.(e kx

� e �kx)

and .v(t) �
k
σ

i
�
.(e kx

� e �kx)

When the circuit is excited by equal current sources  on both sides, then at x = t, usingi � i
�
.(e kt

� e �kt)
superposition:

.v(t) �
k
σ

i
�
.(e kt

� e �kt) � 2 k
σ

i
�

Therefore,   .ZS �
v(t)
i(t)

�
k
σ

e kt
� e �kt

e kt
� e �kt

�
2

e kt
� e �kt

If the excitation on the two sides is out of phase, the sign of the second term in the square brackets becomes negative.

§A7 Effective surface impedance ZS of a superconductor of finite thickness excited from both sides

The approach follows that used above for the normal conductor.  For single-sided excitation, referring to Fig. A4,

i � i
�
e

x
λL

� i
�
e
�

x
λL

and .v � jω µ λL (i
�
e

x
λL

� i
�
e
�

x
λL)

For one-sided excitation, and assuming  Zη >> ωµλL :  At x = 0,  i = 0,  so  i- = -i+.
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Therefore, .v(0) � jω µ λL i
�
.(e

x
λL

� e
�

x
λL) � 2 jω µ λL i

�

At x = t  i(t) � i
�
.(e

t
λL

� e
�

t
λL)

and .v(t) � jω µ λL i
�
.(e

t
λL

� e
�

t
λL)

When the circuit is excited by equal current sources  on both sides, then at x = t, usingi � i
�
.(e kt

� e �kt)
superposition:

.v(t) � jω µ λL i
�
.(e

t
λL

� e
�

t
λL) � 2 jω µ λL i

�

Therefore,   .ZS �
v(t)
i(t)

� jω µ λL coth t
λL

� csech t
λL

If the excitation on the two sides is out of phase, the sign of the second term in the square brackets becomes negative.


