
(specification)

CAD MEMO_^-,
MICROCOMPUTER WIREWRAP PROGRAM DISK

Stowe Keller
March 7, 1986

I. INTRODUCTION

This report describes a microcomputer version of a program designed to

minimize the work involved in producing a wiring list for NRAO Shalloway wirewrap/

printed-circuit boards (shown in Figures 1 and 2). The program is intended to

replace the wirewrap program for the IBM ("Pandora") mainframe, described in

EDIR #163. That program, and the one described here, were written as tools to

let a logic designer take a logic diagram and translate it into a wiring list

for a Shalloway wirewrap card. This new version has greater flexibility in

chip placement and pin specification, better error trapping and output format,

automatic Vcc, GND and bypass capacitor wiring, and will output both used and unused

pin cross-reference lists. Single Inline Packages can be entered, as well as

being able to defeat the automatic Vcc and GND wiring for those packages that do

not have standard Vcc and GND pins. In addition, descriptions are provided for

related programs to prepare the input file, and to process the output files for

conversion to other formats. This report also generally applies to the Mark III

wirewrap program, known as WrapB, which is described in a separate document.

II. WIREWRAP DISK DESCRIPTION

The program disk is a stand-alone IBM-PC compatible PC-DOS/MS-DOS 5-1/4"

floppy disk containing several files, including the PC-WRITE text editor (and

its associated files), a brief help file, two versions of the wirewrap program

(one for use those machines with an 8O87 math chip installed, the other for

non-8087 machines), and a program to convert the wirewrap output file to a

compressed format for use by an automatic wirewrap company such as ELMA. A batch

file is used to automate the wirewrap processing sequence; it is designed to

catch errors and abort gracefully whenever possible. Due to memory constraints,

the Turbo Pascal compiler and source code for most of the programs are actually

stored on a separate disk; in general, when WireWrap or the WireWrap disk is

mentioned, it refers to the dedicated WireWrap disk with the executable files, not

the source code.

The PC-WRITE text editor is provided on the WireWrap disk for entering

the wirelist input file; if the user wishes, any editor that produces DOS text

files may be used instead. It is recommended that the user start with a blank

formatted disk and maintain all his files on that disk instead of using the

wirewrap disk. The wirelist file should contain the chip declarations and

wirelist information in the format described later in this report.

After saving this file to his work disk, the user may then boot the

wirewrap program disk (or simply invoke AUTOEXEC.BAT); a title screen will

identify the disk and offer suggestions on the available programs. By entering

"WW" (without quotes) at the DOS prompt, a batch file will execute and invoke

the wirewrap program. The user then specifies the name of the wirelist input

and output files. If no errors occur, there will normally be a wire list

output file and a pin cross-reference file on disk, and the batch file will

resume execution and ask the user if he wants to proceed to the conversion

program to generate an ELMA-compatible (or other) wirelist file.

III. USING THE WIREWRAP PROGRAM

WireWrap is designed to work on the IBM PC and compatibles (including the

AT&T) with DOS 2.0 or higher, and the format of the input and output files of

WireWrap are normal PC-DOS/MS-DOS ASCII text files. The computer should have

at least 256K of memory in order to run WireWrap; 6M0K is required if a large

RAM disk is going to be used with the program. To facilitate the generation

of the input file, the PC-WRITE text editor is provided on the disk, but

almost any other editor that generates a text file can be used.

The simplest way to use WireWrap is to boot the disk, and after the title

page is displayed, invoke the PC-WRITE editor with "ED filename", where

'filename' is the name of the input file you wish to create. Working from the

original schematics and circuit board layout, you are expected to enter a file

in the format described in Section IV.

After you have entered the input file, save it to disk and exit the

editor. From the DOS prompt, type 'WW' to start the wirewrap process. WW is

a batch file that will determine if an 8087 numeric coprocessor is installed

in your machine, and will invoke the appropriate version (8087 or non-8087) of

WireWrap. WireWrap will display a few title lines, and then ask for an input

filename, which may include a drive specification; if the file cannot be

successfully opened, you will be prompted again. You will then be asked for

the name of the output file for the wirelist and an output file for the pin

cross-reference. In both these cases you may include a drive specification,

and if a file cannot be successfully created, the program will prompt you for

filenames until it is successful. It is also possible to specify 'CON:' or

'NUL' as a filename. Using CON: will send the output file to the screen

(console) instead of the disk; if an output file is not desired, NUL can be

used to act as a bit bucket by throwing away any data it receives. CON: and

NUL are most commonly used during the debugging stages to quickly display

errors in the wirelist, and for suppressing the generation of a cross-

reference file, which can spare the user from several minutes of execution

time.

If the wirelist output is sent to disk, WireWrap will print a period

(".") to the screen for every wirelist string that is output, reassuring the

user that the program is still functioning. (The length of the pauses between

the printing of periods is directly related to the number of pins, and hence

the amount of processing, in the current wire string.)

Almost all errors that can occur are sent to the wirelist output file,

and are placed on lines by themselves, prefixed with "!", to make them easier

to locate. WireWrap was designed to continue processing after errors occur to

allow locating as many as possible in one run of the program. Be forewarned,

though, that some errors can easily cascade into others: for example, a bad IC

declaration will almost certainly cause bad chip references in the wirelist.

To avoid overflowing a disk with error messages, though, WireWrap is designed

to stop at 25 errors.

Most wirewrap runs are completed in 10 minutes are less. Using a RAM

disk or hard disk will substantially reduce execution time; files can always

be copied to another disk at a later time. If a cross-reference file is

generated, it will contain an alphanumeric list of used pins with the input

file line number, and the one, two, or three other pins to which it is

connected. (Both IC pins and backplane notation pins will be output in this

list.) Following that list is an alphanumeric list of unused IC pins (but no

backplane pins, since such a list would be prohibitively long).

If errors occurred during WireWrap, the user will be notified on the

screen with the error count, and both WireWrap and the batch file will

terminate. If there were no wirelist errors, the batch file resumes control

and will give the user an opportunity to proceed to a conversion program to

convert the output file to ELMA format for automatic wirewrapping. It is

intended that this conversion program will support new formats in the future

if that should be required.

To view the output files, any one of several methods can be used: PC-

WRITE, the DOS TYPE command, the text file list utility "L", or the DOS COPY

command, which can send the output files to the printer ("PRN:"). All of

these are available on the WireWrap disk.

IV. INPUT FILE FORMAT

The input text file is expected to have the following general format:

* Comment lines: any text that occurs after an asterisk in a line

* is ignored. This allows commenting the file with date and project

* name, as well as with details regarding each chip declaration or

* other useful information regarding the wirelist commands.

DECLARE

* The command above, which must appear on a line by itself, informs

* WireWrap to begin processing IC declarations, one to a line, in

* the format below:

* Loc'n # Pins Pin #1 Loc'n Type Vcc GND

1A 20 CI 1 20 1 * (EXAMPLE)

* Note: there must be at least one space separating each column;

* additional spaces between columns are ignored, and can be used

* to enhance readability. See the text for a discussion of the

* information specified in IC declarations.

WIRELIST

* The command above informs WireWrap that the chip declarations are

* complete, and that the list of wiring instructions follow.

S 1A2 1A7 §C2 * (Example wire string specification)

* Wire strings are sequences of two or more pins to be wired together;

* the two string commands are 'S' and 'SE* (for 'String' and 'String

* and 'String Exact'). See the text for a discussion of pin

* specifications, wire string limitations, etc.

END

* The command END is used to mark the end of the entire input file; any

* additional lines will be ignored.

IC declarations must contain the following information:

* Loc'n # Pins Pin #1 Loc'n Type Vcc GND

1A 20 CI 1 20 1 * (EXAMPLE)

Loc'n : Frontplane location of the IC, specified as a number 1..11,

followed by a letter

Pins : Total number of pins on IC

Pin #1

Loc'n : Location, in backplane notation, of pin #1 on the IC. This is

normally a letter C..Z (except I,0,Q) followed by a number

1..55. Note that single digit numbers are automatically

converted to two digits by prefixing them with "0".

Type : Specifies the size of the chip in multiples of 0.3 inches: 1

means a .3 inch chip, 2 means .6 inch, etc. For Single Inline

Packages, use 0.

»»>N0TE: SPECIFICATION OF VCC AND GND ARE OPTIONAL IN A RESTRICTED WAY:

YOU MAY OMIT BOTH OR INCLUDE BOTH, BUT YOU MAY NOT SPECIFY ONLY ONE.

FOR THOSE CIRCUMSTANCES IN WHICH A VCC OR GND PIN DO NOT APPLY, SUCH AS

A RESISTOR PACK, USE A "0" TO PREVENT AUTOMATIC WIRING OF THAT PIN.««<

Vcc : Pin number on IC of Vcc..If not specified, this value defaults

to the highest numbered pin. Zero means there is no Vcc pin.

GND : Pin number of GND. If not specified, this defaults to the value

(highest numbered pin) / 2. Zero means there is no GND pin.

Also note that single digit values are converted to 2-digit values

(prefixed with zero) when appropriate, and will appear as such in the output

files.

In the wirelist section of the file, there are two ways to wire up

strings: "S" (for "String") specifies all pins in the string and lets WireWrap

determine the optimal sequence in which to wire those pins so as to minimize

the total length of wire used. The other command, "SE" (for "String Exact")

specifies an exact sequence in which pins are to be wired. Up to 30 pins are

allowed in a string; a single line in the input file may contain one or more

wire strings, or a single wire string may cross two or more lines. In

general, wiring will continue until an "S" or "SE" is encountered. In both

cases, the order of the wires will be staggered to make repairs easier, but

the ultimate sequence will be the same. If bad IC or pin references occur,

there may not be enough pins to form a string, and WireWrap will generate a

corresponding error message.

A pin specification may be either a frontplane coordinate (also called

chip notation, since it refers to a pin number on a particular chip or

package), or a backplane coordinate prefixed with "§", or a plug reference.

Frontplane coordinates have the form of one or two digits, a letter, and

another one or two digits. For example, "1A2" refers to IC 1A, pin number 2.

Backplane coordinates are formed with an "§" followed by a letter B..Z (except

I,0,Q) followed by a one or two digit number: "@C2" refers to backplane column

C, row 2. (When WireWrap performs automatic Vcc and GND wiring, a "V" or "G"

is appended to the backplane coordinate of the Vcc or GND pin.) Plug

coordinates consist of the letter "P" followed by a one or two digit number,

and are automatically converted to "§A" since that is the actual backplane

coordinate of the plug connectors. NOTE: there is an important difference

between a backplane coordinate, such as "@P5", and a plug coordinate, such as

"P5"; this is an easy mistake to make, so it is recommended that the user

check the outputs from WireWrap when in doubt.

V. OUTPUT FILE FORMATS

WireWrap can produce two files: a wirelist output file and a used/unused

pin cross-reference list. The wirelist output file is a DOS text file which

contains the following sections of information:

-Automatic GND and Vcc wiring list. A Vcc or GND pin will not be wired

if it has a pin number of 0 in the IC declaration. WireWrap will locate

the nearest CUD pin first, and then the nearest Vcc pin to that GND pin.

Example:

GND and Vcc wire list:

INPUT LINE LENGTH FROM TO COUNT

Auto 0 3.0 BOM B07G 1 01 AIM GND

Where "Auto 0" means that this wire was not specified in the input

file, but rather was generated automatically by WireWrap. Length is

the wire length in inches (see note on wire length elsewhere). "FROM"

and "TO" are the backplane coordinates of the wire to be connected,

"COUNT" is the cumulative wire count for the wirelist, and the last

two items consist of the frontplane Vcc or GND pin followed by "Vcc"

or "GND".

-Bypass capacitor list. This list that is automatically generated from

the Vcc and GND information for each IC and tells where bypass

capacitors should be installed for filtering out noise. Backplane

notation is used.

-Wirelist. This is almost identical in format to the GND and Vcc list

described above, except that each wire string begins with the word

"Start", followed by one or more lines containing each pair of pins to

be wired together. Also, the "INPUT LINE" column contains the input

line number from the WireWrap input text file, and the last two items on

the line are the original pin specifications from the input file.

Having these pin specifications displayed here is extremely useful in

the debugging process. Note that wire length is calculated as the

Pythagorean distance between the two pins, plus 2.5 inches to allow

slack during wirewrapping, rounded up to the nearest half inch. If this

length is less than 3 inches, it is set equal to 3 inches, to insure

that there is enough wire to allow wrapping.

-The last line of a wirelist output file should be "END OF WIRELIST"; if

this is not the case, then the file is probably missing the last part of

its output (perhaps due to a disk error).

The pin cross-reference file is the other output file that WireWrap can

generate. It consists of:

-Used pin cross-reference, in alphanumeric order of pins. Both

frontplane and backplane notation pins will appear. The first column

contains the input file line number, then the pin currently being cross-

referenced, and the one, two or three pins to which, it is connected. An

input file line number of 0 means that WireWrap had referenced that pin

during the automatic Vcc and GND wiring. Vcc and GND pins are in

backplane notation and have a suffix of "V" and "G", respectively.

-Unused pin cross-reference (for IC pins only) in alphanumeric order. A

carriage return is generated after each chip and/or after every ten pins

output from a single chip. The last line of this file is "END OF XREF

FILE".

VI. PROGRAM DESCRIPTION

WireWrap is written in Turbo Pascal V3.01A for MS-DOS/PC-DOS 2.0 or

higher. Both the regular (non-8087) and 8087 Turbo Pascal compilers were used

to generate the two versions of the wirewrap program on the disk. The source

code for wirewrap is approximately 50K long and generates a .COM file about

30K long. A variety of static and dynamic data structures are used to store

the various data; constants are used where possible, and many variables are

represented by structured variables.

Several goals were kept in mind when WireWrap was written: it needed to

replace the mainframe version of the WireWrap program, but include features to

handle situations that were not accounted for when the mainframe version was

written. Source file formats had to be similar to allow easy conversion of

10

mainframe files to the new program, but allow for flexible placement of chips

and declaration of chips to handle different size packages, automatic Vcc and

GND wiring (with the ability to override the defaults for the Vcc and GND pin

numbers), and easier specification of backplane pin locations. In addition, a

new format of pin cross-reference was desired along with a unused IC pin

cross-reference. Any errors that occur during processing should not terminate

WireWrap but rather give an appropriate error message, increment an error

count and continue processing.

Rather than port the original program to the PC, it was decided to

rewrite the entire program using a language and programming environment that

would allow for easier program maintenance and future modification, as well as

providing reasonable execution speed. IBM PC FORTRAN proved far too unwieldy

and cumbersome in compiling and debugging, and left much to be desired in

terms of the data structures that needed to be manipulated. After a brief

evaluation Turbo Pascal was chosen as a remarkably fast and easy to use

compiler that produces compact efficient code, and its availability on many

machines as well as its commercial popularity offer the possibility of porting

the new WireWrap program to other computers. Pascal, particularly Turbo's

implementation, is a very effective language for many applications and is not

difficult to learn, which should facilitate any future changes to WireWrap or

one of its associated utilities.

A variety of data types and structures are used in the new WireWrap

program, such as constants, boolean flags, text files, and enumerated data

types. Character strings are used for storing such things as filenames,

chipnames, text from the input file to process, and frontplane and backplane

coordinates. Arrays of integers or of record structures are used for storing

11

the list of IC's; the list of Vcc and GND pins across which to wire bypass

capacitors; the array of all pins for storing their pin use and wire count, if

appropriate. In addition, arrays are used for the list of pins and real-world

coordinates for use in generating optimally short wiring sequences given a wire

string, and for a few other useful things. Structured variables are a powerful

construct in Pascal, and are used alone as well in some of the previously mentioned

arrays for grouping related data together: for example, the StringList array not

only stores the name of the specified pin, but also stores the input line number

on which that pin was found. This input line number is output later in the

program for the benefit of the user. For the pin cross-reference, which needs to

be in alphanumeric (ASCII) order when output, the data is stored in a linked list

structure and an insertion sort is used whenever a pin is referenced: if that

pin entry already exists, an additional reference is appended to that entry.

If it does not exist, it is inserted into the list at the point where it

should alphanumerically occur. Through this method the list is always sorted,

and needs no further processing when it comes time to print it out.

In accordance with the way in which Pascal programs are supposed to be

written, WireWrap is broken down into numerous functions and procedures, which

range from simple utilities to convert between data types to higher level

subroutines for inputting text, processing chip declarations and wire strings,

finding the shortest wiring paths and outputting a formatted wire list and

pin cross-references. Several programming utilities are taken directly from

the Turbo Tutor book and Turbo Pascal manual. The one-pass compilation

technique of Pascal dictates that identifiers, which include functions and

procedures, must be defined before they are used (with a few rare exceptions,

such as pointers and forward procedure declarations); this means that low-

12

level routines normally occur early in the program listing, with high-level

routines occurring towards the ehd, just before the program itself. The

algorithm for generating optimal wire strings is taken from the original

mainframe program: try out all possible sequences, measure the total distance

of wire that would be required, and remember which sequence proves to be the

shortest. WireWrap will pause during the processing of long optimal wire

strings because the number of possible sequences increases dramatically.

When a wirelist is output, be it an Exact String or an optimal String,

all the odd-numbered entries are output first, followed by the even-numbered

entries, so as to achieve a staggering of the wires at time of wirewrapping.

This allows for easier repair and modification of a board after it has been

wirewrapped.

VII. ADDITIONAL PROGRAMS

The WireWrap disk has several files on it in addition to the WireWrap

program. There is a DOS batch file called 'WW' that is used in automating the

wirewrap process; it makes use of several batch file commands in determining

if desired files exist, as well as examining the 'ErrorLevel' upon exit of

certain programs to determine flow of control in the batch file. For example,

WW calls a .COM file to test for the presence of an 8087 numeric coprocessor.

Based on the results of that test, WW will invoke the regular (non-8087) or

8087 version of WireWrap. After exiting WireWrap, an ErrorLevel of 0

indicates that no errors occurred, and WW will offer the user the opportunity

to proceed to the ELMA conversion program. The WW batch file is presented in

Listing 1.

13

The TEST8087 file is a machine language file for detecting the presence

or absence of an 8087 numeric coprocessor in the system, and returns that

information to the WW batch file described above. The program consists of two

parts: a short Turbo Pascal program, and a machine language program. The

machine language program was modified from a utility that was published in the

June, 1985, PC TECH JOURNAL magazine, p. 181; it performs the actual test to

see if the 8087 is installed, and passes the information back to the Turbo

Pascal program, which displays a message to the user, and then passes the

information to the batch file via the "Halt(0)" or "Halt(1)" commands.

Listing 2 contains the two parts of the TEST8087 program.

The ELMA convert program (CONVWW) is a short (1M0 line) Turbo Pascal

program that will take the wirelist output file from WireWrap and convert it

into a new file in the format required for ELMA's automatic wirewrap

equipment. The output file to be processed must not have any errors, or

CONVWW will abort the conversion process. The user is asked for the names of

the file to be processed and the filename for storing the converted

information. In addition, the user will be asked for a one line text header

to place at the beginning of the converted file. CONVWW will read lines from

the file to be converted, ignoring any lines that do not contain wiring

information (such as the column headers and 'Start' lines). The two pins to

be wired and the wiring count will be extracted and output to the new file in

the rigid ELMA format. Note that CONVWW expects such information to be in

specific places in WireWrap's output file; any substantial change to that

format will have to be accounted for in the CONVWW program. (Listing 3 shows

the ELMA convert program.)

A separate program which has proved useful in transferring old wirewrap

input files from the IBM mainframe to the PC is COPYFILE, which is a short

1M

Pascal program on the PC for eliminating undesirable control characters,

trailing spaces, and optionally removing other unwanted lines from files that

have been downloaded. For example, some downloaded files are prefixed with

line numbers, and/or contain blank lines and lines of asterisks for formatting

purposes. COPYFILE gives the user the option to remove some or all of these

groups of characters. Substantial amounts of disk space can be saved by

processing files with this utility, as well as simplifying the conversion of

old wirewrap source files to the new format.

VIII. CONCLUSION

This report has described the personal computer version of WireWrap, a

program to facilitate the generation of wirewrap wiring lists from the

original circuit schematics and IC placement diagrams. WireWrap was written

to replace the wirewrap program on the IBM mainframe, as well as to offer

capabilities and features not available in the mainframe version. These new

features include more flexible chip placement, handling of different IC sizes

including Single Inline Packages, more convenient backplane notation and

better error trapping. Additional programs with WireWrap include a conversion

program of WireWrap output to ELMA compatible file format, and a filter

program that is useful for converting files downloaded from the mainframe into

a DOS text file, with all control characters (other than carriage returns) and

trailing spaces removed.

IX. ACKNOWLEDGMENTS

This project was done under the direction of Ray Escoffier, Walter Brown,

Gene Runion and Andy Dowd, and the author would like to thank these people for

their help.

15

Figure 1. Shalloway wirewrap card.

Si'ot/oi,.'Oi v*kL^*£'*'''&,*^3®S3fc00}&oo OJ OJ t w . N> vj N> fcivJ, r ro to »- >- >- ^ ►- Q, O, *» rvj Ifl !

oocooooooooooooooooooooooooooooo

.QOOOOOOOOOOOOOOOOO < <)jj 1,1,1 UWITITW^ITWH-M-WHI
tn^cn« ui , £. ^ ^ , *;•&.£ Jli^ **? w i** •' y t? ^? '

ic
■.lifir, -fg^= »lj^ K^r<

■t» * to * o 05 o» ■& -' to ^o "00 g) -t^ to o . 00 " a> *> top 00 o ■<> ro o

^M^^»l^*M^i|*l^ip»M«Iii^iM^^
•*» ro o^'oo o> -«* ro^o y eo o> T1.^ ' to - o ^co^-'cn ■> >o

fmmm <Q OOOOO OO OOOOOOOOOOO

OOOOOOOOOOO
M ro H-

00 er> x^:* to o 00 <T> ■** N 8V;
^^±1^^^

ti tn ui_ tn -. ■** *-*—> -*»». ■«* *>. w^c*)—(*> M 00 ro ito^j-to.v^ro, ro < f ■ »-•■:>•—.■-;.•—■■■•-t; on m -•■.*» ro A ^J
' 1 *> - ro ?- o m ** <jr» ^ to o 00 » 0 j^ to o 00 <n *■** 10 o. oo o>v1--ik ro o OT OI*»IN^ U . I

['5 i^^^p^u ■ UJ ■ yjiyji^M^'yiTOii^^ 1

O'OO 0 O O 0 C i C - C O C C' 2 -2 Z C 2 - £ » C ^ v. » i »- 5

M'^ H
M

.to ^ ro -'O"oo <n *> ro •■ o co ' o> J^ ' ro o -co trv^too0001^^ J,^

© '5
fJFrlJ^^^^^s^ s^TSV-

.H

oo-o'o o o o ^ c c -■ c- w c c w ;■. ;■ c c c o i ;■ o c - ;■ ■;■■ i c s . c c o c c c » o o M«M«t^>t«Mtg!g|g!S!g>
tU< >•. en ui

oo "ci^^S8" i\» o ^oo "'m ^' ^foTfto ^ooy^irt'^g^1^ - ro O ' 00 g> &■ ts3ri>fto t*> "* *^ ^ *T ,

o-o.ooooo-o ;;■;;■;; r mOTf?* ^^^^j^^
iCCCiOOCCQOQCGCQCOCCCOOOOOCO

'yi - *. .&. *» *'. ^.^CO^.oSSEU),' to .; Co-?■■TO ro :-,rO,i.!itO;i,-.io ■:•»••—^■■■•»--'>v;»—Sf-*:-. •■ t;s'.'m'".'.'rtS't-'^ to 'I 'o ■ oo o» *• ro o _oo<;-o>"o -to o * co 'tn' ^- tro o • w CD -^.^to ■ Q ■■ o° ■ ■•-o «■ ■>=> io j q, ^
OOOOOOO'CC QCC OCOOC-CC- - -•-•OC CQC'C-C CC C CQCOOOCOOOOOOOOOOOOOOO
^*a^^fe^;flB^s^P^W^^!^^i^^^s^^">^' .^y?-'"^* *sfr
OOOOOOOCiC iOOOOO'vC'w 0 : C - wi-wvQCQC i v - OOO wOC OOCOOOOOOOOOOO'O

JO'

-n tn,-, *>• -to^ "^^"^

tiQQQQQGQZ 2 Z-QQQQQQQC

J^ro'nejJOilvrO -;. IO; ►- £' ^ o ^■"oo'^^V?' *. IO\"

C'wOCOQwwCCiwwvOOCOOO&OOOOOOOO'OOOO
2^"" "V^ft^^^WSHMffil^IsS^^ ^n' V'<-: V'CT • 1?<^%
O'O 0 0 G 0 O 0 i ^ - G Q'-G Q 0 2 G G i i' G C' C' G Q
» Ul Ui Ul •«» .-** * *474»LW'4k

■ *» ro O CO 'O* ' to 'Tv»*«r->

G G CG G C 0 G G G G 0© GOO© O O O 0 0 O O OGO t>
c5^0J^6aKMWfOir,Nj ^ ro "jro -ro

^

g; S^^tKSg oa en -^ NJ I

) 0 G G 2 '. ; G C G G G w G G i © C G G & © G © © © © C Q 0 O © O 0 O O Q Q O © Q Q 0

.k-LU
.6 t i, -i. J a •. ^i J, .(. .!• J, Z- ?- ■Z- -P >2/ 't -i- J. ^ .1 -t -f' >(• -1 vj, 0- A J A. A- >V -T -1 <!■

i ft S -i » » « * v • ♦, » v * » i 4 i i i 1 '.'4 i i .* * \ A * i i » » » A » »

7,VCC ■':.;'

llllftlliiiiiiiiillilllll Mil
16

Figure 2. ECL card.

17

Listing 1. The WW Batch File

echo off
echo testing for 8087 math chip
test8087
if errorlevel 1 goto ww

if not exist ww87.eoin goto fileerr
echo To invoke the 8087 WireWrap program,
pause
ww87
if errorlevel 1 goto exit
goto convert

:ww
if not exist wwpgm.com goto fileerr
echo To invoke the regular WireWrap program,
pause
wwpgm
if errorlevel 1 goto exit
goto convert

:fileerr
echo ERROR: CAN'T FIND THAT FILE OR PROGRAM
goto exit
:convert
echo To convert output to ELMA format,
pause
convww

:exit
echo termination of batch file.

18

Listing 2. Listing of TEST8087 Programs

program testfor8087; {Turbo Pascal program}

function test8087 : integer; external 'test'; {use machine language test}

begin {program}
if test8087 » 0 then
begin

Writeln(^3136—8087 or 80287 not installed.');
Halt(1); {exit with errorlevel «■ 1}

end
else

begin
WritelnCTrue—8087 or 80287 installed.');
Halt(0); {exit with errorlevel - 0}

end;
end. {program}

Assembly language utility to detect 8087:
Check for 8087 or 80287 math coprocessor
modified from June 1985 pc tech journal, p. 181

code segment public
assume cs:code

org lOOh
.8087

start: jmp begin

control dw 0

;set up as a com file
;tell assembler to process 8087 stuff

test if math coprocessor is present and return integer (0 or 1) to
the turbo pascal program

begin:

none:

exit:

code

fninit ;initialize math chip
xor ah, ah ;clear ah
mov byte ptr CS:control+1,ah ;clear memory byte
fnstcw control ;store control word
mov ah,byte ptr CS:control+1 ;hi byte is 03h if 8087
cmp ah,03h
jne none
mov ax,01h
jmp exit

mov

ret
ends
end

or 80287 installed

math chip is present

ax,00h

start

;math chip not present

return

start is entry point

19

Listing 3. Listing of CONVWW Program

program ConvertWWOutputFile;
{by Stowe Keller, NRAO CV Ivy Rd 11/15/85 FRI 03:00pm}
{program to convert wirewrap output to ELMA format file}

{$R+} {Range error checking—remove for faster execution}
{$U+} {User interrupt—remove for faster execution}

{ }

type
MaxString - string[2553;
FileName - stringClM];

{ }

var
FilIn,FilOut: Text; {text file on disk or other device (CON:)}
Line, Linel : string[255];
InputFile,OutputFile : FileName;

{ }

procedure PrintTitle;
begin

ClrScr;
Writeln('This program converts WireWrap (PC version) output files');
WritelnCto the format required for automatic wirewrap.');
Writeln;
Writeln;

end;

procedure InputFileHeader(var Line : MaxString);
begin
Writeln;
Write('Enter file name to place at beginning of file: •);
Readln(Line);

end; {procedure}

function SubStr(Line : MaxString; I,J : integer) : MaxString;
{extract and return substring}
begin
SubStr := Copy(Line,I,J -1+1); {new way}

end; {function}

procedure GetFilelnfo; {get input, output and xref file information}
var Parml,Parm2,Parm3 : FileName;

OK : boolean;
begin

repeat
WriteCEnter name of INPUT text file : '); {Set up input file:}
Readln(InputFile);
Assign(FilIn,InputFile);
{$!-} Reset(Filln); {$!+} {trap i/o errors}
OK := (lOResult = 0);
if not OK then Writeln('ERROR: CAN"TFIND FILE.');

until OK;

20

Writeln;
repeat
Write('Enter name of OUTPUT text file : *); {Set up output file:}
Readln(OutputFile);
Assign(Fil0ut,OutputFile);
{$!-} Rewrite(FilOut); {$!+} {trap i/o errors}
OK := (lOResult =0);
if not OK then Writeln('ERROR: CAN"T CREATE FILE.');

until OK;
end; {procedure}

procedure Strip(var Line : MaxString); {maybe redo as function?}
var

I : integer;
begin {Remove extraneous spaces and Ctrl chrs:}

I := Length(Line);
if LineCl] = chr(8) then Line := SubStr(Line,1,1-1);
I := Length(Line);
while LineCl] = » ' do
{find last non-space in string}
I :- I - 1;

Line := SubStr(Line,1,1);; {update string}
I := Length(Line);
if LineCl] = chr(8) then Line := SubStr(Line, 1,1-1);

end; {procedure}

procedure GetLine(var Line : MaxString);
{get a non-comment line from input file}
begin

repeat
if not Eof(Filln) then
begin
Readln(FilIn,Line); {read line from input}
if LineCl] = '!' then
begin
Writeln('Input file must not have any errors!');
Writeln('Conversion process terminated.');
Halt; {stop program}

end;
end

else
Line:= chr(26); {ctrl-Z for end of file marker}

until ((Length(Line) > 50) and
(Line <> »') and (Line <> 'Start')) or Eof(Filln);

end; {procedure}

procedure ConvertLine(Line : MaxString; var Linel : MaxString);
{convert ww output to auto ww format}
var From,PinTo : stringC1!];
Count : stringC53;
WC,Error : integer;

begin
From := SubStr(Line,27,31); {pin from}
PinTo := SubStr(Line,35,39); {pin to}
Count := SubStr(Line,44,47); {wire count, type string}

21

while ((CountCl] = ' ') and (Length(Count) > 0)) do
Count := SubStr(Count,2,Length(Count));

Val(Count,WC,Error); {wire count as integer}
Str(10000+WC,Count); {make wirecount into string}
Count := SubStr(Count,2,5); {extract 4-digit # with leading zeroes}
Linel := ' '+From+' '+PinTo+' !'+Count; {form new line}

end;

{it**}

begin {program}
PrintTitle;
GetFilelnfo; {get input,output file info}
InputFileHeader(Line); {get name to place at beginning of file}
Writeln(FilOut,Line); {output it}

{Now process file:}
repeat

GetLine(Line); {get a compressed, non-comment line}
if (Line <> ") and (Line <> chr(26)) and

(Line <> 'END OF WIRELIST') then
begin

ConvertLine(Line,Linel); {convert to auto ww format}
Writeln(FilOut,Linel); {output}
Write('.'); {active status}

end;
until ((Line = chr(26)) or (Eof(Filln)));

Write(Fil0ut,chr(26)); {write out end of file}
Close(Filln); {Close the files:}
Close(FilOut);
Writeln;
WritelnCEnd of program.'); {to console}

end. {program}

22

