
NATIONAL RADIO ASTRONOMY OBSERVATORY
COMPUTER DIVISION
INTERNAL REPORT

PROGRAM LIBRARY FOR THE GENERAL PURPOSE

COMPUTER AT THE NRAO

BY

PETER STUMPFF

Report No. 3
December 1967

I. INTRODUCTION

Until now there has been no systematic documentation of
computer programs. The programmer or scientist who developed
a program also had to maintain it. It was up to him how he
documented it. If somebody had a question about a program he
had to contact the author. If somebody wanted to find out
whether or not a certain type of program had already been
written, he had to ask everyone who might possibly have written
such a program.

As long as data processing is not a major task of an
institution, this "system" (which actually is no system at all)
might work well. However, data processing has become one of
the major tasks at the NRAO. The number of jobs submitted to
the general purpose computer is increasing rapidly. The number
of professional programmers will not increase proportionally;
even if it would, the present lack of documentation is no longer
acceptable. One reason is that many different main programs
(in particular, all telescope oriented programs) consist of
many little elements which are similar if not identical. They
could be written in the form of subroutines and be incorporated
in the library. Everyone who writes a new main program could
make use of these subroutines. Another reason is that if a
programmer leaves without documenting his programs in the
standard way, all of the effort spent during his time here might
be lost for the NRAO.

In order to improve this situation we will now start a
program library and correspondingly, documentation of programs.
The documentation system must fulfill the following conditions:

1. It must be as simple as possible.
2. It must be able to cover as many different types

of programs as possible.
3. It must be strictly followed.
4. Exceptions must be allowed since no simple documen¬

tation system exists without exceptions. If
exceptions occur, they must be described sufficiently.

Instead of starting a philosophical consideration of possible
documentation systems, I will introduce one which I have developed
step by step in the past, always having been led by experience.
I have applied it to my own programming work for several years
and have seen it working nicely. Physically, the library will
consist of the following:

-2-

a) INDEX FILE:

Each program is represented by at least one card which shows:

1. NAME of the program.
2. An IDENTIFICATION CODE.
3. A very short description of the purpose of the program.
4. The "LCD-NUMBER", i.e., the Library Card Deck number

of the program. If more than one punched card deck
exists (for example, a source deck and an object deck),
all these numbers are shown.

The INDEX FILE is divided into problem oriented sections and
can be used to find out whether a program exists which deals
with a certain problem. If a program has relationship to
more than one section, its INDEX CARD will be found in all of
these sections.

b) DESCRIPTION FILE:

Each program is represented by a hanging folder. A label
on top of the folder contains the NAME and the IDENTIFICATION
CODE. Inside the folder is a standardized description of
the program followed by the listing of the program.

c) I/O EXAMPLE FILE:

Each program which explicitly uses card reader/punch, printer,
and/or tapes is represented by a folder which contains typical
examples of data (usually these will be printer listings).
Exceptions are programs whose I/O functions are so simple that
an example would not be necessary.

d) LCD-FILE:

Each program will be represented by at least one complete
punched card deck. Each deck has its own number (LCD-NUMBER).

e) LOG BOOK:

This book is maintained by the computer division librarian.
It will show the complete record of the "historical" develop¬
ment of every program which is incorporated into the library.

The files b,c,d, will be in sequential order. The sequential order
of b and c is given by the MAIN NUMBER of a program. The MAIN
NUMBER is part of the IDENTIFICATION CODE and will be assigned to
programs in the sequence of submission to the library. The
sequential order in file c is given by the LCD NUMBER. LCD NUMBERS
are assigned to the card decks in the sequence of their submission
to the library. The sequence of MAIN NUMBER and LCD NUMBER is not
necessarily related to problems. The problem relationship is given
in the INDEX FILE.

-3-

II. DEFINITIONS OF PROGRAMS TO BE INCORPORATED IN THE LIBRARY

In general, we will not try to determine what programs in
what categories we may need and then write them. We simply do
not have enough people to do so. Instead, we will proceed with
programming in the same way as we have in the past with only the
following difference. If we start a new program we will
investigate which subroutines or parts of the program might
possibly be used in future programs. We will then try to incor¬
porate these subroutines or parts in the library. In this way
the library will grow haphazardly. The following categories of
programs can be incorporateds

a) General purpose SUBROUTINES and FUNCTIONS developed by the
Computer Division.

b) General purpose MAIN PROGRAMS developed by the
Computer Division.

c) Frequently used MAIN PROGRAMS developed by the Computer
Division.

d) Programs falling under a-c developed by persons outside the
Computer Division, if they have been accepted by the Computer
Division for incorporation in the library. Since we do not
have enough programmers, we would probably ask the author
of the program to make those changes necessary for incorpor¬
ation. We would also ask him to give us the description of
the program, and we will only accept the program if the
description is sufficient. What this means is described in
Section IV of this report.

III0 NAME AND IDENTIFICATION CODE OF A PROGRAM

Each program shall have a mnemonic NAME which should not
consist of more than 8 characters for a MAIN program and not more
than 6 characters for a SUBprogram. If possible, one should
choose a smaller number of characters than these limits to allow
for adding numbers to the NAMES (in case of later versions). If
possible, when a FUNCTION or a SUBROUTINE is in double precision
the NAME should start with a "D". The IDENTIFICATION CODE has
the following format t

< —=,
"NRAO m/s x (y) jj

Explanation s
NRAOs indicates a program in the NRAO library.
ms MAIN NUMBER of the program. This number is assigned to

programs in the sequence of their submission to the library,
ss SUB NUMBERo The first version of the program gets the

SUB NUMBER s=l. For each new version the SUB NUMBER will
be increased by lo

_4-

x: This will be one of the characters M,S, or F:
M: MAIN program
S: SUBROUTINE subprogram
F: FUNCTION subprogram

y: This will be either a D or a blank:
D: The program is permanently stored on disk in addition

to residence in card form.
Blank: The program must be added to the job in the form

of a card deck.

If a program generates data output on the printer it should print
its own NAME and the IDENTIFICATION CODE (omitting the "(y)") at
least at the beginning of the output, and if possible, at the top
of each page. An easy way to document data output can be found in
the description of a special page-skipping routine "PAG(K,L,INFPAG)"
which will be incorporated in the library with the IDENTIFICATION
CODE "NRAO 36/1 S (D)" and which can be used as a prototype for
this purpose.

It may be helpful to give some idea about the way a program
is submitted to the library and later developed within the library.
If a new programming project is started a NAME should be chosen for
it. If you think the program will be permanently stored on a disc,
you should check the existing NAMES within that category thus avoiding
a NAME that already exists. During the testing stage you may print
the NAME on every output, but, of course, no IDENTIFICATION CODE
exists during this period. If the development of the program has
reached the stage where all formal errors are corrected and where
test samples seem to be calculated satisfactorily, then write the
description and submit the program (i.e., the description and the
card deck) to the Computer Division. When the program has been
accepted the MAIN NUMBER will be assigned to the program and the
SUB NUMBER will receive the value s=l. If the program generates
output, the full IDENTIFICATION CODE must be printed; this requires
one last change in the program. A note is made in the LOG BOOK,
the punched card deck is stored in the LCD FILE, an INDEX FILE
CARD will be filled out, and the description and I/O examples will
be filed in the DESCRIPTION FILE and the I/O EXAMPLE FILE,
respectively. When this is completed the program exists in the
library and can be used by everyone. It is very important that
from now on every time a correction or change has to be made a new
SUB NUMBER is assigned to the program. Correspondingly, the
format in the program which prints the IDENTIFICATION CODE on
the output has to be changed. A note to this effect must appear
in the LOG B00Ko If the new version is a correction to the previous
version and does essentially the same task (so that it is clear
that the previous version must never be used again), one might
remove the previous version from the library (except in the
DESCRIPTION FILE). Of course, one has to be careful. For example,

-5-

let us assume a subroutine (s=l) exists with a certain calling
sequence. Let us assume further that this program is correct
but somebody makes a new version which does a better job and
involves a change in the argument list. In this case, as far
as the numerical results are concerned, the programs are
identical. The old version must not be removed from the library
because there might be users who do not want to change their
calling main programs. However, if the new version of the
program differs from the old one by better timing and/or better
accuracy, but not in the calling sequence and the name, the old
version might simply be replaced by the new one. In general,
I would not suggest that this be done even in such a clear case.
Removal of an existing program should be done only if a space
problem occurs in the various files, and then only after care¬
ful investigation of the consequences that might occur.

IV. PROGRAM DESCRIPTIONS

To make documentation as easy as possible, we have developed
standard forms which will hopefully cover the majority of cases.
Any description will consist of:

lo Standard form. Page 1
II. Standard form. Page 2
III. Standard form. Page n (n=3,4,...)
IV. Standard form for Variable + Constants, Page n
V. Listing of the source deck

In the appendix, an example is given of the description of a
time conversion program. In the following pages I will make
some comments on the various items in the standardized
description.

1. Standard Form, Page 1

This page contains information about the program in a most
concentrated form. The concept of page 1 is based upon the
assumption that most programs in the library will be SUBROUTINES
or FUNCTIONS. Therefore, page 1 already contains a detailed
description of the calling sequence of a subprogram, i.e., just
the information needed when calling the routine inside a main
program. In many cases the user will not even have to look at
the other pages. In the case of most main programs, the definition
of input and output replaces the calling sequence of a subprogram.
However, there is no easy way of standardizing input-output
descriptions in a way similar to the calling sequence description
of a subprogram. This must be left to an open formatted descrip¬
tion inside the document.

-6-

Top Lines Contains the IDENTIFICATION CODE, the DATE of
submission of the program to the library, and the NAME
of the program.

EXPLANo OF NAME: Explains in a few sentences the purpose
of the program. The characters included in the NAME
should appear as underlined capitals. In that way two
goals are reached: a) the purpose is described; b) the
mnemonic meaning of the NAME is explained.

AUTHOR? The name of the author of the particular version of
the program. In other words, if version No. 2 of the
program has been made by author B, by changing anything
in version No. 1 (author A), then on page 1 of the
description of version No. 2 the author would be B.

LANGUAGE: For example, "F4" for FORTRAN IV.

NO, OF STATEMENTS: The sum of all the statements which get
an internal statement number during compilation.

MACHINE: For example, "IBM 360/50".

TIMINGS Average execution time, or lower and upper limit of
execution time. Frequently it might be too difficult to
specify this, in which case no information will be given.
There may be many main programs where one would say
something like "in the particular case..., about 30 min";
or "depends upon the number of input cards, about 45 sec
per card"o In the case of most mathematical subprograms,
however, timing could be done during accuracy tests and
then this information could be given.

Since time depends on compiler, and perhaps on the
operating system in use, information about this should
be addedo In the example in the appendix for instance
the program was compiled with the G compiler under
release 11. Therefore, "(Gil)" was added to the timing
information.

STORAGES This can be found from the compilation messages.
Compiler name and release no. should be added. In the
case of a main program, the storage of all subprograms
called has to be included. In the case of a subprogram,
the length of other subprograms called is not included.

-7-

LIBRARY CARD DECK: This is the LCD NUMBER. Information
about the language has to be added. For example:
"(F4S)" means that it is a source deck.
"(BGll)" means that it is an object deck generated

under G, release 11.
"(BH11,02)" means that it is an object deck generated

under H, release 11, with optimization.

Of course, if more than one deck exists to the same
version of the program, their LCD numbers should be listed

If the program calls other programs from cards, those
programs should be included in the library card deck.

SUBPROGRAMS CALLED FROM DISC: All subprograms which are
used internally should be listed with their names and
NRAO numbers, or with their names only in the case of
FORTRAN functions (SIN, COS, etc.) and routines
belonging to the scientific subroutine package.

SUBPROGRAMS CALLED FROM CARDS: All subprograms which are
used internally should be listed with their names and
NRAO numbers. If it is a subprogram which is not
incorporated into the library, and therefore has no
NRAO number, it need not be listed. However, the total
number of subprograms of this category should be mentioned.

INPUT DATA (CARDS, TAPE, BOTH): This, in general, concerns
OUTPUT DATA (CARDS, TAPE, BOTH): main programs. Only some
(DETAILS IN DESCRIPTION): general remarks should be

made here, such as: reads telescopestape, autocorrelation
receiver, 3 00' telescope, generates FORTRAN readable
9-track tape, punches basic information on cards.

CALL: The NAME of the subprogram (if it is one) should be
written followed by the argument list. The arguments
are explained in the table. If the subprogram is a
FUNCTION, the name has to appear in the table.
Explanation of the various columns:
DIM'N: Dimension. If the NAME belongs to an array, the

dimension specification should appear in this
column, within parentheses (as at the beginning
of the source program). If it is a single
variable or a constant, the column is left blank.
If one wishes to explain the various elements of
the array, one should write:

-8-

NAME DIM'N EXPLANATION

ARR (2,2) array so-and-so
ARR 1,1 cos(e)
ARR 2,1 sin(e)
ARR 1,2 -sin(e)

In other words, if the dimension is presented
within parentheses it describes the array in
general (number of lines and number of columns).
If the dimension is without parentheses, a
particular element is described.

TYPE: For example: 14 for INTEGER, single precision
R4 for REAL, single precision
R8 for REAL, double precision, and so on.

UNITS: It is important for the user to know which units are
required or generated. We will use the following
abbreviations:

RAD = radian HST = hours of sidereal time
REV = revolutions MST = minutes of sidereal time
H = hours SST = seconds of sidereal time

= hours of mean time
= minutes of mean time
= seconds of mean time

M minutes HMT
S seconds MMT
DEG = degrees SMT
MA = minute of arc
SA = second of arc
y year
m = month
d day

There will probably be many other abbreviations. WewWill
update a list of these in a special folder in the
DESCRIPTION FILE.

G/R: G means that the argument is given.
R means that the argument is a result.

Sometimes the argument might be both G and R, i.e., the
argument had a special value before calling the routine
and this value changed afterwards. In this case, you will
either write "G/R" on one line, or two lines - one for
"G" and one for "R" .

Usually, the 10 lines in the table will be enough for a
description of the arguments. If not, you might either

-9-

continue the table in a-: later part of the description,
or avoid writing any description on page 1. In any
case, one should notify the user on page 1 that
information about the arguments will be given in a
later section of the description.

COMMON'S: If the program is a main program it may have COMMON'S
but this would not affect the user since the LCD of the
program would include all COMMONS and all subprograms
using those COMMONS. In general, SUBROUTINES and
FUNCTIONS belonging to the library shall not use COMMONS.
Therefore, in most cases the "NO" box will be crossed.
There might be exceptions, in which case it is very
important to warn the user that there are COMMONS to
be observed.

2. Standard Form, Page 2

The true description of the program starts here. It is very
convenient to first list all possible references, for example:

1. References: (I) some textbook
(II) some other NRAO report
(III) a description of another NRAO program

(give name and NRAO number)

All following parts of the description can be shorter by referring
to the numbers in the reference list.

The next section will almost certainly be: 2. Purpose - What
the program is for and what it actually does is described in more
detail in this section. After this, section 3. Method - It depends
entirely upon the character of the program as to how much detail
one has to go into. If it is a mathematical program, a set of
equationss should be given or some reference should be mentioned.
If the program contains organizational structures which are impor¬
tant for the user to know, they should be described here. If the
program is in FORTRAN, the source deck listing itself is a descrip¬
tion of the method. If the program is relatively short, the source
listing might be sufficient. However, there are FORTRAN programs
which require a more detailed explanation. The next section would
perhaps be: 4. Accuracy - This part is especially important for
mathematical subprograms. Sometimes it will be adequate to say
"6 significant mantissa decimals". In other cases a more detailed
error analysis might follow.

MAIN programs require a description of all input-output
functions, formats, etc. They should be handled in one or two

-10-

separate sections» Other items ares Range of Values of Variables,
Error Messages (if there are any), Application Examples for the
Program, etc. It is impossible to say in advance how many other
things might be necessary to describe. The following is a list of
some items s

1. References 7. Output
2. Purpose 8. Range
3. Method 9. Applications
4. Accuracy 10. ^

In "general, one thing has to be said. By the time somebody has
developed a certain program he may think that he will never forget
anything about it. He may be willing to spend the time for
describing the most important features but think that a more
detailed description would be a waste of time. Usually this is
wrong, because sometime later he will want to develop or change the
program and then will have to spend much more time remembering
the details than would have been necessary -to describe them from
the very beginning.

3. Standard Form, Page n

This is a form which can be used for an unlimited continuation
of the description. It has the header line on it, but the proper
page number has to be filled in.

4. Standard Form for Variable and Constants, Page n

This form can be used for both program development and
description. Usually, in short programs it will not be necessary
to explain all the local and other variables and constants because
the source deck listing will fulfill the same purpose. Occasionally,
however, adding this type of explanation to a program can be very
helpful. The columns DIM'N, TYPE, and G/R contain the same infor¬
mation already described under I. The column I/C/L is explained at
the bottom of this form. Occasionally, one will describe arguments
of the calling sequence in more detail. These variables are not
input, common, or local, but this is not important since the name
shows that it is an argument (if one compares with page 1). In
the explanation column you should list the numerical value of a
constant. This is very helpful during programming work.

-11-

V. LCD FILE

The card decks belonging to the various programs are stored
in order of their LCD numbers. We will observe the following
rules:

1. Each deck will be a complete unit, i.e., if it is a main
program it will contain all subprograms which are called
except those on disk.

2. For principle reasons we will punch all FORTRAN source
programs on FORTRAN cards.

3. A subprogram will start with a pink card.
4. A main program will start with a brown card. The cards

before and after a data input deck will be blue cards.
5. All source decks will be interpreted.
6. A comment card placed after the job cards of a main

source program or after the SUBROUTINE or FUNCTION state¬
ment of a subprogram will contain the following informations

C
NRAO
m (MAIN NUMBER), right adjusted
/
s (SUB NUMBER), right adjusted
NAME (starting in Col. 25)
Code for language, like "F4S", "BGll", etc.
(always starting in Col. 36)
LCD=
LCD number, right adjusted

We will keep duplicates of these comment cards in an extra
file which can be used for an updated listing of all program;
This file will also contain cards corresponding to object
decks and to programs in the scientific subroutine package.

7. The LCD number will be written on top of each card deck
which is thick enough. Since the decks are in sequential
order it will not be difficult to find a deck even if it
does not have the LCD number on top*

VI. USAGE OF THE LIBRARY

There will be free access to the INDEX FILE, the DESCRIPTION
FILE, and the I/O EXAMPLE FILE. These files will be placed in the
keypunch room in Charlottesville and somewhere in Green Bank. No
index card or folder should be removed from these files. A Xerox
copy of the program description is available from the computer
secretary.

There will be no access to the LCD FILE. If somebody wishes a
card deck, he should submit a job submittal card to the computer

Col. .1
Col. 4-7
Col. 9-11
Col. 12
Col. 13-14
Col. 25-32
Col. 36-44

Col. 46-49

-12-

operator which specifies that a deck of the library program is
needed.

Of course, there is no free access to the LOG BOOK. This is
maintained by the program librarian.

The computer division secretary will always keep a number of
standard description forms on file for people to use during
development of a program or for writing a library program description

In the DESCRIPTION FILE a special hanging folder will contain
all general definitions used in the descriptions.

VIIo FINAL REMARKS

As I said at the beginning, the idea of this type of library
is that it grows haphazardly. If somebody starts a programming
project, he may check the library to see whether he can find some¬
thing which is helpful for his project. He may not always find the
exact program he needs, but something similar which he can change
for his own purpose. On the other hand, he should remember that
such a library exists and that he might possibly contribute his
own programs. Therefore, he should spend more time in developing
a more general program - more general as compared to his present
project.

It is not possible to see all the complications in advance.
In the future it might be necessary to change some of these rules.
In the beginning there will probably not be many programs in the
library. As a start, Neil Stoltzfus (my summer student) and I
developed a system of astronomical routines which can be useful
in data reduction problems. I am preparing a special internal
report on this system which will contain an appendix describing
all these programs. I will distribute this report to all users
after it has been completed. Since there are 36 programs
altogether, the report and the appendix will give the users a
certain feeling for the documentation of programs in the library
as well as for the usefulness of such a library. In the future,
new programs will not be distributed automatically. Instead, we
will just announce the incorporation of a new program, with NAME,
IDENTIFICATION CODE and a short description of the purpose of the
program.

APPENDIX

Example of a Program Description

A computer listing of this program is not attached,

NRAO i /i s (D) DATE: 12/01/67 NAME: SIT

EXPLAN. OF NAME:
(SHORT DESCRIPTION)

Calculation p;f Ipgal mean Sidereal Timfl.

Given are calendar date and zone time, longitude of observer and

definition of zone time,, The local mean sidereal time and the

.lullan date are compute do

AUTHOR: No Stoltzfus and Po Stumpff

LANGUAGE: F4 NO. OF STATEMENTS: 11

MACHINE: IBM ^SO/'SO
TIMING: 1*97 ms (G 11)

LIBRARY CARD DECK: 1 (P4S)

SUBPROGRAMS CALLED FROM DISC:_ DJLf^NRAO 5/1 P): RED(=M*A0 21/1 F)

FROM CARDS:_ None

INPUT DATA (CARDS, TAPE, BOTH):__
OUTPUT DATA (CARDS, TAPE, BOTH):.
(DETAILS IN DESCRIPTION)

None

None

CALL: SIT(IY, IM, ID, ZTIM, OBLONG^ ZTLONG, STIM, DATJUL)
NAME DIM'N TYPE UNIT G/R EXPLANATION

IY JLL G calendar year (A digitsl)

IM 14. m G calendar month on the zone

to

LLl

O
on

ID 14. ,G calendar day time meridian

ZTIM RA REY G zone time (for example: EST)

iffiLOUG M- R^Y gQQgrolongnQf Qbaerver

ZTLQNG -H4- REY geogr^lnng.of zone tima mgridian

STIM J&L HF.V JB. 1 ooal mflan «1 dfi-rea] time nf thn gi Yfln

mTtTTTT. ^a. A. JB- jnllftn riatfl V
1nfltaat of

t.lmfi
(G « GIVEN , R « RESULT)

COMMON'S: YESD NO E (IF ^YES", SEE DESCRIPTION)

NRAO 1/1 s NAME: SIT

PROGRAM DESCRIPTION

1. Peferencea; (I) NRAO Computer Division Internal Report No0 2

2.o Purpose; A certain instant of time-is given by the civil calendar

 date (lY.IM.ID) and by the civil time (ZTIM), The local

 mean sidereal time (STIM) and the Julian date (DATJTJL)

 have to be calculated which correspond to that instant

 of timeo

 Civil date and civil time are common-within certain geo-

 graphic zones; actually, they are the mean solar date and

 the mean solar time for a certain meridian within that

 geographic zone (zone time meridian). Therefore, we say

 that IY,IM,ID is the calendar date on the zone time meri-

 dian and that ZTIM is the zone time, V/hich particular zone

 time is used depends on ZTLQNG, the geographic longitude

 of the zone time meridianq Eor examples if ZTIM is Eastern

 Standard Time (EST)fl then ZTLQNG has to be set equal to

 0o208
,5t5'5o» (= 5h west of Greenwich) » If ZTIM is Universal

 Time (UT). then: ZTLQNG ^ 0.0

 To compute STIM,. the local mean sidereal timey one has

 to specify OBLONG, the geographic lomgitude of the obser-

 ver» .

 Both ZTLQNG and OBLONG are constants v/hich have to be

 defined in a main program which calls SIT^

 In addition to STIM. the program also computes DAT JUL ,>

 This is the .Julian date which corresponds to the given

 instant of time (rY.IM«IDP ZTIM, ZTLQNG). DATJUL can be

 used as the time argument for other routines which com-

 pute time depending variables such as? for instance f

 nutation or aberration,, .

^ Method and accuracy:
 The method is described in Ref.(I)r section 6. For any
 given instant of timef STIM is oaloulated from the Green-

NRAO i /i s SIT

wich mean sidereal time for 1967,0 (=beginning of the
Besselian year 1967) and from the time interval to that
initial epoctu The second-order terms in the definition
of mean sidereal time are neglected because they would
 g £*,
not exceed O0O5 within the 20 century; the single-preoision
mode of the program will cause larger errors than 0^05,
The variable TAU (see Ref0I, equation 6/10) which is the
time interval to 1967,0 will assume maximum values (within
the 20lh century) of about 67 ̂ ooo in 1900o In single pre¬
cision, this number would be not more accurate than about
0«>00005a When STIM has been computed and has been reduced
to the standard interval 0 ^ STIM < 1 (in revolutions), or
0 <STIM<24 (in hours), STIM will have an error of this
amount (0*00005 REY = 4?5)0

In the period 1958 to 1976, however, TAU is less than 10,
and the error of STIM is reduced by one order of magnitude«
These accuracy considerations lead to the following

EulQl STIM can be applied to any instant of time

within the 20 century with an error of not

more than about 4o5 in the resulting sidereal

time. For applications in the period 1958-1976,

the error will not be larger than about 0?45o

DATJUL will always be as accurate as ZTIM. and

ZTLQNG areo

If the accuracy of STIM is not satisfactory,

one should call the routine DSIT(=NRA0 2/1 S)

which gives the full precision of the Ephemeri-

4o Appli cations:

If one has to compute many values of the sidereal time

within time intervals of several hours, i t would save

compute jr time by computing STIM only for the beginning

NRAO i /i s NAME : SIT

 equivalent of the interval of zone time elapsed since

the beginning. After the addition, one may call the

 routine RED(=NRAO 21/1 F) in order to reduce the result

 to the standard interval 0-to 1.

5. Special values for OBLONG and ZTLQNG:

 Green Bank; OBLONG = 0.2217953 REV (=5 19m20?0)

 ZTLQNG = 0.2083333 REV (=5 0 0.0; it is

 assumed that

 3TIM = EST)
 Kitt Peak: OBLONG = 0.31003 71 REV (=7 26m27^203)

 ZTLQNG = 0.2916667 REV (=7 0 0.000: it is

 assumed that

. ZTIM = MST)

NRAO i /i s NAME: SIT

VARIABL ES AND CONSTANTS
NAME DIM'N TYPE UNIT G/R l/C/L EXPLANATIONfvalue, if const)
DJULA R8 d G L 2439491o54isi967o0= JDA (RefM, 5/lB)

DcTULO R8 d R L = JD0(ZDAT) " 6/10

GA R4 REV G L =0o27777871=GA " 6/8

CK2 R4 - G L -1.0027379=k2 » 3/2

niro .• „ 4-v,« ^^4-^^ mean solar day CK2 is the ratio r-= =-i1 mean aide real day

GK^ R4 ,' trop0> G L =o.oo27^7qoq'2;=k~ (Ref.i, ^//\.) .yuar
per GKS is the increase of mean sidereal I day J time per mean solar day

RDELTA R/] REV R L = A (ftefMf 6/R^
PrR R/l REV R T. = a* " fi/Q »"i

TAU R4 (trop, U L = -r " 6/10
{year 3

(G = GIVEN , R = RESULT , I « INPUT , C = COMMON , L » LOCAL)

