
AIPS MEMO NO._30

CPG MEMO NO..

AIPS and Array Processors

Bill Cotton & Don Wells

National Radio Astronomy Observatory
Edgemont Road, Charlottesville, VA 22901

(804) 296-0211, FTS=938-1271, TWX=510-587-5482

2 December 1983

1.0 INTRODUCTION

Our Astronomical Image Processing System (AIPS) is critically
dependent on AP computing power to deliver acceptable performance in
large-scale image processing algorithms. We currently use Floating
Point Systems AP120B APs. The fundamental specifications of AIPS
include an insistance on portability. We have demonstrated a high
degree of portability to a variety of CPUs, operating systems, and
peripheral devices. The peripheral devices include image displays,
graphics terminals, printers and plotters. It now appears to be
desirable that we provide some degree of portability for our AP code.

When supermini hosts cost $200K it seemed quite reasonable to pay
almost $100K for an AP. But we are in the process of porting our code
to supermicros which are nearly as powerful as the superminis but which
have prices much nearer to $20K than to $200K. In this new situation
the prices of traditional APs seem disproportionate. FPS have recently
lowered their prices substantially (the 5000 series) but even their
current prices will tend to inhibit the installation of 5000-series APs
in supermicro systems. And there is another problem: FPS appears to
be reluctant to support the 5000 series for supermicros. Thus we think
it would be a good thing if we had an AP option available for lower
price and with support for a variety of supermicros.

Recently NRAO personnel have been actively considering a variety
of CPUs and APs with performance much higher than that of the
VAX780/120B combination. The question of how best to port our AIPS
applications to such systems is a critical element (indeed, it is
possibly the most important element) of such discussions.

For these reasons it is desirable that we provide a discussion of
how AIPS utilizes the 120B and how it provides a software emulation
when a 120B is not available. This memo is intended to fill that need.
Our main conclusion is that our concept of emulating the 120B in
software (the "pseudo-AP" library) suggests that:

other APs and supercomputers can be interfaced to AIPS
most easily if they have a software interface which
emulates the 120B.

AIPS and APs.
AN OVERVIEW OF AIPS AND ITS OPERATION

Page 2
0 2 Dec 83

2.0 AN OVERVIEW OF AIPS AND ITS OPERATION

AIPS (Astronomical Image Processing System) is a body of programs
and subroutines which are the main image-forming, image-processing, and
image-analysis software for the aperture synthesis radio
interferometers operated by the National Radio Astronomy Observatory.
The system is coded in a dialect which is an "extended subset" of
Fortran-66. By this we mean that certain standard syntactic constructs
of Fortran-66 (e.g., assigned-go-to) are not used, and that certain
nonstandard extensions (e.g., ENCODE/DECODE and INCLUDE) are used. A
discussion of the full syntactic specifications of the AIPS dialect is
beyond the scope of this memo. The principle motivation for the
specifications is to assure portability of the code to the maximum
number of CPUs and operating systems.

One of the programs of the system is called AIPS and it
incorporates the command language processor which talks to the user's
terminal. The command language is called POPS (People-Oriented Parsing
System). It is a fairly powerful algebraic programming language. The
syntax might be approximately described as a mixture of subsets of
Algol, Pascal, and PL/I. In addition to all of the usual baggage of a
programming language (e.g., SIN/ATAN/LOG/SQRT/..., string functions,
etc.) it has a variety of operators wired into it to execute the
frequently performed operations of an image processing system, such as
listing file directories, deleting files, and manipulating the digital
image display.

Extensive image processing operations are done in AIPS by other
programs, which are called "tasks" by the AIPS programmers. When a
task is initiated it receives input parameters from program AIPS.
These parameters are POPS variables in program AIPS and one of the
major duties of AIPS is to facilitate the listing and modification of
these parameters. When the user is satisfied with the values of the
parameters (AIPS users call these the "inputs") he issues the POPS
command GO which initiates the task as a detached subprocess and passes
the inputs to it. When the task has begun and acquired the inputs it
allows program AIPS to resume talking to the user. The task is then
free to execute in the background, often for periods of tens of
minutes, even hours. The AIPS user can initiate more tasks. It is not
uncommon for a single user to have three tasks in progress at any
moment. There is a prohibition against initiating a second copy of the
same task while the first copy is still executing.

Two or more users may be executing copies of program AIPS and
spawning tasks. Thus multiple copies of the same task may be in
execution at the same time, one for each user. It is typical for a
VAX/7 80 to support two AIPS users fairly well, and five tasks in action
at the same time is typical.

AIPS and APs. Page 3
AIPS USE OF ARRAY PROCESSORS 02 Dec 83

3.0 AIPS USE OF ARRAY PROCESSORS

A number of tasks (currently 15) utilize the FPS 120B array
processor when one is available. The behavior of these tasks is
completely analogous to CPU-only tasks with one exception. That
exception is that there is only one AP normally and so only one AP task
can be executing at any moment. The other AP tasks are in a wait state
trying to obtain rights to the AP. At periodic intervals (about 5
minutes) the active AP task copies the contents of the AP to a scratch
file and gives up the AP for a brief interval. Other AP tasks which
are waiting then contend for the AP. We have a simple priority/queuing
algorithm which assures that the primary AIPS user's AP tasks have
priority over secondary users in a statistical sense. Thus AP tasks
share the use of the AP, with execution time quanta of about 5 minutes.

AIPS tasks which use the array processor do so as a pipelined
vector arithmetic unit? that is, data are passed from the host to the
array processor, some operation is done on the data and the result is
returned to the host. The operation frequently involves several calls
to AP routines and may make use of function chaining to reduce some of
the overhead of talking to the AP. In many cases the host computer
serves only to pass data from the disks to the array processor and
invoke the AP routines.

Because AIPS AP tasks were developed using FPS AP120B array
processors the way in which the AP is called uses FPS conventions.
Basically this means that the data are specified by a memory address
and an increment. The data are passed to and from the AP in separate
calls and there are occasional synchronization calls to the AP. Also,
we have adopted the packing scheme used by FPS for real to complex FFTs
of storing the real part of the n+1 st complex value in the imaginary
part of the first complex value. This convention allows in-place FFTs
and the input and output of a real to complex FFT to use the same
memory or disk space.

At present we make use of microcoded routines in the FPS standard
libraries (BAALIB, BABLIB, UTLLIB, SYMLIB and APFLIB) and a set of
microcoded and Vector Function Chainer routines developed by NRAO. The
NRAO developed microcode routines and Vector Function Chainer routines
are listed in Appendix A.

In order to allow the use of AIPS on machines without FPS APs we
have developed the concept of a pseudo array processor in which a
FORTRAN common is used as the array processor memory and FORTRAN or
assembly language routines operate on data in this common. For the
pseudo array processor there are FORTRAN (or assembler) routines which
perform all of the functions of a true array processor. In this
fashion the main programs do not know or care, except in the most
subtle ways, if they are using a true AP or a pseudo AP. In this
implementation we only need one version of a program and can determine
whether it uses a true AP or the pseudo AP by link editing it with the
appropriate library. In practice we maintain both versions of our AP
tasks on our development machines. A list of the pseudo AP routines is
given in Appendix B.

AIPS and APs.
AIPS USE OF ARRAY PROCESSORS

Page 4
0 2 Dec 83

In several ways we have generalized our code beyond what is
necessary for an FPS AP120B. First, the size of the AP memory is read
from a disk file and is not assumed to be limited to 6 4 Kwords. Most
of our programs make use of this information and can make use of any
and all AP memory available. Second, the AP memory addresses sent to
the AP routines are in fact 32 bit addresses with the two lowest bytes
first. This provides both the unsigned 16 bit integers needed for FPS
machines and up to 31 bits for other machines. There is the
complication that on some host computers the order of the bytes may
need to be rearranged for non-FPS APs.

4.0 USING NEW APS WITH AIPS

The strongest requirement for a new array processor to be used
with AIPS is that it be made to emulate an FPS AP120B. At the present
time this means that there needs to be a library of routines
duplicating the names, call arguments and functionality of the pseudo
AP routines given in Appendix B. Any implementation of an array
processor which could not be done in this way would mean redeveloping
the existing applications programs to use the new AP and would
significantly increase the maintainance required for AP programs, it
is. beyond our current ability and desire £& support an hR which cannot
emulate the current functions qL our FPS AP12QBS. Note that the task
of installing AIPS on a new AP is essentially defined as reproducing
the pseudo-AP library for the new AP by incorporating all necessary
functions (allocating an AP, loading routines etc.) into the equivalent
of the appropriate pseudo-AP routines.

It is desirable that it be relatively easy to develop and maintain
microcode for any new AP which we support for AIPS. First we must
convert our own microcode routines to run on the new array processor
and secondly, further development of AP microcode would have to be done
for two, probably very different, APs and this continuing cost needs to
be held to a minimum.

A final desirable property of a new AP for AIPS is that it have
potential for improvement in the future over the current systems. This
would include the ability to access a disk drive from the AP and a
relatively sophisticated operating system in the AP. AIPS Memo no. 29
("Array Processor Memory Size", 29 November 1983) analyzes the
performance of AIPS useage of an AP and suggests possible ways to speed
up the system.

AIPS and APs. Paqe 5
AN ALTERNATE APPROACH 0 2 Dec 83

5.0 AN ALTERNATE APPROACH

The current implementation of AIPS is primarily on superminis with
anticipated support on supermicros. The CPU speed of these machines is
sufficiently slow that they require an array processor to make them
interesting AIPS machines. The performance of these computer-AP
combinations is, at the moment, limited primarily by the overhead of
the host talking to the AP and the additional data transfers.

An alternate approach is to use a computer whose CPU is fast
enough to be interesting without an array processor, i.e. a
"supercomputer". The pseudo-AP concept currently implemented in AIPS
is probably readily adaptable to a supercomputer, especially if an
optmizing Fortran compiler is available. If necessary, critical
pseudo-AP routines could be receded into assembly language to optimize
the performance. The high degree of machine dependency isolation in
AIPS should allow relatively easy installation of AIPS AP tasks on a
supercomputer.

If the operating system on the supercomputer does not support
multitasking then we might not be able to use the AIPS program itself
on the supercomputer. (The "AIPS" program implements our "POPS"
command language processor which is our interactive user interface.) In
this case it might be necessary to implement only the AIPS array
processor tasks. This solution would be less desirable from a users
point of view but would probably allow a relatively rapid and efficient
implementation of existing software on the supercomputer. Thus, image
processing calculations probably could get done, and even be
implemented fairly quickly, but flexible control of the processing
operations would be hard to obtain. The best environment for an AIPS
implementation will he. a multitasking timesharing system, a precise
description of the minimum specifications for the host operating system
is beyond the scope of this memo, but a good indication is provided by
the statement that both VMS and UNIX provide comfortable environments
for AIPS. The ideal supercomputer OS for an AIPS implementation is
UNIX because we already have an AIPS implementation for UNIX and
probably would not need to do any new work to get AIPS running. Of
course we would probably want to fine-tune the implementation for
optimum performance but astronomers could do astronomy with the
computer while such development work was in progress.

AIPS and APs.
Appendices.

Page 6
0 2 Dec 83

APPENDIX A

NRAO AIPS microcode and VFC routines

A list of the NRAO microcode routines is given in the following
table:

NRAO microcode routines

APGRD1 I MULT
HIST (*) IADD
CSQTRN I SUB
CVCMUL CVSDIV
MAXMIN CVSMS
VIDIV APGRD3
CVJADD GRDMIX
PHSROT CVMMAX
BOXSUM APGRD4
APGRD2 APINTP
VTRANS DIRADD
IMOD CLNSUB

(*) HISTt although written by NRAO, emulates a microcode
routine which is provided by FPS in a library which NRAO
has not purchased.

Vector function chainer routines written at NRAO are listed in the
following table:

NRAO Vector Function Chainer Routines

APIFIN.VFC? 2 AP1GRD.VFC;8 APGRID.VFC?19
APRFT.VFC;9 FINGRD.VFC;13 GRDCC.VFC;5
GRDFIN.VFC?34 GRIDAP.VFC;10 MCALC.VFC? 5
MULCLN.VFC;3 PTDIV.VFC;4 PTSUB.VFC;5
SEARCH.VFC;5 TPVF1.VFC;6 TPVF2.VFC ? 6
UVINTP.VFC;8 XXPTS.VFC;6

Listings of the source versions of these routines may be obtained
by the following VMS command:

PRINT/HEAD CVAX::UMA0:[AIPS.15JAN84.FPS.SUB]WDC.AP,*.VFC

AIPS and APs.
Appendices•

Page 7
02 Dec 83

APPENDIX B

AIPS Pseudo-AP Routines.

The following table lists the AIPS pseudo-AP FORTRAN routines:

AIPS Pseudo-AP FORTRAN routines

AP1FIN.FOR;l AP1GRD.FOR;7 APCOM.FOR;7
APGET.FOR;6 APGET2.FOR;4 APGRD1.FOR;6
APGRD2.FOR;8 APGRD3.FOR;1 APGRD4.FOR;4
APGRID.FOR;12 APGSP.FOR;5 APINIT.FOR;5
APINTP.FOR;l APPUT.FOR;5 APPUT2.FOR;4
APRFT•FOR;4 APRLSE.FOR;3 APWAIT.FOR;3
APWD.FOR;3 APWR.FOR;3 ARRAY.FOR;46
BAKSUB.FOR;5 BOXSUM.FOR;4 BPCOM.FOR;3
BPINIT.FOR;6 BPRLSE.FOR;3 CFFT.FOR;4
CLNSUB•FOR;4 CRVMUL.FOR;4 CSQTRN.FOR;5
CV CMUL•FOR;5 CVCONJ.FOR;4 CVEXP.FOR;5
CVJADD•FOR;5 CVMAG S.FOR;4 CVMMAX.FOR;3
CVMOV•FOR;7 CVMUL.FOR;4 CVSDIV.FOR;8
CVSMS•FOR;5 DIRADD.FOR;4 GRDCC.FOR;1
GRDFIN.FOR;7 GRDMIX.FOR;3 GRIDAP.FOR;9
HIST.FOR;6 LVGT.FOR;4 MAKMSK.FOR;5
MAXMIN.FOR;5 MAXV.FOR;5 MCALC.FOR;6
MINV.FOR;6 MOVE1.FOR;5 MTRANS.FOR;5
MULCLN.FOR;3 PHSROT.FOR;4 POLAR.FOR;4
PTDIV.FOR;6 PTFAZ.FOR;3 PTSUB.FOR;8
RECT.FOR;4 RFFT.FOR;6 RLIEJ4.FOR;5
RLINJ4.FOR;5 SEARCH.FOR;7 SQMUL.FOR;4
SUB1.FOR;4 SVE.FOR;4 SVESQ.FOR;2
TESTR.FOR;3 XJVINTP. FOR; 1 VABS.FOR;3
VADD.FOR;4 VCLIP.FOR;4 VCLR.FOR;3
VCOS.FOR;3 VDIV.FOR;5 VEXP.FOR;4
VFILL.FOR;6 VFIX.FOR;4 VFLT.FOR;4
VIDIV.FOR;4 VLN.FOR;2 VMA.FOR;5
VMOV.FOR;5 VMUL.FOR;4 VNEG.FOR;4
VRVRS.FOR;4 VSADD.FOR;3 VSIN.FOR;3
VSMA.FOR;4 VSMAFX.FOR;3 VSMSA.FOR;3
VSMUL.FOR;4 VSQ.FOR;4 VSQRT.FOR;3
VSUB.FOR;4 VSWAP.FOR;5 VTRANS.FOR;7
VTSMUL.FOR;4 XFOUR.FOR;3 XFOUR.MAR;7 (*)
XXPTS.FOR;10

(*) XFOUR.MAR is functionally equivalent to XFOUR.FOR. It
is a more efficient assembly language version for VAXes
under VMS.

Listings of the source code of these routines may be obtained by:

PRINT/HEAD CVAX::UMA0:[AIPS.15JAN84.PSAP.SUB]*.FOR

