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APPLICATION OF THE ANTENNA TOLERANCE THEORY TO THE 
 NRAO 85-FOOT AND 300-FOOT TELESCOPES  

P. G. Mezger 

1. Introduction 

The term "Antenna Tolerance Theory" was first introduced by Bracewell [1], 

The importance of antenna tolerance theory for the construction of very large antennas 

is obvious. 

In this report we are only concerned with two kinds of errors in parabolic an¬ 

tennas: 

1. Defocusing of the primary feed. 

2. Random deviations of the parabolic reflector from 

an ideal paraboloid. 

In section 2 we will give a short review of the theoretical results obtained by various 

authors for these two cases.   As far as we know, only two attempts have so far been 

made to check these results experimentally with very large antennas [10] [11].   Since 

the NRAO operates a &5-foot and a 300-*foot antenna, whose reflectors have been mea¬ 

sured mechanically with very high accuracy, and since on the other hand feeds and 

receivers for various frequencies are available, we think it was a good opportunity to 

compare the performance of the antennas with the theoretically predicted behavior. 

The experimental results communicated in this report are neither complete nor 

are they obtained with the highest possible accuracy.   The reason is that this report is 

not considered to be a final report, but rather a working report to show what we planned 

to do and to stimulate, if possible, a helpful discussion of our future work in this field. 

Some important measurements, especially concerning the 300-foot telescope, 

have been obtained by our colleagues, who will be mentioned in connection with the 

corresponding results. 

2. Short Review and Some Results of the Tolerance Theory of Paraboloid Antennas 

Let us start considering an ideal parabolic reflector and a primary feed with a 

well defined phase center.   When the phase center of the feed coincides with the focal 

point of the reflector we have the maximum gain G  , the half power beamwidth (HPBW) 

0   , and the squint angle between electrical and mechanical axes 0 = 0.    A displacement 
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of the phase center may be decomposed in a displacement Af    , in radial direction (or in 

the focal plane) and in a displacement Af     along the focal axis of the paraboloid.   The 
divergent ax 

axial defocusing causes ^beam, if the phase center is moved towards the reflector and a 

convergent beam if the phase center is moved in the opposite direction.   Yang [2] calcu¬ 

lated the following expression for the gain variation for a constant reflector illumination 

(la) G/Go  = 
sin XL/2}2 

L */*\ 
with u/2 = TT (1 - cos #) Af   f\ and # = aperture angle of the antenna.   This result means 

ax 
that the gain variation only depends on the amount but not on the direction of the axial 

defocusing.   This is of some importance for the focusing of the feed, as will be shown in 

section IV.   The gain variation will increase for a given ration Af   /A. with increasing 
ax 

aperture angle #.   Bracewell [1], who treats the problems in his paper from a more 

physical and qualitative point of view gives for the gain variation due to an axial defocus¬ 

ing the expression 

(lb) G/G    =  1 -A2/12 o 

where A means the maximal phase error between center and edge of the aperture. 

With A = 27r (1 - cos #) Af   /X it may easily be shown that equation (lb) is the quadratic 
ax 

approximation of equation (la). 

For comparatively small radial defocusing the gain of the antenna is not changed 

but a "squint" is produced, which means that the electrical axis of the antenna deviates 

from the mechanical axis by an angle 0, measured in the same plane but in the opposite 

direction of the radial defocusing.   In the case of a flat reflector the squint angle would 

be related to the radial defocusing by 6f = arc tg(Af   /f) where f is the focal length of 
ax 

the antenna.   For a paraboloidal reflector the true squint angle 0 is smaller than 0* by 

a factor of B ^ 1 

(2) 0 -  B(f/D) ©♦  =  B(f/D) arc tg(Af   /f) 
ax 
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The beam deviation factor B is a function of the f/D (D    diameter of the aperture) value 

(or the aperture angle) of the antenna.   The beam deviation factor B is given by Silver ([3] 

p. 488) for the case that the feed is moved on a circle around the vertex of the paraboloid. 

It is not mentioned for which illumination the curve has been calculated. 

Kelleher, et al [4] give an equation for the calculation of the beam factor with a 

given f/D x 

0 x4 

/   g^^dx 

(3) B   = 1 - 
xo 

/  g(x) x2 dx 
o 

In this equation x = D/2f and g(x) is the amplitude illumination along the x-plane (z = 0). 

It may be seen from equation (3) that for a given antenna, the beam factor B approaches 

1 with increasing tapering of the feed pattern.   This result is interesting for those appli¬ 

cations in radio astronomy where the beam of an antenna is moved by displacing of the 

feed radially. 

For a main beam squint more than the HPBW of the antenna, the decrease in 

gain may become noticeable, depending on f/D (Silver [3], p. 88); also, the HPBW will 

increase correspondingly. 

The deviations of the points from the best fitting paraboloid measured in a direc¬ 

tion perpendicular to the paraboloid will be called the deviation D. of the point i.   The 

definition of the best fitting paraboloid does not necessarily imply that the mean vialue 
N 

_^' m -^ D. vanishes, but m = 0 may be assumed in the interesting cases as will be shown 
i=l 

in section III. 

The basic work in the theoretical treatment of random deviations of a parabolic 

reflector from an ideal paraboloid has been done by Ruze [5].   He inserts a position 

dependent phase error 6 ( r ) in the integral representation of the far field pattern.   For 

the phase error itself, he assumes a gaussian distribution.   Since for relatively flat 

reflectors the relation 

(5) 6  =  BD— 
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between the deviation D and the corresponding phase error 6 holds, Ruze* s assumption 

means that the deviations D of the reflector may be represented by the function 

(6) W(D)   =       _}   .   exp(-DV2D2) 
(27rD2)1/J        ( J 

Let T be the distance between two points on the paraboHc reflector.   For large 

values of T the deviations of the reflector, and hence the phase errors are then uncor- 

related, whereas for T « 0 the mean square value of the phase error is obviously zero. 

To account for this fact, Ruze introduces the following relation for the mean square value 

of the phase errors between points located at a distance T on the paraboloid 

(7) 6(T)
2
  = S2 [1 - exp(-T2/C2)] 

C is defined as a correlation interval that is the average distance where the phase errors 

and the deviations become independent.   Ruze gives the rigorous solution of the problem 

and the following important approximations: 

a. For a correlation interval small compared to the wavelength, and for small 

reflector errors the reduction in gain is 

(8a) G/G     =   l-7 6*-££  =   1-12*4^ £«! v    ' o 4 A2 A2 A 

b. For a large correlation interval the gain reduction is given by 

(8b) G/G    =  exp(-62)   =  exp[-167r2 ~ ] 7 » 1 
O A" A 

where the relation (5) has been used to replace the mean square value of the phase error 

62 by the mean square value of the surface deviation D2.   It should be remembered that 

Ruze obtained these results by averaging over an ensemble of similar paraboloid an¬ 

tennas.   Correspondingly, the results of equations (8a) and (8b) do not relate a mean 

square deviation D2 of the paraboloid with a well defined gain reduction, but rather pre- 
average gain reduction 

diet theA of an ensemble of similar antennas, whose reflectors have the same mean 

square deviations D2, 
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Of great importance for all practical applications is the dependence of the gain 

reduction not only on the wavelength but also on the ratio between the correlation interval 

c and the wavelength.   It can be shown that "rough" reflector surfaces do hardly affect the 

performance of the antenna.   Bracewell [1] shows qualitatively in his paper the effect of 

the variation (= correlation) of the errors over the aperture.   Whereas rapidly varying errors 

reduce the gain, as well as the directivity D, of the antenna and hence the antenna beam 

solid angle ft = 47r/D, the HPBW is not affected.    With increasing correlation interval 

(slowly varying errors) the scattered radiation becomes more directive and first the at¬ 

tenuation of the near sidelobes and eventually the main beam itself will be affected by the 

surface deviations.   This is in good agreement with the practical experience that with 

decreasing wavelength both the antenna efficiency and the attenuation of the first sidelobes 

decrease, and consequently the stray factor of the antenna increases. 

3.   Results of a Photogrammetric Calibration of the 85-Foot and the 300-Foot Telescopes* 

The paraboloid reflectors of the two telescopes have been measured just in the 

same way as defined in section 2.    Figure 1 shows the distribution of the target points on 

a plane projection of the parabolic reflector in the case of the 85-foot telescope.   The 

positions of these target points in a x, y, z-coordinate system have been obtained by a 

photogrammetric method, and the best fitting paraboloid through these points has been 

determined by the method of least squares.   These photogrammetric measurements have 

been made for the 85-foot telescope at the zenith angles z = 0° and z = 90°, respectively, 

and for the 300-foot telescope at the zenith angles z = 0°, 30° and 51° 23t 40", respectively. 

We start our computations from the listed deviations D. of the target points i from the 

best fitting paraboloid.   Let N be the total number of all target points used for an indi¬ 

vidual surface calibration.   Then we calculate the mean value 

N 

(9) m  =  5  =  ^D. 

i^l 

and the RMS deviation 

(10) s = /S" =    1 

N -i 1/2 

D.2 

,/ 1 /N 
  H 
* The photogrammetric calibration of the two telescopes has been done by D.  Brown 

Associates, Inc., Eau Gallic, Florida. 
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The results of these calculations are listed in Table 1. 

Then the numbers N. of deviations, lying in a range between D. and D. + AD have 

been counted.   The normalized values N./N are plotted in Figures 2a - 6a.   With the 

values m, s, and N of Table 1 the corresponding gauss distributions 

(11) G(D;h)   = -^xp   -h2 (D-m)2} 

with 

* 1    fN-ll172 
11  ~  s/2 I   N    / 

have been calculated and plotted in the corresponding diagrams.   (For the statistical 

definitions used here, see for example [6]). 

As may be seen in Figure 1, the target points are not equally spaced on the para¬ 

boloid but the surface elements represented by an individual target point attain a 

smallest value at a distance of about 2R /3 of the vertex (measured in the aperture plane 

with R   the radius of the aperture).   To account for this fact we have calculated the mean 

square deviations according to equation (10) of all target points lying in a ring-shaped 

zone on the paraboloid defined by R. ^ R ^ R.        in the aperture plane. 

The results of these calculations are represented in Figures 2b - 6b.   As may be 

seen, the mean square deviations of the individual ring-shaped zones vary considerably. 

In the case of the 85-foot telescope, the mean square deviations increase with increasing 

distance of the vertex.   In the case of the 300-foot telescope, however, the biggest dela¬ 

tions are generally found in the neighborhood of the vertex. 

The measured target points within one ring-shaped zone represent approximately 

the same surface element.   If D 2 is the mean square deviation of the k^h zone, F,  the 

corresponding surface of this zone on the paraboloid, then the weighted mean square 

deviation is 

(12) D2 =  i £ D — *     -   2 F 
k     k 



I TABLE 1 

TELESCOPE 85-FOOT 300-FOOT 

Zenith angle z = 0° 90° 0° 30° 51° 23' 40,, 

N - number of 
independent 
measurements 

243 244 293 291 293 

Mean, value 
m = D 

-0. 009 mm 0.091 mm 0. 546 mm -0.041 mm -0, 229 mm 

RMS deviation 
s = {& 

3.164 mm 5.709 mm 10.717 mm 12.701 mm 9.466 mm 

Weighted RMS 
deviation ac¬ 
cording to eq. (13) 

2.751 mm 4.173 mm 12.437 mm 12. 627 mm 10.866 mm 
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Ruze has obtained equations (8a) and (8b) with the assumption of a constant iUumination of 

the reflector.   In practice, however, the primary feed pattern is tapered in order to re¬ 

duce spiUover, and to improve the sidelobe attenuation.   This means that a deviation at 

the edge of the reflector contributes much less to the gain reductionthan does the same 

deviation in the vicinity of the vertex.   Figure 7 shows the normalized primary pattern of 

two horn feeds used with the 85-foot telescope at 1.4 and 7.4 GHz.   The primary pattern 

of the two feeds used with the 300-foot telescope at 0.75 and 1.4 GHz, respectively, do not 

deviate much from this curve.   With the aid of these normalized patterns we may define 

the weight p,  for the k**1 zone.   Consequently, the weighted mean square deviation, con¬ 

sidering the taper, becomes 

k 

The square root of this value is listed in Table 1.   The numerical results are interesting 

because the RMS deviation is reduced by the weighting process in the case of the 85-foot 

telescope, whereas the RMS deviation of the 300-foot telescope is amplified by the weight¬ 

ing process. 

4.   Comparison Between Theory and Experimental Results 

a.   Defocusing 

The variation of the gain as a function of the axial position of the feed* s phase 

center has been measured with the 85-foot antenna at various frequencies.    Figures 8a 

and b show some results obtained at 4 and 6 cm wavelength', respectively.   The curves 

have been calculated from equation (la) for an aperture angle ip = 120° of the 85-foot 

paraboloid.   First the feed was adjusted for optimum gain (= maximum antenna tem¬ 

perature of a radio source).   Then the position of the feed was changed by known amounts 

Af     and the corresponding antenna temperature of the radio source was measured.   In 
ax 

Figures 8a and b the defocusing distance Af     has been normalized to the wavelength A, 
ax 

and the measured antenna temperatures have been normalized to the optimum antenna 

temperature of the source Af     = 0.   These results confirm the validity of equation (la), 
ax 
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at least for a defocusing range of t A, and show that for a small axial defocusing the gain 

depends only on the amount but not on the direction of defocusing.   Therefore, the focusing 

of the feed can be done very easily by measuring the gain variation curve and determining 

its symmetry axis. 

The effect of radial defocusing has been studied with the 3 00-foot telescope. 

Theoretical values for the beam factor have been obtained from Silver's curve [3] and from 

equation (3), respectively.   Equation (3) has been evaluated for a constant ampHtude illumina¬ 

tion (g (x) = 1] and for a normally tapered primary pattern ( g(o)/g(x ) = 14. 5 db).   The re¬ 

sults are compiled in Table 2. 

TABLE 2 

Beam factor B 

Silver [3] 0.885 

Kelleher, et al   [4] Q g26 

constant jiiuuination 

Tapered 14. 5 db 
down at the ed^e 

0.857 

Burke [7] 
experimental value 

0.873 

Burke's value has been obtained by displacing 
the feed at a certain well defined amount 
(w ± 2m20s in RA) and determining the passage 
time of Cas A. 

Considering the fact thai the tapering of the feed used in Burke's measurement is 

not known, the agreement between theory and experiment seems to be satisfactory.   The 

dependence of the gain on the radial defocusing of the feed has also been investigated with 

the 300-foot telescope.   To be independent of possible declination errors, the 300-foot 

antenna scanned the radio source in declination while tracking it continuously in RA. 

Figure 9 shows the results obtained for various radio sources.   Again the antenna tem¬ 

peratures of the sources, measured a.s a function of the beam angle 0 (which has been 

normalized to the antenna HPBW 0 »), have been normalized to the values measured at 
A 

zero deflection (0 = 0).    The theoretical curve has been obtained by extrapolating Silver's 
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curve [3] for a ratio f/D = 0.42 of the 85-foot antenna.   For the beam tilted towards the 

west, the measured points foUow approximately the theoretical values, whereas in the 

east the gain decreases more rapidly as predicted by theory.   The obvious symmetry in 

the gain curve may possibly be a result of an inclination of the feed axis with respect to 

the reflector axis. 

b.   Random deviations of the parabolic reflector 

The gain of the 85-foot antenna has been measured at four wavelengths between 

21 cm and 4 em, by measuring the antenna temperature of the radio source Cas A.   To 

calculate the effective antenna area the relation has been used 

T     /       0   \V2 
(14) A = 2k ^   l + -£§- 

v    \ E / 

Here k  =   1.38-  10-23 Ws/0K - the Boltzmann's constant 

T     = the maximum antenna temperature of the radio source 
A. 

0    = 3.7*-the HPBW of Cas A 

S    = the flux density of Cas A at the frequency v 

S   may be determined from the value S,   . . _„  = 247 •  10~25 W/m2Hz and the spectral 
v      J 1.44 GHz 

—0 78 
law Si/ v    '     ,  and 0    , 0    are the HPBW's in the main planes of the antenna. 

E       H 

The HPBW's of the antenna have been obtained from drift curves by applying a 

correction for the size of the radio sources used for these measurements.   By assuming 

a gaussian shape of the main beam of the antenna f =ecp^£2/(0. 6 ©  )2 - 7}2/(0. 6 0  )2 ]• 

the main beam solid angle can be calculated from the relation ft     =1.133 0„ 0TT.   The 
m E    H 

antenna solid angle can be obtained from Q =41253 * A2/(47r • A).   The main beam stray 

factor of the antenna is defined as 

(15) a    = / (f - f ) dfi/n = i - n  /n 
m      ATJ- m m 

where f means the true antenna pattern   f    the gaussian main beam pattern and 
m 

0 = / f • dfl the antenna solid angle.   It may be shown that the relation 
47r 

(16) G  =  Vl - fim) ^ 
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between the antenna gain G, main beam stray factor /3   , and main beam solid angle Q 
m m 

holds,   TJ— means the radiation efficiency which accounts for losses in the feed and 

reflector. 

The measured values for the 85-foot antenna and for the 300-foot antenna, respec¬ 

tively, have been compiled in Table 3. We have added in this Hst the efficiency at 1. 8 cm 

wavelength, which has been measured by Barrett [9] with a similar antenna. 

To compare these measurements with Ruze* s theory we first have to decide the 

correlation interval C (eq. 7), at which the deviations of the paraboloid become inde¬ 

pendent.   The contour map representation of the 85-foot reflector (Fig. 10) clearly shows 

that this correlation interval is large compared to all wavelengths A at which measure¬ 

ments have been made.   Therefore, the assumption C/A »1 seems to be justified, and 

we may calculate the gain reduction as a function of wavelength from equation (8b). 

For our purposes it is more convenient to rewrite equation (8a) in the form 
7?A(^) - V A   exp(-62), where 7?A(A) means the antenna efficiency as a function of wave- 

A "O **• 
length and 77     is the antenna efficiency of the ideal parabolic reflector.   To obtain this 

Ao 
value 77     the logarithm of the measured values ?]  (A) have been plotted against l/A2. 

Ao A 
The extrapolation of the curves give the following values: 

TABLE 4 

300-foot 
antenna 

c 
67% 

Using these values and the weighted RMS deviations of the antenna reflectors from 

TaJble 1, we have calculated the antenna efficiency as a function of wavelength and plotted 

the resulting curves in Figures 11a and b.   The measured values of the antenna efficiency 

from Table 3 have been inserted in the diagrams.   The accuracy of the antenna efficiency 

measurements have been estimated to be - 1E%.   The calculated and measured values of 

the antenn.i efficiency agree very well in the case of the 300-foot telescope; for the 85-foot 

telescope, however, the antenna efficiencies measured are higher than would be expected 

from the RMS deviations of the parabolic reflector. 



I TABLE 3 

85-FOOT ANTENNA 

Measurements Wavelength 
A/cm 

Antenna efficiency 

^A 

HPBW/min arc Solid angle Stray factor 

made by 
min. max. Antenna 

si/a 
Main beam 

SI   /o 
m 

Main beam 

Wade                   [8] 
Mezger 

21.1 0.58 
0.54 

35 
36 

35.8 
36.7 

4.8- 10"1 

5.1- lO"1 
3.9 • lO"1 

4.2 •  lO"1 
0.19 
0.18 

Wade                   [8] 10 0.52 15.7 15.9 1.2' 10"1 7. 9 • 10~2 0.34 

Mezger 6 0.45 10.8 10.8 5.9- 10"2 4.0 •  10"2 0.32 

Mezger 3.95 0.32 6.3 6.3 3.1* 10"2 1.2 •  10"2 0.61 

300-FOOT ANTENNA 

Wade [8] 40 0.59 18.5 18.5 1.4 • lO"1 1.1 •  10 -1 0.22 

Wade [8] 21.4 0.40 10.0 10.0 5.7 • 10"2 3.1*  10 -2 0.46 

* In Figure 11a an earlier incorrect value of 10 percent has been used. 
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5.   Discussion of the Results 

As we have pointed out in the preceding section, experiment and theory agree very 

well, if the fact is considered that equation (8b) gives the average gain reduction for a 

large number of antennas with the same RMS deviation of its reflectors.   To be able to 

compare the antenna efficiency measured at different wavelengths, the primary pattern 

of the feeds should be identical in all cases.   This assumption is approximately correct 

in our case with the exception of the measurement at 6 cm wavelength, where a feed with 

a special design for high gain and low spillover has been used. 

It is a striking feature in the case of the 85-foot antenna that the RMS deviation of 

the reflector increases more than 50% when the antenna is tilted from zenith to hori¬ 

zontal position, which leads to a large difference between the calculated antenna efficiency 

curves in Figure 11a. 

Since all efficiency measurements with radio sources have been done at relatively 

high elevation angles, it is comprehensible that the measured values are closer to the 

curve calculated for zenitlt position.   Not only the RMS deviation of the reflector, but also 

the focal length of the best fitting paraboloid, changes between the horizontal and zenith 

positions, as can be seen from Table 1.   The position of the vertex of the best fitting 

paraboloid moves along the z-axis from +6. 7 mm above the mechanical vertex (z = 0°) to 

-5.2 mm (z = 90°).   These changes of focal length and position of the focal point, together 

with the changes in the RMS deviation of the reflector as a function of the elevation angle 

of the antenna, should result in a considerable increase in gain if the antenna is tilted 

from zenith to the horizon, an effect which tends in the same direction as the extinction 

of the atmosphere.   No attempt has yet been made to measure the apparent extinction with 

the 85-foot telescope at a high frequency, and to separate the two effects. 

Some conclusions can be drawn from these results which may be applied to future 

large antennas.   Consider a RMS deviation of a parabolic reflector D^(r) which depends on 

the distance r (normalized so that r = 1 corresponds to the edge of the aperture) from the 

antenna axis, and a tapered primary feed pattern which can be represented by (1 - r2)P. 

Then equation (13) for the weighted RMS deviation can be rewritten in the form 

i 
2ir J (1 - r2)P W(r) r dr 

(17) D2 -  ■ 0—^  
2vr I (1 - r2)P1. dr 
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The weight function (1 - r2)pr reaches its maximum for 

'    ' rmax ~ /2p + 1 

-j        _ -i 

which gives the value (1 - r")      *     rn for the weight function. & v      2p + 1 ' V2p + 1 & 

This means, for example, that in the case p = 1 the RMS deviation at a distance 

r = 0. 58 contributes most of the gain reduction, whereas the RMS deviations at r = 0. 9 

andr = 0.1 contribute only with 45% and 26%, respectively, of the maximum value. 

Hence, larger RMS deviations may be allowed in these regions. 

As another application of the tolerance theory, let us consider a multifeed system 

at the NRAO 300-foot antenna with feeds spaced along NS direction.   Because of physical 

limitations the closest possible spacing of the horn feeds at 1400 Mhz is 25 cm.   With a 

focal length f = 39 m (Table 1), and a beam factor B = 0. 873 (Table 2), this feed spacing 

means an angular separation of the corresponding main beams of 

Af 
(20) 0      =   B   • arctg——1   =   0.873   •   22.07   =   19.25T 

7 sp f 

which is approximately two times the HPBW of the antenna (0    = 10f).   As may be seen 

from Figure 9 the theoretical gain reduction will be 2. 5% for the first feeds (spaced 

1 20  ) and 11% for the second feeds (spaced - 40  ) as referred to the gain of the center 
A A 

feed.   As also may be seen from the experimental values, the actual gain reduction may 

be considerably greater. 

An inspection of Table 3 shows that the decrease of efficiency with decreasing 

wavelength is accompanied by an increasing main beam stray factor.   This means that 

47r 
the main beam gain G      = -q    r— in equation (16) is hardly affected by the RMS devia- 

m li Si m 

tion of the reflector, but that the main beam stray factor B    which measures the energy 
m 

radiated (or received) outside the main beam increases with decreasing wavelength. 

This behavior has been predicted by tolerance theory [1],  [5].   Measurements at two 

frequencies with the 25-m telescope of the Bonn University [11] have shown that this 
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increase of the main beam stray factor is mainly caused by an increase of the sidelobe 

attenuation in the immediate neighborhood of the main beam.   This result is also in good 

agreement with the theoretical results obtained by Ruze and by Bracewell. 
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Figure 1.   Position of the Target Points on the 85-foot Reflector 
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Figure 10.     Contour map representation of the surface deviations of the 85-foot 
reflector from best fitting paraboloid measured in zenith position. 
Distances are measured in a direction normal to the reflector sur¬ 
face, positive direction towards the focal point.   Interval = . 005 ft. , 
1. 5 mm. 






