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COMPLEX MATH PACKAGE FOR APPLE II PLUS COMPUTERS 

S. Keller and L. D'Addario 

I. Introduction 

The complex math package extends Applesoft Basic to include the operations 

of adding, multiplying, dividing, and converting coordinate systems with complex 

numbers, as well as adding, subtracting, multiplying and inverting complex 

2-by-2 matrices. The routines are accessed through a basic CALL statement, with 

a special format to allow passing of parameters. In addition to eliminating 

the need for Basic subroutines to perform these operations, the execution times 

for these machine language routines are from 2 to 8 times faster than Basic. 

Two terms that will need defining are: 

1) Complex variable: two Applesoft floating point numbers (5 bytes each) 

which are adjacent in memory, with the first being interpreted as the 

real part and the second as the imaginary part of a complex number. 

Within Basic, the complex number must be part of an array; it is 

referenced by stating the array element which corresponds to the real 

part. 

2) Complex matrix: a set of complex variables which are adjacent in 

memory, stored row-by-row. That is, the first complex number is 

interpreted as being in the first row, first column of a matrix; 

the second number in the first row, second column; ...; and the last 

complex number is in the last row, last column. Within Basic, the 

matrix is referenced by stating the array element corresponding to 

the real part of the first matrix element. In this report, only 

2—by—2 matrices will be considered. 
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Note that these definitions are independent of the number of dimensions 

specified for the array in any DIM statement. Only the order of storage is 

important. (Page 137 of the Applesoft manual describes the order of storage 

for multi-dimensional arrays.) 

II. Calling Sequence 

Any of the subroutines can be invoked with an Applesoft Basic statement 

of the following form: 

CALL <address> <delim> <result> <delim> <first operand> [<delim> 

<second operand>] 

where <address> is an expression whose value is the entry point address 

of the subroutine to be invoked. 

<delim> is usually a comma, but may be nearly any single-byte 

token. Clever use of ,l+11, etc. as delimiters can 

make a program more readable, as shown later in examples, 

but the choice of delimiter characters has no effect on 

the operation of the subroutine. 

<result>, <first operand>, and <second operand> are the names of the 

Applesoft real array elements where a complex variable 

or matrix begins. The subroutines assume, without 

checking, that the rest of the complex variable or matrix 

immediately follows the specified element in memory. 

Two routines, POLAR and RECT, do not use the last <delim> and <second operan< 

In one routine, INV2X2 (which inverts a 2-by-2 complex matrix), "second operand" 

actually refers to a complex variable which will be set equal to the determinant 

of the matrix. 



-5- 

In all cases, <result> may be the same complex variable or matrix as one 

joth operands. 

These routines should only be used in deferred mode (i.e., within an 

Lesoft program), not immediate mode. 

III. Descriptions of Individual Subroutines 

1. Complex Add: CADD 

CALL 5141, <result>, <operandl>, <operand2> 

The complex sum of <operandl> and <operand2> is stored in <result>. 

2. Complex Multiply: CMUL 

CALL 5144, <result>, <operandl>, <operand2> 

The complex product of <operandl> and <operand2> is computed, 

then stored in <result>. 

3. Complex Divide: CDIV 

CALL 5147, <result>, <operandl>, <operand2> 

Complex <operandl> is divided by <operand2>, then the result is 

stored in <result>. 

4. Convert (real,imag) to (magnitude,phase): POLAR 

CALL 5150, <result>, <operand> 

In this routine, <operand> is a complex variable as usual, but 

<result> is an array element which will be set equal to the operand's 

magnitude; the very next array element will be set equal to the operand' 

phase in radians. The phase will be in the range [-tt/2, 3tt/2) ; thus, 

the unavoidable discontinuity in phase occurs at 3Tr/2. The computation 

performed is 

2 2 magnitude = SQR(real + imag ) 

phase = ATN(imag/real), real > 0 

\ (TT/2)*SGN(imag), real = 0 

V ATN(imag/real) + it, real < 0. 

where SQR, ATN and SGN are Applesoft functions. 
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5. Convert (magnitude, phase) to (real, imag): RECT 

CALL 5153, <result>, <operand> 

Here <operand> is an array element containing the magnitude of a 

complex number, with the next array element containing the phase in 

radians (as in POLAR). The phase need not be in the range [-tt/2, 3tt/2) 

The subroutine computes 

real = magnitude*COS(phase) 

imag = inagnitude*SIN(phase) 

using the Applesoft COS and SIN functions. 

6. 2-by-2 Complex Matrix Add: ADD2X2 

CALL 5159, <result>, <matrixl>, <matrix2> 

<matrixl> and <matrix2> are added, element by element. 

7. 2-by-2 Complex Matrix Subtract: SUB2X2 

CALL 5162, <result>, <matrixl>, <matrix 2> 

<matrix2> is subtracted from <matrixl>, element by element. 

8. 2-by-2 Complex Matrix Multiply: MUL2X2 

CALL 5165, <result>, <matrixl>, <matrix 2> 

The product of the two complex matrices is computed and placed in 

temporary storage. The product is then copied to <result>. This sub¬ 

routine uses CADD and CMUL. 

9. 2-by-2 Complex Matrix Invert: INV2X2 

CALL 5168, <inverse>, <matrix>, <determinant> 

First, the (complex) determinant of <matrix> is computed and place* 

in <determinant>. If the result is non-zero, the inverse of <matrix> 

is computed and placed in temporary storage, then copied to <inverse>. 

If the determinant is zero, all elements of <inverse> (both real and 

96 
imaginary parts) are set to +2 (a;7.9228E + 28). 
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If the matrix is 

"A B i 

G dJ 

then the determinant is d = AD-BC and the inverse is 

^D/d -B/d"" 

^-C/d A/d_ 

where A, B, C, D and d are complex. 

This subroutine uses CMUL and CDIV. 

IV. Memory Requirements and Addresses 

All of the Basic-callable subroutines, plus a utility routine for obtaining 

the passed parameters, must be assembled together because they call upon each 

other to some extent. They also depend on numerous routines in the Applesoft 

ROM, and therefore will not run in other environments (RAM Applesoft or Integer 

Basic, for example, although Applesoft in a RAM card should still work). 

The routines described here plus some others have been assembled into a 

single binary file which loads into addresses $1400 = 5120 through 

$1DBA = 7130. This file will be referred to as the NRAO Binary Library, 

Version 2.0. Table I gives a list of the length and entry point addresses for 

each routine. Locations $1400 through $14FE are reserved for JMP instructions to 

the actual entry points of the subroutines; Table I lists the location of the JMP 

to each routine under "Indirect Entry." It is recommended that Basic programs 

use these indirect entries in CALL statements, since the actual entry addresses 

may change in later versions of the library. 

Further information about the use of the Binary Library is given in 

a separate report [Internal Report No. 225]. 
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TABLE I. Entry Point Addresses in Binary Library Version 2.0 

Subroutine Name 

Length, Bytes Indirect Entry Actual Entry 

Hex Decimal Hex Decimal Hex Decimal 

CADD $41 65 $1415 5141 $1628 5672 

CMUL $85 133 $1418 5144 $1669 5737 

CDIV $D0 208 $141B 5147 $16EE 5870 

POLAR $C9 201 $141E 5150 $17BE 6078 

RECT $4E 78 $1421 5153 $1887 6279 

ADD2X2 </
> *1
 

79 $1427 5159 $191A 6426 

SUB2X2 $4F 79 $142A 5162 $1969 6505 

MUL2X2 $1D0 464 $142D 5165 $19B8 6584 

INV2X2 $1C1 449 $1430 5168 $1B88 7048 

V. Timing 

Table II gives the results of timing tests on each of the subroutines 

using a short Applesoft Basic program. In all cases, the arguments were non-ze] 

small integers and the complex variables and matrices started at the beginning 

of an array. The code timed was a loop of this form: 

10 AD = <address of subroutine's indirect entry> 

20 FOR I = 1 to 1500 

30 CALL AD, A(0) = B(0) + C(0) 

40 NEXT 

The time to execute the CALL statement was determined by subtracting the FOR-NE] 

overhead (separately determined) and dividing by the number of loops. 
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In some cases, a straightforward Basic subroutine was written to perform 

the same function, and its timing was measured for comparison. These results 

are also given in Table II. 

TABLE II. Subroutine Execution Times 

Subroutine Equivalent 
Subroutine Name Time, msec Basic time, msec 

CADD 10 

CMUL 17.5 35 

CD IV 26 126 

POLAR 'v 100 ^ 220 

RECT 62 72 

ADD2X2 16 76.5 

SUB2X2 17 

MUL2X2 62 380 

INV2X2 62 

VI. Examples and Suggestions 

As mentioned earlier, only the order of storage is significant in the arrays 

passed to the subroutines. Therefore, any of the following DIM statements will 

reserve space for a single 2-by-2 complex matrix (8 floating point numbers): 

DIM A(7) 

DIM B(l, 3) 

DIM C(l, 1, 1) 

Recall that the range of each subscript starts at 0. In the last example, the 

first subscript selects real or imaginary part; the second is the matrix column; 

and the third is the row. Furthermore, an array of 50 matrices could be reserved 

by these statements 

DIM X(399) 

DIM Y(7, 49) 

or others with up to 4 subscripts. The Kth matrix could be passed to a subroutine 
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by writing X(8*K) or Y(0,K) in the CALL statement. Calls with multidimensional 

arrays will execute more slowly than with one-dimensional arrays, but might 

result in clearer Basic code. 

It has been found that CALL statements execute fastest when the address is 

given as a simple real variable. Thus CALL ADR, where ADR has previously 

been set to the desired address, is preferable to CALL 5150, for example. 

The delimeters <delim> which separate elements of the CALL statement can 

be any single character which will not be interpreted by Applesoft Basic as 

part of a variable name or the end of the statement. The colon (:) and quote (") 

must be avoided, but =, *, +, / are useful in clarifying the code. The order of 

parameters in the subroutines has been chosen to facilitate this, as shown in the 

following example. 

10 DIM A(25), B(25), C(25), X(l) 

20 CADD = 5141 : CMUL = 51A4 

30 FOR I = 0 to 24 STEP 2 

40 CALL CMUL, X(0) = A(I)*B(I) 

50 CALL CADD, X(0) = X(0) + C(I) 

60 PRINT X(0), X(l) 

70 NEXT 

Notice in the above example that X is both an operand and the result in 

line 50. All of the subroutines allow this by placing the result in temporary 

storage (when necessary) until the computation is complete. 


