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Summary 

There are in use at present three different ways of deducing the 
receiver noise temperature TR from the measured Y-factor, each resulting in a 
different value of TR. The methods differ in the way the physical 
temperatures of the hot & cold loads, Th and Tc (usually room temperature and 
liquid nitrogen), are converted into radiated power "temperatures" to deduce 
Tr from Y. Only one of these methods is consistent with Tucker's quantum 
mixer theory and the constraints of Heisenberg's uncertainty principle. 

Introduction 

After talking to people at the 1996 Symposium on Space Terahertz 
Technology, it was clear that there was some confusion, or at least difference 
of opinion, on how to deduce the noise temperature of a receiver from the 
measured Y-factor. There was also disagreement on the fundamental quantum 
noise limit of single- and double-sideband mixer receivers. With the (DSB) 
noise temperatures of the best SIS receivers now approaching 2hf/k (~30 K at 
300 GHz), these questions need to be resolved. This note compares the three 
interpretations of the Y-factor measurement currently in use, and discusses 
the fundamental quantum limit on the sensitivity of coherent receivers. 

The Y-factor Method 

In a Y-factor measurement, two noise sources are connected individually 
to the receiver input, and the ratio, Y, of the receiver output powers is 
measured. From the Y-factor the intrinsic noise of the receiver can be 
deduced, either as an equivalent input noise power or as an equivalent input 
noise temperature. While noise temperatures are most commonly used, the 
discussion will be clearer if we consider noise powers initially. 

Let Pn be the equivalent input noise power of the receiver in a 
bandwidth B, the measurement bandwidth. B is defined by a bandpass filter at 
the receiver output (for a coherent receiver (e.g., amplifier or mixer) an 
input filter is unnecessary) . With a power Pin incident on the receiver in 

bandwidth B, the measured output power of the receiver Pout = G|pn + Pin j, 

where G is the gain of the receiver. With hot and cold loads in front of the 
receiver the measured Y-factor is: 

P n + Pw 
p n + P <l> c r cold 

Y =  ' hot 

The equivalent input noise power is found by inverting this equation: 

P - Y P p n _ hot cold tO\ 
Y - 1 1 ' 



Frequently the hot and cold loads are simply black-body radiators (well 
matched waveguide or free-space loads) heated or cooled to accurately known 
physical temperatures Thot and Tcold. 

Power Radiated bv a Black Body 

The Planck radiation law is often used to calculate the thermal noise 
power in a bandwidth B about frequency f (B « f), radiated into a single mode 
(e.g., a waveguide mode), by a black body at physical temperature T: 

p Planck _ Jripg 
hf 
kT 
hf exp 
kT 

-1 
(3) 

where, h and k are the Planck and Boltzmann constants. In the present 
context, a more complete description is given by the dissipation-fluctuation 
theorem, or generalized Nyquist theorem, of Callen & Welton [1]: 

pc&w _ kTB 

hf 
kT + hfB 
hf 2 exp 
kT 

-1 (4) 

hfB l-U  coth {—) ■ ^ 2kT) 

This is simply the Planck formula with an additional half photon per Hz, 
hfB/2, and it is this additional half photon, the zero-point fluctuation 
noise, that is the source of some confusion. Some authors believe that the 
zero-point fluctuations should be excluded from consideration of noise powers 
because they do not represent exchangeable power. However, the view of 
Devyatov et al. [2] is that, although the zero-point fluctuations deliver no 
real power, the receiver nevertheless "...develops these quantum fluctuations 
to quite measurable fluctuations..." at its output. The zero-point 
fluctuations, they argue, should be associated with the incoming radiation and 
not with the receiver itself: at the receiver input "...one can imagine two 
zero-point fluctuation waves propagating in opposite directions..." with no 
net power flow. 

It is interesting to note [3] that in the limit of small hf/kT, it is 
the Callen and Welton formula (4) which gives the Rayleigh-Jeans result 
P = kTB, while the Planck formula (3) gives P = kTB - hfB/2, half a photon 
below the Rayleigh-Jeans result. 
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Noise Temperatures 

The noise power Pn in a bandwidth B is conveniently represented by a 
noise temperature Tn = Pn/kB. The noise temperature is simply a shorthand 
notation for the noise power per unit bandwidth. The noise temperature of a 
black body radiator at physical temperature T is obtained from the noise powei 
(3, 4) as: 

iPlanck _ 
hf 
kT 
hf exp 
kT 

-1 
(5) 

iC&W _ = T 

hf 
kT 
hf exp 
kT 

-1 

hf 
2k 

hf 
2k 

cothfJH) 
{ 2kTJ 

(6) 

These expressions differ by the zero-point fluctuation noise temperature, 
hf/2k, whose magnitude is 0.024 K per GHz. In the Rayleigh-Jeans limit of 
small hf/kT, the noise temperature based on the Callen & Welton formula 
approaches the physical temperature of the black body (T c&w T) , while the 
noise temperature based on the Planck formula is half a photon below the 
physical temperature (Tplanck: -► T - hf/2k) . Fig. 1 shows Tn evaluated 
according to (5) and (6), as functions of the physical temperature T of the 
black body, for a frequency of 230 GHz. Also shown are the differences 
between T^lanclc, tC&w^ ancj .pRj^ 
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Fig.l. Noise temperature vs physical temperature for black body radiators at 230 GHz, according to the Rayleigh-Jeans, 
Planck, and Callen & Welton laws. Also shown (broken lines) are the differences between the three radiation curves. The 
Rayleigh-Jeans curve converges to the Callen & Welton curve at high temperature, while the Planck curve is always hf/2k 
below the Callen & Welton curve. 
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Receiver noise temperature from the Y-factor 

Equation (2) for the equivalent input noise power of a receiver can be 
written in terms of noise temperatures using Tn = Pn/kB. Thus the equivalent 
input noise temperature1 of the receiver. 

m n _ Y m n 
T n = hot cold 

R Y - 1 

Three different interpretations of this equation are in use at present. They 
differ in the values of Th^t and T^ld assumed for the hot and cold loads at 
physical temperatures Thot and Tcold. Most often, the Rayleigh-Jeans formula 
is used, in which Th"t and TCold are equal to the physical temperatures. Some 
workers use the Planck formula (5), while others use the Callen & Welton 
formula (6). The three approaches result in three different values of TR

n, 
which we denote TR

RJ, TR
planc,c, and TR

C&W: 

T - Y T 
TKJ = hot^ ^ ^ cold f (8) 

Y - 1 
and 

mCiW _ VmCtW 
^ K/-V+- * A ^ 

m Planck _ y T 
Planck _ hot * cold , % 
R ~  r: «  t 

T"
w = -JS ™ . (10) 

Y - 1 

It will become clear in the following sections that only eq.(10) gives a 
receiver noise temperature consistent with quantum mixer theory [4] and the 
constraints of the uncertainty principle. 

For a given value of Y, the difference between the Planck and Callen & 
Welton formulas (9, 10) is just half a photon: 

m Planck _ m C4W hf 
tR - tR + 2k • <11» 

This constant half photon difference is independent of the hot and cold load 
temperatures. The difference between the Rayleigh-Jeans and Callen & Welton 
formulas (8, 10) depends on the physical temperatures of the hot and cold 
loads, and on frequency. Fig. 2 shows the receiver noise temperature, 
calculated according to eqs. (8-10), as a function of Y-factor for a 230 GHz 
receiver, measured with hot and cold loads at physical temperatures 300 K and 
77 K. The small difference between the Rayleigh-Jeans and Callen & Welton 
results is shown by the dashed curve and referred to the right-hand scale. 
The negative receiver noise temperatures correspond to physically impossible 
values of the Y-factor. The physical limits on TR

n will be discussed below. 

This definition of receiver noise temperature is now generally accepted in the millimeter and submillimeter receiver community. 
There are two older definitions of receiver noise temperature which are based on hypothetical measurements rather than on the simple 
Y-factor measurement: (i) The physical temperature of the input termination of a hypothetical noise-free device, which would result in the 
same output noise power as the actual device connected to a noise-free input termination, (ii) The physical temperature of the input 
termination required to double the output noise of the same receiver with its input termination at absolute zero temperature. Using either 
of these older definitions causes further complications, beyond the scope of this paper. This question was dealt with at length in [5]. 
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The difference between receiver noise temperatures obtained using the 
Rayleigh-Jeans and Callen & Welton laws is not always as small as in the 
example in Fig. 2. Only if hf/kT « 1 for the hot and cold loads will Tj^ « 
Tr4W. For example, if a 230 GHz receiver were measured using 4 K and room 
temperature loads, hf/kTcold = 2.8, and Tjf"7 is ~2.3 K larger than t£6W. 
Another example is an 800 GHz receiver measured using 77 K and room 
temperature loads; then hf/kTcolcj = 0.5, and Tj^ would be ~2.0 K larger than 
m C&W AR 

So far there has been no mention of single- or double-sideband 
operation. That is because the above discussion applies to both SSB and DSB 
receivers; a Y-factor measurement on a SSB or DSB receiver gives, via equation 
(7), the SSB or DSB receiver noise temperature. 

3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 
Y-factor 

Fig. 2. Receiver noise temperature as a function of Y-factor for a 230 GHz receiver measured with Thot = 300 K and TCO|d = 77 
K. The Rayleigh-Jeans curve is obtained when the hot and cold load noise temperatures are equal to their physical 
temperatures. The Planck and Callen & Welton curves are obtained using equations (5) and(6) for the hot and cold load noise 
temperatures. The small difference between the Planck and Callen & Welton curves is indicated by the dashed line (right- 
hand scale). 
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Single- and Double- Sideband Mixer Receivers 

Mixer receivers can operate in several modes, depending on the 
configuration of the receiver and the nature of the measurement. In single- 
sideband operation, the receiver is configured so that, at the image sideband, 
the mixer is connected to a termination within the receiver. There is no 
external connection to the image frequency, and the complete receiver is 
functionally equivalent to an amplifier followed by a frequency converter. In 
double-sideband operation, on the other hand, the mixer is connected to the 
same input port at both upper and lower sidebands. A DSB receiver can be used 
in two modes: (i) to measure narrow-band signals contained entirely within one 
sideband — this is SSB operation of a DSB receiver. For detection of such 
narrow-band signals, power collected in the image band of a DSB receiver 
degrades the measurement sensitivity. And (ii), to measure broadband (or 
continuum) sources whose spectrum covers both sidebands — this is DSB 
operation of a DSB receiver. For continuum radiometry, the additional signal 
power collected in the image band of a DSB receiver improves the measurement 
sensitivity. 

A Y-factor measurement on a DSB receiver, interpreted according to eq. 
(7), gives the so-called DSB receiver noise temperature. This is the most 
commonly quoted noise temperature for mixer receivers because it is easy to 
measure. It is also common to derive a SSB noise temperature (for a DSB 
receiver) by measuring the sideband gains, and referring all the receiver 
noise to a single sideband, the signal sideband. Then, for the DSB receiver. 

m 11 = m 11 
AR,SSB R, DSB 1 + 

G. 
(12) 

where Gs and are the receiver gains at the signal and image frequencies2, 
measured from the hot/cold load input port. If the upper and lower sideband 
gains are equal, TR"SSB = 2TR"DSB. If Gi « Gs, the Y-factor measurement 

directly gives TR^SSB. When a DSB mixer receiver is used to receive a narrow¬ 

band signal contained entirely within one sideband, noise from the image band 
contributes to the output of the receiver. The overall SSB system noise 
temperature 

■sys,SSB kBG. 
= T " + T/ 

/ \ 
G, 

+ T R, SSB 
(13) 

_ ip " ip n ' G.X 

+ T R, DSB G. 

where Tg11 and Tj^" are the noise temperatures of the signal and image 
terminations. 

2 For simplicity, we assume there is no significant conversion of higher harmonic sideband signals present at the input port. If the 
receiver gain is not negligible at frequencies nf, n i f.p, n > 1, then additional terms of the form GJG- must be added in the parentheses 
on the right side of eq. (12). 

6 



Fundamental Limits on TR 

The fundamental limits imposed by the Heisenberg uncertainty principle 
on the noise of amplifiers, parametric amplifiers, and mixer receivers have 
been studied by a number of authors over the last thirty five years, and their 
work is reviewed, with particular attention to mixer receivers, in [5] and 
[6]. The following general statement can be made: The minimum output noise 
power of a measurement system using a mixer receiver, SSB or DSB, is hf (i.e. 
one photon) per unit bandwidth, referred to one sideband at the receiver 
input. Hence, the minimum system noise temperature is hf/k referred to one 
sideband at the receiver input — exactly the same result as for a system 
incorporating an amplifier. The origin of this quantum noise has been much 
discussed [7, 3, 5, 6], and will be explained with the aid of Figs. 3 and 4, 
which depict four minimum-noise measurement systems using mixer receivers. 

Fig. 3 shows two SSB receivers, 3(a) with a short-circuited image, and 
3(b) with an image-frequency termination equal to the signal source 
resistance. For both 3(a) and 3(b), Tucker's quanttun mixer theory predicts 
[4, 5, 8] a minimum receiver noise temperature of hf/2k. In 3(a) the zero- 
point fluctuations associated with the input termination (at 0 K) contribute 
half a photon (hf/2k) to the overall system noise temperature, and the mixer 
contributes the remaining half photon , which can be shown to originate in the 
electron shot noise in the mixer. In (b), the zero-point fluctuations 
associated with the signal source and (internal) image termination each 
contribute half a photon, which accounts for all the system noise; the mixer 
itself contributes no noise, which is exactly the result obtained from mixer 
theory. Here, the down-converted components of the mixer shot noise exactly 
cancel the IF component, with which they are correlated, a result well known 
in classical mixer theory. 

Fig. 4 shows a DSB mixer receiver used in two different measurement 
modes: 4(a) to measure a signal present only in one sideband (the SSB mode for 
a DSB receiver), and 4(b) to measure a broadband signal present in both 
sidebands (the DSB or continuum mode). In 4(a), zero-point fluctuations 
associated with the input termination (at 0 K) contribute half a photon 
(hf/2k) in each sideband, and the mixer need contribute no noise, consistent 
with mixer theory. The same is true in 4(b), in which the presence of the 
signal in both sidebands doubles the signal power at the output of the system, 
and the signal-to-noise ratio at the output is twice that of the SSB receivers 
in Fig. 3. It is this apparent doubling of the receiver gain that leads to 
the concept of the DSB gain, GDSB = 2G (provided the signal and image gains 
are equal, i.e., Gs = = G). 

It is clear from Figs. 3 and 4 that the minimum receiver noise 
temperatures for SSB and DSB receivers are, respectively, hf/2k and zero. The 
minimum system noise temperature, on the other hand, depends on the nature of 
the particular measurement; for SSB measurements using either SSB or DSB 
receivers, the minimum system noise temperature is hf/k, while for broadband 
continuum measurements using a DSB receiver, the minimum (DSB) system noise 
temperature is hf/2k. 

From the discussion above, it is clear that in all computations of 
receiver or system noise temperatures, the zero-point fluctuations associated 
with resistive terminations at the signal and image frequencies must be 
included. Equations (4) and (6) must therefore be used in calculating noise 
powers or temperatures, and the receiver noise temperature must be obtained 
from the Y-factor according to eq.(10), in which the Callen & Welton law is 
used for the noise temperature of hot and cold loads. 
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SYSTEM 

SSB RECEIVER 
At T = 0 K 

Source R 

T . = hi/2k R.min ' Receiver gains Gs = G , Gj = 0 

T , . = G.hf/k out.mm ' 

T . = hf/k $ys,min 

MINIMUM NOISE TEMPERATURES FOR AN SSB RECEIVER WITH S/C IMAGE TERMINATION 

Fig. 3(a) 

SYSTEM 

SSB RECEIVER 
At T = 0 K 

hf/2k |Ma6E 

MIXER if 

Source R. hf/2k 

T" . = hf/2k R.min Receiver gains Gs = G , G; = 0 

T = G.hf/k out,mm ' 

Tn . = hf/k sys.mm 

MINIMUM NOISE TEMPERATURES FOR AN SSB RECEIVER WITH RESISTIVE IMAGE TERMINATION 

Fig. 3(b) 
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MINIMUM NOISE TEMPERATURES FOR A DSB RECEIVER 
Narrow—Bond (SSB) Measurements 

Fig. 4(a) 

Source noise in both 
sidebands. 
Desired signal in W(0 both sidebands. 

LO 

Source R. 

T = 0 R.DSB.min 

SYSTEM 

DSB RECEIVER 
At T = 0 K 

hf/2k 

hf/2k 

IMAGE 

MIXER IF 

SIGNAL 

Receiver gains Gs = G; = G 

T = G.hf/k out,mm ' 

T" ncn . = hf/2l sys.DSB.mm 

MINIMUM NOISE TEMPERATURES FOR A DSB RECEIVER 
Continuum (DSB) Measurements 

Fig. 4(b) 
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It is appropriate here to address the question of how to compare SSB and 
DSB receivers: should a DSB receiver be judged against a SSB receiver by 
comparing their SSB and/or DSB receiver noise temperatures (for the DSB 
receiver with equal sideband gains, TR"SSB = 2TR"DSB)? The answer depends on 

the application. The mode of the measurement (i.e., narrow-band or 
broadband) must be specified, and in the case of broadband measurements, also 
the source noise temperature at the signal and image frequencies. This 
enables the appropriate system noise temperatures to be calculated and 
compared. When the context is broadband (continuum) radiometry, simply 
comparing the (SSB) receiver noise temperature of an SSB receiver with the DSB 
receiver noise temperature of a DSB receiver is appropriate, but when narrow¬ 
band (SSB) signals are to be measured no such simple comparison is meaningful. 

Conclusion 

Tucker's quantum mixer theory predicts a minimum receiver noise 
temperature of hf/2k for a SSB receiver, and zero for a DSB receiver, results 
which are consistent with the limitations imposed by the Heisenberg 
uncertainty principle. With signal (and image) sources at absolute zero 
temperature, the minimum receiver output noise, referred to the input (and, in 
the case of a DSB receiver, referred to one sideband) is hf/k, twice the zero- 
point fluctuation noise. To be consistent with this, the Callen & Welton law 
(eq.(6)) and not the Planck law (eq.(5)) must be used in deriving the required 
source noise temperatures. This ensures that the zero-point fluctuation noise 
associated with the source is included at the input, and in both sidebands in 
the case of a DSB mixer. 

For many practical cases, the Rayleigh-Jeans law is a close 
approximation to the Callen & Welton law, and eq. (7) with Tn = T can often be 
used with insignificant error. When using liquid nitrogen and room 
temperature black-bodies in measuring the Y-factor, little error is incurred 
at frequencies up to ~ 1 THz. 

Use of the Planck law (eq.(5)) for the hot- and cold-load noise 
temperatures in deriving receiver noise temperatures from measured Y-factors, 
is inappropriate, and results in receiver noise temperatures higher by half a 
photon (hf/2k) than they should be (7,2 K at 300 GHz). 
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