

ELECTRONICS DIVISION TECHNICAL NOTE NO. 103

TITLE: Microcomputer Time Trials

AUTHOR(S): R. Fisher and D. Schiebel

DATE: December 24, 1981

As part of the decision on the best way to duplicate/update the Digital Continuum Receiver we have run some tests on computing speed of two typical microcomputers to see if the much higher cost of the HP9825A is justified. The attached table shows the results.

The HPL and BASIC languages are based on interpreter systems so program changes are very easy in both languages although HPL is slightly more cryptic. By their very nature, interpreters are relatively slow compared to precompiled FORTRAN or assembly systems as can be seen in the Cromemco BASIC & FORTRAN times. However, FORTRAN program changes are more tedious because the edited text must be compiled and linked every time a change is made. On the Cromemco single disk system this took a few minutes.

Also attached to this note is a list of computing times for a bench mark program composed by John Granlund and run on a wider variety of calculating machines.

The HP9825A is still the fastest interpreter based system that we have tried. The Modcomp/BASIC time in John's table shows that going to a bigger machine won't help the speed of an interpreter much. The only way to really speed up the DCR would be to go to a compiler system on a 16-bit machine.

Integration times of 0.1s to 0.2s are possible with the HP9825A for 2 to 4 channel systems without too many bells and whistles such as ΔT rms. With more software and display features the integration times are typically 0.3s to 0.4s which are adequate for most continuum work. Four channel, 0.1s integration observing could be handled with a stripped-down HPL program which does a mininum amount of arithmetic on the data. The Apple and Z-80/BASIC systems would be too slow for the DCR.

Attachment:

Table: Function execution times in long loops for several microcomputers, R. Fisher. Comparison of Computation Times, J. Granlund.

Distribution:

GB Library

CV Library

VLA Library

TUC Downtown File

Mountain File

- M. Balister
- W. Brundage
- C. Burgess
- J. Coe
- F. Crews
- M. Damashek
- H. Hvatum
- P. Napier
- R. Norrod
- J. Payne
- B. Vance
- R. Weimer
- S. Weinreb
- J. Granlund

TABLE: FUNCTION EXECUTION TIMES IN LONG LOOPS FOR SEVERAL MICROCOMPUTERS
R. Fisher, 23 December 1981

R. Fisher, 23 December 1981							
	BASIC HPL Cromemoo 2-87 48K HP Cromemoo 2-87			clock			
	apple II+		i -	FORTRAN			
for I=1 to 10000 next I	135	6 5	95	<1 ^s			
X=2; Y=50 for I=1To 10000 Z=X+Y next I	* 44		44	_7. <i>5</i>			
X=2; Y=50 for I=1t 10000 ? Z=X+Y mext I	36	13	35	<i>4,</i> 2_			
X=20 for I=1 to 10000 * SEE Y=5QR(X) mext I	~ 540	35	500	124			
X=2 for $I=1$ to 2000 $Z=SIN(X)$ next I	54	28	9.3	21			
X=2 for I=1 to 10 000 if X>32000; Y=32000 ? next I	75	/2	28	5.5			
X = 33000 for I = 1 To 10000 BX>32000; Y=32000 next I	125	15	36	5.5			
R= I for I = 1 to 10000 PRINT X; "NUMBERS" mext I	323	28	19K Band 125	19K Brand 125			

			Come	ا جومید	
	apple	HP	BASIC	FORTMAN	
x=2.6	·			1	
for I = 1 To 10000	5015	215	11505	155	
y = X * * 2					
next I				-	
X = 2.6			244		
for I = 1 to 2000	107	36	47 T	50	
Y = X ** 2.6 mext I					
x = 2.6		•			
for I=1722000	73	16	\$ 58	28	
Y = en x					
nextI					
X=2; Y=50	~~	h h	51	20	
for I=1 to 10000 *	57	15	<i>J</i> /	20	
Z=X/Y next I					
* = commonly used	in Digi	tal Cont	muum	Receiv	ez.
0	Ø				
			<u>.</u>		

J've just had the pleasure of comparing the times. required by various computers and associated programming languages to solve the same problem. The problem is to determine the prime factors of an input integer. The integer ... was chosen to be __ 1,000,003 , itself a prime number ... In - this case, the major computational effort is the execution -- increments -- and a minimum of data shuffling are also required. Scores are listed below:

Computer	Language	Operator	Time (seconds)
_HP.35		J. Granlund :	3600
HP 67 programmable	machine	. V. Granlund	9 20
HP 9830 A	Basic	J. Granfund	58
Mod comp	Basic	B. Rayhrer	
V 77 - 400	Basic	A. Shalloway	7.
HP 9825 A	HPL	R. Fisher	6
Mod comp	Fortran IV	B. Rayhrer	< 0.2

For the Varian and the Modcomp, and I suppose also for the HP 9830A, programs written in Basic are assembled one step at a time into machine language; but programs written in Fortran for the Varian or the Modesmp are completely assembled in machine language before the program is run. As can be seen from Benno's two runs, it can be very wasteful to write a program in Basic for a high -speed computer.

JOHN GRANLUND