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1.    Introduction 

TCHEBx is a design tool for the synthesis of homogenous stepped transformer prototypes with 
Tchebyshev weights. This set of subroutines is a straightforward implementation with first order 
accuracy in the junction reflection coefficients [4, 5, 12. 15]. The user specifies the desired bandpass 
foi < f < fo2 relative to the cutoff frequency /c, the number of transformer sections JV, and 
the desired input and output guide dimensions. The transformer dimensions computed with the 
algorithm agree 1 with those obtained with the tables of Matthaei, Young, and Jones [8] to a few 
parts in 104. Design examples are given along with typical measured data. 

2.    Rectangular Waveguide Transformers 

A homogenous TE°0 transformer has a constant broad wall dimension, a0, and varying guide heights, 
bi (see Figure 1). The constant broadwall dimension results in a guide dispersion along the direction 
of propagation which is independent of position or "homogeneous" throughout the structure. The 
steps in guide height are used to produce the desired reflection amplitude taper. The section lengths 
are nominally 

/oSA,0/4=      "'A7X'    x, (1) 

where Xgi and A52 are the guide wavelengths evaluated at the band edges. Thus, the structure is 
synchronously tuned at frequency 

'-''-* f+W- (2) 

The number of sections JV, normalized fractional bandwidth 

and transformer impedance ratio 

R0 = ZN+I/Z0 = bx+i/b0, (4) 

^f higher precision is required, for JV < 6 sections, Alison's [1] polynomial evaluation of the junction 
weights is recommended. One cautionary note in the limit of vanishing reflection coefficient magnitude: the 
reflection due to the junction discontinuity must be small compared to the reflection due to the impedance 
step for the first order treatment to be valid. In practice, this limitation can be circumvented by synthesizing 
the desired junction reflection coefficients by successive approximation or gradient search (see, e.g., [3]). 



determine the voltage standing wave ratio of the transition over the pass band. For a Tchebyshev 
taper, the maximum in band reflection is approximately 

VSWR ~ 1 + IR(R0 

•V Vcos(^o)/ 
<1 + 

MRo) 
(5) 

where Tpt is a Tchebyshev polynomial of order JV, <f>0 = (2 - wq)ir/4 is the electrical length at the 
lower band edge, <f> is the electrical phase between steps, and it is assumed R0 < (2/wq)

N/2 [8]. 
The non-ideal performance of the step junctions is compensated by correcting the section lengths 
[4, 8, 14] as outhned in Section 3. An example input data file and the resulting design are outlined 
in Section 4. The performance of typical designs is presented in Figure 4. 

3.    Transformer Section Length Estimates 

For a small E-plane step, the discontinuity in waveguide cross-section only has a second order effect 
on the junction VSWR. The presence of the discontinuity is equivalent to an additional phase shift. 
To minimize the total junction reactance, symmetrical steps are preferred. 

For an H-plane step, in addition to the phase perturbation introduced by the non-ideal junction, 
there can be a significant perturbation on the junction reflection coefficient [16]. The presence of 
the step increases the effective impedance ratio between the two guides. If H-plane steps > 10% 
are used, the first order treatment fails. As the guide approaches cutoff, larger H-plane steps can 
be accommodated. 

If both E- and H-plane steps are required, the total energy stored at the junction should be mini¬ 
mized. This will reduce the loss and dispersion [8, p. 344]. The normalized junction susceptances 
are computed as follows (see Figure 2): 

(a) Susceptance of an Abrupt E-Plane Step [7, (pp. 307-310)]: 

_BEi      2bif(3\ 21nM  , i  ,  17/6.- 
I-P 16 \xg 

where /? = (!- 6t_i/6t) < 1, and Xg = 2A5t_iA5i/(A5t_i + Xgi] 
Xg = Xg01 in each section. 

(b) Susceptance of an Abrupt H-Plane Step [7, (pp. 296-304) 2]: 

"2/i   ,   ^M^   2 

+ .... (6) 

In a homogenous structure, 

bm = Yi   ~    2ax 1 1 - - x       2 

27 / (?,-! + Qj 
"8   ll + 81nA 

+ ..., (7) 

2Consider Equation 1c [7] in the limit where the two guides have approximately the same broadwall 
dimension a ~ a' (i.e., 0 = 1 — a'/a —* 0). The impedance ratio for the two guides should reduce to 

Z0 

(rjb'X'/a'Xo)      aX' 
— 9 

(TjbXg/aX0)        a'X, 

where Xg and A' are the guide wavelengths in the two rectangular sections (see [7], Figure 5.24-1). This 
would suggests that X'ga'/Xga should be replaced by X'galXga' in Equations la, lb. and 1c. Also, see the 
discussion in [9]. 



where a = (1 - at_1/at) < 1, Q = 1 - yj 1 - (2a/3A0)2, and A0 is the free-space wavelength 
which corresponds to the transformer synchronous frequency. For a pure H-plane step, we note 
the following: the effective impedance ratio is greater than the ratio of the section's characteristic 
impedances [9]. In addition, the guide wavelength changes and the terminal plane shifts out of the 
plane of the junction. These undesirable effects provide a strong motivation to keep a as small as 
possible. In order for the transformer sections to maintain the desired phase relationship over the 
design bandwidth, an approximately homogenous structure is desirable. 

The reference plane corrections to the section lengths are applied by uniformly weighting the 
junction's susceptance due to the E- and H-plane steps. With this convention, the corrected length 
of the ith section can be approximated by 

U ^i U _ 1 (i^- + ty+|.+1 _ |^- _ ^+|.)) +..., (8) 

as described in [8], where the phase shift 

8<i>f ~ - tan 1 \bEi\ - \bHi\ + (9) 

is small compared to one radian. This physically corresponds to weighting the first order phase shift 
for each plane by its stored energy. For a homogenous rectangular transformer, there are no steps in 
guide width and b^ = 0. In a transformer with inhomogenous cross-section, the capacitance due to 
changes in height can be compensated by corresponding inductive steps in width at each junction 
[3, 20]. It is important to keep in mind, however, for this simplistic circuit model to approximate 
reahty, the impedance ratio resulting from the H-plane steps must essentially be unity. Further 
refinement of the transformer's response can be realized through the use of a full-wave analysis for 
optimization (see, e.g., [2, 11]). 

4.    TCHEBx:   Homogenous Transformer Design Example 

(a) Input Data File:   TCHEBx-IN 

4    0.4200 0.1700 0.4200 1.2200 1.9800 

(b) Output Data File:   TCHEBx-OUT 

Number of sections (N) 
Lower band edge (fol/fc) 
Upper band edge (fo2/fc) 

4 
1.22000 
1.98000 

Design frequency (fo/fc) 
Fractional bandwidth (wq) 

Transformer impedance ratio (Ro) 
Max in-band VSWR (VSWR) 

1.56504 
0.83900 

2.47059 
1.02472 



TCHEBx-F: Transformer Dimensions 

Section Width Height Length 

(i) (ai) (bi) (li) 

0 0.42000 0.17000 0.17443 

1 0.42000 0.18563 0.16774 

2 0.42000 0.23129 0.16583 

3 0.42000 0.30870 0.16884 

4 0.42000 0.38464 0.17820 

5.    Rectangular-to-Circular Waveguide Transitions 

Let us briefly consider the TE°0 — to — TEjj waveguide transition reported in the literature by 
Bathker [25]. This transition plays two roles—it acts as a mode converter and it transforms the 
impedance level between the two guides. The transition is designed as follows: To minimize the 
effect of guide dispersion between the sections and simplify the design, a constant cutoff is main¬ 
tained throughout the structure. For the rectangular and circular guides, the cutoff wavelengths 
for the dominant modes are Ac(TE°o) = 2a and A^TEIJ) = 2icr/.sii, respectively, where a is the 
rectangular guide broadwall dimension, r is the cylindrical guide radius, and sn = 1.841184 (see 
Figure 3). Equating the input and output cutoff wavelengths, we obtain the constant cutoff radius, 
fpyle = a0sii/7r [23]. 

The normahzed rectangular waveguide impedance in the power-voltage basis is Zi = 2&t-/a,-, where 
at and &,- are respectively the ith section's width and height. For sections with truncated corners 3. 
the height and width are varied with constant section impedance while searching for the cross- 
section which maintains a constant cutoff in the structure. We use the Rayleigh-Ritz procedure 
[10] to numerically estimate the eigenvalues in the truncated sections. To minimize the error in 
the eigenvalue determination, the dominant mode rectangular guide eigenfunction is used as the 
trail function for sections i = 2,3 and the dominant cylindrical eigenfunction is used for i = 4. 
Bathker's measured data is presented in Figure 5 along with a finite element calculation of the 
reported structure's return loss. The results of the synthesis outhne here are also displayed and are 
referred to as "Corrected Eigenvalue" in the figure. The normalized dimensions for both transition 
designs are given in Table 1. 

This algorithm is unable to exactly reproduce the dimensions given in Bathker's Table 1. Several 
comments are in order: 1.) For a R0 = 2.0 transformer ratio and normalized fraction bandwidth of 
wq = 0.8, the observed response is 12 to 18 dB higher than the sidelobe level in an ideal Tchebyshev 

taper. In addition, the response does not have the correct placement of the nulls and maxima in the 
passband (i.e., there should be iV = 4 zeros—the data suggest that significant phase and amplitude 

3The corners are truncated if the width and height for the itA section exceed the boundary defined by 
the circular waveguide, rpyle < (o,72)2 + (&i/2)2 [26].   Inserting the expression for the normalized guide 

impedance, we find for Zt/2 > y(2sna0/irai)~ — 1 ~ 0.61. the transformer sections are truncated. 



TABLE 1 

STEPPED TEf0 - to- TE^ WAVEGUIDE TRANSITIONS 

Section Width Height Length Cross-section 
i a. 6, /,■ 

Type 

[ad M kl 
Bathker [25] 0 1.0000 0.5000 0.4288 Rectangular 

1 1.0000 0.5337 0.4119 Rectangular 
2 1.0007 0.6326 0.4028 Rectangular 
3 1.0195 0.8065 0.4142 Truncated, 2r/a0 = 1.1721 
4 1.0786 1.0107 0.4281 Truncated, 2r/a0 = 1.1721 

5 1.1721 1.1721 0.4288 Cylindrical, 2r/a0 = 1.1721 
Corrected Eigenvalue 0 1.0000 0.5000 0.4288 Rectangular 

1 1.0000 0.5335 0.4135 Rectangular 
2 1.0009 0.6326 0.4098 Truncated, 2r/a0 = 1.1721 
3 1.0209 0.8079 0.4151 Truncated, 2r/a0 = 1.1721 
4 1.0558 0.9828 0.4349 Truncated, 2r/a0 = 1.1721 

The mode transducer dimensions are expressed in terms of the input rectangular guide 
broadwall, a0. The computed section length and cross-section dimensions are uncertain by 
approximately ±0.003 for the corrected eigenvalue synthesis. The additional significant 
figures given in the table indicate the geometry modeled. 

errors are present in the taper). 2.) The eigenvalues used in [23. 25] are forced to match those of 
rectangular and cylindrical guides at the endpoints by imposing a {1 — sin4} weighting. 3.) The 
exact section length correction is stated to be, "based on weighting the length corrections according 
to E- and H-plane susceptance magnitudes...[25]." In the small reflection limit, the junction 
phase shifts are <C ir/4. Under these conditions, weighting the phase shifts with the susceptance 
magnitude reduces to a uniform weighting of the phase shifts computed for the two planes. 4 4.) 
Although the impedance basis is "rigorously consistent with the power-volt age...for the dominant 
mode rectangular and cylindrical waveguides...[25]." this condition is not met in the presence of the 
stepped junctions required to maintain constant cutoff. This can be physically seen by noting that 
an H-plane step has a non-trivial turns ratio [9, 16] (i.e., such a junction is inherently a transformer 
with a turns ratio greater than the ratio of guide impedances). This effectively increases the total 
impedance ratio required for the transition. 5.) The junction reactances have been ignored in 
the design procedure. Since the Pyle condition fixes the relation between the input and output 
guide geometry, this effectively increases the required transformer ratio by the product of the excess 
VSWR's resulting from the junction reactances. 

4Recall the susceptance is proportional to the phase shift in the small angle approximation. The weighted 
junction phase shift is < (f> >« (<p2

E — O^KOE + <i>H) = OE — <i>H- If one looks at the capacitive/inductive 
corrections stated in [25], the section lengths reported are consistent with an infinite E-plane weight for 
all sections except for i = 3 (?). In Padman [26], a similar weighting scheme is more concisely described. 
However, in computing the junction phase shifts, the admittance ratios are given as Yi+i/Yi = bi/bi+i 
for both E- and H-plane steps (TE°0 illumination). For internal consistency, this should read Yi+i/Y; = 
biCii+iXgi/bi+iaiXgi+i. In the absence of a closed-form expression for the susceptance of a truncated guide 
junction with sufficient accuracy, we estimated I3 and /4 from finite element calculations for the corrected 
eigenvalue taper design. 



These observations suggest some degree of caution must be exercised in using the design synthesis 
outhned by Bathker. The cumulative effects of the mechanisms outhned above are estimated to 
increase the effective transformer ratio to R0 « 2.6. This suggests that a 0 to 6 dB improvement in 
the return loss to the corrected design might be expected (notice the null at the low end of the band is 
washed out and the sidelobe distribution is unequal for the corrected eigenvalue design) from further 
refinement of the synthesis procedure. From a fabrication and computational standpoint, however, 
increasing the return loss to ~ — 35 dB and correspondingly adjusting the fractional bandwidth 
might result in a more productive design goal (alternatively, the number of steps should be increased 
to N = 5). A summary of circular-to-rectangular transitions of potential interest is given in the 
bibhography. 

6.    A Comment Regarding Impedance Concepts in Guiding Structures 

The generahzed impedance concept allows the machinery historically developed for TEM transmis¬ 
sion line synthesis to be used for waveguide structures [13]. Three definitions are commonly used 
in guiding structures for the average impedance: 

Zp! = 2P/ri 

Zvi = V/I 

ZVP = V*V/2P 

where, 

p = i//s(
gxfi*)-ds" 

is the power flux through the guide cross-section S, 

= /(nxH) dl 

is the longitudinal current flow in a closed path C around the port (the net current flow through 
the port is zero, the current of interest is the average of the absolute value of the current flowing 
into and out of the port), and 

V = max |   /    (E - (E • n) • n) • dll 

is the peak voltage across the cross-section (A and B are the points on the port where the potential 
difference is maximized). These relations satisfy the following: Zpj < Zvi < Zyp and Zyj = 
(ZpiZvp)1^2- All three definitions are proportional to the wave impedance, ZEH- of the mode 
under consideration. See Table 2 for the dominant circular and rectangular guide impedances 
computed from these definitions. 

The ratio of the response to the driving force is the generalized impedance. For a TEM mode, the 
definitions involving power form upper/lower bounds on the guide's characteristic impedance. For 

a non-TEM mode, there can be some ambiguity identifying which field parameter plays which role. 
The magnitude of the impedance presented by the guide cross-section is only determined up to a 
multiplicative factor dependent upon the details of the definition. Since the topology freely admits 
the insertion of an ideal transformer, only the scattering parameters are observable. The choice 
of the "best" impedance basis is intimately related to the symmetry of the guiding structure and 



TABLE 2 
 WAVEGUIDE IMPEDANCE BASIS 

Impedance       TE^ TE^ 
Definition      [rjXg/Xo] lv^g/K] 

ZEH 1 1 
ZPI ir2b/8a *(l-^i)/8 
Zvi Trb/2a f^J0(x)dx/Jl(s11)- -1 

77 = (fio/to)1/2 ~ 37711 is the intrinsic impedance 
of free-space. 

the discontinuities present in the system. For the single mode integrated impedance concept to be 
valid, the mode's symmetry should only be broken along one of the integration paths. In addition, 
the field distribution on either side of the junction must have the same overall symmetry. 

The above definitions can provide useful guidehnes for a design in this limit. For example, Zpj is 
expected to yield useful results when the longitudinal current can be uniquely defined (e.g., with 
TE°0 illumination—a change in guide width or a slot-like perturbation), Zyp is a good impedance 
basis when a potential can be uniquely defined (e.g., changes in guide height or a strip-like pertur¬ 
bation), and Zvi is useful for structures where the potential and the longitudinal current are both 
uniquely defined (i.e., TEM mode). In expressing the effect of a waveguide junction in terms of 
the observable scattering parameters, we note that the above definitions are physically equivalent 
to expressing the dominant mode impedance in terms of the appropriate cross-section average and 
the higher order terms as a lumped reactance. Since all measurable quantities appear as impedance 
ratios, if the symmetry imphed by the basis is present, the details orthogonal to the discontinuity 
drop out. 

This may be the origin of the common assertion that the exact impedance basis is unimportant 
as long as the same definition is used throughout the calculation. Strictly speaking, this imphes 
a level of symmetry which may not be present. 5 Since the averaging process is not unique, it 
is quite easy for the details of the impedance definition to erroneously appear in a calculation of 
the observable parameters. 6 In structures with low symmetry, these simple averaging procedures 
cannot a priori be expected to accurately represent the generalized impedance at each junction. 
To accurately predict the behavior of the entire structure, a full analysis of the relevant modes is 
required (see, e.g., the techniques outhned in [27]). 

5In a complete modal description, two of the following conditions must be realized: the transverse 
electric fields are matched, the transverse magnetic fields are matched, or the complex power is conserved. 
We note that the implied separable nature of the impedance is only approximately achieved under the best of 
conditions (the form of the impedance matrix is over-constrained). To the extent that the junction symmetry 
allows this cancellation to occur and the section can be approximated as a scalar (i.e., a single term of a 
modal expansion), the impedance basis concept is useful. 

6In a particular basis, the expressions employed to represent the system may simplify or improve con¬ 
vergence; however, the underlying physical outcome does not depend upon the choice of representation. 
Although the impedance concept outlined is intuitively appealing, it is not necessarily the "natural'' pa¬ 
rameterization for waveguide scattering problems. In throwing complete rigor aside, we strive to retain the 
salient features of the underlying physical (and calculable) processes in the hope that the resulting prototype 
design can be used as a starting point for optimization. 
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WR42 Transitions:    (a0:b =2.471:1) 
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Figure 4. Measured and Computed Stepped Transformer Responses. The solid line in 
each panel is the design goal in the single mode limit. The square points were modeled with 
HFSS [6]. The dashed lines are data taken on stepped waveguide transformers with the 
HP8510C network analyzer. The noise floor of the TRL (Thru-Reflect-Load) calibration is 
< —45 dB across the band. 
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Figure 5. Circular-to-Square Transition. The solid line and square boxes are respectively 
the results of the finite element simulation and Bathker's measured data [25]. The long 
dashed line is the computed response for the corrected eigenvalue design. The short dashed 
line is the response of an ideal Tchebyshev taper with N = 4, wq = 0.8, and R0 = 2. The 
discrepancy between the design goal and the modeled performance reflects the approximate 
nature of the synthesis used in specifying the truncated junctions. 
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