
Mutithreading gridders without copying and
locks

Kumar Golap

Jan 15 2015

Abstract

The most common interferometric imaging techniques in use involve
gridding visbility data and Fast Fourier transforming (FFT). For the ma-
jority of data sets especially those that are large and need convolutional
correction the gridding (and degridding) stage is the largest time consumer
(more than 75% in many cases).

We present some techniques of how to parallelize in shared memory
mode the gridders and de-gridders without making copies of the grids or
locking. We investigate issues that can prevent significant speed ups. We
demonstrate by using some simple techniques that we can speed up de-
gridding maximum 14 times (typical speedup time 13) and gridding with
a miximum of 12 times (typical speedup time of 10) on a 16 core machine
using multithreading. Some version of this algorithm has been imple-
mented, using OpenMP multithreading, in production code of CASA[1]
imaging since January 2012

1 Introduction
Gridding: In its most simplistic form interferometric imaging involves gridding
visibility data onto a uniform grid and fast Fourier transforming. Even if we were
not using FFT interforemetric imaging needs correction which uses projection
algorithms (W-Projection[2], A-Projection[3] etc) which involve convolutions.
In typical high quality interferometric imaging degridding is performed to do
a Cotton-Schwab[4] style major cycle. Degridding is the process of predicting
from a model image what would be the visibilities measured at the different
uv-points sampled by the interferometer.

The larger the convolution functions used the more compute intensive and
time consuming the gridding and degridding sections are.

1

lutley
Text Box
EVLA Memo 191

Ungridded
Visibilities

Degridding

procedure
in parallel

0

1

2

3

n

Common gridded model visibilities

Figure 1: Data parallel degridding

2 Possibilities of parallelizing gridding and de-
gridding

2.1 Data parallel
In this model different pieces of the uv data is sent to be gridded and degridded
seperately. For degridding it is the obvious way to parallelize and there is not
much extra overhead as compared to single thread (or process) degridding. The
visibility data to be predicted can be partioned in n equal parts and distributed
to the threads (or processes) and the same grid which contains the gridded
model visibilities is shared by the n processes. No locking is needed as the
common grid is “read only” and the prediction happen on independent data
pieces. For load balancing the partition of the ungridded visbilities need to
be equal in processing time. If the distribution of size of convolution function
used to degrid the data is quite random and distributed evenly across each data
partition then just uniform partitioning will be load balanced and near linear
speedups can be expected. For mosaicing or wprojection (with the VLA) for
example this is the case for partitioning over a few integrations in time.

We can grid in a “data parallel” way too and it is the obvious choice for cube
imaging as the cube can be partition on channel basis and the data is partitioned
along the spectral axis so that only the section needed by each sub-image is read
by a given thread/process and gridded independently.

For continuum image the direct data parallel processing involves copies of
the grid which is then combined in a weighted average after the children have
processed it all.

2

Figure 2: Data parallel gridding with copies of grid

For large images this means that memory for n complex grids need to be
available for n threads/processes to proceed (n × Npixels × 16 bytes) . On
multiple nodes this is very doable but many node now comes with 16 or 32
physical CPU’s thus having 32 double precision complex grid in RAM may not
be an option on a single node.

Pseudo code for a grid copies multi process gridding would look like the
following:

###make cop i e s o f data g r id and weight g r id
and demarcate the data s e c t i o n f o r each gr idd ing s e c t i o n
####gr id the data in p a r a l l e l
begin p a r a l l e l p r o c e s s i ng
f o r each proce s s i a v a i l a b l e

copy g r id to gr id_i
copy we ightgr id to weightgr id_i
l o c a t e s e c t i o n o f data (data_sect ion_i)
grid_data data_sect ion_i onto gr id_i and keep account o f weights (we ightgr id_i)

end o f p a r a l l e l p r o c e s s i ng
###combine the g r id back by a weighted average
combine_grids a l l <weightgr id_i> with a l l <grid_i> back onto o r g i n a l g r id

3

The other option is to have one grid but each child process grid the data
partition with locking of the grid. This will be mostly serial. This is where
a non-data parallel but common grid method may work as we show in the
following sections

3 Description of nolock-mem-shared gridding

3.1 How it works
Instead of partioning the data for gridding; for each iteration of “data read”,
share all the data among the threads/processes. This step does not cost any-
thing extra on shared memory parallelism (e.g multithreading). The output
grid is commonly shared too but each process/thread is assigned exclusivity on
a section of the grid. The child thread (or process) then proceed to grid only
the data from the common data that falls on its assigned section

As a reminder, single process gridding proceeds as follows:

f o r each v i s i b i l i t y po int in data chunk loaded in memory
us ing u , v value l o c a t e g r id po int where data f a l l
us ing appropr ia te convo lut ion func t i on add to g r id

Now instead the grid is shared among all the threads/processes but each is
assigned exclusive regions of the grid to perform gridding onto. All the visibility
data is commonly shared among all threads. Then multi threaded gridding will
proceed as follows:

s e c t i o n g r id in n p i e c e s
begin p a r a l l e l t i l l complet ion o f a l l n s e c t i o n s
f o r each proce s s a v a i l a b l e a s s i gn a s e c t i o n o f g r id

f o r each v i s i b i l i t y po int in data chunk in memory
us ing u , v value l o c a t e i f g r i d po int con t r i bu t e to my s e c t i o n
us ing appropr ia te part o f convo lut ion func t i on that i s in my s e c t i o n add to g r id

e l s e
i gno re t h i s v i s i b i l i t y po int

end p a r a l l e l

As can be seen by pseudo code above there is no copy of grid and no locking
involved. The extra work introduced is to check if a piece of data contribute to
a section of a grid or not. If that check is much smaller in cpu cycles than the
convolution part then it does not contribute much to the whole scheme in terms
of time.

4

Figure 3: Two subsections showing how 2 cpu manage gridding without locking

As can be seen from Figure 3 each cpu is assigned exclusive write access to
adjoining sections with no evrlap.

The algorithm for gridding is: each cpu goes through all the visibility data
and grid the data that fall in their respective grid. When the data point with
convolution function covers 2 or more sections then the cpu add to the grid only
the part that falls within its borders.

3.2 Issues of load balancing
Each chunk of data that are read into memory may have different uv distribu-
tion pattern largely dependent on how the data is stored and loaded in chunk.
Telescopes like VLA and ALMA tend to store the data at every integration.
Thus a given integration snapshot of uv distribution tend to span quite some
area over the working grid (see Figure 4)

5

Figure 4: Typical snapshot uv coverage for VLA

So for the VLA or ALMA the algorithm to give exclusivity to each CPU can
be based on uv based sectioning of one or a few integrations of visibility data.

3.3 How to attenuate some issues that may affect speedup
Like any parallelization solutions load balancing is important or else the gain
hoped is not seen.

In figure 5 we show a simple uv area based partitioning dependent on the
grid size only (the line tracks are uv tracks of baselines over some integrations
in time). As can be seen the number of uv points in each partition varies a lot.
The CPU that gets Partition 5 will have the most crunching to do while the
CPU that gets partition 7 does not have much to do. If, for example, this is a 2
CPUs system then it will load balance itself as one cpu is crunching on partition
5 the other one can go through the others...but if it is a 9 CPUs system then
most of the CPUs would be idling except for the on working on 5 and the speed
up will be not much from serial. So having more partitions than CPUs may
naturally balance the work load. The issue then is if the ratio of “checking if it
is my partition” to “de/gridding work ” becomes significant in CPU cycles used

6

then speedup is lost. So just blindly making many small sectors and distributing
it among CPUs may not always be the solution

Figure 5: naive partitioning for multithreading

So depending on the situation a more adaptive scheme for partitioning is
needed.

For example for a 8 or 16 CPUs system a density dependent partitioning like
in Figure 6 can be

adopted to achieve some good speedup from serial.

7

Figure 6: A uv density adapted partitioning

In fact density distribution over time for telescopes like the VLA and ALMA
varies slowly as tracking over the sky is done. The sum of weights while gridding
is a marker of how much is being done while gridding (and degridding). Thus
once in a while during the gridding process the sum of weights for different
partitions can be monitored and if the sum of weights become wildly different
an adjustment in partitioning can be done.

One scheme that works very well is try different partition for a few integra-
tion and pick the one that goes fastest and usually that works fine for a couple
of hours of data and recheck again later.

Other schemes can be devised for example known arrays the UV tracks
at given AZ-EL observation are predictable thus we can have predetermined
partitioning done for N cpus used.

8

3.4 Caveat with openmp(Dynamic v/s static scheduling)
This is for parallelization with openmp[5] specifically. Although dynamic schedul-
ing has larger overhead it works better in the case of gridding and degridding
specially if many small partition are used. Static scheduling has very little over-
head and in some implementation a loop number is assigned to a thread quite
early and locked. This may mean that a given cpu may get a few grid partitions
that has not much to do whereas another one may get too many dense parti-
tions. Experimentations on VLA data mostly has shown dynamic scheduling to
achieve better or equal speedups in all cases tried.

4 Results
In applying some of the techniques above we can get speedups of upto 12 in
gridding on a 16 core machine gridding B-array VLA data. Speedup being
defined here as T1

TN
where T1is the time taken for a single process and TN is the

time taken by N-processes or threads. The plots in Figure 7 and Figure 8 are
for w-projection gridding and degridding on 1.4GHz and 74 MHz datasets.

Figure 7: wprojection gridding speedup plot on 2 different datasets

9

Figure 8: wprojection degridding speedup plot on 2 different datasets

References
[1] http://casa.nrao.edu

[2] Cornwell,T.J.;Golap, K.;Bhatnagar, S., "The Noncoplanar Baselines Effect
in Radio Interferometry: The W-Projection Algorithm", Selected Topics in
Signal Processing, IEEE Journal of (Volume:2 , Issue: 5) , 2008, pp.647
-657

[3] Bhatnagar, S.; Cornwell, T. J.; Golap, K.; Uson, J. M., “Correcting direction-
dependent gains in the deconvolution of radio interferometric images”, As-
tronomy and Astrophysics, Volume 487, Issue 1, 2008, pp.419-429

[4] Schwab, F. R; Relaxing the isoplanatism assumption in self-calibration; ap-
plications to low-frequency radio interferometry, AJ, vol. 89, 1984. 1076-1081
(The reference to Cotton-Schwab algorithm is to a paper “under preparation”
on page 1078)

[5] http://www.openmp.org

10

