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Abstract 
It is shown that the VLA, as an imaging interferometer, attenuates unwanted signals by a factor of from 

14 to 50 dB compared to a total-power telescope of the same sensitivity. The unwanted emissions standards 
for equipment located at the EVLA site can therefore be relaxed by ~ 15 dB over those based on standards 
established for a total power system. A simple expression is given which allows estimation of the approximate 
attenuation arising from fringe rotation as a function of frequency, array scale, interference duration, and 
target source declination. 

1 Introduction 

Modern radio telescopes are exquisitely sensitive, and hence extremely vulnerable to unwanted emissions which 
enter through the telescope sidelobes. The effects of unwanted emissions on a total-power system can be estimated 
in a straightforward manner, the results of which have led to the well-known ITU standards on harmful emissions. 
The effects of external signals on multi-element, imaging interferometers are more difficult to calculate due to 
the effects of differential phase between the target source and the source of unwanted emissions. 

In this memo, I review the basics of attenuation of unwanted signals for both total-power and interferometric 
systems. An analysis based on the imaging response gives attenuation estimates which are in excellent agreement 
with the analysis of Thompson[2]. The predicted attenuation is compared to those generated by simulations, 
and a 'universal attenuation relationship' is proposed, which allows easy and fairly accurate estimates of the 
attenuation of RFI due to the interferometric imaging process. 

2 RFI and a Total Power Antenna 

The analysis of the effect of RFI on a total power radio astronomy system is straightforwards. A source of radio 
frequency interference with power flux density Fh, entering through a sidelobe of gain Gsi is considered to be 
harmful to a radio astronomical observation if the power detected within a bandwidth Au exceeds 10% of the 
power from the astronomical source within that same bandwidth. If one observes an astronomical source with 
spectral power flux density Sobj with an antenna of forward gain G (defined with respect to isotrophic), and a 
receiver bandwidth Av, this harmful condition can be expressed as 

where the extra factor of one-half is due to an assumption that the source is unpolarized. The standard expression 
for harmful threshold power flux density can then be derived by noting that the relevent source spectral flux 
density is normally taken to be the minimum detectable spectral power flux density, given by 

_ Sttk'J. 07/ o 
mi"= gaVav (2) 

from which one obtains 
_ 0.47rA:Tsus /Au 
^ < n J \ — (3) 
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This power flux density can be related to the transmitter power, Pt through the equation 

Fh = (4) 47rr^ 

where r is the distance from the transmitter to the astronomical antenna, Gt is the gain of the transmitting 
antenna in the direction of the astronomical antenna, and S represents the effects of shielding lying between the 
transmitter and receiver. 

These relationships have been used to establish the maximum emission standards for equipment located at 
the VLA site[l]. 

3 RFI and a Single-Baseline Interferometer 

The expansion of the total-power result to a single-baseline interferometer is straightforward if we ignore the 
effects of differential source motion - that is, if we consider an interferometer on a non-rotating platform. For 
this, an analysis gives the same result as for the total-power case, except that the coefficient is reduced by y/2, 
(because we assume two antennas of forward gain equal to that assumed in the total-power case) and all variables 
are replaced by the geometric means of the two antennas - for example, the mean sidelobe gain is y/GsiGS2, and 
the mean distance is r = y/nr^. However, all practical interferometers are built on rotating platforms (the most 
obvious example being the earth), and a proper analysis must consider the effects of differential motion between 
the target source and interfering source. 

Imaging interferometers measure the complex coherence of the emission, with phase and delay tracking 
inserted so that the observed complex coherence will be constant for an unresolved object at the phase and delay 
tracking center. When referenced to the phase tracking center, emission from another direction undergoes a 
phase rotation at a rate given by: 

vp = <jje{uQ cos^o — u cos 5) (5) 

where u = Bx cos H + By sin H is the projected E-W component of the interferometer baseline, measured in 
wavelengths, u}e is the angular rotation rate of the earth, and the subscripts refer to the phase tracking source.1 

Interference rarely enters the telescope through the primary beam (and the effects are potentially very harmful 
if it does!). More commonly, it enters through some sidelobe or sidelobes, so that the amplitude and phase of 
the emission - and hence the amplitude and phase of the correlator response to RFI - are modified by the 
antenna's sidelobe radiation characteristics. These sidelobes have characteristic size 0 ~ A/D, and thus impose 
a characteristic time t ~ \/ujeD seconds for significant changes in the phase and amplitude of the correlated 
response. For the VLA, this timescale is ~ 165/Vg seconds, where uq is the frequency in GHz. 

The interferometer phase response to RFI is also a function of the interferor's motion with respect to the 
phase tracking center. If the interferor is stationary, then the correlator phase is simply that of the fringe-tracking 
system, and the RFI is equivalent to that from an object at the north pole, but with its phase and amplitude 
modified by the appropriate sidelobe gains. This phase rate is considerably faster than that imposed by the 
motion of the stationary source through the antenna sidelobe pattern. 

Thus, for the purposes of calculating the effects of stationary RFI on synthesis imaging, we can replace the 
real interfering source with a north pole equivalent, noting that the amplitudes and phases have imposed on them 
a slowly varying offset given by the difference between the antennas' sidelobe patterns for the true interfering 
source's direction. 

For a stationary emitter, the phase frequency in a phase-tracking interferometer is obtained from Eq. 5 by 
setting cos <5o = 90, giving 

Vf = — ujeu cos S (6) 

We now imagine observing a natural source of emission at declination 6, added to which is a source of stationary 
RFI which has the same phase rate as a source at the north pole. In the simplest analysis, the complex visibility 
is vectorially summed over some period of time, t. The desired signal adds coherently, since its natural phase 
rate has been offset by the phase-tracking system, while the interferor adds incoherently, as its phase is cycling 
at the natural rate. After time t, the interferor strength is reduced by a factor sine (Uft) relative to the desired 

1For an offset equal to the antenna beamwidth, 0 ~ X/D, it is easy to show that the maximum differential signal ('fringe') 
frequency is = oJeB/D, where B is the interferometer baseline and D is the antenna diameter. For the VLA in 'A' configuration 
this differential fringe frequency is 0.10 Hz. An integration time not exceeding ~ 1 second is thus required to retain the coherence 
for emission throughout the primary beam. 
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signal, where sine a; = (sin7rx)/7rx. For large values of x, the attenuation becomes \fuft = l/(Number of turns 
of phase). Thus, if one has the luxury of integrating over very long times (which means in effect that the field 
of view is vanishingly small), the interferometer's natural fringe winding will reduce the interfering signal by a 
factor given by 

A ~    (7) 
(jjetB cos 5 

This attenuation can be very large for long-baseline, short-wavelength interferometers - a factor exceeding a 
million for an hour-long, 35-km baseline observation at 7mm of an equatorial source. This attenuation could be 
considerably improved, if a more sophisticated averaging function were employed. 

Although this analysis is useful for indicating how the interfering signal is attenuated by a phase-tracking 
interferometer, it is not applicable to an imaging array, where the integration time is limited by the size of the 
object under study, and the imaging is necessarily two-dimensional. In the next section, these complicating 
effects are taken into account. 

4 RFI from an Imaging Perspective 

Consider a short burst of interference, where short is defined as a time duration much less than the fringe period: 
t <C \/u}eB cos 8. The correlator will produce a complex number for each baseline, describing the amplitude and 
phase of the RFI, as modulated by the sidelobe(s) through which it enters. The imaging process places on the 
image plane, for each measured visibility, a two-dimensional sinusoid with an amplitude given by the visibility 
amplitude, an offset with respect to the phase tracking center given by the visibility phase, and an orientation 
determined by the (u,v) coordinates of the baseline as seen by the phase tracking center at the time of the 
observation. The resulting 'image' of the RFI is the sum of all the sinusoids. 

For an image of the target object, the phases of the emission are coherent (after calibration) at the map 
locations corresponding to the true source emission, so the sums of all the sinusoids at this location reflect the 
true brightness of the object of interest. But at other locations, for other objects, including unwanted emissions 
entering through sidelobes, the averaging process can be considered as incoherent. 

The rms in the image due to the RFI on a single baseline is simply So/\/2, where So is the amplitude of the 
RFI signal. Now assume for simplicity that the sidelobe gain of all antennas is the same and constant. Then 
the rms in the image due to Nf, interferometers will be So/y/2Nb. If the number of antennas in the array, N, is 
large, and all pairs are correlated, then Nf, = N(N — l)/2, and we get for the rms in the image, a ~ Sq/N. 

Although we have argued that the image of the RFI is incoherent because of the varying phase of the sidelobes 
and propagation path, the calculation of the rms is independent of the phase properties of the correlated signal. 
This is in fact a manifestation of Rayleigh's theorem in Fourier transform theory. Stated another way - even 
if the pulse of interference was coherent in the sense that it came from a direction in the field of view, and the 
phases were calibrated so that the image showed the full amplitude of the pulse, the rms in the entire image 
would remain the same. The phases of the emission affect the structural details of the emission, but do not affect 
the rms. Thus, the effect on an image due to a short-duration pulse of unwanted emission is attenuated by a 
factor of ~ 1/27, or —14 dB compared to a total-power system. 

In Figure 1, we show the effect on an image made at a declination of 80 degrees due to a short duration 
pulse of unit amplitude. In the left panel, the phases of the pulse are appropriate for a 'real' source at the north 
pole. In the right panel, the phases of the data have been randomized to simulate the effect of a pulse entering 
through the sidelobes. Although the details of the responses are different, the rms of each is the same. 

We now consider the effect on an image when observing the RFI over a period of time much longer than 
the natural fringe period, t > X/ujeB cosS. This image can be considered as the average of a large number of 
sequential snapshots, each separated by a time short compared to the fringe period. Each contributing snapshot 
image has the appearance of Figure 1, but as time goes on, the sidelobes move in accordance to the changing 
geometry of the array and the changing peculiar phases of each antenna. For the case of a 'real' source at the 
north pole, the changing pattern is simply a rotation of the sidelobes emanating from the object. For the case of 
an 'incoherent' object, the same process occurs, but the 'sidelobes' are changing their distribution on a timescale 
given by the timescale of phase changes of the received signal. Generally, the shorter timescale is that of the 
fringe rotation, so we can consider as independent those snapshot images separated by a time given by the fringe 
period of the longest baseline. As the resultant image is the average of the input snapshots, we expect the rms 
in this image to decline as l/VTVj, where Ns ~ tujeBcosS/X is the number of independent observations within 
the observing time, t. The same result can be obtained by noting that the angular rotation rate of the sidelobes 
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Figure 1: Showing the effect on a shapshot image for <5 = 80 of a source of 1 Jy. In the left panel, the phases 
appropriate for an object at the north celestial pole. In the right panel, the phases have been randomly adjus 
to simulate the effects of far sidelobes. The rms in the left panel is 0.027 Jy, in the right panel 0.025 Jy. 
effective attenuation is -16 dB, compared to the predicted —14 dB of a simple analysis. 
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Figure 2: Showing the effect on a 1-hour integration for S = 80 of a source of 1 Jy. In the left panel, the phases 
are appropriate for an object at the north celestial pole. In the right panel, the phases have been randomly 
changed every minute, to simulate the effects of far sidelobes or propagation path differences. The left image 
shows the 'streaks' caused by rotation of the north polar dirty beam corresponding to the 1 Jy image. In the 
right image, these streaks are absent since the random phase changes are occuring on a much shorter timescale 
than the image rotation. The rms in both panels is 0.0030 Jy. The effective attenuation is —25.2 dB, compared 
to the predicted —27 dB of a simple analysis, using a baseline length of half the maximum. 

in a map is u = u)e, so at a distance of q = cos6, in time t, the distance travelled in the image is ujetcos8. As 
the typical sidelobe scale in the image is 9 ~ A/Z?, (where B is some median distance, to be defined later), the 
number of sidelobes passing any point in time t is Ns ~ ujetBq/X. As the height of each sidelobe is ~ So/Na, 
the expected rms in the images becomes 

(8) Na V UetBq 

Figure 2 shows the imaging effects for a one-hour integration at declination of 80 degrees, with a 1 Jy source 
placed at the north pole. As before, the left panel shows the result for a phase coherent object (a 'real' source), 
while the right panel shows the result when the phases randomly change once every minute. The rms is the same 
in each, 0.003 Jy, corresponding to —25.3 dB attenuation. 

In this analysis, the interpretation of the baseline B is left undefined. It must clearly depend on the dis¬ 
tribution and weighting of baselines in the transform (u,v) plane, and hence on the integration time and the 
distribution of antennas within the array. In the Appendix is presented an alternate analysis, which results in a 
definition of the effective baseline, 

Nb 
-1 

Bm US5*) ■ (9) 

and gives scaling coefficient of l/v^r? resulting in a predicted attenuation of 

(10) 
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We compare this result to that derived by Thompson[2], as reproduced in Thompson, Moran and Swenson[3]. 
Thompson's approach is to calculate the attenuation of the signal within a given cell in the gridded (u,v) plane, 
then sum over all occupied cells within that plane. The fringe-winding attenuation from his approach can be 
obtained by dividing equation 15.2 by 15.12, to give 

where the sum is over all cells in the gridded u-v plane. The angular dependence q in their analysis is slightly 
different: q = cos 5(1 + | sin5|). 

Both approaches give identical dependencies - that the attenuation of a stationary interfering signal by fringe 
rotation is proportional to the inverse square root of the product of: (a) the earth's rotation rate, (b) the duration 
of the interference, (c) the frequency, (d) the array scale, and (e) the sine of the angular distance from the north 
pole (with an additional, smaller term in the treatment of Thompson). The differences come from the differing 
treatments of the distribution of the measured visibilities in the u,v measurement plane. Both treatments define 
a 'mean baseline' which is dependent upon the number and distribution of points in the transform plane. This 
mean baseline is difficult to define in general, as it depends upon many array and observational parameters. 

5 Simulations 

The preceding expressions give useful insight into the mechanism of how an imaging interferometer reduces the 
effects of unwanted external signals. To check the predicted dependencies of the attenuation on declination, 
averaging time, frequency and baseline, it is easiest to simulate the effects using existing imaging software. This 
has been done using the AIPS package, using the following methodology: 

• A 'blank' database was generated using the program UVCON, for a specific declination, frequency, array 
configuration, and hour angle range. The sampling time was carefully adjusted to obtain at least 40 
samples per fringe period for a source at the north celestial pole. Such fine sampling is necessary to ensure 
that the full effects of the vector cancellation are retained. (It also results in extremely large databases, 
which necessarily restricted the simulations to low frequencies or short configurations. 

• The visibilities for a source located at the north celestial pole were added using UVMOD. 

• An image of the source at the north pole, and of its sidelobes at the declination of interest were created 

A wide range of simulations was generated, covering all four configurations, hour angle coverages (or RFI dura¬ 
tions) between 2 seconds and 24 hours, frequencies between 300 MHz and 5 GHz, and declinations between —40 
and 90 degrees. Examples of the generated images are shown in Figure 3, for an equatorial object observed for 
ten hours, and in Figure 4, for a source at a declination of 80 degrees observed for 12 hours. In each figure, the 
left panel shows the image, while the right panel shows the amplitudes in the transform (u,v) plane. Although 
these simulations were made using a 'coherent' source, there is no change in the results for an 'incoherent' object, 
whose phases are modulated by sidelobes or propagation effects. 

In Figure 3, the imaging effects from the stationary source (left panel) are nearly perfectly horizontal. From 
the point of view of imaging, this pattern occurs because of the rotation of the snapshot pattern about the north 
pole. The right panel shows the residual signal in the (u,v) plane. The only notable visibilitiess are distributed 
along the u = 0 axis, where the fringe rate is zero. The reason for the vertical symmetry is that the motion of 
the baselines is a function of u only - it is independent of v. Since the fringe rate is also only a fuction of u, the 
phase rotation within any (u,v) cell and hence the resulting attenuation in that cell, is therefore independent of 
v. 

Figure 4 shows the residual RFI, and the visibility signal, at a target declination of 80 degrees. The left 
panel shows that the image effects follow lines of constant declination, which are again due to the rotation of an 
unchanging snapshot pattern about the north pole. In the signal plane (right panel), the significant visibilities 
are seen to be spread out in a cone centered on the v axis, with vertex at the origin. The explanation for this 
effect is of some interest. The attenuation in any given cell in the (u,v) plane is dependent upon the total phase 
rotation within that cell. This, in turn, is proportional to the phase rate of the baseline multiplied by the time 

(11) 

using IMAGR. 
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Figure 3: Showing the image sidelobes (left panel) and u,v amplitudes for an observation at declination = 0, for 
a source located at the north celestial pole. The attenuation is high everywhere except along the u = 0 axis, 
where the phase rate is zero. The right panel shows the amplitudes of the visibilities in the (u,v) plane. 
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Figure 4: Showing the image disturbance (left panel) and u,v amplitudes (right panel) at a declination of 80 
degrees, for a source located at the north pole. The attenuation in any given cell is dependent upon the ratio of 
the phase rate - a function only of n, to the velocity of the baseline while traversing that cell. The attenuation 
is low in a sector (right panel) at this high declination because the long baselines move quickly, and are located 
only in the outer regions of the (u,v) plane, and the phase rate depends on cos 8. 

7 



is takes that baseline to traverse that cell, which in turn is inversely proportional to the motion of the baseline 
in the (u,v) plane. The total phase rotation within a cell can then be expressed as: 

a , (jjeucos5 , v A0 oc = (12) 
y/(du/dt)2 + (dv/dt)2 

which can be expressed as 

A<f> oc . "'"COsj (13) 
v/uWi+ ("-=%rrui)2 

where Bz is the component of the baseline parallel to the Earth's rotation axis. For declinations near 90 degrees, 
this expression can be simplified to 

UJeUCOsS 
0 OC , —> uJe&S(u/r) (14) 

Vuz + v' 
where r is the radial distance in the (u,v) plane from the origin, and A<$ = 90 — J. This result shows that the 
lines of constant attenuation for northern objects radiate at constant angle from the origin, as shown in Figure 
2, right. The attenuation within a cell is small, despite the long baselines, because these baselines travel so 
rapidly through the (u,v) plane, in a region where the fringe period is longer (due to the northern declination 
and because the coordinate value u is small). 

The dependencies of the rms sidelobe patterns on averaging time, maximum baseline length, frequency, and 
target source declination, are shown in Figure 5. For each panel, selected trial results are plotted, showing in 
each the expected slope of 5 dB/decade. 

Equation 10, which gives the expected attenuation, can be expressed in more practical units as follows 

R = 1'p4 (15) VIsUmBK cos 0 

where ts is the duration of the RFI in seconds, vm is the frequency in MHz, and Bk is the mean baseline in 
kilometers. For a given array, this mean distance will be approximately linearly related to the maximum baseline. 
Define / as the ratio between the maximum baseline and the mean baseline of the array: / = i?maa;/Bm, giving 
for our final expression for the attenuation of an interfering signal by the imaging process 

R = l-34v7 (16) 
yjtsVMBmax,K COS 0 

The VLA's compacted geometry would suggest that the ratio of the maximum to mean baseline is approximately 
four, suggesting that the actual coefficient in the preceding equation will be about 2.6. 

We show in Figure 6 a comparison of the estimated attenuation, taken from Equation 16, using a numerator 
of 2.6, to that measured from the simulations. The agreement is generally very good, with the exception of those 
observations where the predicted attenuation is low, and where the actual attenuation asymptotes at about 14 
dB. This flattening in attenuation is because the duration of the observation is insufficient for any significant 
fringe winding, so that the only attenuation available is that due to the 351 VLA baselines adding incoherently. 
The transition between these two dependencies occurs when 

Bfjiax,K cos S ~ 4260 

where we remind the reader that 5maa:j/c is the maximum baseline in the array, measured in kilometers. 

6 Discussion 

The results of the simulations show that Equation 16 is remarkably accurate in predicting the attenuation of a 
constant amplitude external signal due to the phase rotation of a tracking interferometer. For the extreme case 
of a 12-hour interfering signal, observed at 49 GHz with the VLA in its A-configuration, the attenuation will be 
~ —50 dB! In more practical cases, attenuations of —20 to —30 dB can be expected. In all cases, attenuation of 
—14 dB is obtained simply from the incoherent summation over the array's baselines. 

These results can be extended to non-stationary interference by the following argument. In essence, the 
attenuation is inversely proportional to the total number of fringes traversed by the target source in the given 
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observation time. If, in a period of time t, a moving source of interference traverses N fringes, we would 
expect an attenuation of order 1/y/N. A moving interferor, travelling at an angular rate oj for time t will pass 
~ ButfX = Bvt/Xr fringes, where v is the velocity, and r the distance of the interferor. And we would expect 
the attenuation to be even stronger in the case where the angular movement of the interferor is much greater 
than that of the astronomical source, since in that situation the coherent addition will lie within one, or only a 
few, (u,v) cells. In this case, the analysis of Section 3 will apply, so the effect in the image will decline with 1/iV, 
rather than 1/y/N (and potentially even better, with more sophisticated averaging schemes). 

This analysis shows that for the VLA and EVLA, the tolerance of the array to an interfering source of 
emission is significantly higher than for an equivalent total power system. Besides the obvious benefit of this 
for diminution of unwanted external emissions, this improved isolation will enable a significant relaxation of the 
stringent emission standards for equipment located at the VLA site. At a minimum, the allowed emissions can 
be higher by ~ 15 dB than those indicated by application of equation 3. 

A An Alternate Analysis of the Fringe-Winding Attenuation 

From the perspective of the correlator, RFI from a stationary source is indistinguishable from emission from a 
source located in the direction of the north celestial pole, as both have a zero natural fringe rate, other than the 
slow modulation added by the antennas' gain variations, and by propagation path differences. We use this fact 
to estimate the effects of such a source on the image at an arbitrary declination and hour angle. 

Consider an astronomical observation in the direction of the north celestial pole, during which an interfering 
signal enters the array antennas through the sidelobes. In a 12-hour observation, the locus of each baseline 
describes a half-circle in the u-v plane, of radius B/X. To simplify the problem, we asssume for now that the 
antennas' sidelobe gains are unchanging, and that their phases are the same, so that the correlator phase is 
zero, and the amplitude constant with apparent spectral flux density So- Then, the imaged response to the 
interference from a single baseline will be given by a Bessel function of order zero: 

/(?) = SoJo (21-19) (18) 

where B is the baseline length, and q is the sine of the angle from the north pole (the map center): q = cos 8. 
We are interested in the sidelobe response from this 'source' at great distance. The asymptotic approximation 

for the Jo Bessel function at large angle, q » X/B is 

A fn B 7r\ -cos(^x9--). (19) 

Each baseline contributes a zero mean, oscillating contribution whose amplitude declines as the square root 
of distance from the north pole. The root-mean-square in these sidelobes is then 

(20) 

As each baseline is of different length, and assuming that each contributes equally to the output (uniform 
weighting), the summed response over many baselines, relative to the image's peak response, declines with the 
square root of the number of baselines, or linearly with the number of antennas. We thus find, for the rms 
far-field disturbance, after summing over all baselines and normalizing by the peak response, 

R ~ V NtBmq —' AU V 9-Bm (21) 

where Na is the number of antennas in the array, Nf, = Na(Na — l)/2 is the number of baselines, and the 'mean' 
baseline Bm is an average over all baselines: 

'"(sts) 

-1 

(22) 
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R in Eqn. 20 is interpreted as the effective attenuation due to the imaging process. 
This analysis assumes the signal is on for twelve hours - long enough for the baseline locus (plus its complex 

conjugate) to complete a circle in the u-v plane. For shorter times, we note that the angle traveled by the locus 
of the baseline is given by 0 = ujet, where uje is the angular rotation rate of the earth. This suggests that for 
shorter times, the appropriate expression for the response at great distance is 

This rough estimate can be justified by noting that ojetBq/\ is the number of spatial cycles of the interfer¬ 
ometer fringe which sweep through the north pole in time t when observing a source at declination <5. We also 
can anticipate that this attenuation due to the rotation of the earth will not be effective when the number of 
fringes passed is small. 
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