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Abstract 

We present simple scaling laws which will allow estimation of computing post-processing imaging 
costs, parameterized by array scale, antenna size, antenna number, and wavelength. Full-beam post¬ 
processing costs for large-N (small-D) arrays will be very expensive, and must be included in any 
total cost for an interferometric array. We present two simple cost formulations which include these 
post-processing costs. 

1 Introduction 

Interferometers are imperfect. Raw ('principal solution') images made from an interferometric array 
are nearly always limited by the sidelobes of the synthesized beam - typically a few percent of the peak 
- rather than by thermal noise. There are of course very effective and well-established methodologies 
for deconvolution of the imperfect image, but these are nearly always computationally expensive, easily 
dominating the total computing effort. 

A major factor in judging array design and cost is the cost of data processing. In general, employing 
smaller antennas means there must be more of them to preserve point-source sensitivity, which thus 
generates a larger database. The problem is compounded because the larger primary beam necessitates 
more frequency channels and faster time sampling. All of these factors generate larger databases, and 
more post-processing. 

The purpose of this memo is to generate rough scaling laws so that array designers can estimate 
the implications of antenna size. We have also attempted to estimate the coefficients of these laws, so 
that a rough cost equation can be made. 

2 Basic Assumptions 

We assume an array comprising N elements, each of diameter D, which spans a maximum dimension 
B, operating at wavelength A with a fixed total collecting area, so that the product ND2 is constant. 
This is appropriate when sensitivity is the prime design driver. We consider the 'cost' of imaging, and 
assume that this is proportional to the product of the number of images to be made, multiplied by the 
size of the database from which these images are derived: 

Cost OC NuiapgVddtd (1) 

3 The Number of Maps 

The situation we consider is full-beam imaging, which implies that the entire solid angle subtended 
by the antenna element's primary beam must be imaged in order to remove the sidelobes of all the 
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background objects to the level of the thermal noise. A simple analysis will illustrate the nature of the 
problem. Suppose within the primary beam there are Ns point sources with apparent flux densities of 
Si Jy, and that the PSF has an rms sidelobe level of R, expressed as a fraction of the peak. Then, the 
rms noise level due to the sidelobes can be estimated as 

The sum is over the apparent flux densities of the sources as attenuated by the antenna primary beam. 
For simplicity, we assume there is a mean value, 5TO. Then, for Ns such sources, we obtain 

We can roughly estimate the sidelobe noise level from our experience with L-band data: Ns ~ 100, 
R ~ 0.01, and Sm ~ 10 mjy. For these conservative values (some would argue they should be much 
higher), the estimated sidelobe noise level is 1 mJy, or 100 times the thermal noise limit for the EVLA 
at this frequency. 

The accumulated sidelobes from background objects cannot be ignored, and the number of back¬ 
ground objects means that at low frequencies at least (say, below 8 GHz for EVLA sensitivities1 ), it 
will be necessary to image the entire primary beam to find and remove these background objects. 

How can this best be done? The VLA/EVLA is a two-dimensional array, which means it is coplanar 
only instantaneously. As originally discussed by Clark[l], and expanded upon by Perley[2] the normal 
2-dimensional FT relationship cannot be applied to visibility measures taken in a 3-dimensional volume 
without significant aberrations. The formal solution is a 3-dimensional transform, within which the sky 
emission appears on a sphere of unit radius. But this approach is highly inefficient - for an array with 
the resolution of the full EVLA (350 km baselines), the 'depth' of the necessary transform is large - 
~ 3XB/D2 cells, roughtly 100 cells at 1 GHz, and over 2000 cells at 74 MHz. Stated another way, over 
99% of the cells in the '3-d' image volume are empty of sky emission, so their computation represents 
little more than wasted effort. 

Other, more efficient approaches are discussed by Cornwell and Per ley [3]. The widely adopted 
solution is to cover the celestial sphere with a mosaic of smaller 2-d tangent images, each of which 
is sufficiently small to minimize aberrations. The computations then cover (approximately) only the 
surface of the sphere. A distinct advantage of this approach is that direction-dependent calibration 
constants (such as atmospheric/ionospheric phase errors) can more easily be implemented. The dis¬ 
advantage is that the entire data volume must be regridded for each of the sub-fields, with a (u,v,w) 
rotation to keep the image plane tangent to the celestial sphere. Both AIPS and AIPS++ have extensive 
software to accomplish this, and the method is now well established and highly effective. 

The number of subfields required turns out to be the same as the depth of the required 3-d transform: 
~ 'SXB/D2. For the full EVLA, this will vary from less than 10 at 40 GHz, to over 1000 at the lowest 
frequencies. 

However, a single image per subfield is not sufficient. Each subfield can deconvolved individually 
only until the remaining emission is comparable to the sidelobe levels from objects outside that subfield. 
At this point, the effects of the sources discovered so far must be removed by u-v subtraction from the 
original database, and the entire mosaic of subfields recomputed. With current VLA sensitivities, each 
subfield will be be recomputed many, perhaps dozens, of times2. As the decision of when the entire set 
is to be re-imaged depends on the level of the sidelobes, having a 'good' PSF is clearly advantageous. 

^he frequency above which this approach will no longer be necessary is keenly debated at the AOC. Some say as low 
as 4 GHz, other say as high as 18 GHz. All estimates so far are based on intuition, experience or prejudice. Eventually, 
somebody will have to do a proper sum over the beam-weighted number counts. 

2With the much higher sensitivity of the EVLA, the number of 'major cycles' will increase dramatically - a factor not 
included in this analysis 

(2) 
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The scaling law for the number of times the set of subfields must be recomputed is straightforwards: 
If there are N antennas in the array, the sidelobe levels scale as l/N. A wavelength dependence can be 
added easily - if the array has a flat sensitivity with frequency, (approximately true down to a frequency 
of approximately 500 MHz where the galactic background begins to dominate), the 'constrast' between 
background objects and thermal noise will rise with the mean spectral index - say, as A0 7. Thus, 
we estimate the number of re-imaging cycles to scale with A0-7/N oc X0 7D2, and the total number of 
images (and hence the number of times the entire data volume must be transformed) to scale as: 

XB A0-7 B 
Nmaps =: Nfields^cycles ^ ^J2 jy = ^ ^ ^ 

where the last proportionality has utilized our assumption that the total sensitivity (and hence collecting 
area) is a constant. 

However, if the antennas in the array are grouped, for the purpose of (say), saving on fiber costs, an 
extra factor is required. The reduction in the number of major imaging cycles assumed the N antennas 
each contribute equally to reducing the PSF sidelobe levels. Grouped antennas act as a unit, whether 
their signals are summed or correlated individually, and this reduction will not then occur. In this 
case, the scaling law above must be multiplied by a further factor, Nag, the number of antennas per 
station. If significant grouping is contemplated, this becomes a very significant factor. 

4 Data Volume 

Calculation of this factor is straightforwards. An array of N antennas, amongst which all possible 
correlations including autocorrelations are made for each of Np polarizations, for each of Nc spectral 
channels, using an integration time of seconds, produces data at a rate 

V = 5WJV-1) Bytes/sec (5) 
td 

where it is assumed each visibility is written as two four-byte numbers, with a 20% overhead for 
'meta-data'. 

Since we are assuming a constant-sensitivity array, the number of antennas scales as N oc l/D2. 
To avoid chromatic aberrations ('bandwidth smearing'), it is necessary to employ narrow frequency 
channels. The number required is shown by Perley[4] to be Nc = k(BWR — l)B/D, where BWR = 
Vu/vi is the bandwidth ratio, and the coefficient k is between 1 and 10, depending on the degree of 
tolerable error3. In the same memo, Per ley shows that the time averaging interval required to limit 
time-smearing aberrations to negligible levels is given by td ~ D/(Bu), where u is the angular rotation 
rate of the earth. Combining these factors, we obtain, using an intermediate value of k, 

{NB^ fW\ 
y~0.0l(-^-j (—J Bytes/sec (6) 

where W is the bandwidth, and u is the band frequency. The desired scaling laws are thus: 

V oc N2B2/D2 oc B2/D6 oc B2N3 (7) 

where we have omitted the bandwidth and frequency factors, and a linear factor of time. 
3Chromatic aberrations can be offset by deconvolution, if the aberration is not severe, so a modest error can be 

tolerated 
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5 Processing Costs 

The above relationships can now be combined to give the overall scaling laws for computing, under the 
assumptions given before. We find 

NB3 S3 

Cost OC \l-7Nag—j^- OC X1'1 Nag -JyT (8) 

where Nag is the number of antennas in a station, B is the maximum baseline, and D is the antenna 
diameter. Alternatively, for a constant-area array, we find 

Cost oc Xl-7Nag{NBf (9) 

How much worse is this than what we currently deal with? A lot worse. For the EVLA, with ten 
times the maximum baseline of the present VLA, and 37 antennas all of 25-meter diameter, the increase 
from this relation is by a factor of ~ 2500. However, this formulation has assumed the bandwidths 
are the same - in fact the EVLA will have at least twenty times the bandwidth of the current VLA in 
L-band, so the actual enhancement factor over the present computing requirement is more like 50,000. 
Indeed, it is likely to be considerably higher than this, since the effect of extra sensitivity, requiring more 
major cycles, has been neglected. If Moore's Law gives a doubling of capacity every 18 months, it will 
take at least 20 years to return to current relative processing speeds for full-field imaging. Replacing 
the EVLA with (say) 4 times as many antennas of one half the diameter will multiply this factor by 
another 43 = 64. 

6 A Cost Equation 

As shown above, the cost to process correlator data can be substantial. This is especially true for high 
sensitivity arrays operating in the continuum, where the entire element beam must be deconvolved to 
high dynamic range to avoid the confusion caused by the sidelobes of sources distant from the tracking 
center. This cost has not hitherto properly been taken into account in array design. Array design 
usually proceeds on the basis of a cost equation, which is used to examine the tradeoff between the 
number of elements and the size of each element. Below we derive cost equations containing this term. 

First, consider the simple case, in which we are designing for a single band, with a given receiver, 
and we are given a resolution and a sensitivity, so the product ND2 is constant. Let us parameterize 
the cost equation by the number of elements. 

The cost equation can be written (retaining its dependencies on both antenna diameter D and 
number N)\ 

C = a + bN + dND2a + eN2 + fND~4, (10) 

where a where 

• a is the fixed cost irrespective of the number of antennas (building, power substation, water 
supply, internet hookup, etc.). 

• b is the cost of the equipment on each antenna (receiver, fiber tranceivers, correlator station signal 
conditioner, etc). 

• d determines the costs of the antennas. The exponent a is somewhere between 1.3 and 1.4. 

• e is the 'per baseline' part of the correlator cost, including general purpose computers to clean 
up and format the data stream. (The correlator also has a 'per element' cost, included in the 
coefficient b.) 
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• / sets the cost of post-processing. (The factor B 3 has been omitted for now.) 

For a constant-area array, this can be rewritten as 

C = a + b'N + dW + eN2 + /'AT3. (11) 

The exponent rj = 1 — a is typically —0.3 to —0.4, so that the cost of the antennas for a constant-area 
array actually decreases as the number of antennas increases. 

With the current VLA, A configuration, and current computers, the coefficient /' is of order $10. 
For larger configurations, this coefficient will scale roughly with the cube of the baseline. With an 18 
month exponential decrease in the cost of processing power, by 2018, /' might decrease to $0.01. Even 
so, with a few thousand elements, the last term would be a substantial part of the budget. 

For the WIDAR correlator, the coefficient e is of order of $2000. With techniques adapted for a 
larger number of elements, and using the electronics of the next decade, it would be surprising if this 
coeficient did not decrease by a factor exceeding ten. This is not a dominating cost for most reasonable 
configurations. 

A complete cost equation would include several other components: whether the receiver front-ends 
are cooled or uncooled, the bandwidth of the receivers, and the size of the array. Below is a first 
attempt at taking these factors into account. 

We still presume we are designing to a given desired sensitivity. Sensitivity is proportional to 

and is now the quantity to be kept fixed. In these expressions, 

• W is the bandwidth 

• Tc is the system temperature of a cryogenic receiver 

• c > 1 is the ratio of system temperature of uncooled and cryogenic receiver systems. 

The cost equation is now written as: 

where we have re-inserted the dependencies on baseline and wavelength, and have broken the antenna 
equipment costs into three components: 

• ba is that part of the cost of an antenna system that is independent of the diameter of the antenna, 
the bandwidth of the receiver, and whether the receiver is cooled or uncooled. 

• bc is the cost of cryogenics for cooled receivers (zero for uncooled receivers). 

• bw is the cost of components proportional to bandwidth (principally the correlator antenna based 
signal processor and some components of the digital transmission system. 

Using the constant-sensitivity relation to remove the dependence on antenna diameter, we find 

C = a + (ba + bc + bwW)N + ctN^icW'^2)1-71 + eWN2 + /V-2'7 B^Wc'2 N3. (14) 

The W factor in the correlator cost occurs because in the usual cases, the clock rate of convenient 
digital circuitry is substantially lower than the bandwidth we wish to process, so multiple copies of 
the circuitry are run in parallel. The W factor in the data processing is due simply to the increased 
number of delay channels we must process to cover the entire element beam. 

Tgys cTc a oc    =  
ND2y/W ND2VW 

(12) 

C = a + (ba + bc + bwW)N + dND2a + eWN2 + f N D^W v'21 B3 (13) 
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It is interesting to note that the cost difference between a system with cryogenic receivers and one 
with uncooled receivers is (assuming the other parameters are held fixed): 

AC = —bcN - <f*iV7W(7?-1)/2(c1-7? - 1) + /*iv-2-7W£3iV3(l - c"2). (15) 

A negative value means the uncooled array is cheaper than a cooled array for a given sensitivity. The 
increased antenna cost required for uncooled systems is traded off against not only the cost of the 
cryogenics, but against the cost of the data processing, which is higher with the smaller antennas 
permitted by the cryogenic system. 

These equations are for a system designed for imaging single fields. For a survey system, the figure 
of merit does not go as sensitivity (~ ND2), but as the simple product of number of elements and 
element diameter, (ND). This may lead to quite different conclusions. 

In any event, it seems necessary to more carefully consider the data processing requirements for 
future arrays of high sensitivity and long baselines before embarking on their final design. It is possible, 
but by no means certain, that more economic algorithms than those considered above will yield sufficient 
dynamic range. 
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